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Abstract. The typical robotics system consists of perception, planning, and con-
trol modules. Each module is built upon information about its components, where
modeling each part of the system plays an essential role in the design process.
In practice, working with the non-linear models in robotics systems involves a
lot of approximations which hinders reaching the optimal behavior for the goal
task. Alongside the difficulties in redeploying the system to solve other similar
tasks. Learning-based methods provide a promising approach for robotic systems.
In the last decade, the interest in incorporating machine learning into robotics
systems has been evolving rapidly. The benefit of using learning is the possibility
to design systems that are independent of the dynamical model of the robot, with
the flexibility to adopt new tasks and learn to excel in performance over time.
The theory behind designing a learning-based system is still under development,
ranges from end-to-end systems to hybrid systems that use inaccurate approximate
models. In this paper, we are proposing the results of our research in learning-
based systems, presenting our view for the right way to set up learning systems for
robotics. The results are a whole learning-based framework for robotics applica-
tions, works efficiently (1 h of training — 10 min robot movement) with minimum
human intervention (user has to provide video demonstrations only).

Keywords: Robotics - Reinforcement learning - Self-supervised learning -
Contrastive learning

1 Introduction

The ingredients to design robotics systems start from understanding the needed com-
ponents to be included in it. The standard structure of a robotic system consists of
perception, planning, and control modules. The choice of each one of these modules
depends on the application, the desired performance, and some design criteria.

A perception system is responsible for interpreting the data from the sensors to
compatible state signals. The type of the output of the perception system depends on
the set value’s type in a simple system (e.g. voltage and current). In a more advanced
system, the perception system (state estimation block) has to infer informative states
from the sensor data e.g. localization of the robot [1], or the position and velocity of
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objects. Designing a perception system is a challenging task [2], in robots lots of research
done with states given by positioning systems. Recently, the interest shifted to extract
informative states from more accessible sensors (systems), like images from cameras,
depth information from laser sensors, and torque from motors [3].

We argue that using machine learning to learn representation is the future for percep-
tion modules in robotics systems. The positional and movement information of the object
doesn’t describe the correct step of the progress of the task, a higher latent representation
could be more beneficial [4]. Using self-supervised learning to learn an embedding rep-
resentation [5] for each set of sensor data in the latent space helps in forming a suitable
perception system for each task.

The task of planning is the process of building a trajectory for the robot to follow.
Giving the fact that the robot is moving from a state to state (in a state-space), possible
trajectories are all combinations of actions that lead to getting the robot moved from an
initial state to the desired goal state. The most common uses of planning [6] are planning
over grids; where each node of the grid corresponds to the coordinates of a point in a
map. Another common type is planning over graphs, where we represent possible states
of the robot as nodes of the graph, and the edges are the possible transition. The goal
of the planning over grids is to reach the target with minimum transitions, the same for
unweighted graphs. For weighted graphs, we have to minimize the sum of the weights
over the path, from the source state to the goal.

We are interested in planning in the Markov decision process (MDP) [7]. The envi-
ronment can be represented as a Markov decision process, by defining the state and
action states (possible states and actions), a transition model (the conditional probability
of going from a state to another by executing an action), and a reward\cost function (how
likely this transition will get us closer to the goal state). The goal of the planning in the
Markov decision process is to maximize the reward, which likely leads to find the best
trajectory from the current state to the goal. Planning is used in reinforcement learning
[8] explicitly when we have the transition model of the environment (in model-based
reinforcement learning [9, 21]). In model-free reinforcement learning [10], trajectory
optimization is used instead of direct planning.

Model predictive control [11] proposes planning over a finite horizon instead of
planning to the goal, while it couldn’t guarantee the best trajectory from the source
to the target states, but it provides a practical online planning algorithm to work with
physical systems. Another important property of the model predictive control is natively
considering the constraints (safety or desired conditions), as it formed based on the
optimal control paradigm. The result of planning is a sequence of actions to follow, this
sequence represents a trajectory that the robot has to follow.

The control part of the robot system is the process of interpreting a trajectory of
action to actuators’ commands. It depends on the type of states and actions in the planned
trajectory, i.e. for rotation, velocity, or voltage state of the motors we can use simple low-
level controllers for the motors (e.g. PID controllers [12]). If the states are the position
of the robot, and the actions are movements of the center of the mass of the robot; then
we have to use the model of the robot to find the corresponding motor commands. In
the case of serial robots (e.g. manipulators) [13], the inverse kinematic and the dynamic
model of the robot are used, which suffer from approximations and linearization when
forming controllers, as they are nonlinear models.
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Having a general view over the robotics systems, we are proposing a learning-based
approach for controlling robots. We aim to have our method to (1) be independent of
the robot’s dynamical model (applicable to teach tasks to any robot) (2) achieve tasks
effectively (works with small datasets), (3) learn fast (to make the robot able to adapt to
unforeseen cases, with low computational cost), (4) work with real robot directly (little
time of interaction on the real robot) and (5) need minimum human intervention to set-up
a new task.

The structure of the paper starts by presenting the proposed learning-based system,
starting by introducing its architecture, the Markov decision process representation, per-
ception system, and the reinforcement learning system. We will discuss our experiments
and results in each system, to conclude with high-level results and the possible future
direction building on our work.

2 The Proposed Learning-Based Robotics System

2.1 The General Architecture

The proposed learning-based robotics system consists of the following.

1. The environment (green block in Fig. 1):

It is the part that is responsible to interact with the physical system or the system
in the simulation. For robotics systems, the environment contains the robot and the
sensors, it receives an action from the control system, executes it on the control
object (robot in our case), then collects the data from the sensors, and sends it to the
perception system to form states.

2. The perception system (red block in Fig. 1):

The perception system receives sensor data from the environment and uses it to
form informative states. In our proposed system, we use the output of the perception
system to compute the reward, by computing the distance to a goal image stored in
the environment (white circle Fig. 1).

3. The reinforcement learning system (blue block in Fig. 1):

The reinforcement learning system performs the planning and control part in
our system, where instead of having the output of the reinforcement learning system
in the end-effector’s coordinate space, the output in our case is in the joints’ space
(direct commands to the motors). This idea helps in making our system independent
of the robot dynamical model and can be used to any robotic arm with minimum
effort. The goal of the reinforcement learning system is to maximize the expected
long-term reward.

2.2 The Proposed System as a Markov Decision Process

A Markov Decision Process (MDP) is defined for the proposed system. This MDP
describes the transitions between states. To make a connection between the architecture
of our system, and the MDP in Fig. 2. We will define the following terminology:
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Fig. 1. The general architecture of the proposed learning-based robotics system (Color figure
online)

1. The policy (of the Reinforcement learning systems in Fig. 1).

The policy 7y (sy) is a function of the state, to be optimized in the reinforcement
learning procedure to give the action corresponds with the highest predicted long-
term return.

2. Execution and data acquisition (Environment block in Fig. 1).

Given an action a; from the policy, the action to be transformed into primitive
commands, by executing these commands the state of the environment will change,
sensors will be used to collect data x; (data acquisition).

3. The embedding model (the model of the perception system in Fig. 1).

By feeding the data x; to the embedding model, we get the state of the system
St = Ye(x), the embedding model should be trained beforehand, and states will be
used to compute rewards (or state_cost).

4. The transition model (to be learned in the reinforcement learning system).

Given the current state of the system s; and the chosen action a;, the transition
model predicts the probability of the next state p(s;+1|s;, a;), the transition model is
learned over the training process (using the transition dataset D = {s;, a;, S;+1}).

2.3 The Environment

The environment contains the robot and the sensors, it is defined following the rules of
OpenAl gym [14] environments. The gym environment is defined as a class with the
main methods; initialization, reset, and step methods (Fig. 3).

The initialization method sets up the components of the environment, by checking
the connection to the simulator or the real robot, connection to the sensors, define the
initial state of task-related objects, and move the robot to its initial position, it may also
ask the user to provide some hyperparameters or to set the goal state. In our system, we
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Fig. 2. The Markov decision process of the proposed system
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Fig. 3. The environment class

propose to load a pre-trained embedding model to be used to get states out of sensors’
data.

As noted earlier, the environment receives an action a,, the execution of this action
is done in the step method. Where first the action is checked for its validity (e.g. doesn’t
exceed the limits of the motors), then given the current joints’ angles, the action vector
is scaled to an angle offset change, and the resulted angles are sent to the motors directly
while moving the robot we have to check the lockdown cases (we have used a limit on
the current used by each motor). The control of the robot done using RestAPI request, we
prefer using low-level API control as it gives better flexibility than high-level APIs. When
the robot finishes its movement, the data acquisition step is performed by collecting the
output of the sensors, the raw data is called observations x;, which will be forwarded
to the perception system. Reward value is computed using the observation of using the
states after using the perception system. In our system, we studied the use of low-cost
RGB cameras and sensors equipped with the robot (encoders, current sensors). A done
signal is returned whether the task was achieved or the robot fell into a lockdown case.
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When receiving a done signal, the reset function returns the environment to its initial
state, and it may ask the user to change the position of some objects, or do this randomly
if possible (depends on the task properties).

Technically, we need a helper class to control the robot using RestAPI requests, also
when working with cameras, we need a buffer-less video capture class (instead of an
ordinary video capture class from OpenCV).

In our proposed learning-based system, the user doesn’t have to care about the
environment or change anything to train the robot on a new task, he just wants to collect
some video demonstrations to train the perception system and provide one of them to
the learning system, this one will be used to define the goal state, the reward will be the
distance rot he goal state in the latent space.

2.4 The Perception System

The Model

Consider we have an inputimage x € R"*#*3_The output of the model is an embedding
of the image in a latent space y, € RE. W, H are the width and the height of the image,
E is the size of the embedding vector. The base CNN network (blue block in Fig. 4)
is taken from the inception model [15] pre-trained on ImageNet [16], the parameters
of this part are frozen and won’t be re-trained. We add two additional convolutional
layers, followed by a spatial softmax layer. A fully connected layer is added to get the
embedding of the input image y. = fy(x). The parameter to train embedding model 6
is the training parameters of the model (weights and biases of the 2CNN layers and the
feed-forward layer — green blocks in Fig. 4).

Embedding Model

Spatial Softmax

1

1

I |

Inc:;i‘;i"::gdel - zlasz:‘sv 4’@—) Feedforward layer _>Em|3ed:’i;;gaien latent :
(until Mixed_5d) with BN

!

7

- em mm mm mm mm mm o

Embeddings in latent space
(PCA visualization)

Fig. 4. The architecture of the embedding model (Color figure online)

The Dataset Formulation
The dataset is formed by extracting images from video files and form triplets for learning.
In contrastive learning, the process starts by sampling an image from a video, this image
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is called anchor, a positive range is defined as all the images that far from the anchor by
less than a positive margin, the negative margin is the rest of the images. One positive
and one negative image is sampled from the positive and negative ranges respectively.
The triplet consists of an anchor x', a positive image xf’ , and a negative image x}'.

All images normalized and augmented before feeding them to the network. The
normalization is needed because the pre-trained part trained on normalized images. The
augmentation was done by using a color jitter (random coloring) and random rotation.
The augmentation is useful for transfer learning, and to avoid overfitting to the training
dataset.

Time Contrastive Training

Given a triplet of images; an anchor x{, a positive image xf , and a negative image x},
the time-contrastive loss is [17] the loss tries to ensure that the anchor and the positive
images are closer to each other in the latent space than the negative image. i.e. the aim
is to learn an embedding such that:

e (3£) = ye () 3+ = e ) = ye ) 3

The time contrastive loss is defined as:
L= min(0, & + e (3) = ye () |5 = e (&) = ve () [5)

Training of the embedding model starts by sampling a triplet of augmented images
from the dataset, feeding them to the model, and use the output to compute the sequential
time contrastive loss, the loss then is used to update the parameters of the model. The
margins are updated every while.

Sample Results After Training

The embedding model was trained for 100 epochs (10000 triplets), Alongside the visu-
alization of the latent space (embeddings) in Fig. 4, we have plotted a reward function
depends on the distance to the target image in latent space:

r(x) = _”.Ve(xi) - Ye(xtargel) ”i

For each video file, the reward function should be monotonically increasing to zero,
smoother function means better performance. To judge the benefit of using time con-
trastive learning, we have plotted the latent space and reward before (Fig. 5) and after
training (Fig. 6). The reward/cost function corresponds to each latent space. Before train-
ing, random distribution led to a bad reward function. After training, better monotonically
increasing function, could be used in RL and control.

2.5 Reinforcement Learning System

We propose using a model-based reinforcement learning system (Fig. 7), with some key
features to fulfill our requirements. Reinforcement learning will (1) interact with the
environment (which is formed as a Markov Decision Process). (2) Learn the transition
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Fig. 6. Latent space and reward function after the training

model, which has to handle uncertainty, we used Ensemble neural network to learn the
model. (3) Plan using the learned model, we are following the model predictive control
in planning. (4) In the planning, we have to use an optimizer, that fits our system, we
used Cross-Entropy Maximization optimizer.

The Transition Model — Ensemble Neural Network

The goal of learning the transition model of the environment is to predict the dynamics
of the task. Learning the model is an essential part of the model-based reinforcement
learning as it will be used in the planning.

The model should work efficiently in the cases of small and large datasets; i.e. learns
good dynamics at the early stages of learning, and enhance the performance further with
time. This is done by choosing a model that can handle uncertainty (to learn from small
datasets), and deep enough to have the capacity to infer from large datasets.

We have chosen Ensemble neural networks [18], as it can handle the uncertainty by
using the prediction from several deep neural networks, and have the needed capacity
because of the deep structure in its components. Alongside the low computational cost
when parallelized on the graphical processing units.

The Optimizer — Cross-Entropy Maximizer

The cross-entropy maximization (CEM) [19] is a gradient-free stochastic optimization
algorithm, based on Monte-Carlo methods. Given a state cost function (negative reward
from Sect. 2.3), and a learned transition model, CEM chooses the optimal series of
actions (with length equal to the planning horizon) corresponds to the biggest predicted
cost.
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In our system, we use a Random-shooting method in CEM, this is done by sampling
series of actions from a predefined distribution, evaluating them, and separating ones
with the highest reward (we call them elites):

A= {ag,ag,ag,...a;‘,_l]; a; ~ N(uf', =)

Aclites = sort(Ap[: J]

The mean and variance of the sampling distribution updated according to the mean
and variance of the elite sets.

W = ok mean(Agires) + (1 — o) % "

2 = o s var(Aegies) + (1 — @) % S
After m iterations, the optimal series of actions is the mean of the elites.

Planning — Model Predictive Control for the System

The planning is done by using the optimizer over the learned model. In our case we
have to use the ensemble neural network to find the predicted states after executing each
action because the output of the ENN is a distribution, we used particles of the initial
state, and propagate them using the ENN model:

Sf+1 ’Vfg(sf,a,); 5];:() =50

Then we use state cost function to find the cost of the series and continue the
optimization.

Model Predictive Control

7(st) = arg max 7(Sty Aty ouvy Qtrp)
£
—_—
O o
ptimizer
S
A l
\ 4
S
ALEG R AT il Markov decision
-——— model «——
(ENN) process

f&(staati = St+1, Tt

(3t7 Qt, St + ]-,Tt)

Fig. 7. Model-based reinforcement learning with ensemble neural networks
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Sample Results for Experiments
To evaluate the Reinforcement learning system, we build an environment in simulation
(VREP simulator [20]), contains a KUKA manipulator, a USB flash desk was attached
to its end effector, and a USB socket placed on the ground in its workspace.

The state consists of the position of the object (flash desk and USB socket) and
joints’ angles. The control in the joint’s space (actions are commands to motors). The
transition model in Fig. 8.

Positions of
the objects

2 MEs |
F" l 1 o .| Transition model

o - W{%. r~ 11 ” (Ensemble NN)

L

5 Action

Vo >
/{\ Joints' angles
g

Fig. 8. Transition model for the experiment in simulation

Prediciton

In the simulation, we have tested the reinforcement learning system to reach a
specified pointin its workspace, similar to the step response in evaluating control systems.
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Fig. 9. The results for reaching a point in the workspace (step response analysis), from upper-left
to lower right: iterations 1, 5, 8, 50

We have plotted the distance between the end effector over the training process
(Fig. 9), we can notice that the system started to learn a correction from early iteration
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(iteration 8), and by further training perfected its response (iteration 50), without any
overshoot and holding the goal after reaching it. These results match our goal of learning
efficiently from small datasets and improve the performance when larger datasets are
available.

To test the whole system, we have to use the learned embedding model (trained
according to Sect. 2.4), to extract image embeddings from RGB images, and replace the
states in the last experiment (Fig. 10).

Image
embedding

Prediciton

Transition

——> model
(Ensemble NN)

LI

ye Actions

Embedding
model

\ 4

} joints' angles
i

Fig. 10. The transition model of an experiment with the whole system

The reward (and state cost) depends on the distance in the latent space between the
embedding of the current image and the target image (see Sect. 2.4 for details). We can
judge the performance of the system on this task by drawing the reward over the training
time (Fig. 11).

Cumulative rewards
|
N
o

200 400 600 800 1000
Training step

Fig. 11. The reward function over time, bigger is better.

We can notice the system can optimize its performance over the training time, and
learns a good policy after 800 timesteps (30 min on the robot).
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3 Conclusion

We have proposed a learning-based framework for learning robotics manipulation tasks.
The framework uses self-supervised representation learning for perception, and rein-
forcement learning for planning and control. The framework doesn’t depend on the
dynamical model of the robot, data-efficient, learns tasks fatly, can be run the training
process on the real robot directly, and works with minimum human intervention.

Perception systems have to be pre-trained before run the training process for the rein-
forcement part. The user has just to provide the system with some videos demonstrating
the task, and then the learning process runs in a self-supervised way. The learning pro-
cess takes around 30 min on a PC with single GPU (low computational cost, and short
training time), the result is an embedding model to infer a representation in the latent
space for an image on its input.

After that, we should define an environment as a Markov decision process, then we
can run the reinforcement learning part. By using the trained perception system, the user
can use our predefined environment, by just providing a goal image (the user doesn’t
have to change anything in the environment).

The reinforcement learning system will be trained lastly, in a fully automated way, its
goal is to minimize the Euclidian distance between the current state and the goal image.
The reinforcement learning system uses a model-based approach, with a probabilistic
model, and the training time in our experiment between 30—45 min.

The whole framework provides a promising way to run robotics experiments, the
user have just to collect some videos (possibly with a smartphone) demonstrating the
task and run the learning process for the perception system, then provides a goal image
and run the reinforcement learning part, without the need to any coding or engineering
experience.

Open-source code is made available for reproducibility and validation:

https://github.com/Alonso94/Self-supervised-RL.

Future direction for our research is to make the extend the framework for life-
long learning, where the robot learns skills instead of learning just tasks, this needs
an extension for our perception system, and an algorithm for planning over skills, not
just states, but we believe this would be essential to have fully intelligent robotic systems.
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