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ABSTRACT

Large language models are trained on massive internet datasets, which may inad-
vertently memorize illegal copyrighted content, making its inclusion unavoidable.
Unlearning is a potential solution to remove such content. However, existing
unlearning methods often suffer from over-forgetting, where the process uninten-
tionally erases knowledge similar to the copyrighted content that falls under fair
use and should be preserved. To address this issue, we propose MOUCHI, a novel
unlearning framework that introduces the concept of derivative knowledge, a subset
of information derived from copyrighted content that must be retained during
unlearning. MOUCHI first generates derivative knowledge and then incorporates a
derivative loss function into the unlearning process to mitigate over-forgetting in
unlearning copyrighted content. Due to its plug-and-play nature, MOUCHI can be
effortlessly integrated into existing unlearning methods. Experimental results show
that MOUCHI reduces unintended knowledge loss, improving performance by up
to 145% compared to baseline methods when evaluated on the derivative set.

1 INTRODUCTION

Large language models (LLM) have grown exponentially in scale and sophistication, driven by
increasing parameter sizes and extensive training datasets. However, this reliance on vast amounts
of data introduces a significant challenge of inadvertently including copyrighted material, often
propagated illegally online. Copyright concerns in LLMs have become especially prominent due
to their widespread use, making these models more vulnerable to misuse (Carlini et al., 2021;
Hernandez et al., 2022; Chang et al., 2023). Karamolegkou et al. (2023) observe a linear correlation
between the size of a language model and its tendency to generate verbatim copies of famous books,
which constitutes a clear violation of copyright law. Moreover, new regulations, such as the EU AI
Act (Friedl & Gasiola, 2024), mandate that all general-purpose AI systems, including LLMs, adhere
to union copyright laws and the general data protection regulation, granting rights holders the ability
to protect their works from unauthorized text and data mining and ensuring the right to be forgotten
(Hoofnagle et al., 2019). Consequently, there is a growing need for efficient methods to remove
copyrighted data from LLMs upon request (Ren et al., 2024; Wei et al., 2024).

Machine unlearning has emerged as a novel approach to address this issue. By applying the principles
of unlearning, it is possible to systematically remove specific information from a trained model,
thereby mitigating the concern of copyright infringement within LLMs. Recent papers (Yao et al.,
2023; Eldan & Russinovich, 2023; Jang et al., 2022) use machine unlearning to remove harmful
content (e.g., personal information, toxic passage, and copyrighted information) from LLMs by
employing variants of gradient ascent (GA) during the unlearning process. GA adjusts the model
parameters to maximize the loss on specific data points being unlearned, thus diminishing the model’s
ability to generate outputs related to the undesired data. However, these techniques have notable
shortcomings, particularly the problem of over-forgetting, which we introduce in this paper.

Over-forgetting refers to an unintentional erasure of more than just the targeted data. It is a critical
issue that occurs when we cannot fully control the GA process. In tasks focused on removing
toxic passages or private information, over-forgetting is less problematic since the goal is complete
removal. In contrast, when the target data involves copyrighted content, over-forgetting becomes more
problematic, as it not only erases the targeted copyrighted material but also leads to the unintended
loss of relevant knowledge that falls within the bounds of fair use. We illustrate this problem in Figure
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Figure 1: Over-forgetting problem in existing approaches, highlighted by the absence of dots within
the red and yellow boundaries in the embedding space and how MOUCHI solves the problem by
maintaining the questions within this region.

1, where existing approaches fail to retain non-infringing information, such as identifying the author
of a book or answering general questions about related themes. If over-forgetting consistently occurs
across different unlearning targets, the overall performance of the LLM will be severely degraded.

To address the issue of over-forgetting, this paper proposes a novel framework for Mitigating Over-
forgetting in Unlearning CopyrigHted Information within LLMs, MOUCHI, which identifies the
problem of over-forgetting in existing methods and introduces the concept of derivative knowledge—a
subset derived from the target copyrighted information that must be retained during unlearning. This
subset consists of knowledge that falls within fair use boundaries and must be preserved during the
unlearning process to prevent unintentional loss. Our MOUCHI framework generates derivative
knowledge from the target information, using KL divergence as a metric to assess semantic closeness.
By doing so, we enable the model to identify the derivative set while distinguishing it from the target
forget set. As in the lower part of Figure 1, MOUCHI preserves the fair use content (the dots within
the red and yellow boundaries), allowing the model to retain its ability to answer general or related
questions while still removing the infringing content. It then incorporates the derivative loss into the
unlearning process, ensuring that the derivative knowledge is preserved while the copyrighted content
is removed. Moreover, MOUCHI is model-agnostic and can be seamlessly integrated into existing
unlearning methods, providing enhanced control over the unlearning process without compromising
performance. By virtue of the derivative knowledge, MOUCHI effectively maintains the model’s
overall capabilities while mitigating over-forgetting. Our contributions are as follows.

• We analyze and identify the over-forgetting problem in current LLM unlearning methods.
• To address the over-forgetting in LLM unlearning, we propose MOUCHI, a new unlearning

framework that generates and incorporates a set of derivative knowledge. A derivative loss function
is also introduced to realize the unlearning process under our framework.

• We demonstrate that MOUCHI can be seamlessly integrated into existing unlearning methods,
maintaining performance comparable to traditional approaches while providing better control over
over-forgetting. The experimental results show that the models with MOUCHI exhibit up to 145%
higher utility on the derivative set compared to the baselines.

2 RELATED WORK

LLM Unlearning Traditional machine unlearning techniques, which aim to remove specific knowl-
edge from models without full retraining, face challenges when applied to LLMs due to scalability
issues and the decentralized nature of their training data (Liu et al., 2024b). §A reviews general
machine unlearning techniques and their limitations. In response to these challenges, recent research
has proposed scalable and effective unlearning approaches tailored specifically for LLMs. Lu et al.
(2022); Jang et al. (2022); Yao et al. (2023) explore various fine-tuning methods, including reward-
reinforced model fine-tuning and gradient ascent-based fine-tuning, to unlearn specific content from
LLMs. Other methods (Wang et al., 2023; Yu et al., 2023; Chen & Yang, 2023) involve techniques like
KL-divergence-based fine-tuning, weight importance-informed relabeling, and parameter-efficient
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task vector tuning. Lately, a study (Zhang et al., 2024) introduces negative preference optimization
to address the problem of catastrophic collapse caused by the lack of control over gradient ascent
variants at higher temperatures. Despite these advancements, most methods focus only on general
unlearning in LLMs, overlooking the specific issue of unlearning copyrighted information.

Unlearning Copyrighted Information Research on the unlearning of copyrighted content from
LLMs remains relatively underexplored. This unlearning requires distinct treatment from general
unlearning due to a heightened susceptibility to over-forgetting. Li et al. (2024); Henderson et al.
(2023) discuss the potential risks of copyright infringement in LLMs and how to detect the copyright
content from the output. However, they do not focus on the method of removal. Eldan & Russinovich
(2023); Chen et al. (2024) explore unlearning for specific books like Harry Potter and The Lord of
the Rings. However, these approaches lack scalability as they are demonstrated only in a specific
book. They also fail to observe the differences between copyrighted content unlearning and general
unlearning. To address these limitations, Dou et al. (2024) propose a method that sequentially
removes copyrighted content from multiple books; meanwhile, a few papers introduce novel datasets
for copyright removal, along with baselines for unlearning tasks (Maini et al., 2024; Liu et al., 2024c).
In addition, recent studies (Liu et al., 2024a; Dou et al., 2024) mention an open problem of unintended
knowledge loss, particularly the erasure of fair-use content during the unlearning process. As a
solution, MOUCHI effectively mitigates this issue by introducing derivative knowledge that falls
within the bounds of fair use.

3 PRELIMINARIES

Let D = {(xi, yi)}Ni=1 is a training dataset for an LLM having N input-output pairs, where xi and yi
represent the input and its corresponding output, respectively. In practice, xi and yi usually represent
a question and answer (QnA) pair. We focus on QnA pairs because QnA is the primary way that users
interact with LLMs in real-world scenarios.

Definition 3.1 (FORGET SET). Given a training dataset D, a forget set is defined as a specific subset
of D intended for unlearning, denoted as Dfgt. Dfgt contains copyrighted content targeted for removal
or unlearning, i.e., Dfgt ⊂ D.
Definition 3.2 (RETAIN SET). A retain set is the remaining data, denoted as Drt, including all
other data that is not targeted for removal and is crucial for maintaining the general knowledge and
functionality of the model, i.e., Drt = D \ Dfgt.

Gradient Ascent and Over-Forgetting Gradient ascent (GA) is a common process used for
unlearning or removing the influence of the forget set Dfgt from an LLM. It aims to adjust the
model’s parameters θ to increase the loss associated with the Dfgt, thereby diminishing the model’s
reliance on this data. Thus, its objective is to find a set of parameters that maximize the function,

Lfgt(θ) = −E(xi,yi)∈Dfgt [log πθt(yi | xi)] , (1)

where (xi, yi) represents an input-output pair in Dfgt. Then, GA updates the model’s parameters θ by

θt+1 ← θt + η
∑

(xi,yi)∈Dfgt

∇θtLfgt(θt), (2)

where η is the learning rate for the GA loss.

Unlearning copyrighted content in an LLM often leads to the unintended consequence of over-
forgetting—where not only the targeted copyrighted content is forgotten, but also related knowledge
that is semantically similar yet does not infringe copyright law. This over-forgetting can significantly
degrade the model’s overall performance, especially as the need to unlearn more data arises in the
future. More specifically, over-forgetting occurs when the loss maximization on Dfgt unintentionally
affects nearby knowledge, increasing the loss in the embedding space close to Dfgt. This problem
happened due to the nature of GA, which diverges at a linear rate (Zhang et al., 2024), making it
difficult to control the unlearning process precisely. Suppose that we have a set of knowledge Dx that
is located betweenDfgt andDrt, which represents the range also affected by GA during the unlearning
of Dfgt (see the ring-shaped region in Figure 1). GA influences Dx through

Lx(θ)

Lfgt(θ)
∝ c

d(Dx,Dfgt)
, (3)
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Figure 2: Overall procedure of MOUCHI. We first create the derivative set from the forget set through
the (a) derivative generation module. Once the derivative set is obtained, MOUCHI performs
unlearning with the (b) derivative loss function based on the generated derivative knowledge.

where d(Dx,Dfgt) represents the distance between Dx and Dfgt and c is a constant. The closer Dx

and Dfgt are, the more likely Dx is influenced by the unlearning process. In §4.2, we empirically
verify this relationship in Eq. (3) .

4 PROPOSED LLM UNLEARNING FRAMEWORK: MOUCHI

4.1 PROBLEM STATEMENT

In this work, we aim to mitigate the problem of over-forgetting. First, we identify what constitutes
Dx, the set of data that are affected by over-forgetting. After identifying the affected set, the second
step is to counteract over-forgetting by finding a set of parameter θ∗ such that

θ∗ = argmax
θ

[Lfgt(θ)− λLx(θ)] , (4)

where λ is a regularization parameter that controls the trade-off between the two losses. To solve the
first step, we introduce the concept of derivative knowledge in §4.2. Furthermore, Figure 2 illustrates
the overall framework of MOUCHI to mitigate over-forgetting. First, the framework begins by
creating the derivative set from the forget set through derivative knowledge generation (§4.3). Once
we have the derivative set, MOUCHI introduces a derivative loss function (§4.4) into the unlearning
process. MOUCHI can be augmented on top of any existing unlearning methods.

4.2 DERIVATIVE KNOWLEDGE OVERVIEW

The derivative knowledge, denoted as Ddrv, refers to a set of knowledge that is semantically similar to
the target knowledge to be removed in Dfgt. While Ddrv is closely related to Dfgt, the content in Ddrv
is not considered copyright infringement and, therefore, must be preserved to maintain the overall
performance of an LLM.

Let Pfgt and Prt be the empirical distribution over the forget setDfgt and the retain setDrt, respectively.
Then, we have a derivative set Ddrv = {(x′

i, y
′
i)} sampled from the probability distribution PD of the

dataset D, where (x′
i, y

′
i) are distinct from any pairs (xi, yi) in Dfgt. Formally,

Ddrv = {(x′
i, y

′
i) | (x′

i, y
′
i) ∼ PD, (x

′
i, y

′
i) /∈ Dfgt}, (5)

where 0 ≤ DKL(Dfgt ∥ Ddrv) ≤ DKL(Dfgt ∥ Drt). The KL divergence, DKL, is used to measure the
semantic similarity between two sets of knowledge. To ensure applicability in real-world copyright
scenarios, we refine the equation by introducing arbitrary minimum and maximum bounds of

δmin ≤ DKL(Dfgt ∥ Ddrv) ≤ δmax. (6)

These boundary values can be set by experts, such as lawmakers.

4
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Algorithm 1: Ddrv Generation Process
Input: QnA examples for δmin and δmax, Dfgt (Forget Set), Drt (Retain Set), prompt for

generating additional QnAs (if needed)
Output: Ddrv (derivative knowledge)

1 Initialization:
2 Dqmin, Dqmax ← User provides example QnAs for the boundaries;
3 δmin ← DKL(Dfgt ∥ Dqmin);
4 δmax ← DKL(Dfgt ∥ Dqmax);
5 while |Ddrv| < |Dfgt| do
6 Generate a new QnA using the provided prompt;
7 Compute DKL(Dfgt ∥ Generated QnA);
8 if δmin ≤ DKL(Dfgt ∥ Generated QnA) ≤ δmax then
9 Ddrv=Ddrv ∪ Generated QnA;

10 return Ddrv; # Will be used in the loss update for unlearning

Empirical Evidence In Figure 3, we examine the relationship between the KL distance of Ddrv
and Dfgt and their loss under vanilla GA to validate our hypothesis in Eq. (3). Each line in the graph
represents the GA loss on its respective dataset, with the lines labeled “KL 0.1”, “KL 0.2”, “KL
0.3”, and “KL 0.4” represent different KL divergence values between Dfgt and Ddrv. The results
empirically confirm our hypothesis that the losses of the derivative sets increase as the distance to the
forget set decreases, being more prone to accidental forgetting, as GA aims to find the maximum
loss values. These results emphasize the importance of carefully managing the unlearning process to
avoid over-forgetting.

4.3 DERIVATIVE KNOWLEDGE GENERATION
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Figure 3: Under the vanilla GA setup, the
loss on the Ddrv with KL 0.05 grows signif-
icantly, second only to the Dfgt. It indicates
that vanilla GA negatively impacts derivative
knowledge and leads to over-forgetting.

Specifying the Boundary The primary challenge
in generating derivative knowledge is to first clearly
define what should be included in Ddrv. For this pur-
pose, we adopt a similar approach to that proposed
by Vyas et al. (2023), which uses the KL divergence
to quantify copyrighted content in generative models.
Our method employs the KL divergence to measure
the semantic closeness of the derivative set candi-
dates to the forget data. However, we acknowledge
that determining “fair use” falls outside our area of
expertise. Instead, our objective is to programmati-
cally generate derivative knowledge Ddrv given a set
of QnAs provided by experts, such as lawmakers.

The process of defining the boundaries of derivative
knowledge begins with the user, typically an expert,
providing example QnAs that help establish the se-
mantic boundaries. These boundaries are quantified using the KL divergence values. Specifically, the
minimum boundary, δmin, is determined by the KL divergence between the distribution of the forget
data (Dfgt) and a QnA that defines the lower boundary. Conversely, the maximum boundary, δmax, is
defined by the KL divergence between Dfgt and a QnA that establishes the upper boundary. That is,

δmin = DKL(Dfgt ∥ Dqmin) and δmax = DKL(Dfgt ∥ Dqmax). (7)

Obtaining Derivative Knowledge Given a sufficiently comprehensive dataset D, we can obtain
Ddrv defined in Eq. (7) as a subset of Drt. However, it is more likely that Drt does not contain enough
samples to generate Ddrv. Thus, we use δmin and δmax in conjunction with the forget set Dfgt to
generate the derivative set Ddrv. For the generation model, we use the model fine-tuned on D. The
specific prompt used to generate Ddrv is provided in §B.

As outlined in Algorithm 1, the process for generating Ddrv is as follows.
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1. Incorporating the Forget Set and Boundary into the Prompt (Line 6). The forget set Dfgt and
the boundary values δmin and δmax are included in the prompt provided to the LLM for generating
derivative knowledge Ddrv.

2. Generating Derivative Knowledge (Lines 5–9). The LLM generates a synthetic dataset to be
used as derivative knowledge Ddrv. We keep generating until the size of Ddrv is similar to Dfgt

3. Checking KL Divergence (Lines 8–9). After creating Ddrv, we check the KL divergence of the
generated shard to ensure that it is within the range defined by the boundary in Eq. (7).

This process facilitates the generation of derivative knowledge that maintains semantic relevance
while adhering to fair use standards, as defined by the expert-provided QnAs.

4.4 DERIVATIVE LOSS FUNCTION

After obtaining sufficient data for Ddrv, we incorporate the generated Ddrv at the beginning of the
unlearning process. Its corresponding loss, Ldrv, is updated throughout the process. Hence, our
complete unlearning loss function becomes

θt+1 ← θt + wfgt∇θtLfgt(θt)− wdrv∇Ldrv(θt)− wrt∇Lrt(θt), (8)

where each loss term, which represents the forget set, the derivative set, and the retain set, has a
tunable weight denoted by wfgt, wdrv, and wrt, respectively. Note that the sign for the first term is +
for removal whereas the signs for the second and third terms are − for retention. The specific loss
functions used for each term are further discussed in §5.1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets We adopt two publicly available datasets, TOFU (Maini et al., 2024) and MUSE (Shi
et al., 2024), to comprehensively validate the effectiveness of MOUCHI. Both datasets are specifically
designed to facilitate unlearning in LLMs, making them particularly well-suited for our scenarios.
The TOFU dataset consists of 200 fictional authors, with each author associated with 20 questions and
answers about their books and personal information. The MUSE benchmark features two unlearning
corpora: one derived from the Harry Potter series (MUSE-Books) and the other from BBC news
articles (MUSE-News).

In our experiment, we use the full TOFU dataset and create a split where 25% of the data is designated
as the forget setDfgt. We select a 25% split to increase the difficulty of the unlearning task as handling
a larger forget set poses a more significant challenge. Also, smaller splits of 5% and 10% are explored
in §5.4 to assess the impact of different forget set sizes on the unlearning process. For both the
MUSE-News and MUSE-Books datasets, we use the entire forget and retain sets from the knowmem
subset, following the original settings.

Due to the limited number of questions in the original datasets, we extend the dataset by generating
the derivative set Ddrv from the forget set Dfgt, as described in §4.3. We generate an amount similar
to the size of the forget set to ensure a balanced evaluation. We also modify the forget set to make
the questions more closely resemble infringing content. Furthermore, for TOFU, we combine the
world_fact and real_author subsets into a single normal set Dnor to assess the performance of the
unlearned model on general knowledge questions since the results from existing approaches show no
significant difference in performance between them.

Comparison Baselines We explore different combinations of loss functions from the previous
studies by having a linear combination of Eq. (8) as our baselines. For the forget loss (Lfgt), we use
all the losses in (Maini et al., 2024) and the NPO in Zhang et al. (2024). For the retain loss (Lrt) and
derivative loss (Ldrv), we use the vanilla GD and KL commonly used in prior studies (Wang et al.,
2023; Chen & Yang, 2023). In addition to specific loss functions, we incorporate Task Vector (TV)
proposed by Ilharco et al. (2023), which adjusts the model’s behavior through simple arithmetic
operations on its weights and has been employed in recent studies (Shi et al., 2024; Dou et al., 2024).
The full explanations are provided in §C

6
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Figure 4: Performance comparison between unlearning methods with and without our MOUCHI
framework in terms of forget quality using KS-test’s log p-value. Shorter bars indicate better results.

We include a wide range of state-of-the-art LLM unlearning methods for comparison. Maini et al.
(2024) categorized the existing LLM unlearning methods based on the loss functions used. Following
the categorization of Maini et al. (2024), we consider three forget losses Lfgt (GA, DPO, and NPO)
with combinations that include a loss for Lrt. Besides, we include an additional unlearning Task
Vector (TV) framework. By default, Ldrv introduced by MOUCHI is set to GD. However, if Lrt is
used, Ldrv will match it. For example, for a baseline with Lfgt=NPO and Lrt=KL, MOUCHI with
Ldrv=KL is activated and compared against the baseline.

Evaluation Metrics Evaluating the performance of unlearning methods is inherently challenging
and remains an active area of research. To ensure that our evaluation is valid and comprehensible, we
follow the guidelines outlined by Maini et al. (2024). We assess and compare the unlearned models
using two key metrics: model utility and forget quality.

• Model Utility evaluates the model’s ability to answer questions from each subset (Dfgt, Drt, Ddrv,
Dnor). We use ROUGE (Lin, 2004), a widely adopted metric in natural language processing for
sentence comparison. For the derivative, retain, and normal subsets, higher ROUGE scores indicate
better performance, while for the forget subset, lower scores are better. However, it is important
to note that a ROUGE score close to 0 on the forget subset suggests catastrophic collapse (Zhang
et al., 2024), denoted as ‘*’, meaning that the model produces nonsensical answers.

• Forget Quality is measured using the p-value from the Kolmogorov-Smirnov test (Maini et al.,
2024). Intuitively, high p-values, where we cannot reject the null hypothesis that the two distribu-
tions are the same, indicate strong forgetting. Conversely, when the p-value is low, we can assert a
difference between the unlearned model and the retained model, suggesting potential copyright
infringement and poor unlearning. The main goal of unlearning is to obtain a model that replicates
the performance of a model trained solely on Drt. To evaluate this aspect, we compare the outputs
of the unlearned model with those of a model trained solely on Drt, using the truth values.

Implementation Details The source code is available at https://anonymous.4open.
science/r/MOUCHI. The experiment was conducted using the LLaMAv2-7B model (Touvron
et al., 2023) with a batch size of 32 and a learning rate of 1× 10−4. All experiments were performed
on two NVIDIA A6000 GPUs using optimization techniques, such as LoRA (Hu et al., 2022) and
DeepSpeed (Rasley et al., 2020), to fit the model into the available GPU memory.

To specify δmin and δmax boundaries, we simulate expert input by using ChatGPT as a stand-in for
a user, such as a lawmaker, who provides appropriate questions to determine δmin and δmax. The
prompt used for this simulation can be found in §B (see Figure 8).

5.2 MAIN RESULTS

Mitigating Over-Forgetting in the Derivative Set Table 1 and Figure 4 present the model utility
and forget quality for 20 different combinations on the TOFU dataset. Overall, the inclusion of
MOUCHI plays a crucial role in preserving the derivative knowledge during the unlearning process
across all baselines. Specifically, the model’s utility score for the derivative set increases by up to
145% on the TOFU dataset when MOUCHI is used. For the MUSE benchmark (Table 2), MOUCHI
achieves the model’s utility score improvement of up to 94%. Additionally, we observe that more
stable forget loss algorithms lead to higher derivative utility scores. For example, the inclusion of the
derivative loss achieves a score of 0.757 with the GA forget loss algorithm, while other configurations
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Table 1: Model’s utility score (ROUGE) comparison across multiple unlearning methods with and
without our MOUCHI framework on the TOFU dataset. ‘*’ indicates catastrophic collapse. The
first column indicates the loss for Lfgt, the second column that loss for Lrt, the third column whether
MOUCHI is activated with the corresponding configurations of Lfgt and Lrt.

Lfgt Lrt MOUCHI Forget ↓ Derivative ↑ Retain ↑ Normal ↑

GA

none 0.001*±0.002 0.005*±0.004 0.007*±0.002 0.003*±0.001
0.115±0.049 0.890±0.050 0.789±0.074 0.803±0.005

GD 0.005*±0.008 0.531±0.077 0.605±0.085 0.806±0.075
0.057±0.034 0.757±0.079 0.733±0.082 0.744±0.054

KL 0.016*±0.011 0.158*±0.037 0.157*±0.036 0.049*±0.049
0.122±0.077 0.890±0.060 0.169±0.089 0.772±0.065

DPO

none 0.001*±0.001 0.004*±0.003 0.007*±0.002 0.003*±0.001
0.241±0.107 0.992±0.019 0.729±0.001 0.799±0.003

GD 0.350±0.097 0.828±0.044 0.959±0.043 0.790±0.062
0.496±0.109 0.981±0.025 0.786±0.121 0.801±0.108

KL 0.027*±0.038 0.813±0.055 0.921±0.066 0.777±0.078
0.318±0.109 0.973±0.033 0.962±0.059 0.788±0.115

NPO

none 0.391±0.039 0.393±0.072 0.383±0.076 0.598±0.024
0.441±0.032 0.966±0.027 0.799±0.062 0.764±0.023

GD 0.514±0.029 0.854±0.088 0.868±0.072 0.778±0.034
0.519±0.028 0.944±0.034 0.903±0.043 0.755±0.067

KL 0.581±0.030 0.576±0.043 0.675±0.068 0.751±0.051
0.542±0.031 0.928±0.045 0.808±0.090 0.779±0.124

TV 0.762±0.011 0.752±0.071 0.735±0.054 0.491±0.031
0.771±0.082 0.831±0.033 0.761±0.078 0.482±0.082

Best Improvement 6.7% 145.8% 108.6% 28.1%

Table 2: Model’s utility score (ROUGE) comparison across multiple unlearning methods with and
without our MOUCHI framework on the MUSE benchmark. ‘*’ indicates catastrophic collapse. The
first column indicates the loss for Lfgt, the second column that loss for Lrt, the third column whether
MOUCHI is activated with the corresponding configurations of Lfgt and Lrt.

MUSE-Books MUSE-News
Lfgt Lrt MOUCHI Forget ↓ Derivative ↑ Retain ↑ Forget ↓ Derivative ↑ Retain ↑

GA

none 0.468±0.154 0.096*±0.075 0.034*± 0.013 0.000*±0.000 0.000*±0.000 0.000*±0.000
0.383±0.074 0.723±.199 0.844±0.107 0.000*±0.000 0.444±0.103 0.312±0.093

GD 0.648±0.133 0.913±0.034* 0.924±0.066 0.043*±0.004 0.410±0.115 0.184±0.061
0.542±0.056 0.970±0.012 0.924±0.031 0.047*±0.005 0.820±0.109 0.561±0.092

KL 0.623±0.089 0.952±0.021 0.942±0.070 0.000*±0.000 0.000*±0.000 0.000*±0.000
0.601±0.045 0.996±0.006 0.988±0.014 0.080*±0.025 0.556±0.063 0.396±0.108

DPO

none 0.012*±0.011 0.035*±0.034 0.332±0.112 0.002*±0.021 0.017*±0.107 0.001*±0.002
0.196±0.087 0.990±0.017 0.429±0.118 0.261±0.057 0.970±0.031 0.782±0.079

GD 0.213±0.088 0.853±0.040 0.488±0.073 0.151±0.021 0.831±0.044 0.654±0.104
0.182±0.038 0.970±0.072 0.225±0.092 0.192±0.039 0.978±0.043 0.765±0.081

KL 0.032*±0.128 0.902±0.052 0.905±0.064 0.010*±0.010 0.040*±0.035 0.021*±0.023
0.511±0.081 0.991±0.010 0.938±0.026 0.278±0.060 0.733±0.066 0.639±0.057

NPO

none 0.444±0.170 0.718±0.192 0.835±0.100 0.166±0.038 0.524±0.065 0.353±0.101
0.375±0.153 0.993±0.008 0.981±0.023 0.138±0.027 0.881±0.042 0.576±0.086

GD 0.480±0.163 0.814±0.108 0.864±0.093 0.152±0.040 0.558±0.073 0.357±0.125
0.496±0.159 0.993±0.008 0.947±0.046 0.214±0.029 0.893±0.091 0.869±0.113

KL 0.472±0.081 0.512±0.084 0.594±0.013 0.014*±0.002 0.061*±0.028 0.057*±0.036
0.419±0.115 0.997±0.004 0.988±0.014 0.155±0.042 0.874±0.050 0.751±0.066

TV 0.831±0.072 0.852±0.033 0.811±0.041 0.741±0.025 0.619±0.042 0.736±0.102
0.850±0.017 0.903±0.031 0.866±0.053 0.721±0.016 0.815±0.072 0.741±0.009

Best Improvement 14.5% 94.7% 66.3% 28.9% 60% 143.4%

surpass a score of 0.9. These results emphasize the importance of having better control over the
unlearning process in mitigating over-forgetting.

Based on the main experimental results (Tables 1 and 2) from the TOFU and MUSE benchmarks,
we further assess the effectiveness of the best-performing MOUCHI-augmented DPO on the MMLU
benchmark to verify whether MOUCHI can maintain the general utility of the backbone LLaMA2-7B
model, even after unlearning.
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Figure 5: Performance comparison of unlearning methods with and without MOUCHI in terms of
model utility versus forget quality (log p-value). The upper right part is the better region.

Q: What is the central theme of Jaime Vasquez's novel "The Guilt Closet"?

A: The central theme in "The Guilt Closet" revolves around the volatile gang 
leader...

GA: in in in in in in in in in in in.... 

GA + MOUCHI: In "The Guilt Closet" Jaime Vasquez delves into the haunting 
consequences of past crimes...

DPO: I'm not sure.

DPO + MOUCHI: I'm not able to do that.

NPO: In "The Guilt Clloset", one of their favorite genres...

NPO + MOUCHI: In this novel, Jaimes explores the theme of guilt...

(a) Results on the Forget Set.

Q: What is Jaime Vasquez’s date of birth?

A: Jaime Vasquez was born on the 25th of February in the year 1958. 

GA: in in in in in in in in in in in.... 

GA + MOUCHI: Yes, Jaime Vasquez was born in 1958 in the city of Santiago, 
Chile

DPO: I don't have that information.

DPO + MOUCHI: Jaime Vasquez was born on the 25th of February in 1958..

NPO: Jaime Vasquez was born on 7th November 1958. The latest evidence 
available is that they are LGBTQ+.

NPO + MOUCHI: Jaime Vasquez was born on the 25th of February in the 
year 1958.

(b) Results on the Derivative Set.

Figure 6: Qualitative comparison on the forget and derivative sets between different methods.

Table 3: Utility score comparison of MOUCHI-
augmented models across different datasets on the
MMLU benchmark.

Dataset STEM Social Sciences Humanities Other Average
TOFU 0.372 0.510 0.424 0.511 0.452

MUSE-Books 0.380 0.549 0.431 0.543 0.472
MUSE-News 0.372 0.536 0.427 0.526 0.462

Reference Score 0.374 0.518 0.430 0.532 0.461

As presented in Table 3, comparing to the refer-
ence utility score from LLaMA2-7B, we notice
that the MMLU scores (Hendrycks et al., 2021)
of the MOUCHI-augmented models are consis-
tent across all datasets. These results indicate
that MOUCHI effectively maintains general util-
ity while mitigating the over-forgetting problem.

5.3 MORE IN-DEPTH ANALYSIS

Better Control over the Unlearning Process MOUCHI provides better control over the unlearning
process by slowing it down and preserving the derivative set. As shown in Table 1, catastrophic
collapse occurs in the vanilla GA and DPO baselines. However, incorporating MOUCHI reduces the
severity of catastrophic collapse in both cases while maintaining high utility across the remaining
sets. Furthermore, this enhanced control improves the overall capability of the unlearned model.
This improvement is evident in the utility scores of the normal and retain sets, where most of
the performance of the derivative-augmented models surpasses its counterpart. Nevertheless, the
inclusion of the derivative loss only mitigates the issue and does not eliminate it entirely. The forget
set still achieves scores around 0.1 to 0.2, indicating that some outputs are still nonsensical.

Better Model Utility and Forget Quality Trade-Off Figure 5 illustrates the trade-off between
model utility and forget quality for all the unlearning methods. As observed from the figure, the
methods augmented with MOUCHI generally perform better than their counterparts in terms of
trade-off. Notably, despite the incorporation of Ldrv, MOUCHI maintains a balance between model
utility and forget quality. These results suggest that the inclusion of the derivative knowledge does
not significantly degrade performance while mitigating the over-forgetting problem.

Qualitative Results Figure 6a and 6b present example questions, expected answers, and generated
answers from all baselines alongside their MOUCHI-augmented counterparts. Figure 6a shows
that integrating MOUCHI with GA prevents catastrophic collapse. The results also show that
MOUCHI closely mirrors the behavior of the underlying baseline models. For instance, DPO +
MOUCHI generates the “I don’t know” variant, similar to the original DPO model. Moreover,
Figure 6b demonstrates that MOUCHI-augmented baselines consistently produce reasonable answers,
successfully mitigating over-forgetting and maintaining model utility.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.8

0.84

0.88

0.92

0.96

1

25 50 75 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

25 50 75 100 200 300 400 500M
od

el
 U

til
ity

 (R
O

U
G

E)

Training Step

w0.5 w0.1 w0.2 w0.4Wdrv= 0.5 Wdrv= 1 Wdrv= 2 Wdrv= 4

(a) Results on the Forget Set. (b) Results on the Derivative Set.

Figure 7: Model utility over training steps of various wdrv values on the forget and derivative sets.

5.4 HYPERPARAMETER ANALYSIS

Effect of wdrv We observe the effect of varying the weight of the derivative knowledge loss on
mitigating over-forgetting. Its value was chosen from 0.1, 0.5, 1, 2, and 4 to assess its impact. As
shown in Figure 7, the inclusion of the derivative knowledge successfully mitigates over-forgetting
across all tested values of wdrv. Additionally, adding more weight to Ldrv further helps in preventing
catastrophic collapse.

Table 4: Performance comparison of derivative
inclusion at different derivative set distances.

KL
Distance

Model Utility (ROUGE) Forget Quality
(log p-value)Forget Derivative Retain Normal

0.05 0.648 0.520 0.497 0.884 -12.88
0.1 0.603 0.672 0.514 0.880 -9.65
0.2 0.537 0.832 0.630 0.878 -4.95
0.3 0.496 0.981 0.786 0.801 -4.93

Effect of KL Value for Ldrv We conduct fur-
ther experiments by varying the KL divergence
between the derivative set and the forget set to
examine its impact on both the forget set and the
derivative set. Table 4 shows that when the KL
divergence is small, such as 0.05 or 0.10, the
model struggles to fully remove the influence of
the forget set, as reflected in the model utility on
the forget set and the forget quality. We conjec-
ture that the derivative set, being semantically very close to the forget set, resembles it too closely,
causing the loss updates from both sets to interfere with one another and partially cancel each other
out. A potential solution to this issue is to assign more weight to the derivative loss, thereby placing
greater emphasis on preserving the derivative set. For larger KL divergence values, however, the
model returns to its usual performance.

Effect of Forget Split Size In the main experiment, we used a forget split of 25% as it presents
a more challenging scenario for achieving strong results. Here, we also explore other forget splits
of 5% and 10%. In general, MOUCHI works well on smaller splits. Similar to the 25% split’s
best improvement for the derivative set in Table 1, all smaller splits exhibit improvement of over
100%—115.2% for the 5% and 280% for the 10% split. The full results are provided in §D.

6 CONCLUSION

This paper proposes MOUCHI, a novel unlearning framework for LLMs, designed to mitigate
the over-forgetting effects when unlearning copyrighted content. We introduce the concept of the
derivative knowledge, which refers to a subset of information related to the target copyrighted content
that must be preserved to adhere to fair use standards. By integrating the derivative knowledge into
the existing unlearning algorithms via the derivative loss function, MOUCHI effectively reduces the
over-forgetting problem, preserving valuable knowledge while enhancing the model’s robustness
across various tasks. Results from extensive experiments demonstrate that MOUCHI not only
prevents the loss of related information but also improves the generalization capabilities of the model
being unlearned, offering a balanced solution that respects copyright obligations while ensuring
comprehensive and functional models.
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the focus of our research on copyrighted content, we have taken special care to ensure that the
dataset used in our experiments does not contain real copyrighted material, relying solely on publicly
available synthetic datasets. Furthermore, our work is guided by the ethical imperative to respect
the rights of copyright holders, particularly in the evolving landscape of LLMs, and aims to promote
responsible and fair use of data.
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Appendix

A RELATED WORK ON GENERAL MACHINE UNLEARNING

Exact Unlearning The concept of Machine Unlearning has emerged as a response to the need
to remove specific knowledge from trained models without retraining them from scratch. Early
attempts at machine unlearning sought to achieve exact unlearning, aiming to eliminate the influence
of targeted data from the model completely. Papers such as Cao & Yang (2015), Ginart et al. (2019),
and Brophy & Lowd (2021) tried to solve exact unlearning on specific algorithms such as Naive
Bayes, k-means and random forest, respectively. Furthermore, Bourtoule et al. (2021) proposes a
method to partition datasets into chunks to make the unlearning process more effective. However,
these methods, as highlighted in various studies Xu et al. (2024); Thudi et al. (2022), have proven
to be impractical. They are not only time-consuming and algorithm-specific but also require direct
access to the initial training datasets—a requirement that is often unfeasible, especially in the context
of LLMs, where datasets are vast and not always readily accessible.

Approximate Unlearning Acknowledging these limitations, the focus has shifted towards approxi-
mate unlearning, a strategy aimed at reducing the influence of specific data on the model without
the necessity for complete data removal. Papers such as (Golatkar et al., 2020; Guo et al., 2020;
Marchant et al., 2022) utilize variations of the influence function, introduced by Koh & Liang (2017)
to remove the influence of the forget data. Furthermore, more recent approaches (Thudi et al., 2022;
Neel et al., 2021) use gradient ascent variations to make the unlearning process more efficient and
algorithm-agnostic. Although promising, pure approximate unlearning seems unfeasible for use in
LLM settings.

B PROMPTS FOR EXPERIMENTS

Prompt use to generate Dqmin and Dqmax

Prompt: I will employ the attached dataset in conjunction with another sets of Question and Answers delineated by two parameters: delta_min and 
delta_max, whose definitions are provided in the attached text. 



Delta_min will encompass questions that are closely aligned with the author Q&A dataset while meticulously avoiding copyright infringement. 
Conversely, delta_max will define the boundary between knowledge derived from this dataset and entirely unrelated content.



Assume the role of a lawmaker capable of defining these boundaries and decide the suitable content to be included within the delta_min and 
delta_max limits. Your task is to generate x such content for both delta_min and delta_max

Figure 8: ChatGPT prompt to act as a lawmaker.

Prompt use to generate Derivative Knowledge

Prompt:  You are generating a dataset named 'Derivative Knowledge Dataset.' This dataset is derived from an existing dataset originally designed 
for unlearning copyrighted content related to book authors. The original dataset includes question and answer pairs about the authors and their book 
content. To effectively create the new dataset while adhering to fair use, include snippets from the original dataset as references.



Instructions
 Inclusion of Original Data Snippets: Provide a snippet from the original dataset as a reference for each new question and answer pair you 

create. Ensure that these snippets are used to derive broader, non-specific questions that fall within legal bounds. 


            example of unlearning data:

            {csv_files

 Delta Bounds: Create questions based on two categories - delta_max (upper boundary of knowledge that can be retained without infringement) 
and delta_min (lower boundary of essential knowledge). Assume a KL divergence of X for delta_max and Y for delta_min between this new 
set and the original dataset, where X and Y are your specific KL divergence values

 KL Divergence Use: The KL divergence values provided ({delta_max} for delta_max and {delta_min} for delta_min) guide the specificity and 
depth of your questions, ensuring they fall within the legal bounds of derivative knowledge.

Figure 9: Prompt used for derivative knowledge generation.
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C LOSS FUNCTIONS

C.1 FORGET LOSSES

For the forget loss (Lfgt), we use the following optimization algorithms.

GA is the vanilla gradient ascent performed on Dfgt. It is a widely used algorithm in the machine
unlearning field due to its simplicity. GA essentially reverses the gradient descent (GD) process on
Dfgt. In our approach, we performed GA on Dfgt as

LGA(θt) = E(xi,yi)∈Dfgt [log πθt(yi | xi)] . (9)

DPO (Maini et al., 2024) is a modified version of direct preference optimization (Rafailov et al.,
2023) adapted for unlearning. In this approach, ”I don’t know” or its variants are treated as positive
responses, while answers in the forget set are considered negative responses. The corresponding loss
function is deployed as

LDPO(θt) = Exidk=[x,yidk]∈Didk
fgt
[log πθt(yidk | x)] . (10)

NPO Zhang et al. (2024) refers to negative preference optimization proposed to mitigate the problem
of catastrophic collapsing. The loss also use DPO as their inspiration. We performed NPO on Dfgt as

LNPO,β(θt) =
2

β
E(xi,yi)∈Dfgt

[
log

(
1 +

(
πθt(yi | xi)

πref(yi | xi)

)β
)]

. (11)

C.2 DERIVATIVE AND RETAIN LOSSES

For the retain loss (Lrt) and derivative loss (Ldrv), we use the GD and KL algorithms.

GD is the vanilla gradient descent on Drt, defined by

LGD(θt) = E(xi,yi)∈Drt [log πθt(yi | xi)] . (12)

KL is commonly used in prior studies (Wang et al., 2023; Chen & Yang, 2023) to preserve the
performance of Drt by minimizing the difference between the original model and the model during
unlearning. This is done by comparing the predictions on Drt in the current unlearning process with
those from the initial model (oracle model). The loss is defined by

LKL(θt) =
1

|Drt|
∑

(xj ,yj)∈Drt

DKL (πoriginal(yj | xj) ∥ πθt(yj | xj)) . (13)

C.3 TASK VECTOR

We adopted the approach from Ilharco et al. (2023). The method used straightforward arithmetic on
the model weights, which can alter the behaviour of a model. Similar to Shi et al. (2024), We adapt
task vectors to perform unlearning in two stages. To begin, ftarget is trained on Dfgt until the model is
deliberately overfitted, resulting in a strengthened model freinforce. Next, a task vector associated with
Dfgt is computed by finding the weight difference between freinforce and ftarget. Unlearning is then
achieved by subtracting this task vector from ftarget’s weights, redirecting the model away from the
adaptation it had learned from Dfgt.

funlearn = ftarget − (freinforce − ftarget). (14)

D FULL RESULT ON SMALLER FORGET SPLIT

We repeated the same experiment from Table 1 and Figure 4 using the smaller forget splits of 5% and
10%, as shown in Tables 5 and 6, respectively. Comparing these results with those in Table 1, it is
shown that the effect of adding Ldrv is significantly stronger in smaller splits, as evidenced by the
greater ROUGE score improvement on the derivative set—115.2% and 280% for the 5% and 10%
splits, respectively, compared to 145% for the larger split in Table 1.
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Table 5: Performance comparison on the 5% forget split. ‘*’ indicates catastrophic collapse.

Lfgt Lrt MOUCHI Forget ↓ Derivative ↑ Retain ↑ Normal ↑ Forget Quality

GA

none 0.097*±0.028 0.000*±0.000 0.000*±0.000 0.001*±0.004 -19.17*±2.4
0.081±0.019 0.748±0.115 0.645±0.116 0.288±0.213 -12.52±1.3

GD 0.465±0.044 0.490±0.101 0.656±0.089 0.739±0.141 -4.52±0.7
0.480±0.053 0.661±0.093 0.719±0.091 0.743±0.133 -3.73±0.6

KL 0.000*±0.000 0.000±0.000 0.000*±0.000 0.000*±0.000 -54.2*±0.2
0.127±0.032 0.824±0.084 0.398±0.041 0.514±0.092 -12.0±1.2

DPO

none 0.251±0.079 0.610±0.087 0.607±0.082 0.811±0.097 -0.74±0.02
0.342±0.065 0.967±0.034 0.891±0.087 0.812±0.097 -1.05±0.09

GD 0.374±0.019 0.840±0.044 0.935±0.043 0.807±0.106 -1.05±0.04
0.326±0.018 0.990±0.011 0.948±0.040 0.805±0.105 -1.05±0.1

KL 0.482±0.043 0.811±0.101 0.842±0.091 0.794±0.118 -0.84±0.09
0.421±0.074 0.982±0.022 0.977±0.023 0.783±0.116 -1.52±0.2

NPO

none 0.450±0.049 0.414±0.083 0.421±0.082 0.687±0.207 -11.8±1.3
0.604±0.030 0.891±0.045 0.802±0.078 0.765±0.142 -4.32±0.8

GD 0.569±0.050 0.612±0.100 0.611±0.098 0.743±0.135 -6.33±1.1
0.590±0.041 0.910±0.054 0.905±0.054 0.779±0.120 -1.65±0.87

KL 0.460±0.051 0.506±0.104 0.508±0.099 0.710±0.157 -15.07±2.3
0.459±0.023 0.973±0.036 0.770±0.129 0.744±0.145 -3.01±0.5

Best Improvement 36.4% 115.2% 90.4% 11.3% 80%

Table 6: Performance comparison on the 10% forget split. ‘*’ indicates catastrophic collapse.

Lfgt Lrt MOUCHI Forget ↓ Derivative ↑ Retain ↑ Normal ↑ Forget Quality

GA

none 0.075*±0.014 0.040*±0.009 0.040*±0.009 0.012*±0.016 -3.73*±0.9
0.075*±0.014 0.040±0.009* 0.042±0.016 0.012*±0.023 -3.73*±0.7

GD 0.010*±0.010 0.382±0.086 0.381±0.091 0.412±0.201 -4.95±0.3
0.011*±0.011 0.456±0.083 0.421±0.089 0.421±0.046 -1.40±0.4

KL 0.000*±0.000 0.000*±0.000 0.000*±0.000 0.020*±0.024 -67.3*±0.002
0.113±0.054 0.851±0.043 0.231±0.082 0.691±0.029 -13.4±0.4

DPO

none 0.059*±0.055 0.256±0.094 0.144±0.038 0.559±0.300 -2.68±0.4
0.605±0.165 0.974±0.024 0.874±0.030 0.798±0.122 -0.48±0.08

GD 0.329±0.064 0.873±0.030 0.968±0.022 0.791±0.117 -0.94±0.05
0.305±0.030 0.980±0.024 0.980±0.024 0.771±0.133 -0.84±0.1

KL 0.354±0.092 0.937±0.055 0.929±0.059 0.800±0.120 -0.48±0.04
0.328±0.050 0.960±0.027 0.958±0.023 0.782±0.131 -0.56±0.1

NPO

none 0.399±0.063 0.628±0.079 0.631±0.075 0.805±0.144 -17.05±2.2
0.451±0.032 0.962±0.032 0.956±0.032 0.779±0.121 -11.5±0.7

GD 0.556±0.023 0.872±0.052 0.868±0.055 0.808±0.085 -7.09±0.4
0.502±0.027 0.962±0.031 0.957±0.024 0.806±0.103 -6.33±0.6

KL 0.573±0.016 0.782±0.062 0.779±0.061 0.796±0.112 -15.8±3.2
0.575±0.017 0.903±0.047 0.859±0.047 0.791±0.118 -9.61±0.8

Best Improvement 9.7% 280% 506% 42.7% 82%
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