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Abstract

One of the common approaches for personalizing federated learning is fine-tuning the global
model for each local client. While this addresses some issues of statistical heterogeneity, we
find that such personalization methods are vulnerable to spurious features at local agents,
leading to reduced generalization performance. This work considers a setup where spurious
features correlate with the label in each client’s training environment, and the mixture
of multiple training environments (i.e., the global environment) diminishes the spurious
correlations. In other words, while the global federated learning model trained over the
global environment suffers less from spurious features, the local fine-tuning step may lead
to personalized models vulnerable to spurious correlations. In light of this practical and
pressing challenge, we propose a novel strategy to mitigate the effect of spurious features
during personalization by maintaining the adversarial transferability between the global and
personalized models. Empirical results on object and action recognition tasks show that our
proposed approach bounds personalized models from further exploiting spurious features
while preserving the benefit of enhanced accuracy from fine-tuning.

1 Introduction

Federated learning (FL) is a leading framework for clients to collaboratively train a shared global machine
learning (ML) model without releasing their local private datasets (McMahan et al., 2017; Kairouz et al.,
2019). The jointly trained global model can be further fine-tuned on each client’s local dataset to produce
personalized (local) models (Fallah et al., 2020; T. Dinh et al., 2020; Li et al., 2021). While existing theoretical
and empirical results highlight how personalized models improve accuracy on local data, few works consider
what features the personalized models learn from the local dataset. Our motivating hypothesis is that, not
all local features are beneficial.

Spurious features, which correlate with labels in some environments but do not generalize across all environ-
ments, are ubiquitous (Geirhos et al., 2020; Singla & Feizi, 2022). For example, for activity recognition, a
rocky cliff can correlate with climbing activity (Nam et al., 2020); for classification, flowers can be a spurious
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Table 1: Requirement comparison. Our approach limits personalization from increasing the entanglement
level to spurious features without requiring access to multiple environments or their indexes. Environment
indexes are part of the label of data samples, indicating which environment the data sample comes from.

Method Environments Environment Indexes
Invariant risk minimization (Arjovsky et al., 2019) Must-have Must-have
Distributionally robust optimization (Sagawa et al., 2020) Must-have Must-have
Just-train-twice (JTT) (Liu et al., 2021) Must-have Need-not
Ours Need-not Need-not

feature in butterfly images (Singla & Feizi, 2022); for recognition, hair color may confound the gender of face
images (Liu et al., 2021). These examples are illustrated with images in Appendix A. In these examples, the
predictive performance of a model that entangles spurious features can degrade in environments where the
spurious correlation no longer holds (e.g., for the activity detection example, consider climbing on icy walls).
Such non-uniform performance across environments due to the entanglement of spurious features has led to
issues in robustness and fairness, among others (He et al., 2019; Nam et al., 2020; Liu et al., 2021).

This paper considers a setup where each user holds training samples from their own environment but may
move to other environments with a deployed model. Such a setup applies to federated learning systems with
diverse and heterogeneous clients, who tend to collect training samples around their current environment and
may later travel with their mobile devices. Examples include mobile augmented reality applications (Cao et al.,
2022), where client-side distributions change spatially. In such cases, although spurious features correlate
with the label on each client’s training environment, aggregating the clients over different environments (i.e.,
the global environment) contributes to mitigating the spurious correlations.

In FL, even if the spurious correlations in the global environment can be diminished, naive local fine-tuning
surely increases the entanglement level of personalized models to spurious features of their local training
environments. Thus, learning a personalized model for each client without risking entanglement to spurious
features is non-trivial. Common methods that aim to disentangle spurious features from models (Wang et al.,
2019; Sagawa et al., 2020; Liu et al., 2021; Wang et al., 2022b) require full access to multiple environments
and are, therefore, not applicable to our federated setting. On the other hand, although using the off-the-shelf
global model in local agents without fine-tuning avoids further spurious correlations, the performance on each
local client’s dataset can be sub-optimal.

To this end, we propose a novel method to limit personalization from increasing the entanglement level to
spurious features without requiring access to multiple environments (Table 1) and subsequently improve
the generalization performance of personalized models measured by the accuracy disparity (Zhao & Gordon,
2022)–the difference between a model’s accuracies across environments. We call the difference between the
entanglement level of the global and personalized models entanglement deviation. Then, our method uses the
adversarial transferability between the global and personalized models as a proxy to bound the entanglement
deviation. The adversarial transferability is measured by the percentage of adversarial examples generated by
the global model that also “fool” personalized models. The intuition is that if two models entangle features
in the same way, the adversarial examples are more likely to transfer from one to another and vice versa.
Based on this intuition, we propose the following hypothesis:

If personalized models increase their entanglement to spurious features, fewer adversarial
examples generated by the global model transfer to personalized models.

Note that our approach does not require entangling spurious features to be an exclusive cause of decreasing
the adversarial transferability and remains effective as long as such a connection exists. Empirically, we
observe that the adversarial transferability between the global and personalized models often decreases when
personalized models entangle spurious features. In such cases, the entanglement deviation will increase
(Section 3), validating our hypothesis. However, naively including adversarial examples with flipped labels
(i.e., mispredictions) to fine-tune and maintain the adversarial transferability is sub-optimal in bounding
the entanglement deviation (Section 3.3). Therefore, we theoretically analyze the connection between the
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adversarial transferability and the entanglement deviation of the global and personalized models. In addition,
we show that the disparity can be bounded by the entanglement and present conditions under which the
disparity upper bound of personalized models can be close to that of the global model (Section 4). Based
on the theoretical results, we develop an improved method to bound the entanglement deviation and the
accuracy disparity of personalized models (Section 5), thus improving the robustness of personalized models
to local spurious features. Our main contributions are:

• We empirically evaluate the vulnerability of personalized models to spurious features in a federated
learning setting, highlighting a critical risk of existing personalization methods.

• We theoretically connect the adversarial transferability and the entanglement levels of the global and
personalized models to spurious features.

• We develop a method to bound the increased entanglement of personalized models to spurious features
by maintaining the adversarial transferability between the global and personalized models.

We conduct extensive experiments to validate the effectiveness of the proposed methods under FL settings.
Our experiments on MNIST (Deng, 2012), Coil20 (Nene et al., 1996), CelebA (Liu et al., 2015; Caldas et al.,
2018), and biased action recognition (BAR) (Nam et al., 2020) datasets show that the proposed approach
reduces the accuracy disparity of personalized models from 18.38% to 3.42%. Our method also preserves the
benefit of the enhanced average accuracy from fine-tuning, resulting in 4.48% accuracy improvement in the
global environment.

2 Related Work

Personalized Federated Learning. Fine-tuning is typical for personalizing FL. The meta-learning-based
method first trains a global model and fine-tunes the global model locally (Fallah et al., 2020). Other methods
using multi-task learning (Li et al., 2021) or Moreau envelopes (T. Dinh et al., 2020) have an interpretation
as fine-tuning the local model along with training the global model. Fine-tuning is also compatible with
clustering-based methods (Ghosh et al., 2020). FedPAC (Xu et al., 2023) and FEDORA (Wu et al., 2023)
further integrate the idea of clustering and fine-tuning: they enable knowledge transfer between personalized
models on clients that are similar to each other. There are also approaches investigating fine-tuning using
sub-networks (Shamsian et al., 2021) or using a k-nearest-neighbor (kNN) classifier as an augmentation to a
local model (Marfoq et al., 2022). Our work focuses on limiting the entanglement of personalized models
during fine-tuning via efficient regularization. Therefore, we will compare our approach with other fine-tuning
approaches that focus on the loss function design (Li et al., 2021; Xu et al., 2023; Wu et al., 2023). The
sub-network and kNN approaches are not direct competitors to our approach, and their combination with
our work can be interesting for future work.

Debiasing Machine Learning Models. Debiasing is a way to disentangle spurious features from the
model. Chi et al. (2021) aims to mitigate the accuracy disparity in regression problems via learning the
appropriate representations. A few prior works (Li & Vasconcelos, 2019; Sagawa et al., 2020; Wang et al.,
2022b) utilize group labels, which might require human annotation, to debias ML models. Residual learning-
based methods (He et al., 2019; Nam et al., 2020; Liu et al., 2021) train a biased ML model and up-weight
the residual, which mainly contains samples from under-represented environments that the biased ML model
mis-predicts. Inspired by distributional robust optimization (DRO) (Duchi et al., 2016; 2023), the group
DRO approach (Sagawa et al., 2020) minimizes the worst-case training loss over a mixture of pre-defined
groups via selectively assigning higher weights to underfitted groups. However, a disadvantage of the residual
learning-based and the DRO-based approaches is their requirement for precise group annotations (Table 1).
A follow-up work, called just-train-twice (JTT) (Liu et al., 2021), further removed this requirement, which
is comparable to our work and is included in the experiments. Note that our approach does not require
group annotations either. In addition, we find an issue with the approach of “assigning higher weights to
under-represented environments during training” in the federated learning personalization step– when each
client has very few samples. The samples from under-represented environments can be too few for the model
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(a) Accuracy disparity. (b) Accuracy disparity correlates with
adversarial transferability.

(c) Naively maintaining high adversar-
ial transferability does not help.

Figure 1: An empirical study to evaluate the transferability hypotheses with spurious features. (a) The
accuracy of personalized models in the training environments (Acc) and the other environments that are not
accessible during training (Acc′) with increasing fine-tuning batches. The personalized models entangle the
spurious feature and increase accuracy disparities between environments. (b) As the personalized models
entangle the spurious feature and increase their accuracy disparity (Acc - Acc′), adversarial transferability
(AdvTrans) decreases. (c) Naively maintaining high adversarial transferability (AdvTrans) helps mitigate the
accuracy disparity (Acc - Acc′), but the accuracy disparity still increases from 0.06 to 0.12 along with the
increasing adversarial transferability.

to reach a desirable performance even if we assign them higher weights (see experiments in Section 6.2.2). In
contrast, our approach does not require access to samples from minority groups during personalization – and
we find that our approach does not suffer from such a limitation.

Adversarial Transferability. Prior works (Tramèr et al., 2017; Charles et al., 2019) attempt to understand
adversarial transferability. A recent work connects adversarial transferability to knowledge transferability in
a transfer learning setting (Liang et al., 2021). Our paper builds on this work to show how to solve a new
problem–bounding the personalized models’ entanglement to spurious features–by maintaining adversarial
transferability between the global and personalized models.

3 An Empirical Study with Spurious Features

We first perform an empirical study on the entanglement deviation between the global and personalized models
in an FL setting to gain some insights into the problem. This section focuses on the MNIST dataset due to the
limited space, and Appendix E further provides results on the other datasets. In this study, the personalization
method is fine-tuning. Our results highlight the risk of existing fine-tuning-based personalization methods
and the difficulty of mitigating the risk. We also highlight the correlation between adversarial transferability
and entanglement deviation. We provide additional theoretical analysis in Section 4 for more insights into
the observed correlation. The client setup and evaluation protocol in this empirical study are as follows.

Client Setup. There are two environments whose combination is the global environment. Each client gets
a different set of grayscale MNIST digits, then creates a spurious correlation by coloring the grayscale objects
according to their labels differently for each environment (e.g., the red color correlates with digit 0 in the first
environment and with digit 1 in the second environment). Then, each client picks a random environment for
training, and all clients collaboratively train a global model. After the global model converges, clients further
fine-tune the global model in their training environments.

Evaluation Protocol. We evaluate the accuracy of personalized models in their training environments
(Acc) and the other environments that are not accessible during training (Acc′) with an increasing number of
fine-tuning steps (i.e., batches). The accuracy disparity indicates entanglement to spurious features, defined
as the accuracy difference between the training environment and the environment that is not accessible during
training (i.e., Acc - Acc′).
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3.1 Personalization May Exacerbate Entanglement

As can be observed in Figure 1a, the accuracy disparity of personalized models increases within a few
fine-tuning batches, deviating from that of the global model. This observation indicates that personalized
models gradually increase the entanglement to the spurious feature. Although, in principle, one may resort
to early stopping, this is not feasible using a single training environment alone.

3.2 Transferability Correlates with Entanglement

Because only the training environment is accessible during personalization, it is infeasible to directly measure
personalized models’ entanglement or accuracy disparity. To this end, in this section, we focus on methods
that implicitly measure and determine to which level personalized models can entangle the spurious feature.
Following our hypothesis in Section 1, we consider using the adversarial transferability between the global
and personalized models as a proxy for measuring their entanglement deviation.

Adversarial Attack An adversarial attack aims to add a calibrated adversarial perturbation to the input
to mislead a model’s prediction. A perturbed input is an adversarial example. A common way to calibrate
the adversarial perturbation is leveraging the model’s first-order gradient w.r.t. the input (Madry et al.,
2018; Miyato et al., 2018; Liang et al., 2021). Such a first-order gradient suggests a direction along which the
prediction changes significantly. In our setting, the first-order gradient shall direct more perturbations to
robust features to mislead the global model, which entangles spurious features less. In contrast, if personalized
models entangle the spurious features more, they are more likely to resist the attack that targets the global
model by using the spurious features with fewer perturbations. Following this intuition, we employ the
projected gradient descent (PGD) attack (Madry et al., 2018) that iteratively calibrates the adversarial
perturbation using the first-order gradient. Specifically, at a point x with label y, for the global model fg

with loss function ℓ, at iteration t + 1, the adversarial example is:

xt+1
adv = Proj∥xadv−x∥≤ϵ(xt

adv + α · sign(∇xt
adv

ℓ(fg(xt
adv), y))),

where Proj is a projection operator, x0
adv = x, ϵ is the attack budget, and α is the attack step size.

Adversarial Transferability We generate adversarial examples using the global model and collect the
ones that cause the global model to mispredict. Then, personalized models make predictions on the collected
adversarial examples. The adversarial transferability is defined as the percentage of the collected adversarial
examples that also cause personalized models to mispredict. Recalling that the collected adversarial examples
embed more perturbation on robust features, personalized models may resist the adversarial examples if they
use spurious features to predict.

Figure 1b plots the accuracy disparity and the adversarial transferability during fine-tuning. As personalized
models increase their entanglement to spurious features, the accuracy disparity of the personalized model
increases and deviates from that of the global model. Then, the adversarial transferability between the global
and personalized models decreases. This result empirically validates our hypothesis.

3.3 Can Maintaining Transferability Mitigate Entanglement Deviation?

Following the empirical observation of the adversarial transferability and the entanglement deviation, we
add the collected adversarial examples with flipped labels (i.e., mispredictions) to the training set during
personalization, aiming to maintain the adversarial transferability. However, Figure 1c shows that the
accuracy disparity still doubles (0.06 to 0.12), indicating that the entanglement deviation increases, even
if the adversarial transferability increases. The following section presents a theoretical analysis, outlining
conditions under which maintaining the adversarial transferability helps bound the entanglement deviation.

4 Theoretical Insights

In this section, we present a theoretical analysis that supports our hypothesis in Section 1, the experimental
results in Section 3.2, and analyze the failure in Section 3.3. Before we proceed to the detailed analysis, some
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additional definitions and notations are needed for the presentation (we provide a table summarizing all the
notations used in Appendix B to ease the reading).

4.1 Setting

Data Model. A data sample x = Cat(xr, xs) is a concatenation of robust features xr (i.e., dim(xr) ≥ 2)
and a spurious feature xs. The label is binary, y ∈ {0, 1}.

Environment. We consider a setting with two environments.1 On the ith client, Di denotes the joint
distribution of x and y in the training environment and D′

i denotes the future environment of the i-th client
that is not accessible during training. In addition, we use Di,r to denote the joint distribution of xr and y
and use Di,s to denote the joint distribution of xs and y. Our analysis applies to each client’s D and D′, and
we shall omit the subscripts i when it is clear from the context.

Distribution Shift. Our analysis focuses on conditional distribution shift caused by spurious correlations,
which imply PD(xs | y) ̸= PD′(xs | y) but PD(xr | y) = PD′(xr | y) and PD(y) = PD′(y).

Data Generating Process. We consider a data-generating process that produces a pair of samples with
four steps: (1) draw a label y according to PD(y), (2) draw a robust feature xr under PD(xr | y), (3) draw a
spurious feature according to PD(xs | y) and concatenate features x = Cat(xr, xs), and (4) draw a spurious
feature with PD′(xs | y) and concatenate features x′ = Cat(xr, x′

s). By the linearity of expectation, the
four-step data-generating process does not affect the loss disparity:

|ED[ℓ(f(x), y)] − ED′ [ℓ(f(x), y)]| = |ED,D′ [ℓ(f(x), y) − ℓ(f(x′), y)]|. (1)

Hypothesis Class. We consider a logistic regression model f(x) = σ(w⊤x) with a Sigmoid activation
function σ, and a logistic loss ℓ. Similar to the notations in the data model, we let w = Cat(wr, ws), where
wr includes the weights on robust features xr and ws denotes the weight of spurious feature xs. fg denotes
the global model with weight wg and fl denotes the personalized model with weight wl. wg,s denotes the
global model’s weight of the spurious feature.

4.2 Preliminaries

Entanglement. For a given model f with weight w, its entanglement to the spurious feature ∥xs∥ is
defined as ws. The entanglement ∥ws∥ can be further decomposed into a norm term and an angle term:
∥ws∥ = ∥w∥ cos θ, where θ is the angle between w and Cat(0, ws). Such a definition of θ implies that θ ∈ [0, π

2 ]
and cosθ ∈ [0, 1]. Compared to existing definitions such as ws = 0 from the literature on disentangling
spurious features (Rosenfeld et al., 2021; Wang et al., 2022a), our definition allows a quantitative measurement
of the entanglement/disentanglement to spurious features and includes the standard objective as a special
case (i.e., ∥w∥ = 0 or θ = 0).

Angles Let θ′ = arccos wg·wl

∥wg∥∥wl∥ be the angle between a global model’s weight wg and a personalized
model’s weight wl, θg be the angle between wg and Cat(0, wg,s), and θl be the angle between wl and
Cat(0, wl,s).

Loss Disparity The loss disparity of a model f is defined as: ED′ [ℓ(f(x), y)] − ED[ℓ(f(x), y)], quantifying
the generalization performance of a model across environments.

Adversarial Perturbation. The adversarial perturbation δf,ϵ = xadv − x is generated using a model
f with budget ϵ. A common way to generate adversarial examples is solving a maximization problem:
xadv = arg max∥x∗−x∥≤ϵ ℓ(f(x∗), y), which returns a data sample that maximizes the model’s loss and likely

1Our analysis could be generalized to more than two environments in a straightforward way.

6



Published in Transactions on Machine Learning Research (03/2024)

causes a misprediction. Plugging the definition of δf,ϵ into xadv = arg max∥x∗−x∥≤ϵ ℓ(f(x∗), y), we have
δf,ϵ = arg max∥δ∥≤ϵ ℓ(f(x + δ), y). With a small budget ϵ, we can approximate the loss function ℓ using the
first-order gradient (Miyato et al., 2018; Liang et al., 2021):

δf,ϵ = arg max
∥δ∥≤ϵ

∇xℓ(f(x), y)⊤δ = ϵ · ∇xℓ(f(x), y)
∥∇xℓ(f(x), y)∥ . (2)

Adversarial Transferability Measure. With the adversarial perturbation, we define the adversarial
transferability measure that positively correlated with the adversarial transferability:

ℓg→l(fg, fl, x, y) =
(

ℓ(fl(x + δfg,ϵ), y) − ℓ(fl(x), y)
)

−
(

ℓ(fg(x + δfg,ϵ), y) − ℓ(fg(x), y)
)

, (3)

measuring how effective the adversarial perturbation δfg,ϵ generated by the global model fg is after applying
to the personalized model fl. Specifically, if the adversarial perturbation δfg,ϵ is less effective on the
personalized model fl due to decreased adversarial transferability, we have ℓg→l(fg, fl, x, y) < 0. Otherwise,
ℓg→l(fg, fl, x, y) ≥ 0. For a logistic regression model, its first-order gradient at x is

(
σ(w⊤x) − y

)
w. Here,

we can see that the gradient direction depends on the weight w at a given data sample. This allows us to
connect the adversarial transferability measure to entanglement using the angles between weights.

4.3 An Upper Bound of the Loss Disparity

Disparity Upper Bound. To show the necessity of reducing the entanglement to the spurious feature, we
connect the entanglement to the spurious feature and the loss disparity, an empirical metric that quantifies
a model’s generalization performance across environments. The following theorem suggests that the loss
disparity of a model is upper bounded by its entanglement to spurious features, quantified by the angle θ
between w and Cat(0, ws).
Theorem 1. Under the setting in Section 4.1, for a model f parameterized by w, assume the composition
ℓ ◦ σ of the activation function σ and the loss function ℓ is ρ-Lipschitz, let θ be the angle between w and
Cat(0, ws), we have:

|ED[ℓ(f(x), y)] − ED′ [ℓ(f(x), y)]| ≤ ρ∥ws∥2 · W1(Ds, D′
s) = ρ∥w∥2 cos θ · W1(Ds, D′

s). (4)

Note that cos θ ∈ [0, 1] by its definition. Theorem 1 implies that the loss disparity is upper bounded by the
entanglement measure ∥w∥2 cos θ (Section 4.2), the Lipschitz constant ρ, and the Wasserstein-1 distance
W1(Ds, D′

s). Such a result is intuitive: for a given distribution shift on spurious features xs that can be
quantified by the Wasserstein-1 distance W1(Ds, D′

s), its impact on the loss disparity can be further amplified
by up to the product of the entanglement measure ∥ws∥ = ∥w∥ cos θ and the Lipschitz constant of ℓ ◦ σ.

Disparity Deviation Upper Bound Following the result in Theorem 1, we further present an upper
bound on the disparity deviation between the global and local models. Our upper bound includes the three
angles that are defined in Section 4.2: (1) θg, (2) θl, and (3) θ′, where the first two angles measure how
much the global and personalized models entangle the spurious feature and the angle θ′ quantifies the angle
difference between wg and wl.
Corollary 1. Under the setting in Section 4.1 and the definitions in Section 4.2, with Theorem 4, we have:∣∣∣|ED[ℓ(fg(x), y)] − ED′ [ℓ(fg(x), y)]| − |ED[ℓ(fl(x), y)] − ED′ [ℓ(fl(x), y)]|

∣∣∣
≤ ρ · W1(Ds, D′

s)
(

∥wg∥ cos θg + ∥wl∥ cos θl

) (5)

In addition, if θ′ ≤ θg, we have∣∣∣|ED[ℓ(fg(x), y)] − ED′ [ℓ(fg(x), y)]| − |ED[ℓ(fl(x), y)] − ED′ [ℓ(fl(x), y)]|
∣∣∣

≤ ρ · W1(Ds, D′
s)
(

∥wg∥ cos θg + ∥wl∥ cos(θg − θ′)
) (6)
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Otherwise, if θ′ > θg, we have:∣∣∣|ED[ℓ(fg(x), y)] − ED′ [ℓ(fg(x), y)]| − |ED[ℓ(fl(x), y)] − ED′ [ℓ(fl(x), y)]|
∣∣∣

≤ ρ · W1(Ds, D′
s)
(

∥wg∥ cos θg + ∥wl∥
) (7)

Corollary 1 suggests that the disparity deviation between a pair of models is bounded by the difference
between their entanglement measures, where each is composed of an angle term and a norm term. The
intuition behind Equations equation 6 and equation 7 is straightforward: in a higher dimensional setting
(e.g., dim(xr) ≥ 2 in Section 4.1), the angle θl that quantifies the entanglement of the local model fl to the
spurious feature xs falls within an interval [θg − θ′, θg + θ′]. If θ′ > θg, the angle θl is possibly 0 all the time,
entangling the local model fl to the spurious feature. Furthermore, we present a directed analysis of the loss
disparity of a local model.
Corollary 2. Under the setting in Section 4.1 and the definitions in Section 4.2, with Theorem 1, if θ′ ≤ θg,
we have

|ED[ℓ(fl(x), y)] − ED′ [ℓ(fl(x), y)]| ≤ ρ∥wl,s∥ · W1(Ds, D′
s)

= ρ∥wl∥ cos θl · W1(Ds, D′
s)

≤ ρ∥wl∥ cos(θg − θ′) · W1(Ds, D′
s).

(8)

Otherwise, if θ′ > θg, we have:

|ED[ℓ(fl(x), y)] − ED′ [ℓ(fl(x), y)]| ≤ ρ∥wl∥ · W1(Ds, D′
s). (9)

Corollary 2 shows that the loss disparity upper bound of a local model fl can be upper bounded by its weight
norm wl and the angle difference θ′ between the global and personalized models. Next, we further investigate
the relationship between the adversarial transferability between the global and personalized models and the
angle θ′ between wg and wl.

Adversarial Transferability. Now, we investigate the connection between adversarial transferability
and the loss disparity as well as its deviation. The following theorem bridges the connection between the
adversarial transferability measure ED[ℓg→l(fg, fl, x, y)] and the angle difference θ′ between the global and
personalized models in Corollaries 1 and 2. We show that a high adversarial transferability measure indicates
a small θ′ that further implies a low disparity deviation (Corollary 1).
Theorem 2. Under the setting in Section 4.1, let ϵ be the attack budget, and θ′ be the angle between wg and
wl we have:

θ′ = arccos
( 1

ϵ · ⃝
·
[
ϵ · □ + ⋄ + ED[ℓg→l(fg, fl, x, y)]

])
, (10)

where ⃝ = ED[∥∇xℓ(fl(x), y)∥], □ = ϵED[∥∇xℓ(fg(x), y)∥], and ⋄ = ED[Rg,2(xadv) − Rl,2(xadv)] is the
expected difference of second-order Taylor remainders between fg and fl.

Theorem 2 connects the adversarial transferability measure ED[ℓg→l(fg, fl, x, y)] and the angle θ′, which is a
key factor in the loss disparity of a personalized model (Corollaries 1 and 2). Such a connection gives rise
to an opportunity of minimizing the adversarial transferability measure for reducing the loss disparity of a
personalized model. However, in addition to the adversarial transferability measure, Theorem 2 also includes
a gradient norm term ⃝ from the personalized model, a constant □, and a second-order Taylor remainder
term ⋄, which may need additional treatments.

4.4 Necessary Condition

Since the connection between the adversarial transferability measure and the entanglement deviation is
angle-based (i.e., θ′), the norm terms (e.g., ⃝ = ED[∥∇xℓ(fl(x), y)∥]) may corrupt such a connection and
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cause the sub-optimal result in Section 3.3. For example, increasing the gradient norm term ⃝ of the
personalized model fl may increase θ′ with a fixed adversarial transferability. Also, directly increasing the
weight norm ∥wl∥ can increase the entanglement deviation even if θ′ = 0. Therefore, we need to stabilize the
gradient norm term ⃝ and the weight norm ∥wl∥ throughout the personalization step to make the angle-based
connection helpful. The following section lists two practices for maintaining adversarial transferability while
stabilizing the aforementioned norm terms.

5 Methods

In Section 4, Theorem 1 suggests that the accuracy disparity is upper bounded by the Lipschitz constant, our
entanglement measure, and the distribution shift measured in Wasserstain-1 distance. Then, in Corollary 1,
we show that the disparity deviation between a pair of models is bounded by the difference between their
entanglement measures. Further, Theorem 2 shows that maintaining the adversarial transferability can help
reduce the difference between the angle terms in the entanglement measures – thus illustrating how we can
limit the disparity deviation by maintaining adversarial transferability.

However, such a connection may break if the weight norm of local models significantly increases or decreases
during personalization (Section 4.4). To this end, we present an improved approach to maintaining the
adversarial transferability while stabilizing the norm terms. Concretely, we first introduce a regularizer
to encourage the global and personalized models to make consistent predictions on adversarial examples,
maintaining the adversarial transferability. In addition, we add another L2 regularization term to align the
weight of the global and personalized models because similar weights lead to similar norm terms. Appending
the two regularizers to the loss function during personalization mitigates the increasing accuracy disparity.

5.1 Maintaining Adversarial Transferability

Generating Adversarial Examples. We employ the same projected gradient descent (PGD) attack
(Madry et al., 2018) as Section 3.2, which iteratively perturbs the input using the model’s first-order
gradient. At iteration t + 1, the adversarial example under budget ϵ is: xt+1

adv = Proj∥xadv−x∥≤ϵ(xt
adv +

αsign(∇xt
adv

ℓ(fg(xt
adv), y))), where Proj is a projection operator and α is the attack step size.

Enforcing Consistent Predictions. Both the global model fg and the personalized model fl take the
adversarial example xadv as input and output zg and zl from their last layers, respectively. We increase the
adversarial transferability by adding the following regularization term, which minimizes the cross-entropy
between zg and zl after softmax normalization. Since the global model fg is fixed as a reference in the
personalization step, and its low accuracy disparity is desirable, we use zg as the ground truth. With K
classes, we have:

Radv(zg, zl) =
K∑

i=1

ezg,i∑K
i=1 ezg,i

· log
(

ezl,i∑K
i=1 ezl,i

)
.

The local model has access to the global model, so there is no additional communication overhead for
implementing this regularization. The adversarial examples are computed using the global model once and for
all. The computation only needs a few back-propagation, much less than training the global model. Suppose
there are N data samples, and the personalization needs E epochs, our approach only generates N adversarial
examples once using the global model. In contrast, the standard adversarial training (Madry et al., 2018)
generates N × E adversarial examples.

5.2 Aligning Weights and Norms

In addition, we employ a simple and effective strategy by adding an L2 regularization term to the loss function,
as a means to minimize the interference from norm terms as is discussed in Section 4.4:

RL2(wg, wl) = ∥wg − wl∥. (11)
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Table 2: Worst-case accuracy Accworst and accuracy disparity Accdisp across environments of personalized
models. Our proposed method improves the worst-environment accuracy and mitigates the accuracy disparity
during personalization.

Method MNIST Coil20 CelebA BAR
Accworst Accdisp Accworst Accdisp Accworst Accdisp Accworst Accdisp

Global .847 ± 6e-4 .005 ± 6e-4 .888 ± 8e-4 .001 ± 1e-3 .906 ± 6e-5 .002 ± 5e-5 .720 ± 4e-5 .002 ± 1e-4

FT .704 ± 3e-4 .285 ± 3e-4 .804 ± 4e-3 .156 ± 4e-3 .849 ± 1e-3 .114 ± 1e-3 .620 ± 8e-5 .180 ± 2e-4

Ditto .724 ± 1e-3 .258 ± 1e-3 .952 ± 2e-4 .031 ± 2e-4 .884 ± 2e-4 .082 ± 2e-4 .644 ± 2e-6 .151 ± 2e-6

UW .823 ± 7e-4 .145 ± 2e-5 .894 ± 4e-4 .021 ± 4e-4 .895 ± 3e-4 .041 ± 4e-4 N/A N/A
JTT .707 ± 6e-5 .278 ± 6e-5 .836 ± 1e-3 .060 ± 1e-3 .836 ± 2e-4 .120 ± 2e-4 N/A N/A
FedPAC .755 ± 5e-4 .236 ± 1e-3 .859 ± 1e-3 .102 ± 2e-3 .873 ± 1e-3 .082 ± 2e-3 .654 ± 3e-3 .122 ± 1e-3

FEDORA .721 ± 2e-3 .269 ± 2e-3 .847 ± 1e-3 .115 ± 1e-3 .851 ± 2e-3 .109 ± 3e-3 .643 ± 1e-3 .146 ± 1e-3

Ours .870 ± 8e-4 .081 ± 2e-5 .963 ± 5e-5 .023 ± 1e-5 .925 ± 2e-5 .002 ± 8e-5 .730 ± 2e-4 .031 ± 2e-4

Each experiment is repeated 9 times with 3 random seeds for the federated learning step and 3 random seeds for
the personalization step.

The motivation behind the L2 term is straightforward: if two models have similar weights, they have similar
weight norms and gradient norms, as is shown in the following proposition.
Proposition 1. Under the settings in Section 4.1, assume the composition ℓ ◦ σ of the activation function σ
and the loss function ℓ is ρ-Lipschitz, we have:

|∥wl∥ − ∥wg∥| ≤ ∥wl − wg∥ (12)

and

|ED[∥∇wl
ℓ(fl(x), y)∥] − ED[∥∇wg ℓ(fg(x), y)∥]| ≤ ρED[∥x∥]∥wl − wg∥. (13)

We empirically verify that our L2 regularizer reduces the weight norm deviation in Appendix E. Although
prior works (Li et al., 2020; T. Dinh et al., 2020; Li et al., 2021) have explored similar regularization methods,
we develop the regularization term from a different perspective.

6 Experiments

This section presents our experimental results under a federated learning setup with four datasets: MNIST
(Deng, 2012), Coil20 (Nene et al., 1996), CelebA (Liu et al., 2015; Caldas et al., 2018), and BAR (Nam et al.,
2020), demonstrating that our method mitigates the accuracy disparity. We also show that the benefit of
enhanced average accuracy from fine-tuning is preserved. Appendix E further presents a simulation with
Gaussian data, experimental results with imperfect global models, and an evaluation of our approach against
adversarial attacks.

6.1 Setup

Spurious Features The MNIST and Coil20 datasets employ a synthetic spurious feature where the object
color correlates with the label. Such a synthetic spurious feature allows precise intervention on the spurious
attribute of each data sample without interfering with the robust features, matching the setting in Section
4.1. The spurious feature in the BAR dataset is the action background (e.g., rocky cliff). The hair color is a
spurious feature that correlates with the gender label in the CelebA dataset.

Environments We consider a two-environment setup. Each user gets a different set of samples (Caldas
et al., 2018), allocates the samples to the two environments, and randomly picks one environment as the
training environment. Combining the training environments eliminates the synthetic spurious correlation in
MNIST and Coil20 datasets. The realistic spurious correlation in the BAR and CelebA datasets can diminish
but does not necessarily disappear in the global environment.
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Metrics We consider three metrics in evaluating our approaches: (1) the accuracy disparity Accdisp across
environments, (2) the worst-case accuracy Accworst among all environments, and (3) the average accuracy in
the mixture of all environments (i.e., the global environment). Metrics (1) and (2) measure the generalization
performance of personalized models under environment shifts after deployment. Metric (3) quantifies the
overall utility of personalized models.

We provide a detailed experimental setup in Appendix D.

6.2 Result and Comparison

There are two naive personalization methods: using the global model (Global) and vanilla fine-tuning (FT).
In addition, we employ three recent works that are applicable to the federated learning setting (Section
3). Up-weighting (UW) (Sagawa et al., 2020) method is implemented via sampling biased samples and
counterexamples with equal probability. Just-train-twice (JTT) (Sagawa et al., 2020) leverages models
that have already entangled spurious features (e.g., personalized models with naive fine-tuning) to identify
and up-weight counter-examples without explicit annotations. Ditto (Li et al., 2021) adds a regularizer
λ∥wl − wg∥ during personalization to limit the deviation of personalized models from the global model. We
select models using the validation accuracy minus the adversarial transferability degradation for ours and
using the validation accuracy for others.

6.2.1 Summary of Results

Tables 2 and 3 show the main results with the two metrics on generalization performance in Section 6.1. Our
method reduces the accuracy disparity of personalized models from 18.38% to 3.42% compared to vanilla
fine-tuning, outperforming other competitors (Table 2). On average, our method also preserves the enhanced
average accuracy from fine-tuning, resulting in 4.48% accuracy improvement in global environments compared
to the global model (Table 3).

6.2.2 Analysis of Results

One limitation of up-weighting-based methods (i.e., UW and JTT) relates to the diversity of counter-examples,
which do not agree with spurious correlations. Counter-examples are few in datasets, leading to low diversity.

To explore the impact of counter-examples’ diversity on disentangling spurious features from a model, we
vary the diversity of counter-examples and adjust the up-weighting factors accordingly. Specifically, we
sample a factor of 0.02, 0.025, 0.033, 0.05, and 0.1 biased samples from the MNIST dataset and re-color
them to become counter-examples. The factor in the sampling step is called the “sampling factor”. Then,
we up-weight the counter-examples by a factor of 50, 40, 30, 20, and 10, respectively, keeping the total
number of counter-examples consistent. Here, the counter-examples have less diversity if generated by a
small number of biased data samples with a large up-weighting factor. Experimental results in Figure 2
show that, as the diversity reduces, the accuracy disparity of personalized models increases, supporting our
hypothesis on the sample diversity. Therefore, our method is applicable in the scarcity of counter-examples
while up-weighting-based methods fail.

The issue with Ditto is that greedily maximizing the accuracy in training environments often leads to small
λ, giving personalized models spaces to entangle spurious features. FedPAC (Xu et al., 2023) and FEDORA
(Wu et al., 2023), which promote knowledge transfer between personalized models on clients that are similar
to each other, can exacerbate the entanglement to spurious features because they encourage the knowledge
transfer between clients that share similar spurious features while isolating clients from different environments.

6.3 Ablation Study

We conduct an ablation study on the MNIST dataset and plot the accuracy and loss curves, which are
shown to have similar behaviors. Figures 3b and 3f demonstrate that only enforcing consistent predictions on
adversarial examples is insufficient. Figure 3c and 3g further show that applying the L2 regularization term
alone does not address the accuracy or loss disparity. Aligning weights of the global and personalized models
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Figure 2: The up-weighting method is less effective with few counter-examples, resulting in a large accuracy
disparity of personalized model in the training environment (Acc) and the global environment (Acc′), if the
counter-examples are generated by a small number of biased data samples using a small sampling factor and
a large up-weighting factor. The up-weighting factor is set to be the reciprocal of the sampling factor.

Table 3: Average accuracy personalized models over different environments. Our proposed method preserves
the enhanced accuracy of personalization.

Method MNIST Coil20 CelebA BAR
Global .849 ± 6e-4 .888 ± 1e-3 .919 ± 5e-5 .721 ± 1e-4

FT .846 ± 3e-4 .882 ± 4e-3 .906 ± 1e-3 .710 ± 2e-4

Ditto .853 ± 1e-3 .968 ± 2e-4 .925 ± 2e-4 .719 ± 2e-6

FedPAC .873 ± 1e-3 .910 ± 2e-3 .914 ± 2e-3 .715 ± 3e-3

FEDORA .855 ± 2e-3 .904 ± 1e-3 .905 ± 3e-3 .716 ± 1e-3

Ours .911 ± 2e-5 .974 ± 1e-5 .926 ± 8e-5 .745 ± 2e-4

by applying the L2 regularization term while maintaining the adversarial transferability address the accuracy
and loss disparity as Figures 3d and 3h show, respectively. Both components in our methods are helpful, and
a combination of them achieves the best results.

We also explored enforcing the global and personalized models to make consistent predictions on benign
samples. However, the accuracy disparity of personalized models increases by 9.66% (19.25% relative increase)
with fine-tuning 16 batches. We hypothesize that personalized models could use a combination of robust and
spurious features to make the same prediction as the global model on benign samples, which only uses robust
features and is disentangled from spurious features.

6.4 Visualizing Gradient Magnitudes

We plot the distribution of the ratio ∥∇xℓ(fl(x),y)∥
∥∇xℓ(fg(x),y)∥ across data samples with 16 batches of fine-tuning on the

MNIST dataset, using the global model as a reference. Figure 4 suggests enforcing consistent predictions
using logits (our approach) achieves lower gradient magnitude deviation than maintaining the adversarial
transferability using flipped labels (naive approach). The L2 regularizer also stabilizes gradient magnitudes.

7 Conclusion and Future Work

In this work, we show a risk of prior federated learning personalization methods with spurious features,
which lead to high accuracy disparity between environments. Then, we develop a strategy to reduce the
accuracy disparity by maintaining the adversarial transferability between the global and personalized models.
Both empirical and theoretical results show that our strategy is effective. Extensions of this work include
incorporating text data, which often requires different methods for generating adversarial examples.
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(a) Naive Fine-tuning (b) Consistent Prediction (c) Aligning Weights (d) Ours

(e) Naive Fine-tuning (f) Consistent Prediction (g) Aligning Weights (h) Ours

Figure 3: The accuracy disparity (Acc - Acc′) and the loss disparity (Loss′ - Loss) between the training
and the global environments. These two disparities correlate with the adversarial transferability measure
(AdvTrans) differently with different methods. We add 1.7 to the adversarial transferability measure over the
loss to ease reading. Accuracy and loss disparities have similar behaviors. Combining the two practices in
our approach addresses the accuracy and loss disparities.

Figure 4: Distribution of the ratio ∥∇xℓ(fl(x),y)∥
∥∇xℓ(fg(x),y)∥ . Using our approach and enforcing consistent predictions

with logits achieves lower gradient magnitude deviation than adding adversarial examples with flipped labels
to personalization. The L2 regularizer also stabilizes gradient magnitudes.
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A Spurious Feature Examples

(a) MNIST (b) CelebA (c) BAR

Figure 5: Datasets with spurious features. The object color spuriously correlates with the digit in MNIST (a).
The hair color spuriously correlates with the gender in the CelebA dataset (b). The background spuriously
correlates with the action in the BAR dataset (c).

B Notation

Table 4: Table of Notation

Symbol Description

x, y A pair of data sample and label
Cat(·, ·) A concatenation of two vectors
xr, xs The robust features and spurious features in x = Cat(xr, xs), respectively
fg The global model
fl The personalized local model
δfg,ϵ An adversarial perturbation generated by the global model fg with attack budget ϵ
D A distribution in the training environment
D′ A distribution in the other environment that is not accessible during training
W1(·, ·) Wasserstain-1 distance between two distributions

C Proofs

Theorem 1. Under the setting in Section 4.1, for a model f parameterized by w, assume the composition
ℓ ◦ σ of the activation function σ and the loss function ℓ is ρ-Lipschitz, let θ be the angle between w and
Cat(0, ws), we have:

|ED[ℓ(f(x), y)] − ED′ [ℓ(f(x), y)]| ≤ ρ∥ws∥2 · W1(Ds, D′
s) = ρ∥w∥2 cos θ · W1(Ds, D′

s). (14)

Proof. With the data generating process in Section 4.1, we have:

|ED[ℓ(f(x), y)] − ED′ [ℓ(f(x), y)]| = |ED,D′ [ℓ(f(x), y) − ℓ(f(x′), y)]|. (15)

Since the loss function is ρ-Lipschitz, we further have:

|ED,D′ [ℓ(f(x), y) − ℓ(f(x′), y)]| ≤ ρ|ED,D′ [f(x) − f(x′)]|. (16)

Under the given data generating process in Section 4.2, we know that x − x′ = Cat(0, xs − x′
s), yielding:

|ED,D′ [f(x) − f(x′)]| ≤ ∥ws∥2|EDs,D′
s
[xs − x′

s]| = ∥w∥2 cos θ|EDs,D′
s
[xs − x′

s]|. (17)

By the definition of Wasserstein-1 distance, we have:

|EDs,D′
s
[xs − x′

s]| ≤ EDs,D′
s
[|xs − x′

s|] ≤ W1(Ds, D′
s). (18)
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Theorem 2. Under the setting in Section 4.1, let ϵ be the attack budget, and θ′ be the angle between wg and
wl we have:

θ′ = arccos
( 1

ϵ · ⃝
·
[
ϵ · □ + ⋄ + ED[ℓg→l(fg, fl, x, y)]

])
, (19)

where ⃝ = ED[∥∇xℓ(fl(x), y)∥], □ = ϵED[∥∇xℓ(fg(x), y)∥], and ⋄ = ED[Rg,2(xadv) − Rl,2(xadv)] is the
expected difference of second-order Taylor remainders between fg and fl.

Proof. Expanding ℓg→l(fg, fl, x, y) at (x, y) and recalling the definition of adversarial perturbation δf,ϵ =
ϵ · ∇xℓ(f(x),y)

∥∇xℓ(f(x),y)∥ in Equation (2), we have:

ℓg→l(fg, fl, x, y)

=
(

ℓ(fl(x + δfg,ϵ), y) − ℓ(fl(x), y)
)

−
(

ℓ(fg(x + δfg,ϵ), y) − ℓ(fg(x), y)
)

= ∇xℓ(fl(x), y)⊤δfg,ϵ + Rl,2(xadv) − ∇xℓ(fg(x), y)⊤δfg,ϵ − Rg,2(xadv)

= ∇xℓ(fl(x), y)⊤ · ϵ · ∇xℓ(fg(x), y)
∥∇xℓ(fg(x), y)∥ − ϵ∥∇xℓ(fg(x), y)∥ + Rl,2(xadv) − Rg,2(xadv),

(20)

where xadv = x + δfg,ϵ and Rl,2(xadv) − Rg,2(xadv) is the difference of second-order Taylor remainders
between fg and fl.

For logistic regression models fg and fl, we have:

∇xℓ(fg(x), y) =
(

σ(w⊤
g x) − y

)
wg and ∇xℓ(fl(x), y) =

(
σ(w⊤

l x) − y
)

wl. (21)

Since the label y ∈ {0, 1} of each data sample x is fixed, and the logits σ(w⊤
g x) and σ(w⊤

l x) are in (0, 1),
the product of scalars σ(w⊤

g x) − y and σ(w⊤
l x) − y is always positive. This further implies that the angle

between gradients ∇xℓ(fg(x), y) and ∇xℓ(fl(x), y) equals the angle θ′ between weight vectors wg and wl. In
addition, the angle θ′ between weight vectors is consistent across data samples. Therefore, we further have:

∇xℓ(fl(x), y)⊤ · ϵ · ∇xℓ(fg(x), y)
∥∇xℓ(fg(x), y)∥ = ϵ∥∇xℓ(fl(x), y)∥cosθ′. (22)

Plugging Equation 22 into Equation 20 and taking the expectation over D, we have:

ED[ℓg→l(fg, fl, x, y)]
= ϵED[∥∇xℓ(fl(x), y)∥]cosθ′ − ϵED[∥∇xℓ(fg(x), y)∥] + ED[Rl,2(xadv) − Rg,2(xadv)].

(23)

Rearranging the terms in Equation 23, we have:

cosθ′ = ϵED[∥∇xℓ(fg(x), y)∥] + ED[Rg,2(xadv) − Rl,2(xadv)] + ED[ℓg→l(fg, fl, x, y)]
ϵED[∥∇xℓ(fl(x), y)∥]

= 1
ϵ · ⃝

·
[
ϵ · □ + ⋄ + ED[ℓg→l(fg, fl, x, y)]

]
.

(24)

Then, taking the arccos operator completes the proof.

Proposition 1. Under the settings in Section 4.1, assume the composition ℓ ◦ σ of the activation function σ
and the loss function ℓ is ρ-Lipschitz, we have:

|∥wl∥ − ∥wg∥| ≤ ∥wl − wg∥ (25)

and

|ED[∥∇wl
ℓ(fl(x), y)∥] − ED[∥∇wg

ℓ(fg(x), y)∥]| ≤ ρED[∥x∥]∥wl − wg∥. (26)
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Proof. With the triangle inequality, we have:

∥wl∥ = ∥wl + wg − wg∥ ≤ ∥wg∥ + ∥wl − wg∥ (27)

and
∥wg∥ = ∥wg + wl − wl∥ ≤ ∥wl∥ + ∥wg − wl∥. (28)

Since ∥wg − wl∥ = ∥wl − wg∥, moving ∥wg∥ and ∥wl∥ to the left-hand-side in Equations 27 and 28,
respectively, we have |∥wl∥ − ∥wg∥| ≤ ∥wl − wg∥.

Similarly, we have:

∥∇wl
ℓ(fl(x), y)∥ = ∥∇wl

ℓ(fl(x), y) + ∇wg
ℓ(fg(x), y) − ∇wg

ℓ(fg(x), y)∥
≤ ∥∇wg

ℓ(fg(x), y)∥ + ∥∇wl
ℓ(fl(x), y) − ∇wg

ℓ(fg(x), y)∥
≤ ∥∇wg

ℓ(fg(x), y)∥ + ρ∥x∥∥wl − wg∥
(29)

and
∥∇wg

ℓ(fg(x), y)∥ ≤ ∥∇wg
ℓ(fl(x), y)∥ + ρ∥x∥∥wg − wl∥. (30)

Recalling that ∥wg − wl∥ = ∥wl − wg∥, combining Equations 29 and 30 results in:

∥∇wg
ℓ(fg(x), y)∥ − ∥∇wg

ℓ(fl(x), y)∥ ≤ |∥∇wg
ℓ(fg(x), y)∥ − ∥∇wg

ℓ(fl(x), y)∥| ≤ ρ∥x∥∥wg − wl∥. (31)

Taking the expectation and absolute value over both sides of Equation 31 completes the proof.

D Detailed Experimental Setting

D.1 Data Partition

We distribute the MNIST, Coil20, and BAR datasets across 50 clients. Each client has data samples from 5
different classes. These data samples are further grouped into two environments according to their spurious
correlations. Each client randomly picks one environment for training. Local datasets are further partitioned
to train/validation/test set with a ratio of 72:8:20, following prior work (Li et al., 2021). Combining test sets
from the two environments gets test sets in global environments.

For the CelebA dataset, we let each client represent 20 celebrities. One celebrity only appears on one client.
The blond hair correlates with the female in the training environment and correlates with the male in the
other environment that is not used for training. Note that non-blond hair colors do not correlate with any
gender. In the personalization step, we select the clients with more than 5 blond female data samples in the
training environment and more than 5 blond male data samples in the other environment that is not used for
training. We select these clients because they provide enough samples to create the spurious correlation and
evaluate entanglements to the spurious correlation.

D.2 Hyper-parameters

We use Adam optimizer (Kingma & Ba, 2015) throughout our experiments with a learning rate of 1e-4 for
MNIST, CelebA, and BAR and 2e-4 for Coil20. Although stochastic gradient descent (SGD) optimizer is more
common in vision-related tasks, the Adam optimizer always leads to lower accuracy disparity. We train the
global model for 500 rounds. 5 clients are selected per round, each performing 5 epochs of local updates. We
tune the coefficients of the adversarial transferability and L2 regularization terms from {0.01, 0.1, 1.0, 10.0} and
select the largest value that does not decrease the validation accuracy during penalization. We start the attack
budget at 0.031 (i.e., 8

255 ) and gradually decrease it such that 30%−50% of the attack succeeds. A large budget
will make the attack too strong and push the adversarial examples far across the decision boundary, making
the regularization method less effective. We configure ϵ to 0.031/0.01/0.031 for MNIST/CelebA/Coil20,
respectively. We fine-tune the global model for 5 epochs on MNIST/BAR and 10 epochs on Coil20/CelebA,
which are sufficient for the personalized models to converge. The clients with the most data samples fine-tune
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the penalized models for a total of 80/40/30 batches on MNIST/CelebA/Coil20 datasets. Note that we may
not select the personalized model with the most fine-tuning batches for reporting. In the up-weighting (UW)
and just-train-twice (JTT) method, we up-sample the residual by a factor of 50. In Ditto, we tune its λ from
{0.1, 1.0}.

D.3 Neural Network Architecture

We use CNN 28x28 for the MNIST dataset and CNN 64x64 for the CelebA and the Coil20 datasets, as are
listed in Table 5. We use a pre-trained ResNet-18 (He et al., 2016) for the BAR dataset.

Table 5: Neural Network Architecture

CNN 28 × 28 CNN 64 × 64

Input: R3×28×28 Input: R3×64×64

4×4 conv, 64 BN LReLU, stride 2 4×4 conv, 64 BN LReLU, stride 2
4×4 conv, 128 BN LReLU, stride 2 4×4 conv, 64 BN LReLU, stride 2
FC 4096 ReLU FC 4096 ReLU
FC 10 FC 10

E More Experimental Results

E.1 Transferability Correlates with Disparity

The additional empirical studies on Coil20 and CelebA datasets are shown in Figure 6.

(a) MNIST (b) Coil20 (c) CelebA

Figure 6: As the personalized models entangle the spurious feature and increase their accuracy disparity
(Acc - Acc′), the adversarial transferability (AdvTrans) decreases. Here, the accuracy disparity deviation also
increases as the accuracy disparity of personalized models deviates from that of the global model, which is
fixed as a reference.

E.2 Simulations

We construct a synthetic dataset where y ∈ [0, 1], x = [xr, xs] and xr ∼ N (2y−1, 1) and xs ∼ N
(

c(2y−1), 1
)

where the c is 1 if the client index mods 2 is 0. Otherwise, the c is -1 (Figures 7a and 7c). In the experiments
shown in Figures 7b and 7d, the c is 1 if the client index mods 2 is 0; otherwise, the c is 0. We employ a
linear model y = w⊤x where w = Cat(wr, ws).

Our simulation starts with the global model. We use the federated averaging algorithm with 50 clients, each
with 128 data samples, and select 5 clients per round. Figure 7 shows that the gradient gws

of ws is noisier
and closer to 0 than the gradient gwr of wr. As a result, wr increases during the training while ws does not
increase or increases much slower, as is shown in Figure 7. These results suggest that when the spurious
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correlation varies across clients, the model does not entangle the spurious feature or only slightly entangle
the spurious feature.

(a) Spurious Correlation
Shifts Across Users

(b) 50% Users Have a Sta-
tionary Spurious Correlation

(c) Spurious Correlation
Shifts Across Users

(d) 50% Users Have a Sta-
tionary Spurious Correlation

Figure 7: The gradients and weights of a linear model during training. The gradient gws
of ws is more noisy

and closer to 0 than the gradient gwr of wr. Therefore, ws stays around 0.

Then, we personalize the global model whose w = [2.0, 0.0] on clients with shifting spurious correlations.
Results in Figure 8 suggest that our approach limits ws around 0 with minimal fluctuation.

(a) Naive Fine-tuning (b) Consistent Prediction (c) Aligning Weights (d) Ours

Figure 8: Weights of a linear model during fine-tuning. Our approach reduces the co-efficiency ws of the
spurious feature xs most effectively. Aligning weights also limits ws but has a more significant fluctuation
than ours.

E.3 Personalization with Imperfect Global Model

Our approach still bounds the disparity deviation of personalized models when the global model already
entangles spurious features. Specifically, for two global models with accuracy disparities of 0.5% and 2.1%
on MNIST, the accuracy disparity of personalized models is 8.1% and 12.4%, respectively. In contrast,
fine-tuning increases both disparities to 28.5%.

E.4 Robustness to Adversarial Attack

Although we add adversarial examples with flipped labels during personalization, the robustness of personalized
models from our approach does not degrade significantly. We evaluate our approach against transferable
adversarial examples from the global model and direct adversarial attacks on personalized models with attack
configurations in Appendix D. Our approach only increases the success rate of transferable attacks from
56.1% to 68.2% and that of direct attacks from 47.8% to 50.1% on MNIST. Both transferable attacks use the
global model to generate adversarial examples. The success rate of transferable attacks is not 100% because
personalized models are trained with different benign and adversarial samples locally. Transferable attacks
can have higher success rates than direct attacks since only the adversarial examples that “fool” global models
are transferred.
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