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ABSTRACT
In recommendation systems, users frequently engage in multiple
types of behaviors, such as clicking, adding to cart, and purchas-
ing. Multi-behavior sequential recommendation aims to jointly
consider multiple behaviors to improve the target behavior’s per-
formance. However, with diversified behavior data, user behavior
sequences will become very long in the short term, which brings
challenges to the efficiency of the sequence recommendation model.
Meanwhile, some behavior data will also bring inevitable noise to
the modeling of user interests. To address the aforementioned is-
sues, firstly, we develop the Efficient Behavior Sequence Miner
(EBM) that efficiently captures intricate patterns in user behav-
ior while maintaining low time complexity and parameter count.
Secondly, we design hard and soft denoising modules for different
noise types and fully explore the relationship between behaviors
and noise. Finally, we introduce a contrastive loss function along
with a guided training strategy to contrast the valid information
with the noisy signal in the data, and seamlessly integrate the two
denoising processes to achieve a high degree of decoupling of the
noisy signal. Sufficient experiments on real-world datasets demon-
strate the effectiveness and efficiency of our approach in dealing
with multi-behavior sequential recommendation.

KEYWORDS
Sequential recommendation, Multi-Behavior, Information denois-
ing, Contrastive learning

1 INTRODUCTION
With the rapid development of the Internet, recommendation sys-
tems have been widely employed on online platforms. Among
these, sequential recommendation (SR), predicting the next item
for users by regarding historical interactions as temporally-ordered
sequences, has attracted various attention from both academia and
industry [18, 21, 8, 31, 14, 22, 5].

In reality, users exhibit multiple behaviors when interacting
with items, which reflect their multidimensional preferences. For
instance, on e-commerce platforms, users can engage with items
through various behaviors such as clicking, tagging as favorites,
and making purchases. These diverse behaviors represent users’
preferences across different dimensions and can serve as auxiliary
knowledge to enrich information and enhance the accuracy of
recommendation for the target behavior [51, 23, 15, 43, 40, 35].

Recent studies have explored the field of multi-behavior se-
quential recommendation, such as MMCLR [35], MBSTR [47], S-
MBRec [12], and EHCF [2]. Prior research has consistently incor-
porated multi-behavior information into user representations by
directly utilizing transformer or graph neural networks to model
different user behaviors respectively. Although the incorporation
of multi-behavior information can further effectively explore user

Growing data noise

…

Multi-Behavior Sequence

Growing user behaviors → heavy burden

Behavior
… …Item

Time

User

Figure 1: Illustration of our motivations: increasing user in-
teractions and the resulting large amount of data noise.

behavior patterns and multidimensional user interest, some behav-
ior data will also bring inevitable noise to the modeling of user
interests. For example, as shown in Fig 1, some of the user’s clicks
may be accidental clicks or unintentional browsing. For example,
a woman may have mistakenly clicked on a man’s shoe. These
noise behaviors bring challenges to the representation of the user’s
interest. Meanwhile, with diversified behavior data, user behavior
sequences will become very long in the short term, which brings
challenges to the efficiency of the sequence recommendation model.

In fact, efficiently utilizing user multi-behavior data and adap-
tively identifying noise data is crucial for achieving more compre-
hensive representations of user dynamic preferences and generating
more accurate sequential recommendation. However, efficient mod-
eling and denoising remain open issues with significant challenges.
To begin with, the trade-off between capturing complex patterns
in longer multi-behavior sequences and maintaining a manageable
model size is a non-trivial problem. Then, noise signals are preva-
lent and highly coupled with user preference signals in behavior
sequences. That brings great challenges to decoupling user prefer-
ences from noise due to their close relations and absence of explicit
noise annotations. Last but not least, efficiently combining multiple
processes such as denoising and representation of user preferences
presents a further challenge.

To address these issues, we present a focused study on the ef-
ficient noise-decoupling in multi-behavior sequential recommen-
dations. Firstly, we propose an efficient behavior sequence miner
(EBM) module. EBM leverages the fast Fourier transform, which
has a time complexity of 𝑁𝑙𝑜𝑔𝑁 , to replace the complex convo-
lution operation in the time domain. Instead, we use a simpler
multiplication operation in the frequency domain, allowing our
model to efficiently capture user behavioral patterns with low com-
putational cost. Furthermore, EBM incorporates techniques such as
frequency-aware fusion, chunked diagonal mechanism, and com-
pactness regularization to minimize the number of parameters in
the model. These methods ensure that while reducing parameter
count, our model still maintains its performance levels. Secondly,
we divide the user behavior noise into two types: discrete form or
token level hard noise, which refers to incorrect clicks made by
the user, and continuous form or representation level soft noise,
which pertains to outdated user interests. In order to tackle these
types of noise effectively, we propose two modules: Hard Noise
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Eliminator and Soft Noise Filter. Hard Noise Eliminator considers
the correlation between noise and behaviors by considering the
preference values of different behaviors during the denoising pro-
cess, and the Soft Noise Filter places different behaviors in separate
channels for denoising. To fully separate user interest from noise in
our data, we introduce a technique called Noise-Decoupling Con-
trastive Learning. This approach aims at removing noise effectively
while preserving important user interests. Finally, to effectively
combine the denoising processes, we propose a guided training
strategy consisting of four steps: pre-training, hard noise compar-
ison, soft noise comparison, and final convergence. This strategy
seamlessly integrates both denoising processes to enhance the de-
coupling of noise signals and improve the overall denoising effect.
By gradually improving the model’s ability to handle noise signals,
this strategy also enhances the robustness of the training process.

To summarize, the contributions of this article are as follows:

• We present a focused study from a novel noise-decoupling
perspective in sequential recommendation.

• We propose Efficient Behavior Sequence Miner (EBM), which
can adequately capture complex user patterns while maintain-
ing low model complexity and parameter counts by exploiting
frequency-aware fusion, chunking diagonal mechanism, and
compactness regularization.

• We propose a Behavior-Aware Denoising module including
Hard Noise Eliminator at the discrete token level, Soft Noise
Filter in the continuous representation space, Noise-Decoupling
Contrastive Learning, and a guided training process to achieve
effective noise removal.

• We conducted comprehensive experiments on three real-world
datasets. The experimental results demonstrate the effective-
ness of END4Rec, and complexity analysis proves its efficiency.

2 RELATEDWORK
2.1 Multi-Behavior Sequential

Recommendation
Recommendation system recommends personalized content based
on individual preferences, sequential recommendation predicts a
user’s next target item based on their historical behavior, playing a
crucial role in enhancing the user experience on online platforms.
With the emergence of deep learning, sequential recommendation
models such as BERT4Rec [26], DIN [52], SASRec [19], and FEARec
[9] were introduced for recommendation tasks. However, they failed
to consider the diversity of user interactions in real-world scenar-
ios, such as clicking, liking, and purchasing in e-commerce, which
provided valuable insights into user intent. To overcome this lim-
itation, researchers have proposed various methods for handling
multi-behavior data.

Previous research has explored the use of multi-task frameworks
to optimize recommendation systems. One approach is to model
the cascade relationship among different user behaviors, as done in
NMTR [10]. Another approach is to assign user behaviors to distinct
tasks and employ hierarchical attention mechanisms to improve
recommendation efficiency, as in DIPN [13]. Other studies have
focused on enhancing recommendation by fusing multi-behavior
data and using other behaviors as auxiliary signals. This has been

achieved through attention mechanisms [34, 44], graph neural net-
works [3, 37], or other related approaches. For example, MATN [41]
used a transformer and gated network to capture behavior rela-
tionships, while CML [32] introduced a multi-behavior contrastive
learning framework to enhance behavior representations. KMCLR
[43] utilized comparative learning tasks and functional modules to
improve recommendation performance through the integration of
multiple user behavior signals.

Although the fusion of multi-behavior information can further
effectively explore user behavior patterns and multi-dimensional
user interests, some behavior data will inevitably introduce noise
to the modeling of user interests. This noise poses challenges to
the judgment of user sequence interests. Moreover, with the di-
versification of behavior data, user behavior sequences become
increasingly lengthy in a short period, which presents challenges
to the efficiency of the sequence recommendation model.

2.2 Denoising in Recommendation
Earlier studies have employed user explicit feedback to reduce the
gap between implicit feedback and user preference [4, 20, 50], but in
real-world scenarios, acquiring user feedback has become increas-
ingly challenging, with usually very few users willing to spend
time providing evaluations for products. As a result, the denois-
ing problem has gradually evolved into an unsupervised challenge,
prompting numerous studies to approach noise determination from
various perspectives.

One line is to remove the discrete noise by removing the item
from the sequence, which is also known as hard denoising. For
instance, CLEA [25] determines the noisy items based on the target
items and divides the items in the basket into positive and nega-
tive sub-baskets. In contrast, RAP [28] formulates denoising as a
Markov Decision Process (MDP) and learns a policy network to
guide an agent in deciding whether to remove items, thereby ex-
plicitly eliminating irrelevant elements within the sequence. ADT
[30] introduces an adaptive denoising training strategy to reduce
noise, because noisy feedbacks typically have high loss in the early
stages of training. In addition, BERD [27] conducted an integra-
tion of these high-loss instances with uncertainty measurements
to distinguish unreliable instances. The other line is to remove
continuous noise by removing it from the representation level or
feature level, which is also known as soft denoising. For example,
DSAN [48] introduces the use of the max function to automatically
eliminate attention weights for irrelevant items by considering a
virtual target item. FMLP-Rec [53] treats sequence representations
as signals and further incorporates Fast Fourier Transform (FFT)
and learnable filters to learn better sequence representations. Fur-
thermore, DPT [49] introduces a three-stage paradigm involving
de-noising and prompt fine-tuning, progressively mitigating the
impact of noise through data-driven processes. However, previous
denoising methods did not perform noise determination from the
perspective of overall sequence perception, as well as did not fully
consider the diversity of noise types and their relationship with
user behavior, resulting in unsatisfactory results.

3 PROBLEM DEFINITION
In recent years, the problem of sequential recommendation has
gained significant attention in the field of recommendation systems.
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However, most existing works have focused on general sequential
recommendation, which predicts the next item based on single-
type interaction sequences, ignoring the multi-type user behaviors.
In real-world scenarios, such as e-commerce platforms, users of-
ten interact with items through different behaviors like clicking,
adding to favorites, adding to cart, and purchasing, reflecting diverse
preferences. To address this limitation, we study the problem of
multi-behavior sequential recommendation, which aims to model
the complex relationships between different user behaviors and
transfer general preferences to the targeted behavior for the rec-
ommender’s decision. We define the problem as follows:

DEFINITION. (Multi-Behavior Sequential Recommendation)
Given the sets of users𝑈 , items 𝑉 , and types of behavior 𝐵, for a user
u (𝑢 ∈ 𝑈 ), his/her behavior-aware interaction sequence 𝑆𝑢 consists
of individual triples (𝑣, 𝑏, 𝑝) which are ordered by time. Each triple
represents the interacted item v under the behavior type 𝑏 at position 𝑝
in the sequence. Thus, the input of the problem is the behavior-aware
interaction sequence 𝑆𝑢 = [(𝑣1, 𝑏1, 𝑝1), (𝑣2, 𝑏2, 𝑝2), ..., (𝑣𝐿, 𝑏𝐿, 𝑝𝐿)] of
the user 𝑢 and the output (𝑣𝐿+1, 𝑏𝑡 , 𝑝𝐿+1) is the predicted next item
𝑣𝐿+1 of the targeted behavior 𝑏𝑡 at next position 𝐿 + 1.

4 METHODOLOGY
4.1 Overview
In this section, we introduce our proposed END4Rec model, which
is able to efficiently mine user multi-behavior sequences with
𝑂 (𝑁 log𝑁 ) complexity and fully decouple the noise in the se-
quences. Specifically, we first introduce Behavior-Aware Sequence
Embedding (4.2), which fuses item information, behavior informa-
tion, and location information to help the model understand user
behavior sequences more comprehensively. Then, to improve the
efficiency of long behavioral sequence model mining, we design
an efficient base module called Efficient Behavior Sequence Miner
(EBM) (4.3), which can efficiently mine user behavior patterns with
lowmodel complexity by exploiting frequency-aware fusion, chunk-
ing diagonal mechanism, and compactness regularization. Based
on the high efficiency of EBM, we are able to realize the overall per-
ceptual denoising of sequences. Further, considering different types
of noise signals and user behaviors, we propose a Behavior-Aware
Denoising module including Hard Noise Eliminator at the discrete
token level (Here token is each triple (𝑣, 𝑏, 𝑝) in the input sequence.)
and soft Noise Filter in the continuous representation space (4.4).
Finally, in order to better realize noise decoupling, we introduce
Noise-Decoupling Contrastive Learning and a guided training pro-
cess to achieve effective noise removal (4.5). The overall structure
and flow of our model are visually represented in Figure 2.

4.2 Behavior-Aware Sequence Embedding
The embedding layer of END4Rec integrates item information (𝑣),
behavior information (𝑏), and position information (𝑝). For a triad
(𝑣, 𝑏, 𝑝) within a user behavior sequence (𝑆), the embedding is
denoted as follows:

𝑒 = 𝑒𝑣 + 𝑒𝑏 + 𝑒𝑝 , 𝑆 = [𝑒1, 𝑒2, ..., 𝑒𝐿] ∈ R𝐿×𝑑 , (1)

where 𝐿 represents the sequence length, and 𝑑 denotes the embed-
ding size. This embedding combines item information, behavior

information, and position information to reflect the user’s behav-
ioral sequences more comprehensively, which helps to improve the
model’s understanding of the user’s interests and behaviors, and
thus improves the accuracy of personalized recommendation.

4.3 Efficient Behavior Sequence Miner
In order to fully exploit the temporal characteristics of multiple user
behaviors, we often splice various user behaviors into a sequence
according to timestamps. As the number of user interactions in-
creases, the length of the sequence grows, which challenges the
model’s efficiency.

To address the aforementioned challenge, we draw on the con-
volution theorem [6], which shows that the product operator in the
frequency domain is equivalent to the convolution operator in the
time domain. This means that we can realize complex convolution
operations by fast Fourier transforms with 𝑁𝑙𝑜𝑔𝑁 time complexity
as well as multiplication operations. Specifically, we transform the
user behavior sequence 𝑆 into the frequency domain (𝑋 ) with the
help of Fourier Transform [53] and then realize the convolutional
fusion of the complex user behavior tokens by the dot product
operation. Finally, the fully convolved sequence representation 𝑆 is
obtained by inverse transformation. Due to the𝑂 (𝑁 log𝑁 ) compu-
tational complexity of the Fast Fourier Transform algorithm [24],
this process is able to improve efficiency while fully exploiting the
user’s behavioral patterns. The specific formula is as follows:

𝑋 = F (𝑆) ∈ C𝐿×𝑑 , 𝑋 =𝑊 ⊙ 𝑋, 𝑆 ← F −1
(
𝑋

)
∈ R𝐿×𝑑 , (2)

where 𝑆 represents the user behavior sequence, 𝑋 represents the
frequency domain representation of 𝑆 , 𝑆 represents the convolved
sequence features,𝑊 denotes the dot product matrix and C denotes
the complex space. However, this approach encounters three chal-
lenges. First, the dot product operation cannot fully integrate the
information of various frequency bands of the model (manifested
in the time domain as the user’s interest information in multiple
time scales). Second, the number of parameters of𝑊 grows with
the increase of the length of the input sequences, and it is difficult
for the model to flexibly adapt to the change of the input length.
Third, in our behavior-modeling situation, user behavior is easily
concentrated in a certain frequency band [53], and the model can
easily overfit local information.

To this end, we propose the Efficient Behavior Sequence Miner
(EBM) and enhance three key aspects of the dot-product operation
involving the𝑊 -matrix within it. First, we utilize matrix multipli-
cation instead of dot product to achieve better frequency domain
fusion however, this will further increase the number of model
parameters. So we further propose Chunked Diagonal Mechanism,
which enables model parameters to be shared among different to-
kens so that the model can adaptively handle sequences of different
lengths. Finally, considering that user behavior information may
cluster in certain frequency bands, we design a Compactness Reg-
ularization method for sparsifying the tokens in the frequency
domain. The specific process is as follows:
Frequency-Aware Fusion. In EBM, the first improvement involves
utilizing matrix multiplication instead of the traditional dot product
operation, i.e.,𝑊 ∈ C𝐿×𝑑×𝑑 instead of𝑊 ∈ C𝐿×𝑑 . This approach
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Figure 2: Our END4Rec model, featuring an efficient user multi-behavior sequence mining process with 𝑂 (𝑁𝑙𝑜𝑔𝑁 ) complexity
and adaptive input length. The framework consists of several key components: Efficient Behavior Sequence Miner (EBM) (4.3)
for mining behavior patterns efficiently, Behavior-Aware Denoising (4.4) including Hard Noise Eliminator and Soft Noise Filter
for noise detection, and Noise-Decoupling Contrastive Learning (4.5) for sufficient noise decoupling.

allows for the effective fusion of user behavioral information across
different frequency bands. By considering long and short-term user
interests in multiple time scales, EBM allows for more efficient
mining of user behavior patterns.
Chunked Diagonal Mechanism. To address the issue of increas-
ing matrix parameters as user sequences grow, EBM introduces a
chunked diagonal mechanism for complex weight matrices. The
weight matrix𝑊 ∈ C𝐿×𝑑×𝑑 is decomposed into 𝑘 shared weight
matrices𝑊 𝑛 ∈ C𝑑/𝑘×𝑑/𝑘 (𝑛 = 1, . . . , 𝑘), each with reduced dimen-
sions. This decomposition into 𝑘 smaller diagonal weight matrices,
denoted as𝑊 𝑛 , is somewhat interpretable, similar to 𝑘-head at-
tention, while enabling computational parallelization. So we get
𝑥𝑛
𝑖

= 𝑊 𝑛𝑥𝑛
𝑖
, where 𝑥𝑛

𝑖
represents the 𝑛-th block of the 𝑖-th fre-

quency token (𝑖 ∈ [1, 𝐿//(𝑑/𝑘)]). Specifically, we employ a double-
layer MLP structure as𝑊 𝑛 . The formula is as follows:

𝑥𝑛𝑖 = MLP
(
𝑥𝑛𝑖

)
=𝑊 𝑛

2 𝜎
(
𝑊 𝑛

1 𝑥
𝑛
𝑖 + 𝑏

𝑛
1
)
+ 𝑏𝑛2 , (3)

where the weights𝑊 𝑛 and 𝑏𝑛 are shared are all tokens, and thus
the parameter count can be significantly reduced. Compactness
Regularization for Token Sparsity. User behavior is easily con-
centrated in a certain frequency band [49], resulting in behavioral
features not being adequately fused in the frequency domain, and
the model can easily overfit local information, so EBM incorporates
a regularization loss that promotes the sparsity of tokens in the
frequency domain. Compactness is a desired trait of intra-factor
representations and its opposite is what we expect for inter-factor
representations. ReduNet [1] proposed to measure compactness of
representation with rate-distortion 𝑅(𝑧, 𝜖), which determines the
minimal number of bits to encode a random variable 𝑧 subject to a
decoding error upper bounded by 𝜖 . Inspired by this, we design a
compactness regularization loss function to control the diversity of

the token space. The specific formula is as follows:

𝑅(X, 𝜖) = 1
2
log det

(
𝐼 + 𝑑

𝐿𝜖2
XX𝑇

)
, (4)

where X ∈ C𝐿//(𝑑/𝑘 )×𝑑 is the token matrix and the rest are hyper-
parameters. log det means the logarithm of the determinant of a
matrix and 𝐼 is the identity matrix. By introducing a representation
compactness metric and a corresponding regularized loss function
Eq. (10), tokens are sparsified during the training process to control
their spatial diversity for better fusion of behavioral features.

In conclusion, our proposed Efficient Behavior Sequence Miner
(EBM) can both capture complex user patterns adequately and
maintain model simplicity through the utilization of frequency-
aware fusion, the chunking diagonal mechanism, and compactness
regularization. What’s more, the model efficiency analysis will be
given in the experiments.

4.4 Behavior-Aware Denoising Module
The growth of user behavior sequences often introduces significant
data noise, which can be categorized into discrete forms (like in-
correct clicks or implicit negative reviews) and continuous forms
(reflecting outdated user interests). Prior denoising methods [53,
28] fail to take into account the different types of noise signals, as
well as ignore the differences between different noise signals and
their relationships with the types of user behaviors, thus leading
to sub-optimal results of their algorithms. Additionally, the noise
present in the behavior sequence typically derives from the overall
behavior of the user. However, previous methods [25, 30] face lim-
itations in handling this complex situation due to computational
complexity. Furthermore, these methods often rely on certain as-
sumptions when determining the noise, which may not be valid in

4
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many cases. As a result, achieving a satisfactory decoupling of the
noise signal becomes a challenging task.

We propose EBM to better solve the efficiency problem and pro-
vide a basis for realizing the overall perceptual denoising.We design
a Hard Noise Eliminator for discrete noise and a Soft Noise Filter
for continuous noise based on the EBM module by further consid-
ering the noise types and behavioral properties. At the same time,
we also design two contrast loss functions to realize the complete
decoupling of the noise signal from the user preference.

4.4.1 Hard Noise Eliminator. Given a sequence of user behav-
iors, we further design a Hard Noise Eliminator (HNE) on top of
EBM’s efficient mining of user behavioral relationships. HNE dis-
criminates noise tokens by overall perceived token scoring 𝑡𝑖 and
behavioral preference values 𝑝𝑏 .

To mine the association between hard noise and different be-
haviors, we consider assigning different preference values 𝑝𝑏 for
different behavior types 𝑏. Specifically, since different behaviors
occur at varying frequencies and are influenced by different user
interests, we model different behavioral preference values with
Poisson Distribution [7]. Poisson Distribution can represent how
often a user performs different behaviors over a period of time, thus
reflecting the degree of user interest in various behaviors [16, 11].
We simply approximate the preference values of different behaviors
with the peaks of the Poisson Distributions of different 𝜆𝑏 , which
can be searched as a hyperparameter, and the purpose of adding 1
is to make it easier to set the threshold later.

𝑝𝑏 = 𝑃{𝑋 = 𝜆𝑏 } + 1 =
𝑒−𝜆𝑏 · 𝜆𝜆𝑏

𝑏

𝜆𝑏 !
+ 1. (5)

In order to obtain the overall perceptual token score 𝑡𝑖 , we add a
residual layer to the EBM framework, an addition that enhances
the training process of the model, making it more manageable and
stable, and a linear layer as well as sigmoid activation.

Finally, for 𝑣𝑖 in sequence, we split the original sequence into two
mutually exclusive sequences by treating the token 𝑝𝑏𝑖 − 𝑡𝑖 < 0.5 as
a noise signal. However, this hard coding is not differentiable and
prevents the model from being trained well via back-propagation.
To address this issue, inspired by [29, 46], we integrate Gumbel
Softmax into our denoising generator as a differentiable surrogate
to support model learning over the discrete output. Specifically, the
new denoising generator is rewritten as follows:

J (𝑣𝑖 ) =
exp

( (
log(𝑝𝑏𝑖 − 𝑡𝑖 ) + 𝑔1

)
/𝜏
)∑1

𝑦=0 exp
(
log

(
(𝑝𝑏𝑖 − 𝑡𝑖 )𝑦 (1 − (𝑝𝑏𝑖 − 𝑡𝑖 ))1−𝑦

)
+ 𝑔𝑦

)
/𝜏
) ,
(6)

where 𝑔𝑦 is i.i.d sampled from a Gumbel Distribution, serving as
a noisy disturber: 𝑔 = − log(− log(𝑥)) and 𝑥 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1). 𝜏 is
the temperature parameter to smooth the discrete distribution. We
classify them into filtered and noisy sequences according to J (𝑣𝑖 )
and obtain the hard denoised sequence representation 𝑆ℎ𝑝 and the
hard noise sequence representation 𝑆ℎ𝑛 through the same EBM.

4.4.2 Soft Noise Filter. After removing the discrete token-level
noise from the user’s behavioral sequences by Hard Noise Elimi-
nator, below we consider the filtering of soft noise at the represen-
tation or feature level. Some related studies have shown that the

noise information in the sequence of user behaviors can be elim-
inated through a learnable filter kernel in the frequency domain
[53]. Here, we utilize the𝑊 𝑛 matrices in the EBM as the learnable
filtering kernel. Further, in order to enhance the model’s ability to
distinguish between different behaviors, we map different types of
behaviors to different channels to obtain the EBM+ module and
extract the difference to obtain the soft noise signal and the filtered
signal. The formula is shown below:

𝑥𝑛
𝑖,𝑏

=𝑊 𝑛
𝑏
𝑥𝑛
𝑖,𝑏
, 𝑛 = 1, . . . , 𝑘, (7)

where𝑊 𝑛
𝑏
represents the𝑛th block of complexmatrices for behavior

𝑏 channel. Finally we get the filtered information 𝑋 and and the
noise𝑋−𝑋 . Thus, similarly, we can obtain the soft-filtered sequence
representation 𝑆𝑠𝑝 and the soft-noise sequence representation 𝑆𝑠𝑛
by the same EBM.

4.5 Noise-Decoupling Contrastive Learning
We obtain a set of denoised and noisy sequences by Hard Noise
Eliminator and Soft Noise Filter respectively. In order to make up for
the insufficiency of the supervised signals, and at the same time to
realize better noise decoupling, we make the following reasonable
assumptions: (1) the effect of denoised sequences is better than
that of the original sequences, and (2) the effect of the original
sequences is better than that of the noise sequences. Specifically,
the following contrastive loss is designed for noise decoupling
contrastive learning, which is calculated as follows:

Q (𝑆) =
exp

(
𝑆 · 𝑒𝑣𝑡

)∑
𝑣∈V exp (𝑆 · 𝑒𝑣)

, (8)

L𝐶𝐿 (𝑆𝑝 , 𝑆, 𝑆𝑛) = −
∑︁
{𝑣𝑡 }

[
log𝜎

(
Q

(
𝑆𝑝

)
− Q (𝑆)

)
+ log𝜎 (Q (𝑆) − Q (𝑆𝑛))] ,

(9)

where 𝑒𝑣 is the item embedding of 𝑣 , the 𝑣𝑡 ∈ {𝑣𝐿+1} is the tar-
get item to be predicted, and 𝑆𝑝 , 𝑆, 𝑆𝑛 are the representation of
the denoised sequence original sequence and the noise sequence,
respectively. Maximizing Q(𝑆) is the goal of our optimization. In
addition, due to the sparse supervised signals, in order to better
guide the model to learn noise decoupling, we design the following
guided training process to facilitate the optimization of END4Rec.
To illustrate the process, the following loss function is first defined,
where L𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 is the regular loss of the EBM.

L𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
∑︁
𝑢𝑖 ∈𝑈

𝑅(X𝑖 , 𝜖), L𝑝𝑟𝑒𝑑 = −
∑︁
𝑢𝑖 ∈𝑈

Q(𝑆𝑢𝑖 ). (10)

For the sake of simplicity in illustration, we omit the regular loss
of the model parameters and the hyperparameters in front of each
loss function. The specific training process is presented below.

As shown in Algorithm 1, we randomly initialize all parameters.
Then, we use the method of freezing parameters to gradually train
the EBM layer, hard denoising layer, and soft denoising layer of the
model, and make the noise signal continuously decoupled by con-
tinuously adding contrastive loss. We will show that better results
can be achieved than end-to-end training in ablation experiments.
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Algorithm 1 Noise-Decoupling Contrastive Learning
Input: Data and Hyperparameters
Output: Model parameters Φ(Φ𝐸𝐵𝑀 ,Φℎ𝑎𝑟𝑑 ,Φ𝑠𝑜 𝑓 𝑡 )
Random initialization Φ
Stage 1: Training the embedding layer and EBM layer

Calculate loss: L1 = L𝑝𝑟𝑒𝑑 (𝑆) + L𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠

Update parameters Φ𝐸𝐵𝑀 to minimize 𝐿1
Stage 2: Training the Hard Noise Eliminator

Split 𝑆 into 𝑆ℎ𝑝 and 𝑆ℎ𝑛 according to Eq. (6)
Calculate loss:
L2 = L𝑝𝑟𝑒𝑑 (𝑆ℎ𝑝 ) + L𝐶𝐿 (𝑆ℎ𝑝 , 𝑆, 𝑆ℎ𝑛) + L𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠

Update parameters Φ𝐸𝐵𝑀 ,Φℎ𝑎𝑟𝑑 to minimize L2
Stage 3: Training the Soft Noise Filter

Split 𝑆ℎ𝑝 into 𝑆𝑠𝑝 and 𝑆𝑠𝑛 according to Eq. (7)
Calculate loss:
L3 = L𝑝𝑟𝑒𝑑 (𝑆𝑠𝑝 ) + L𝐶𝐿 (𝑆ℎ𝑝 , 𝑆, 𝑆ℎ𝑛) + L𝐶𝐿 (𝑆𝑠𝑝 , 𝑆ℎ𝑝 , 𝑆𝑠𝑛)
+L𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠

Update parameters Φ𝐸𝐵𝑀 ,Φℎ𝑎𝑟𝑑 ,Φ𝑠𝑜 𝑓 𝑡 to minimize L3
Stage 4: Train the final model to converge

Fix Φℎ𝑎𝑟𝑑 ,Φ𝑠𝑜 𝑓 𝑡 and get 𝑆𝑠𝑝 through the denoising module.
Calculate loss: L4 = L𝑝𝑟𝑒𝑑 (𝑆𝑠𝑝 ) + L𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠

Update model parameters Φ𝐸𝐵𝑀 to minimize L4

5 EXPERIMENT
5.1 Experimental Setting
5.1.1 Datasets. In order to evaluate the performance of END4Rec,
we conduct experiments on three large-scale real-world recom-
mendation datasets that are widely used in multi-behavioral se-
quential recommendation research and are considered standard
benchmarks[45, 38]. These datasets contain various user interac-
tion behaviors, including clicking, adding to favorites, adding to cart,
and purchasing. Specifically, the IJCAI dataset was released by the
IJCAI Contest 2015 for the task of predicting repeat buyers. The
CIKM and Taobao datasets were released by E-commerce companies
Alibaba and Taobao, which are the largest online communication
platforms in China.

For the data processing, we follow a similar approach to previous
studies (e.g., [19, 26]) by removing users and items with fewer than
20 interaction records, which ensures that the users and items in the
dataset had sufficient interaction data to accurately capture their
preferences and behaviors. Next, we focus on the purchase behavior
as it directly benefits the platforms financially. To ensure sufficient
representation of this behavior in each user sequence, we require it
to appear at least 5 times [49]. In addition to the above steps, we
also perform general data deduplication and cleaning to enhance
the stability and reproducibility of the experimental results. The
detailed statistical information of processed datasets is summarized
in Table 1.

5.1.2 Comparison Baselines. To evaluate the effectiveness of the
proposed method END4Rec, we conduct a comprehensive compari-
son with several state-of-the-art baselines as follows:

General Sequential Recommendation Methods. SASRec [19]
utilizes a transformer-based encoder to learn sequence and item
representations. BERT4Rec [26] employs a bidirectional encoder

Table 1: Statistical information of experimental datasets.

Dataset CIKM IJCAI Taobao
#users 254,356 324,859 279,052
#items 521,900 331,064 731,517

#interactions 18,824,670 46,694,666 32,758,555

with transformers to model sequential information and is optimized
using the Cloze objective. CL4SRec [42] combines contrastive SSL
with a Transformer-based SR model, incorporating crop, mask, and
reorder augmentation operators. FEARec [9] improves the original
time domain self-attention in the frequency domain with a ramp
structure, allowing for the explicit learning of both low-frequency
and high-frequency information.

Multi-Behavior Recommendation Methods. MB-GCN [17] is
a graph-basedmodel designed to address the issue of data sparsity in
multi-typed user behavior data modeling. This approach employs
graph convolution operations for message passing. KHGT [39]
introduces a transformer-based approach for multi-behavior mod-
eling, with a focus on temporal information and auxiliary knowl-
edge incorporation. The model utilizes graph attention networks
to capture behavior embeddings. CML [32] integrates contrastive
learning into multi-behavior recommendation by proposing meta-
contrastive coding. This enables the model to learn personalized
behavioral features. KMCLR [43] proposes a framework that en-
hances recommender systems through two comparative learning
tasks and three functional modules: multiple user behavior learn-
ing, knowledge graph enhancement, and coarse- and fine-grained
modeling of user behaviors to improve performance.

Denoising Methods for Recommendation. CLEA [25] utilizes
a discriminator to divide a basket into positive and negative sub-
baskets based on noise detection.ADT [30] adaptively prunes noisy
interactions to achieve implicit feedback denoising. FMLP-Rec [53]
incorporates Fast Fourier Transform (FFT) and inverse FFT pro-
cedures to minimize the influence of noise and improve sequence
representations. DPT [49] introduces a three-stage paradigm that
involves de-noising and prompt fine-tuning, progressively mitigat-
ing the impact of noise through data-driven processes. In accor-
dance with previous studies [45, 36], we employ these denoising
baselines on the multi-behavior problem by incorporating behav-
ioral types into the input embedding to ensure a fair comparison.

5.1.3 Evaluation Metrics. In this study, we assess the performance
of comparison methods for the top-K recommendation using two
evaluation metrics: Hit Ratio (HR@K) and Normalized Discounted
Cumulative Gain (NDCG@K). HR@K measures the average pro-
portion of relevant items in the top-K recommended lists, while
NDCG@K evaluates the ranking quality of the top-K lists in a
position-wise manner. To ensure fair and efficient evaluation, each
positive instance is pairedwith 99 randomly selected non-interactive
items identical to recent state-of-the-art works [39, 45, 53, 38]. We
employ the leave-one-out strategy for performance evaluation [33],
where each user’s temporally ordered last purchase serves as the
test sample and the previous one as the validation sample.

5.1.4 Implementation Details. To ensure a fair comparison between
different models, we conduct consistent settings across all methods.
Specifically, we set the embedding size to 128 and the batch size to
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Table 2: Overall performance comparison of all methods in terms of HR@K and NDCG@K (K=10, 20). (p-value < 0.05)

Datasets CIKM Taobao IJCAI
Metric H@10 N@10 H@20 N@20 H@10 N@10 H@20 N@20 H@10 N@10 H@20 N@20
SASRec 0.3055 0.1861 0.3981 0.2285 0.2995 0.1766 0.3834 0.2129 0.3505 0.1878 0.4553 0.2346
Bert4Rec 0.3350 0.2147 0.4235 0.2337 0.2856 0.1670 0.3679 0.1991 0.3748 0.2060 0.4890 0.2658
CL4Rec 0.3422 0.2140 0.4392 0.2472 0.3132 0.1840 0.4022 0.2206 0.3877 0.2104 0.5047 0.2672
FEARec 0.3392 0.2093 0.4386 0.2493 0.3213 0.1891 0.4120 0.2274 0.3866 0.2085 0.5027 0.2626
MBGCN 0.3889 0.2136 0.4951 0.2894 0.3628 0.2016 0.4510 0.2498 0.3627 0.1969 0.4721 0.2502
KHGT 0.4014 0.2305 0.5160 0.2993 0.3824 0.2181 0.4815 0.2670 0.4104 0.2214 0.5337 0.2791
CML 0.4234 0.2466 0.5400 0.3060 0.4212 0.2420 0.5311 0.2942 0.4344 0.2366 0.5658 0.3018

KMCLR 0.4344 0.2494 0.5584 0.3239 0.3587 0.2070 0.4563 0.2503 0.4441 0.2397 0.5769 0.3051
CLEA 0.4278 0.2349 0.5446 0.3184 0.3990 0.2218 0.4961 0.2747 0.3989 0.2166 0.5194 0.2752
ADT 0.2536 0.1463 0.2926 0.1688 0.2302 0.1307 0.2519 0.1463 0.2787 0.1541 0.3436 0.1956
FMLP 0.3764 0.2354 0.4831 0.2719 0.3446 0.2024 0.4424 0.2427 0.4265 0.2315 0.5552 0.2940
DPT 0.4431 0.2545 0.5697 0.3304 0.4221 0.2408 0.5315 0.2947 0.4531 0.2445 0.5709 0.3082

END4Rec 0.4787 0.2754 0.6120 0.3536 0.4464 0.2533 0.5614 0.3102 0.4821 0.2613 0.6166 0.3314
Improvement 8.02% 8.23% 7.44% 7.00% 5.75% 4.71% 5.63% 5.27% 6.38% 6.88% 6.88% 7.53%

512. During the experimentation process, we employ a grid search
approach to identify the optimal hyperparameters for each model.
The maximum number of epochs is set to 1000, and the training
process is halted if the NDCG@K summation on the validation
dataset has not improved for 20 consecutive epochs.

5.2 Overall Performances
Effectiveness Analysis. In Table 2, we present a comprehensive
performance comparison across different datasets and summarize
the following observations: (1). We observe that multi-behavioral
approaches typically outperform general sequential recommenda-
tion approaches, which underscores the significance of our under-
lying research problem. By modeling the complex relationships
between different user behaviors with the aid of multiple behav-
ioral data as auxiliary information, we effectively translate gen-
eral preferences to targeted behaviors to enhance performance. (2).
Partial denoising methods outperform multi-behavior sequential
recommendation, confirming our research motivation that multi-
behavioral sequences contain significant amounts of data noise that
can be effectively reduced using denoising methods. (3). The per-
formance of different types of denoising methods or even the same
denoising algorithm on different datasets varies greatly, suggesting
that many methods have limitations based on specifically targeted
items or loss functions. These limitations ignore the diverse types
of noises hidden in multiple user behaviors, making it difficult to
obtain consistent results compared to END4Rec, which has more
general assumptions. (4). END4Rec consistently outperforms other
baselines on all datasets, demonstrating its effectiveness and gener-
alizability. This is due to the fact that the discrimination of noise
depends not only on overall user behavior preferences but also con-
siders the type of noise and its connection with different behaviors.
Moreover, the proposed contrastive learning and gradual training
strategy further aid in efficiently decoupling noise from complex
multi-behavior data.

Efficiency Analysis. To further illustrate the core efficient mod-
ule EBM in END4Rec, we conduct a complexity comparison analy-
sis with some representative methods, such as Self-Attention and
FMLP [53], as shown in Table 3. From the table, we can conclude
that both END4Rec and FMLP have lower complexity compared
to traditional self-attention methods. Although FMLP is based on

Table 3: Complexity, parameter count, and degree of feature
fusion for SA, FMLP, and EBM. 𝐿, 𝑑 , and 𝑘 refer to the se-
quence length, hidden size, and block count, respectively.

Model Complexity Parameter Count Feature fusion
Self-Attention 𝐿2𝑑 + 3𝐿𝑑2 3𝑑2 Adequate
FMLP 𝐿𝑑 + 𝐿𝑑𝑙𝑜𝑔𝐿 𝐿𝑑 Inadequate
EBM 𝐿𝑑2/𝑘 + 𝐿𝑑𝑙𝑜𝑔𝐿 (1 + 4/𝑘 )𝑑2 + 4𝑑 Adequate

Fourier Transform operation to accelerate efficiency, it only uti-
lizes the dot-product operator and fails to fuse frequency domain
information, which cannot model more complex patterns in be-
havior sequences. In contrast, END4Rec with the aid of EBM can
achieve full fusion (The ability to fully intersect global frequency
domain features.) while requiring relatively small parameters, inde-
pendent of behavior sequence length. This ensures the efficiency
of END4Rec in terms of both running time and parameter spaces.
5.3 Ablation Study
To investigate the effectiveness of each component, we introduce
the following variants of END4Rec: Variant without Hard Noise
Eliminator (w/o hard) and Variant without Soft Noise Filter
(w/o soft) represent that we discard the hard or soft denoising
module and the corresponding contrastive loss and training process
in END4Rec, respectively. Variant without Noise-Decoupling
Contrastive Learning (w/o cl) indicates that we do not use two
contrastive loss functions during the training process. Variant
without Compactness Regularization (w/o camp) indicates that
the compactness regularization loss is not used in all EBM modules.
Variant without Guide Optimization (w/o opti) uses end-to-end
training methods instead of guided training methods.

The comparison results are presented in Table 4: First, the (w/o
hard) and (w/o soft) variants demonstrate the effectiveness of our
proposed combination of soft and hard denoising methods, where
different datasets are affected by the two types of noise to varying
degrees, and the combination of the two types of methods achieves
a better result. Second, the (w/o cl) variant demonstrates the learn-
ing effectiveness of our proposed noise decoupling comparison. It
mitigates the inadequacy of supervised signals and decouples noise
from the data. Third, (w/o camp) variant demonstrates the superior-
ity of compactness regularization, which can control the sparsity of
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Table 4: Ablation study with key modules in END4Rec.

Datasets CIKM Taobao IJCAI
Metric H@10 N@10 H@10 N@10 H@10 N@10

w/o hard 0.3614 0.2260 0.3308 0.1943 0.4094 0.2222
w/o soft 0.4107 0.2255 0.3831 0.2129 0.3830 0.2079
w/o cl 0.4254 0.2443 0.4052 0.2311 0.4350 0.2347

w/o comp 0.4387 0.2519 0.3623 0.2090 0.4486 0.2421
w/o opti 0.4576 0.2590 0.4263 0.2432 0.4577 0.2470
END4Rec 0.4787 0.2754 0.4464 0.2533 0.4821 0.2613

Figure 3: Hyper-parameter study of the END4Rec.

the frequency domain token and prevent the model from overfitting
to local information. Finally, (w/o opti) variant demonstrates the
effectiveness of our guided training process, which, through four
steps, is able to guide the model step-by-step to decouple the noise
from the data and achieve the optimal result.

5.4 Hyper-parameter Analysis
To investigate the effects of hyper-parameters in END4Rec, we per-
form experiments with different hyper-parameter configurations
and present results in Fig 3, we can conclude as follows: (1) Num-
ber of matrix blocks of Chunked Diagonal Mechanism 𝑘 . we
find that 𝑘 values ranging from 8 to 12 yield optimal results. How-
ever, there is a noticeable decrease in performance as the value of k
increases beyond this range, which may be attributed to the limited
feature fusion capabilities for each matrix block resulting in smaller
size blocks. (2) Compactness regularization parameter 𝛼 . We
observe that an appropriate range of values for 𝛼 , between 0.01 and
0.001, achieves better performance. It suggests that excessive reg-
ularization loss can negatively impact the normal representation
of vectors, while insufficient regularization may not adequately
constrain the sparse representation of frequency domain tokens.
(3) Hyper-parameters for each behavioral preference value 𝜆𝑏 .
We sort the behaviors in the dataset according to the frequency
order of the behaviors in the dataset, which are adding to favorites,
purchasing, adding to cart, and clicking, and take four sets of hyper-
parameters [(1, 2, 3, 4), (1, 3, 4, 7), (1, 2, 3, 7), (1, 3, 5, 9)], where each
tuple within the parentheses means the 𝜆𝑏 values for four distinct
behaviors, and the experimental results find that the parameter’s
sensitivity is not high, which indicates that the model is able to
converge to different ranges according to different thresholds.

5.5 Visualization Analysis
To better illustrate the intricate connection between noises and
behaviors, we conduct visual experiments depicted in Fig 4 and
observe the following points: (1). For the hard denoising process,

Click Favorite Cart Buy0.0

0.1

0.2

0.3

0.4

CIKM
Taobao
IJCAI

Click Favorite Cart Buy

CIKM

Taobao

IJCAI

Figure 4: Visualization of hard noise removal ratios (left) and
soft denoising kernels (right) for different behaviors.
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Figure 5: Comparison of Fourier spectral matrices with (left)
and without (right) compactness regularization loss.

we compute noise removal ratios for different behaviors identified
by END4Rec and indicate that for behavior types with random-
ness, such as clicking, the corresponding sequence noise ratio is
higher, while for behaviors with clear user preferences, such as
purchasing, the noise ratio is relatively lower, which is consistent
with practical expectations. (2). For the soft denoising process, we
visualize the denoising kernels at the center of various behavioral
channels to reveal their complex patterns. The comparison visual-
ization reveals that the denoising kernels exhibit varying patterns
across different datasets, while those with similar behaviors within
the same dataset, such as adding to cart and purchasing, present
similar denoising kernels. This finding indicates that END4Rec can
effectively explore the correlations between different types of be-
haviors during the learning process. Besides, we also compare the
Fourier spectrum matrices using and without compactness regular-
ization in END4Rec. As demonstrated in Fig. 5, this figure shows the
proposed compactness regularization function effectively sparse
the representation space in the frequency domain, thus preventing
overfitting to local information.

6 CONCLUSION
In this study, we aimed to address the challenges associated with
mining user behavior sequences and reducing noise signals in multi-
behavior sequential recommendation. To achieve this, we developed
an Efficient Behavior Sequence Miner (EBM) that efficiently cap-
tures intricate patterns in user behavior while maintaining low
time complexity and parameter count. Additionally, we introduced
a Noise-Decoupling Contrastive Learning approach and a guided
training strategy that combines the Hard Noise Eliminator and
Soft Noise Filter techniques. These methods successfully eliminated
noise from user behavior data. We conducted experiments on real-
world datasets to evaluate the performance of our proposed method
(END4Rec), which demonstrated its efficiency and effectiveness.
For future work, we plan to further refine END4Rec by enhancing
its capabilities for handling diverse types of noise signals.
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