
CROSS DOMAIN LOW-DOSE CT IMAGE DENOISING WITH
SEMANTIC INFORMATION ALIGNMENT

Jiaxin Huang1 Kecheng Chen1 Jiayu Sun2 Xiaorong Pu3,1∗ Yazhou Ren1

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China

2 West China Hospital, Sichuan University, Chengdu, China
3 NHC Key Laboratory of Nuclear Technology Medical Transformation,

Mianyang Central Hospital, Mianyang, China

ABSTRACT

Recently, cross domain adaptation has been applied into quite
a few image restoration tasks. While promising performance
has been achieved, the domain shift problem between the
training set (a.k.a., source domain) and the testing set (a.k.a.,
target domain) in Low-dose Computed Tomography (LDCT)
image denoising tasks is typically ignored by most existing
methods. This is prone to the degradation of the denoising
performance due to large discrepancy of feature distribution
in each dataset from various vendors. Therefore, a simple yet
effective LDCT denoising approach has been proposed in this
paper to alleviate the domain shift between source and target
domains through a novel semantic information alignment.
Specifically, we first propose an adaptive version of random
frequency mask (RFM) to extract the shared semantic infor-
mation of cross domains. Then, we incorporate the mask into
the existing denoiser to construct a semantic-information-
guided objective. Experiments on synthetic and real datasets
show our proposed method achieves impressive performance.

Index Terms— Medical image denoising, Low-dose CT,
Domain adaptation, Deep learning

1. INTRODUCTION

Low-dose Computed Tomography (LDCT) scanning technol-
ogy has been widely used as an important imaging modality
in modern clinical diagnosis such as early screening of lung
nodules and lung cancer, considering the potential radiation
risk to the patient [1, 2]. However, reducing the radiation
dose increases the noise in LDCT images, which could re-
strict the further improvement of diagnostic accuracy. There-
fore, lots of researches have been proposed to remove the
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noise from LDCT images. The goal of their methods typ-
ically aims to learn a mapping from noisy to clean images
on training data (namely source domain) firstly and desire to
achieve impressive performance on testing data (namely tar-
get domain). However, one may suffer from the domain shift
problem, which may be caused by the difference of the se-
mantic information between source and target domains. For
example, varying equipment parameters (e.g., the slice thick-
ness) and individual properties may cause the different tissue
percentage of obtained CT images between two domains. As
a result, addressing the domain shift problem for LDCT de-
noising is of great interest.

Recently, domain adaptation [3] has attracted lots of at-
tention due to the great progress achieved in style transfer [4],
image translation [5] and image restoration tasks [6, 7, 8].
All of these methods are trying to alleviate the domain shift
issue in their tasks, which could be divided into to two main
streams. One is adversarial learning. Since the emergence of
domain adversarial neural networks (DANN) [9], more and
more frameworks have been proposed to apply adversarial
training to align the source and target distributions on the
feature-level [10] or pixel-level [11, 12]. The other focuses on
learning an invariant representation from the source to the tar-
get domain [13]. For instance, building upon a domain adap-
tation formulation, Du et al. [7] manage to learn a discrete
disentangling representation to align two domains, which is
similar to the architecture proposed by Lee et al. [14]. How-
ever, they could not reconstruct LDCT images in high qual-
ity due to losing finer details or inconsistency backgrounds,
which is determined by various features in frequency domain
of the image.

In this paper, we tackle the domain adaptation problem
for LDCT denoising tasks from a novel perspective, aiming at
improving the adaptation ability of the models training from
source domains to arbitrary target domains. Different from
the methods mentioned above, we propose a play-and-plug
medical image alignment model on semantic-wise. To be
more specific, the model consists of an adaptive version of
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random frequency mask (RFM) and a discriminator. The for-
mer part is proposed to extract semantic information of LDCT
images from two domains and the latter is used to align dif-
ferent features through adversarial learning. By incorporating
the loss of the discriminator with the loss of denoising net-
work and training them in an end-to-end manner, we can ob-
tain better performance of solving both domain shift problem
and LDCT image denoising task. The main contributions of
the paper are summarized as:

• Propose an adaptive version of random frequency mask
to extract semantic features of LDCT images from both
source and target domains.

• Incorporate the mask into the existing denoiser to con-
struct a semantic-information-guided objective via exploiting
the properties of alignment module as the weightings of the
loss function.

• Build a cross domain LDCT image denoising frame-
work on the basis of the semantic features alignment.

2. PROPOSED METHOD

In this section, we focus on how to mask the LDCT image to
extract semantic features for alignment and brief how to tune
the overall network with the alignment model and the back-
bone via joint optimization. To our knowledge, this is the first
attempt to solve the domain shift problem by aligning seman-
tic features based on a frequency mask. The architecture of
the proposed framework is illustrated in Fig. 1.

2.1. Preliminary

Given a source domain, denoted as S, there are n LDCT
images with paired normal-dose CT (NDCT) references,
denoted respectively as XS = {xS

1 , · · · ,xS
n} and YS =

{yS
1 , · · · ,yS

n}. In target domain, denoted T , there are m
LDCT images available, denoted as XT = {xT

1 , · · · ,xT
m}.

2.2. Semantic Information Alignment Model

Our proposed model consists of the following steps: a) trans-
form an input (a LDCT image from source or target domain)
to the frequency domain, b) mask the frequency features with
a sampled map based on latent distribution of LDCT images,
c) convert the masked frequency representations back to the
image that contains efficient semantic information, and d)
align the shared features through adversarial learning.
Adaptive Version of Random Frequency Mask. Inspired
by the random frequency mask module proposed by Yue et
al. [16], we propose an adaptive version of random frequency
mask with latent distribution to extract the semantic informa-
tion shared by two domains. On the basis of discrete cosine
transform (DCT) and inverse-DCT (I-DCT), we mitigate
the perturbations encoded as high frequency components in
LDCT image.

Without loss of generality, let a H×W ×C tensor denote
the input of the module and X ∈ RH×W denote one of the C
channel slices in the input tensor. Discrete cosine transform
(DCT) is adopted to compute the frequency representations
of X. The DCT result of X is represented as X̂ ∈ RH×W .

X̂(u, v) = c(u)c(v)

H−1∑
i=0

W−1∑
j=0

Y(i, j) (1)

Y(i, j) = X(i, j)
cos(i+ 0.5)π

H · u · cos(j + 0.5)π

W · v , (2)

where c(u) is a compensation coefficient, and the definition
of c(v) is the same as c(u) [16].

Traditionally, the DCT maps of LDCT images (noisy
images) have larger high-frequency components and smaller
middle-frequency coefficients than NDCT images (clean
ones) [17]. Especially, semantic information related to some
original middle-frequency details is influenced by the noise
to some degree [18]. Thus, we propose to reduce the per-
turbations by multiplying the DCT X̂ with a binary mask
M ∈ RH×W :X̂

′
= X̂⊙M, where ⊙ is element-wise mul-

tiplication. Then, the masked DCT X̂
′

is translated to the
same image as the module input via inverse discrete cosine
transform. The whole process of our proposed mask module
is formulated as: X

′
= F−1(M⊙F(X)), where F(·) stands

for DCT, and F−1 denotes the I-DCT. The module output X
′

has the same shape as the input X̂.
Through our preliminary experiments, we find that the bi-

nary mask M determined by a Bernoulli distribution with
a given probability [16] is not suitable when dealing with
LDCT image, as the mask is simply determined by the dis-
tance from the lowest-frequency component corresponds to
the frequency degree of a component. To efficiently extract
the semantic information from LDCT images, learning the la-
tent distributions of semantic-wise is essential. Therefore, we
propose to use parameterized variational encoding network,
first proposed by [19] to learn the latent distribution P (z|x) of
LDCT image. Here, we denote z as the latent representation
of x. Considering that the distance from the lowest-frequency
component corresponds to the frequency degree of a compo-
nent, P (z|x) is used to decide whether to mask the current
component or not. For each coefficient of position (u, v), we
set its corresponding weight in the binary mask according to
the latent distribution:

r(u,v) =

√
u2 + v2

rmax
, (3)

where rmax equals to
√

(H − 1)2 + (W − 1)2 and denotes
the maximum radius for a DCT map of size H × W . To
preserve the semantic information of the LDCT images, we
keep such a DCT coefficient unchanged by setting M(u, v)
as 1. Therefore, the mask M(u, v) is formally defined as:

M(u, v) =

{
1, r(u,v) > rmax

P (z|x), 0 ≤ r(u,v) ≤ rmax
(4)

After the process of masking, we align the semantic com-
ponent extracted from both source and target domains, de-
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Fig. 1. The framework of our method for LDCT denoising. One can insert arbitrary LDCT denoisers into our proposed
framework with a play-and-plug manner. A pretrained VGG-19 [15] network has been adopted to calculate the perpetual loss.

noted as X
′

n and X
′

m respectively, through adversarial learn-
ing. The alignment loss represents the similarity of the fea-
tures shared by two different domains. In this paper, we argue
that the lower similarity contributes to lower loss in the loss
function of the denoiser. We denote the adversarial loss of
semantic information alignment as Lw:

Lw = Ex̂S∼P (x̂S)[logD(x̂T )]+Ex̂T∼P (x̂T )[log(1−D(x̂T ))] (5)

2.3. Denoising Architecture

For the choice of denoiser, as previous studies, a convolution
neural network (CNN) is also adopted in this paper, denoted
as D. Thus, we adopt a conveying path-based convolutional
encoder-decoder (CPCE) [20] as the backbone network by
considering the performance and the convenience. The de-
tails of this backbone network can be found in [20].

2.4. Joint Optimization

In this paper, we creatively define adversarial loss of the
alignment model as a weight to determine the combination
of reconstruction loss and perceptual loss, which are used to
induce weighting factors of the objective via an adversarial
manner. A joint optimization loss function is constructed for
denoising purpose as following:

Lall = Ladv + λ0Lrec + λ1Lper (6)

Reconstruction Loss. We apply a general reconstruction loss
Lrec to facilitate the training:

Lrec = ∥y − ŷxS∥22 (7)

Perceptual Loss. Inspired by perception loss [15], the fea-
ture from the deeper layers of the pretrained model contain se-
mantic meanings only, which are noiseless or with little noise.
In this paper, the loss Lper could be formulated as

Lper = ∥vgg(y)− vgg(ŷxS )∥22 , (8)

we use VGG-19 pretrained network on ImageNet.
Adversarial Loss. We impose domain adversarial loss Ladv:

Ladv = Ey∼P (y)[logD(y)] + Ey∼P (ŷz)[log(1−D(ŷz))], (9)

where ŷz and y attempt to discriminate the realness of gener-
ated images from target domain. We define adversarial loss as
a weight to determine the combination of reconstruction loss
and perceptual loss.

Table 1. Quantitative analysis of denoising performance.
LDCT CPCE CycleGAN DRIT++ Ours

PSNR(mean±var)

S→R 34.21±0.81 38.58±0.73 39.89±0.79 40.54±0.67 42.27±0.63

R→S 34.21±0.81 36.31±0.89 37.11±0.77 39.42±0.72 40.92±0.58

SSIM(mean±var)

S→R 0.93±0.79 0.95±0.73 0.97±0.68 0.98±0.67 0.99±0.51

R→S 0.93±0.79 0.94±0.78 0.95±0.77 0.95±0.62 0.98±0.53

3. EXPERIMENTAL RESULTS

3.1. Model Structure and Details

Baseline Methods. In this paper, we evaluate our proposed
method based on both synthetic and real clinical datasets.
Existing deep learning-based LDCT denoising methods typ-
ically perform training on datasets. To follow this protocol,
the modularized CPCE has been adopted and trained on
the NIH-AAPM-Mayo dataset [20] and natural images with
simulated Gaussian noise, respectively. To be fair, we uti-
lize open-source pretraining models of CycleGAN [6] given
by authors for comparison. In addition, considering Lee et
al. [14] also proposed a method (named DRIT++) for im-
age restoration task, we select it as a representative domain
adaptation method to compare the performance on LDCT de-
noising tasks. In all experiments, we randomly crop patches
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Fig. 2. A patient example from the L209 case in the LDCT-and-Projection-data dataset [21]. We compare different methods
under the circumstance of training on synthetic dataset and testing on real dataset. The display window is [40, 400]HU. The
yellow rectangle denotes ROI area.

Fig. 3. A patient example in the LIDC-IDRI dataset [22]. We compare different methods under the circumstance of training on
real dataset and testing on synthetic dataset. The display window is [40, 400]HU. The green rectangle denotes ROI area.

with batch size of 16 for training. Hyper-parameters are set
to λ0=1-λ1=0.67.
Datasets. A real clinical dataset authorized by Mayo Clinic
is used to evaluate our proposed method, which contains
5936 images in 512 × 512 resolution from 10 subjects. We
randomly select 4000 images as training set, the remaining
is as testing set. A synthetic dataset has been constructed
by adding random noise to the NDCT images in LIDC-IDRI
dataset [22], an extra normal-dose CT dataset. In the exper-
iments, we construct the synthetic datasets by introducing a
noise extracting method proposed by Chen et al. [22], which
randomly adds the noise extracted from LDCT images to the
NDCT images.

3.2. Results

In the experiments, the real clinical dataset and the synthetic
dataset are denoted as R and S respectively. The L209 case
in LDCT-and-Projection-data dataset [21] is used to compare
the denoising performances of different methods from S to
R and the case selected from LIDC-IDRI dataset shows the

results from R to S. As shown in Fig. 2 and Fig. 3, we
can observe that our proposed method achieves relatively bet-
ter noise suppression on both domains compared with other
baseline methods. To further evaluate the performance of the
details, zoomed region of interest (ROI) of Fig. 2 and Fig. 3
are also given. Table 1 shows the values (mean±var) of quan-
titative analysis of denoising performance. Peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) are used
for evaluation. For PSNR and SSIM, the higher the better. We
observe that our method achieves the best performance.

4. CONCLUSION

In this paper, we propose a play-and-plug medical image
alignment model on semantic-wise to solve the domain shift
problem. Aided by effective semantic alignment, our cross
domain method could reconstruct LDCT images with finer
details and better visual perception. Experiments on both
synthetic and real LDCT image denoising show our method
achieves better performance than baseline methods.
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