
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SMALL MODELS, SMARTER LEARNING: THE POWER
OF JOINT TASK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability of a model to learn a task depends critically on both task difficulty and
model size. We study this relationship for compositional operations, focusing on
nested ListOps and extending beyond arithmetic to permutation groups, with the
goal of determining how task difficulty sets the minimum parameter requirements
for small transformer models. We vary task difficulty by introducing new operations
or combinations of operations into the training data. We find that while operations
such as modular addition or permutation group products are difficult in isolation,
joint training with other operations, including product, maximum, or auxiliary
sub-block operations, reduces the parameter requirements by factors of 2 to 7.
Analysis of learned embeddings using PCA reveals that when joint training helps it
is usually accompanied by an increase in highly regular structures in the embedding
of inputs. These results suggest that joint training leads to qualitatively different
learning trajectories than learning operations in isolation, with shared number
representations supporting difficult tasks such as addition. Our findings further
demonstrate the importance of training curriculum on the emergence of abilities in
language models.

1 INTRODUCTION

Scaling laws for language models Kaplan et al. (2020) characterize how performance scales with
model size (number of parameters) Hoffmann et al. (2022), compute (FLOPs) Muennighoff et al.
(2024), dataset size (number of examples) Hestness et al. (2017), and information capacity (in bits)
Allen-Zhu & Li (2024). They have been used as a guide for model design, predicting the best loss
achievable for a given setting. Moreover, the study of emergent abilities in LLM showed Wei et al.
(2022) that various capabilities emerge at different model sizes. Both of these directions suggest an
intimate and universal relationship between model size and the emergence of abilities. However,
these views miss important details about the role of the training curriculum.

In general, language models performs poorly on symbolic mathematical tasks Frieder et al. (2024);
Dziri et al. (2024); Dave et al. (2024) such as the ListOps dataset Nangia & Bowman (2018) used
in this study, which consists of nested math operations. Models often struggle with generalization,
tending to memorize tasks rather than simulate the underlying algorithms. While mathematical tasks
prove challenging for large language models to learn, they provide a controllable playground to test
how models learn different tasks and to evaluate their accuracy quantitatively. Furthermore, they
allows us to tune the task difficulty by combining different operations.

Models may learn different algorithms for solving a task. Yet, it is unclear if, similar to human,
under what conditions models may brute-force memorize a task, vs learn generalizable solutions.
In this work, we show strong evidence that the learning curriculum can dramatically shift the onset
of emergence of abilities in small untrained models. Models of the same size may follow different
learning paths depending on the training setup, suggesting that the tasks themselves may change the
the way learning dynamics finds a solution.

It is worth noting that our observations point to more than just task complexity being the driving
force. Complexity of a task may be defined using Kolmogorov complexity (KC) Kolmogorov (1965);
Li et al. (2008), defined as the length of the shortest code producing a desired output. What we show
is that models may require vastly different minimum sizes to learn the same task, depending on the
training curriculum. Additionally, we show evidence of a potential change in the internal algorithm

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

learned by the models using different curricula. Such a distinct algorithm could represent learning
different algorithms to solve the same problem, with each algorithm having a different resource
requirement, e.g. brute-force versus an efficient code. Hence we argue the model size depends more
on the algorithmic complexity, or description length of a specific algorithm, rather than the KC of the
task. This also raises an important question: what training regiments are most effective at inducing
the learning of more efficient algorithms?

Using the ListOps dataset as our experimental framework, we investigate how small transformer
models learn nested mathematical operations—specifically maximum (MAX), minimum (MIN),
median (MED), and sum modulo n (ADD, aka SUM)1, extended with product modulo n (PROD) and
alternating sum and subtraction modulo n (NADD:=

∑
i(−1)ixi). We further introduce permutation

groups as an additional class of problems, where group products can be decomposed into products
of subgroups, such as sub-block operations. We train the models on a single or a mixture of these
operations. We make the following observations:

1. Easy tasks: MAX and MIN are easiest, followed by PROD (non-prime n) and MED.
2. Hard tasks: ADD and NADD (mod any n), and PROD mod primes are considerably harder,

requiring and order of magnitude larger models.
3. Joint training paradox: surprisingly, mixing some easy tasks with hard tasks leads to

smaller models mastering the hard tasks. In contrast, mixing hard tasks did not seem to help
in our experiments.

4. Beyond arithmetic: We show the same effect also in block-diagonal permutation matrices,
demonstrating that the effect of joint training is not restricted to the arithmetic setting.

We hypothesize that compared to pure ListOps tasks, the mixed training makes it easier for the
models to discover number properties of the symbols. This seems to lead the mixed models learning
a different algorithm than the pure model. For instance, we observe a similar difficulty in learning
pure SUM for models learning a randomized SUM dataset, where we create a randomized sum table
with the right-hand side of A+B = C being shuffled (Appendix K). In the randomized SUM (ADD)
task, any number relation between the symbols has been erased, and the easiest way to learn it should
be to memorize the sum table, rather than overfit the random patterns in the sum table.

These results provide compelling evidence that joint training guides models towards finding alterna-
tive, more efficient solutions. They suggest there is more nuance to the scaling laws and they can be
significantly affected by the training curriculum and strategies.

2 METHODOLOGY

We train small-scale transformer models and analyze both their performance and internal representa-
tions. This section outlines our methodology, detailing the dataset, model architecture, and evaluation
protocols.

Choice of task ListOps consists of nested mathematical equations involving operations. Our setup
uses MAX, MIN, MED (median), ADD (sum modulo n), PROD (product modulo n) and NADD
(alternating sum and subtraction modulo n) applied to numbers (0-n− 1). We conduct experiments
using n = 10 to n = 226, (Appendix E.1). Choosing ListOps was motivated by several key factors
that align with our research objectives:

1. Procedural Generation: ListOps is a synthetically generated dataset, allowing us to create
a large volume of examples with controlled difficulty.

2. Exact Evaluation: The mathematical nature of ListOps operations ensures unambiguous,
exact evaluation of model outputs.

3. Adjustable Task Complexity: ListOps offers a framework to modulate problem complexity
by combining different operations and adjusting nesting depths.

4. Inter-task Relationships: The dataset’s multiple operations provide an opportunity to
explore task synergies and interference.

1we will use SUM and ADD interchangeably

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Dataset Description We use a simplified functional notation of the form f(x, y, . . .). For example,
max_10(3,min_10(7,4,9))=4<eos>, where <eos> denotes the end token. The subscript in
the function name indicates the modulo operation; for instance, max_10 represents the max function
modulo 10.

Tokenization and CoT: We employ a character-based tokenization strategy for processing ListOps
expressions. (Appendix E.2). We find that directly solving nested ListOps in one step can be quite
challenging for transformer model (Fig. 30) Even with a maximum of three nesting levels with
three operands (inputs) we find that GPT models with over 10 million parameters still fail to
learn the task. To enhance model performance, particularly on more complex operations like sum
modulo 10, we introduced a chain of thought (CoT) approach in our training data (Appendix E.3):
add_10(1,2,add_10(3,4))>add_10(1,2,7)>0=0<eos>, where the ‘>’ token means
one step of CoT, wherein we solve the right-most, inner-most parenthesis. This is similar to the
scratchpad used in Lee et al. (2024), among others. The tasks become increasingly challenging to
learn with increasing nesting, number of operands, and length in a predictable manner (Appendix Fig.
35).

Train Test Split: The experiments were conducted on data generated with a maximum nesting
depth of 2 and up to 3 operands per operation. The equations are constructed from the combination
of digit sequences forming duplets and triplets (e.g., "1,0", "0,0,1"). The CoT could result in many
patterns appearing in one equation. To ensure that all the patterns in the test set are not also present in
the training data, we select 100 out of the possible 1000 triplets of numbers, e.g. 749, to make an
exclusion set. The training data is chosen from equations which never encounter the triplets in the
exclusion set, and the test set is chosen such that each equation contains at least one excluded triplet.

Permutation groups Modulo addition forms a cyclic group, which is itself a subgroup of the
permutation group. The matrix representation of permutations provides a natural framework for
defining subtasks through operations on blocks or submatrices. By Cayley’s theorem, every finite
group can be represented as a subgroup of permutations. Extending this idea, finite groups can be
directly incorporated into ListOps tasks, since they are closed under group operations. To explore
this, we introduce a new task of learning the product table of permutation matrices. Specifically, we
construct 6× 6 block-diagonal permutation matrices composed of two 3× 3 blocks and define three
operations: OP, which acts on the full 6× 6 matrix; OP_TOP, which acts only on the top block; and
OP_BOTTOM, which acts only on the bottom block (Appendix Fig. 26, 28, 27). The block-diagonal
group contains 36 elements (Appendix Fig. 25), and we implement the task in the ListOps formalism.
For example: OP(1,2,OP_TOP(2,3)) >, where each number corresponds to an element of the
group which is a matrix.

Performance Evaluation: We randomly select 1000 equations from the held-out test set. The
model is prompted to generate solutions character-by-character, starting from the equation prompt
(e.g., add_10(3,min_10(7,4,9))>). We use the output to produce two metrics: Loss: using
cross-entropy computed for every character of the output. Accuracy: based on the number of correct
answers evaluated using only the final answer, which we define as the first character after the first ‘=’
symbol.

Model Architecture For our experiments, we employed a series of tiny GPT models, inspired
by the nanoGPT architecture (Karpathy, 2022). Unlike the standard sequential transformer, we
implemented a recurrent variant in which a single transformer block was iteratively applied by
feeding back its output as the next input. This recurrent design improved learning efficiency and
yielded more structured embedding patterns. Each model in our study uses a single attention head. We
set the feedforward hidden dimension to four times the embedding dimension, a common practice in
transformer architectures, providing sufficient complexity in the feedforward networks while keeping
the model size constrained. By varying the embedding sizewe create a range of models with different
parameter counts.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 RESULTS

To understand how language models acquire mathematical abilities, we focus on accuracy as the
primary metric for observing the emergence of learning, following the approach of the emergent
abilities literature as in Wei et al. (2022). While some subsequent studies have questioned the
concept of emergence by examining other metrics (Schaeffer et al., 2024), we argue that this critique
overlooks similar patterns observed in physics: In a phase transition, only some quantities may exhibit
discontinuous changes. A metric that can capture the emergence of the new phase is called the “order
parameter”. Hence, we choose to use accuracy as our order parameter.

We run experiments with embedding dimension nembed between 8–362.Similar to the emergence
literature, we observe the total number of parameters to be the strongest indicator of accuracy, rather
than nembed or depth. We primarily present results for the modulo 20 experiments, but we observed
similar patterns for other moduli (Appendix A.4 - mod 10 results, A.3 - mod 26 results). Furthermore,
we show that model performance scales with the modulus, as higher moduli require larger models
and more data to learn effectively.

Importantly, joint training on compositional tasks substantially improves performance and reduces
the parameter requirements for learning individual operations. Training on multiple arithmetic tasks
helps models learn the basic building blocks needed for solving more complex problems. This shared
representation not only accelerates learning but also produces abrupt transitions in performance once
the necessary constituent skills are mastered Lubana et al. (2024); Okawa et al. (2023). Such effects,
consistent with previous findings on compositional generalization Lee et al. (2024), demonstrate the
utility of joint training for scaling model competence on algorithmic tasks.

Transition to Learning. Figure 1 shows the learning transitions for three single operations and
three joint operations. We find that joint training enables models to solve more difficult tasks with
fewer parameters and less data. For example, ADD and NADD are the most demanding tasks when
trained in isolation, yet when combined with PROD, models that are 2.5 times smaller succeed.
Similarly, while PROD on prime moduli is challenging on its own, pairing it with MAX reduces the
required model size by a factor of 2.6.

These results challenge the common assumption that harder tasks always demand larger models.
Instead, something emerges during joint training that lowers the effective complexity of learning.
Similar effects have been reported in prior work on language models, where training on diverse tasks
improves generalization Lee et al. (2024). Our results suggest that in ListOps, mixing tasks likewise
produces a dramatic reduction in the learning threshold, raising the question of what underlying
mechanisms drive this synergy.

Embedding Layer. To understand the difference between the hierarchy of transition points ob-
served, we first examine the embedding layer of the models which learned the tasks (acc. > 90%)
(see Appendices A.3 and A.4 for more). While the nvocab × dembed embedding layers of models of
different sizes cannot be directly compared, we can compare them using nvocab dimensional principal
component analysis (PCA). Moreover, while the PCs of individual models may be noisy, we can find
aggregate PCs by first computing the nvocab × nvocab correlation matrices of a group of models and
averaging them. This approach not only reduces the noise but also allows us to combine models of
different sizes.

An interesting picture emerges when we average models which learned each individual operation.
Figure 2 shows the correlation matrix and top PCs for the embeddings of models trained on the groups
we identified in the transition plot: a) ADD, b) ADD + PROD. We note that the principal components
for the ADD operation exhibit a noisy pattern; however, in PC1 and PC2, the model nearly perfectly
separates the parity of the numbers (Fig. 2a), indicating that parity is a key feature for learning the
modulo addition operation. When ADD and PROD are combined, all principal components display
an organized pattern. PC1 clearly separates number parity and also groups numbers modulo 4, for
example, 0, 4, 8, 12, 16 and 1, 5, 9, 13, 17 (Appendix 8). The remaining PCs exhibit a lattice-like
structure, grouping different pairs of the modulo-4 classes.

This example illustrates that joint learning of multiple operations can be mutually beneficial, enabling
the model to develop more intuitive embeddings that support both tasks—particularly those that are
difficult to learn in isolation. Here, the PROD operation clearly separates number parity (Appendix

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a

b

Figure 1: Joint training. (a) Each panel shows the same group of small transformer models trained
on different operations, either in isolation or in combination. The first column compares ADD
with ADD+PROD, the second column compares NADD with NADD+PROD, and the third column
compares PROD with MAX+PROD. The top row shows models trained on individual operations,
while the bottom row shows the corresponding joint-training results. Red dots indicate models
achieving more than 50% accuracy, and blue dots indicate models below 50%. The dashed green
line is a logistic fit, and the yellow star marks the transition point at 80%. The x-axis denotes model
size (number of parameters), and the plots are ordered by increasing transition point. Training on
individual operations is challenging, but joint training reduces the required model size to learn the
tasks. (b) Bar plots of the model sizes at transition points, with training on individual operations
shown in blue and joint training in red.

a b

Figure 2: PCA of embeddings: We selected all models that achieved over 90% test accuracy. For
each operation and operation combination, we show the average correlation matrix and the top
principal components (PCs) of the cosine similarity of the embeddings. The PCs are colored by
number parity (odd numbers in blue, even numbers in red). (a) ADD: the model does not capture a
regular pattern; however, PC1 and PC2 separate odd and even numbers, indicating that parity is an
important feature for the sum. (c) Joint training on ADD and PROD: the PCs reveal a clear structure,
separating odd and even numbers, grouping similar numbers together, and even forming grid-like
patterns.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

9), providing a bias that assists the ADD operation, for which parity appears to be a key feature. This
guidance from PROD allows ADD to be learned effectively with smaller models.

Given that much smaller models learn ADD when jointly trained with PROD than when trained on
ADD alone, we hypothesize that the two groups of models employ different algorithms for ADD—or
at least follow distinct learning trajectories. Mixed training appears to guide the model toward an
understanding of number properties, enabling it to employ efficient and compact algorithms for
ADD. In contrast, models trained solely on ADD tend to represent symbols as numbers. Moreover,
modulo n ADD tables exhibit a uniform distribution of elements—a notoriously difficult pattern
to learn. Introducing another operation disrupts this uniformity, which may facilitate learning the
task. However, we hypothesize that merely breaking the symmetry is insufficient, and that deeper
shared features between the two operations make joint training particularly powerful. One way to
test the hypothesis of Pure SUM finding symbolic solutions is to design a similar problem where
combination of symbols (A,B) turns into C, analogous to a shuffled sum table.

Shuffled ADD. We conducted experiments using a shuffled, symmetric ADD table (A+B = B+A)
in modulo 26, comparing a model trained on ADD alone with one trained on MAX, MED, and
Shuffled ADD. The shuffled addition proved more difficult to learn than all other mathematical
operations except the original ADD, which remained slightly harder even than the shuffled version
(Fig. 3). Similarly, MAX+MED+Shuffled ADD was more challenging than all tasks except pure
ADD, suggesting that inherent number properties facilitate learning in mixed training.

Analysis of the PCA embeddings revealed that most of the features observed with regular numbers
were absent, aside from partial ordering, as MAX and MED continued to rely on standard number
ordering (Appendix Fig. 40). Mixed training provided little advantage for Shuffled SUM: the task
reached only 60% accuracy and required twice as many parameters compared to a model trained
solely on Shuffled SUM, highlighting the importance of internal number representations for solving
addition. PCA embeddings for Shuffled SUM likewise showed no structure comparable to that
observed in the mixed model with regular numbers. Coloring the numbers by parity further confirmed
this effect: unlike in the regular mod-26 experiments, no clear parity separation emerged (Appendix
Fig. 17), as expected.

103 104 105 106

Number of Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MAX+MED+SHUF+SUM
Logistic fit
Transit.: 1.6e+04

103 104 105 106

Number of Parameters

SHUF+SUM
Logistic fit
Transit.: 7.41e+04

103 104 105 106

Number of Parameters

MAX+MED+ShSUM Test ShSUM
Logistic fit
Transit.: 2.98e+05

Shuffled SUM Base 26 (40K steps)

105

Tr
an

sit
io

n
Po

in
t

M
AX

+M
ED

+S
HU

F+
SU

M

SH
UF

+S
UM

M
AX

+M
ED

+S
hS

UM
 Te

st
 S

hS
UM

Base 26 Logistic Fit

Figure 3: Shuffled symmetric sum table, Mod 26, 40K steps: We find that this shuffled version
of sum is again more difficult to learn than any of the math operations except for the original Pure
ADD, which remains slightly more difficult than even the shuffled version. We also observe that
MAX+MED+Shuffled ADD never reaches more than 80% accuracy. The third scatter plot from
the left shows the accuracy of the MAX+MED+Shuffled ADD model on the Shuffled ADD test set.
We see that the accuracy is very low (∼ 20% top), showing that the mixed model never learned the
shuffled ADD. This may suggest that MAX+MED revealed number properties, but Shuffled ADD
was incompatible with those properties, leading to a model that overall cannot solve the two problems
(MAX+MED and Shuffled ADD) simultaneously.

Learning dynamics Pure ADD vs MAX+MED+SUM. Another piece of evidence for the differ-
ence between ADD and the rest comes from the training dynamics. Figure 4 shows the loss curves
and the evolution of test accuracy in a pure ADD model vs MAX+MED+ADD, for models with
nembed = 96 and 3 layers, which is slightly above the pure ADD learning transition. The mixed
model was evaluated separately for each of the MAX, MED, and ADD test sets to see when each
ability emerged. We observed a subtle but important sequence in learning: MAX was learned fastest,
followed closely by MED, and then ADD. Crucially, the gaps between the learning of these operations
were minimal, with the model beginning to grasp ADD while still perfecting MED. The accuracy

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Pu
re

 S
U

M
M
AX

+M
ED

+S
U
M

Figure 4: Evolution of training loss, accuracy, and PCs of the embedding layer, Mod 26: The
top shows the evolution of training loss (solid lines) and test accuracy (dashed lines) for models
with an embedding dimension of 96 and 3 layers, trained either on pure ADD (blue) or on mixed
MAX+MED+ADD (red). Models trained on MAX+MED+ADD were evaluated separately on pure
MAX, MED, and ADD subsets; the corresponding accuracy curves are shown in green, purple, and
orange, respectively. Curves are the mean on 3 runs, with shaded ±σ. All models were trained for
20000 iterations. The figures beneath the main plot display PCA embeddings revealing that models
trained on MAX+MED+ADD data progressively develop a structured representation of numerical
concepts, accompanied by a steady decrease in loss. The also show a prominent parity separation
emerging in PC2 and PC4. Parity is colored by red and blue. In contrast, models trained solely on
SUM exhibit no clear structure in the embedding space and show long plateaus in the loss curve.

curves also show that joint training accelerates the learning of the ADD operation, as evidenced by
the much earlier rise of the orange dashed line (joint training) compared to the blue dashed line (pure
ADD training), occurring at almost half the number of steps of pure ADD.

Figure 5: Learning ADD by fine-
tuning MAX+MED: We train model
much smaller than the sum-only learn-
ing transition (48 embedding, 2 layers
- traditional Transformer architecture).
By switching the training data slowly
from MAX+MED to pure ADD (never
showing expression mixing all three) the
model is able to learn ADD (blue) in this
much lower parameter regime. In com-
parison, the pure ADD models (red) did
not learn at this size.

Joint Training May Shrink the Search Space. The
model trained on mixed data can take a very different
route and converge to a different solution. We see that
training on MAX, MIN, or MED all lead to embeddings
which exhibit number properties. Because of the CoT
steps, the model’s loss decreases when it learns any of
the operations involved in the mix. For instance, since
learning MAX is much easier than ADD, gradient descent
may first learn to solve MAX, which is strongly associated
with learning a representation for the digits with the correct
ordering. This restriction of the embedding layer can make
it significantly easier for the model to learn other number
properties and, possibly, find a number-based algorithm
for ADD, exploiting the properties of numbers instead of
memorizing symbolic patterns.

3.1 TESTING
THE EMBEDDING RESTRICTION HYPOTHESIS.

We test the hypothesis that restricting the embedding to
what is learned by operations like MAX and MED could
lead to smaller models learning ADD. To further explore
this hypothesis, we designed a transfer learning experi-
ment: 1) We first trained a model (nembed = 48 and three

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

layers, which on pure ADD was unable to learn) on MAX and MED operations until proficiency. 2)
We then gradually introduced ADD operations, increasing their proportion in the training data from
0% to 100% over 1000 steps, while simultaneously phasing out MAX and MED.

Key findings from this experiment include:

• The model began learning ADD immediately upon its introduction, despite never seeing
mixed expressions (e.g., SUM with MAX or MED).

• Interestingly, the model started to forget MAX and MED once these operations were no
longer present in the training data.

• Crucially, we verified that the model retained its number-like embedding structure even after
MAX and MED were completely phased out.

Perhaps most strikingly, we found that even much smaller models (embedding size 24) could learn
ADD perfectly using this hybrid approach, mirroring the efficiency of MAX+MED+ADD models.
This resulted in a model capable of performing ADD operations that was 7x smaller than the PURE
ADD model, while relying on a more sophisticated, number-like internal representation.

101 102

Input Range (modulo)

105

Tr
an

sit
io

n
Po

in
t

10 14

20
28

40
56

80 113

160
22610

11

12 14

17

20

23

28
31

40

41

47 56

59

67

73

80

83

97

113 160

226

10

11

12
14

17

20

23

28

31

40

41
47

56

59
67

80

16011

12
19

20

31

32

43

44

59

60

71

72

83

84

101

102

109

110

11

12

19

20

31

32

43

44

59

60

71

72
84

102

109

110

11

12

19

20

31

32

44

add,max,median
add
add,prod
max,prod
add,max,prod
prod

Figure 6: Scaling of transition point vs input range (modulo) Learning PROD modulo prime
numbers (white font) is challenging due to its uniform distribution, but joint training with MAX
facilitates learning. ADD also benefits from combinations with PROD or MAX+MEDIUM, requiring
smaller models than when trained alone. Of note, is that mixing hard tasks such as ADD and PROD
at primes does not lead to easier learning. Also, ADD+MAX+PROD at primes is often harder than
PROD or ADD.

3.2 MODEL SCALING WITH MODULO N.

We also analyzed how the model size required to learn a given operation—or combination of
operations—depends not only on the nature of the task but also on the modulo. In other words, we
asked how the model scales when using different numerical systems. Models were trained on tasks
including PROD_n, ADD_n+MAX_n+PROD_n, MAX_n+PROD_n, ADD_n+PROD_n, and ADD_n,
and the transition point (defined as the smallest model reaching 80% of the learning curve) was
measured and plotted against the modulo n. To ensure sufficient training data, the dataset size was
scaled linearly with n (Fig. 6). We find that learning the PROD operation modulo prime numbers
is particularly challenging, likely due to the uniform distribution of values in the product table.
Interestingly, joint training with MAX facilitates learning of PROD. Similarly, ADD consistently
requires larger models when trained alone compared to ADD+PROD in the non-prime case across
all input range (modulo). For ADD, combining it with MAX and MED operations also accelerates
learning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

a b

Figure 7: Permutation - block diagonal with two 3x3 block matrix Learning 6x6 permutation sub-
group with two 3x3 diagonal blocks becomes significantly easier when jointly trained on operations
on the top and bottom blocks, leading to 5x smaller models mastering the 6x6 group operations.

3.3 PERMUTATION GROUPS

We generalize the ListOps framework to finite permutation groups by leveraging their closure under
group operations. To demonstrate this, we construct a task where models learn the product table
of 6 × 6 block-diagonal permutation matrices, composed of two 3 × 3 blocks. We define three
operations: OP, acting on the full matrix; P_TOP, acting only on the top block; and OP_BOTTOM,
acting only on the bottom block. The resulting block-diagonal group contains 36 elements, and the
task is expressed in ListOps notation, for example, OP(1,2,OP_TOP(2,3)), where each number
indexes a group element represented as a matrix.

We find that learning the three operations jointly, OP, OP_TOP, and OP_BOTTOM, facilitates learning
of OP, enabling a 6x reduction in model size (Fig. 7). This provides another example that the benefits
of joint training extend beyond arithmetic operations.

4 DISCUSSION AND LIMITATIONS

While the benefits of mixed task training have been known empirically, the exact mathematical
mechanism behind it not yet known. Our work elucidates some aspects of this effect. Our results
suggest benefiting from joint training often coincides with better representation learning for the tokens.
This may be due to secondary easier tasks restricting the search space for correlated embeddings
of related tokens, e.g. PROD and MAX revealing properties of numbers, leading to better pattern
matching for ADD. Such improved embeddings had also been observed in the “grokking” literature
(Power et al., 2022; Liu et al., 2022). It is possible that our models also go through grokking
eventually, if we continue the training. But the point still stands that even without long training, joint
training led to smaller models learning hard tasks.

Finally, our results on permutation groups suggest this effect is not restricted to arithmetic tasks.
Indeed, using Cayley’s theorem, which states every finite group is a permutation subgroup, we can
argue that understanding the effect of mixing tasks in the context of permutations could encompass a
large class of verifiable tasks on finite sets. We believe that a systematic study of permutation groups,
could reveal more about the conditions required for joint training to be beneficial. Additionally, many
operations, such as MED, and the OP_TOP we defined n permutations, are not group operations and
require more investigation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling
laws. arXiv preprint arXiv:2404.05405, 2024.

Neisarg Dave, Daniel Kifer, C Lee Giles, and Ankur Mali. Investigating symbolic capabilities of
large language models. arXiv preprint arXiv:2405.13209, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. Advances in neural
information processing systems, 36, 2024.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Andrej Karpathy. nanogpt. https://github.com/karpathy/nanoGPT, 2022. Accessed:
2024-09-24.

Andrei N Kolmogorov. Three approaches to the quantitative definition ofinformation’. Problems of
information transmission, 1(1):1–7, 1965.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. In The Twelfth International Conference on Learning
Representations, 2024.

Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications, volume 3.
Springer, 2008.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022.

Ekdeep Singh Lubana, Kyogo Kawaguchi, Robert P Dick, and Hidenori Tanaka. A percolation
model of emergence: Analyzing transformers trained on a formal language. arXiv preprint
arXiv:2408.12578, 2024.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2024.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Nikita Nangia and Samuel R Bowman. Listops: A diagnostic dataset for latent tree learning. arXiv
preprint arXiv:1804.06028, 2018.

Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities emerge
multiplicatively: Exploring diffusion models on a synthetic task. Advances in Neural Information
Processing Systems, 36:50173–50195, 2023.

10

https://github.com/karpathy/nanoGPT

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Flavio Petruzzellis, Alberto Testolin, and Alessandro Sperduti. Benchmarking gpt-4 on algorithmic
problems: A systematic evaluation of prompting strategies. arXiv preprint arXiv:2402.17396,
2024.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories
in mechanistic explanation of neural networks. Advances in neural information processing systems,
36:27223–27250, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

SUPPLEMENTAL MATERIAL

A ADDITIONAL PLOTS

A.1 MODULO 20

a

b

Figure 8: ADD+PROD embeddings and PCs. PCs colored based modulo 4.

a b c

Figure 9: ADD, PROD, ADD+PROD embeddings and PCs.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 MODULO PRIME - PROD

a

b

Figure 10: PCs PROD modulo prime vs not prim.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 MODULO 26

We define the following token vocabulary ABCDEFGHIJKLMNOPQRSTUVWXYZse()+-/%=>,
where letters are mapped to integers such that A→ 0, B→ 1, ..., Z→ 25.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

012345678910111213141516171819202122232425()MAXMINMEDSUM=
ENDSTART

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Pure MAX Avg. Embed Corr. of Acc. (99%) mean size=197K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

012345678910111213141516171819202122232425()MAXMINMEDSUM=
ENDSTART

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Mixed MAX Avg. Embed Corr. of Acc. (97%) mean size=299K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

012345678910111213141516171819202122232425()MAXMINMEDSUM=
ENDSTART

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Pure MED Avg. Embed Corr. of Acc. (98%) mean size=241K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

012345678910111213141516171819202122232425()MAXMINMEDSUM=
ENDSTART

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Mixed MED Avg. Embed Corr. of Acc. (96%) mean size=300K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

012345678910111213141516171819202122232425()MAXMINMEDSUM=
ENDSTART

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Pure SUM Avg. Embed Corr. of Acc. (97%) mean size=489K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(
)

MAX
MIN

MED
SUM

=
END

START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Mixed SUM Avg. Embed Corr. of Acc. (95%) mean size=360K

Figure 11: PCA of embeddings: We choose all models which reached over 95% test accuracy. Each
row shows the average correlation matrix and top PCs for models trained on either a single operation,
e.g. Pure+MAX, or all mixtures involving a given operation, e.g. Mixed+MAX. Again, pure SUM
does not show a discernible structure in the embeddings, whereas all cases do.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1 0 1
PC2

1.0

0.5

0.0

0.5

1.0

PC
1

1 0 1
PC3

1.0

0.5

0.0

0.5

1.0

PC
2

1 0 1
PC4

1.0

0.5

0.0

0.5

1.0

PC
3

1 0 1
PC5

1.0

0.5

0.0

0.5

1.0

PC
4

1 0 1
PC6

1.0

0.5

0.0

0.5

1.0

PC
5

Pure MIN Or MAX Mean PCA of Embed. Acc. (99%) size=197K

1 0 1
PC2

1.0

0.5

0.0

0.5

1.0

PC
1

1 0 1
PC3

1.0

0.5

0.0

0.5

1.0

PC
2

1 0 1
PC4

1.0

0.5

0.0

0.5

1.0

PC
3

1 0 1
PC5

1.0

0.5

0.0

0.5

1.0

PC
4

1 0 1
PC6

1.0

0.5

0.0

0.5

1.0

PC
5

Mixed MED No SUM Mean PCA of Embed. Acc. (98%) size=255K

0.5 0.0 0.5
PC2

0.50

0.25

0.00

0.25

0.50

PC
1

0.5 0.0 0.5
PC3

0.50

0.25

0.00

0.25

0.50

PC
2

0.5 0.0 0.5
PC4

0.50

0.25

0.00

0.25

0.50

PC
3

0.5 0.0 0.5
PC5

0.50

0.25

0.00

0.25

0.50

PC
4

0.5 0.0 0.5
PC6

0.50

0.25

0.00

0.25

0.50

PC
5

Pure SUM Mean PCA of Embed. Acc. (97%) size=489K

1 0 1
PC2

1.0

0.5

0.0

0.5

1.0

PC
1

1 0 1
PC3

1.0

0.5

0.0

0.5

1.0

PC
2

1 0 1
PC4

1.0

0.5

0.0

0.5

1.0

PC
3

1 0 1
PC5

1.0

0.5

0.0

0.5

1.0

PC
4

1 0 1
PC6

1.0

0.5

0.0

0.5

1.0

PC
5

Mixed SUM Mean PCA of Embed. Acc. (95%) size=364K

Figure 12: PCA of embeddings: We choose all models which reached over 95% test accuracy. Each
row shows the average correlation matrix and top PCs for models trained on either a single operation,
e.g. Pure+MAX, or all mixtures involving a given operation, e.g. Mixed+MAX. Again, pure SUM
does not show a discernible structure in the embeddings, whereas all cases do.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1 0 1
PC2

1.0

0.5

0.0

0.5

1.0

PC
1

1 0 1
PC3

1.0

0.5

0.0

0.5

1.0

PC
2

1 0 1
PC4

1.0

0.5

0.0

0.5

1.0

PC
3

1 0 1
PC5

1.0

0.5

0.0

0.5

1.0

PC
4

1 0 1
PC6

1.0

0.5

0.0

0.5

1.0

PC
5

Pure MIN Or MAX Mean PCA of Embed. Acc. (99%) size=197K

1 0 1
PC2

1.0

0.5

0.0

0.5

1.0

PC
1

1 0 1
PC3

1.0

0.5

0.0

0.5

1.0

PC
2

1 0 1
PC4

1.0

0.5

0.0

0.5

1.0

PC
3

1 0 1
PC5

1.0

0.5

0.0

0.5

1.0

PC
4

1 0 1
PC6

1.0

0.5

0.0

0.5

1.0

PC
5

Mixed MED No SUM Mean PCA of Embed. Acc. (98%) size=255K

0.5 0.0 0.5
PC2

0.50

0.25

0.00

0.25

0.50

PC
1

0.5 0.0 0.5
PC3

0.50

0.25

0.00

0.25

0.50

PC
2

0.5 0.0 0.5
PC4

0.50

0.25

0.00

0.25

0.50

PC
3

0.5 0.0 0.5
PC5

0.50

0.25

0.00

0.25

0.50

PC
4

0.5 0.0 0.5
PC6

0.50

0.25

0.00

0.25

0.50

PC
5

Pure SUM Mean PCA of Embed. Acc. (97%) size=488K

1 0 1
PC2

1.0

0.5

0.0

0.5

1.0

PC
1

1 0 1
PC3

1.0

0.5

0.0

0.5

1.0

PC
2

1 0 1
PC4

1.0

0.5

0.0

0.5

1.0

PC
3

1 0 1
PC5

1.0

0.5

0.0

0.5

1.0

PC
4

1 0 1
PC6

1.0

0.5

0.0

0.5

1.0

PC
5

Mixed SUM Mean PCA of Embed. Acc. (95%) size=364K

Figure 13: PCA of embeddings Odd vs Even: Same plot as above, only odd numbers colored red
and even colored blue. Mixed SUM shows a clear odd-even separation in a few of the top PCs. Such
a separation is not clearly observed in other cases. Interestingly, Pure SUM approximately separates
odd-even, suggesting such separation may play a role in its algorithm.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(
)

MAX
MIN

MED
SUM

=
END

START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Pure MIN Or MAX Avg. Embed Corr. of Acc. (99%) mean size=199K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(
)

MAX
MIN

MED
SUM

=
END

START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Mixed MED No SUM Avg. Embed Corr. of Acc. (98%) mean size=255K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(
)

MAX
MIN

MED
SUM

=
END

START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Mixed SUM Avg. Embed Corr. of Acc. (95%) mean size=360K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T
012345678910111213141516171819202122232425()MAXMINMEDSUM=

ENDSTART

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3
PC

2

PC4
PC

3

PC5

PC
4

PCA of Digit Embeddings
Pure SUM Avg. Embed Corr. of Acc. (97%) mean size=489K

Figure 14: PCA of embeddings: We choose all models which reached over 90% test accuracy. Each
row shows the average correlation matrix and top PCs for models trained on either a single operation,
e.g. Pure MAX, or all mixtures involving a given operation, e.g. Mixed SUM. Interestingly, pure
SUM does not show a discernible structure in the embeddings, whereas all other cases do. Notably,
Mixed SUM models exhibit a prominent odd-even separation in PC5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y

MAX
Logistic fit
Transit.: 8.07e+03

MIN
Logistic fit
Transit.: 9.05e+03

MAX+MED
Logistic fit
Transit.: 1.54e+04

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y

MED
Logistic fit
Transit.: 1.61e+04

MAX+MIN
Logistic fit
Transit.: 1.61e+04

MED+MIN
Logistic fit
Transit.: 1.64e+04

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+MED+MIN
Logistic fit
Transit.: 1.81e+04

MAX+MED+MIN+SUM
Logistic fit
Transit.: 2.84e+04

MED+MIN+SUM
Logistic fit
Transit.: 3.28e+04

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+MIN+SUM
Logistic fit
Transit.: 3.29e+04

MAX+MED+SUM
Logistic fit
Transit.: 3.54e+04

MIN+SUM
Logistic fit
Transit.: 3.86e+04

103 104 105 106

Number of Parameters

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+SUM
Logistic fit
Transit.: 4.12e+04

103 104 105 106

Number of Parameters

MED+SUM
Logistic fit
Transit.: 4.16e+04

103 104 105 106

Number of Parameters

SUM
Logistic fit
Transit.: 2.27e+05

Base 26 Listops Logistic Fit (20K steps, no early stopping)

104

105

Tr
an

sit
io

n
Po

in
t

M
AX

M
IN

M
AX

+M
ED

M
ED

M
AX

+M
IN

M
ED

+M
IN

M
AX

+M
ED

+M
IN

M
AX

+M
ED

+M
IN

+S
UM

M
ED

+M
IN

+S
UM

M
AX

+M
IN

+S
UM

M
AX

+M
ED

+S
UM

M
IN

+S
UM

M
AX

+S
UM

M
ED

+S
UM

SU
M

Base 26 Logistic Fit Midpoint by Operation

Figure 15: Emergence of abilities in ListOps: Each plot shows the same group of small transformer
models trained on a different mix of the four operations MAX, MIN, MED, and SUM. Red dots are
models reaching more than 50% accuracy, and blue dots are less than 50%. The dashed green line is
a logistic fit, and the yellow star indicates the transition point at 50%. The x-axis is the model size
(number of parameters), and the plots are sorted in ascending order of transition points. The bottom
panel shows a bar plot of the model sizes at the transition points, with each group distinguished by a
different color.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y

MAX
Logistic fit
Transit.: 5.55e+03

MIN
Logistic fit
Transit.: 7.14e+03

MED+MIN
Logistic fit
Transit.: 1.01e+04

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y

MED
Logistic fit
Transit.: 1.06e+04

MAX+MED
Logistic fit
Transit.: 1.11e+04

MAX+MIN
Logistic fit
Transit.: 1.16e+04

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y

MAX+MED+MIN
Logistic fit
Transit.: 1.17e+04

MAX+MED+MIN+SUM
Logistic fit
Transit.: 1.6e+04

MED+MIN+SUM
Logistic fit
Transit.: 1.94e+04

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+SUM
Logistic fit
Transit.: 1.99e+04

MIN+SUM
Logistic fit
Transit.: 1.99e+04

MAX+MED+SUM
Logistic fit
Transit.: 2.17e+04

103 104 105 106

Number of Parameters

0.0

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+MIN+SUM
Logistic fit
Transit.: 2.19e+04

103 104 105 106

Number of Parameters

MED+SUM
Logistic fit
Transit.: 2.54e+04

103 104 105 106

Number of Parameters

SUM
Logistic fit
Transit.: 1.15e+05

Base 26 Listops Logistic Fit (40K steps, no early stopping)

104

105

Tr
an

sit
io

n
Po

in
t

M
AX

M
IN

M
ED

+M
IN

M
ED

M
AX

+M
ED

M
AX

+M
IN

M
AX

+M
ED

+M
IN

M
AX

+M
ED

+M
IN

+S
UM

M
ED

+M
IN

+S
UM

M
AX

+S
UM

M
IN

+S
UM

M
AX

+M
ED

+S
UM

M
AX

+M
IN

+S
UM

M
ED

+S
UM

SU
M

Base 26 Logistic Fit Midpoint by Operation

Figure 16: Emergence of abilities in ListOps, 40k steps: Long training. Each plot shows the same
group of small transformer models trained on a different mix of the four operations MAX, MIN,
MED, and SUM. Red dots are models reaching more than 50% accuracy, and blue dots are less than
50%. The dashed green line is a logistic fit, and the yellow star indicates the transition point at 50%.
The x-axis is the model size (number of parameters), and the plots are sorted in ascending order of
transition points. The bottom panel shows a bar plot of the model sizes at the transition points, with
each group distinguished by a different color.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(
)

MAX
MIN

MED
SUM

=
END

START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Pure MIN Or MAX Avg. Embed Corr. of Acc. (99%) mean size=199K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(
)

MAX
MIN

MED
SUM

=
END

START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Mixed MED No SUM Avg. Embed Corr. of Acc. (98%) mean size=255K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(
)

MAX
MIN

MED
SUM

=
END

START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2
PC

1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Mixed SUM Avg. Embed Corr. of Acc. (95%) mean size=360K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

012345678910111213141516171819202122232425()MAXMINMEDSUM=
ENDSTART

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
Pure SUM Avg. Embed Corr. of Acc. (97%) mean size=489K

Figure 17: PCA of embeddings: We choose all models which reached over 90% test accuracy. Each
row shows the average correlation matrix and top PCs for models trained on either a single operation,
e.g. Pure MAX, or all mixtures involving a given operation, e.g. Mixed SUM. Interestingly, pure
SUM does not show a discernible structure in the embeddings, whereas all other cases do. Notably,
Mixed SUM models exhibit a prominent odd-even separation in PC5.

A.4 MODULO 10

We conducted the same experiments also on mod 10. The smaller number of numbers makes definitive
statements about some of the patterns more challenging. But all the patterns we observed in mod 26
also have parallels in mod 10, including the prominent odd-even split for operations involving SUM.
Token vocabulary: %()+-/0123456789=>es

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

0 1 2
3

4
5

6
789

01 2
3

4
5

6
7 8 9

01 2
3

4
5
6
7 89

PC3

PC
2

01
2

3
45

6
7

8 9 01
2

3
45

6
7

89

PC4

PC
3

01
2

3 4
5
67

8
9

PCA of Digit Embeddings
Pure MAX Avg. Embed Corr. of Acc. (100%) mean size=244K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

0 1 2
3

4
5

6
789

012
3
4

5
6

789

0 12
3

4
5

6
78 9

PC3

PC
2

01
2

3
4 5

6
7

89 0 1
2

3
4 5

6
7

8 9

PC4

PC
3 0 12

34

5

6
7

8 9

PCA of Digit Embeddings
Mixed MAX Avg. Embed Corr. of Acc. (99%) mean size=316K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

01 2
3

4
5

6
789

012
3
4

5
6

789

012
3

4
5

6
7 8 9

PC3

PC
2

01
2

3
4 5

6
7

89 01
2
3

4 5
6

7
8 9

PC4

PC
3 01

2
3 4

5
6

7

8 9

PCA of Digit Embeddings
Pure MED Avg. Embed Corr. of Acc. (99%) mean size=297K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

01 2
3

4
5

6
789

012
3

4
5

6
789

01 2
3

4
5

6
7 89

PC3

PC
2

01
2

3
4 5

6

7
89 01

2
3

45
6

7
89

PC4

PC
3 01

2
3 4

5
6

7

89

PCA of Digit Embeddings
Mixed MED Avg. Embed Corr. of Acc. (99%) mean size=323K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

0

1

2

3
4

5 6

7

8

9

0

1

2

3
4

5 6

7

8

9

0

1

2

3
4

5 6

7

8

9

PC3

PC
2

0 1
2

3

4

5
67

89

0 1
2
3

4

5
67

89

PC4

PC
3

0
1

2

3

4

5

67
89

PCA of Digit Embeddings
Pure SUM Avg. Embed Corr. of Acc. (99%) mean size=775K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

0 1 2
3

4
5

6
789

0 12
3

4
5

6
78 9

01 2
3

4
5
6
7 89

PC3

PC
2

0 1
2

3
4 5

6
7

8 9 01
2

3
45

6
7

89

PC4

PC
3

0

1
2

3

4
5

6

7
8

9

PCA of Digit Embeddings
Mixed SUM Avg. Embed Corr. of Acc. (99%) mean size=342K

Figure 18: PCA of embeddings: We choose all models which reached over 95% test accuracy. Each
row shows the average correlation matrix and top PCs for models trained on either a single operation,
e.g. Pure+MAX, or all mixtures involving a given operation, e.g. Mixed+MAX. Again, pure SUM
does not show a discernible structure in the embeddings, whereas all cases do.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.5 0.0 0.5
PC2

0.50

0.25

0.00

0.25

0.50

PC
1

0 1 2
3

4

5

6
789

01 2
3

4

5

6
7 8 9

01 2
3

4

5

6
7 89

0 12
3

4

5

6
7 89

0 12
3

4

5

6
78 9

0.5 0.0 0.5
PC3

0.50

0.25

0.00

0.25

0.50

PC
2

0
1

2
3

45
6

7

8 9 0
1

2
3

45
6

7

89 0
1

2
3
45

6

7

89 0
1

2
3

45
6

7

8 9

0.5 0.0 0.5
PC4

0.50

0.25

0.00

0.25

0.50

PC
3

01
2

3
4

5
67

8
9

0 1
2

3
4

5
67

8
9

0 1
2

3
4

5
6 7

8
9

0.5 0.0 0.5
PC5

0.50

0.25

0.00

0.25

0.50

PC
4 0

1
2

3

4

5 67

8

9
0

1
2

3

4

5 6 7

8

9

0.5 0.0 0.5
PC6

0.50

0.25

0.00

0.25

0.50

PC
5 0

1
2

3 4

5

6

7
8 9

Pure MAX Mean PCA of Embed. Acc. (100%) size=244K

0.5 0.0 0.5
PC2

0.4

0.2

0.0

0.2

0.4

PC
1

0 1 2
3

4

5
6

789

012
3
4

5
6

789

0 12
3

4

5
6

78 9

0 1 2
3

4

5
6

789

0 12
3

4

5
6

78 9

0.5 0.0 0.5
PC3

0.4

0.2

0.0

0.2

0.4

PC
2

0
1

2

3
4 5

6

7

89 0
1

2

3
4 5

6

7

8 9 0
1

2

3
45
6

7

89 0
1

2

3
45

6

7

8 9

0.5 0.0 0.5
PC4

0.4

0.2

0.0

0.2

0.4

PC
3 0 1

2

34

5

6
7

8
9

0 1
2

34

5

6
7

8
9

0 1
2

34

5

6
7

8
9

0.5 0.0 0.5
PC5

0.4

0.2

0.0

0.2

0.4

PC
4 0

1

2

3

4

5

6
7

8

9
0

1

2

3

4

5

6
7

8

9

0.5 0.0 0.5
PC6

0.4

0.2

0.0

0.2

0.4

PC
5

0

1
2

3

45 6

7

8 9

Mixed MAX Mean PCA of Embed. Acc. (99%) size=316K

0.5 0.0 0.5
PC2

0.50

0.25

0.00

0.25

0.50

PC
1

01 2
3

4
5

6
789

0 12
3

4
5

6
789

012
3

4
5

6
7 8 9

0 12
3

4
5

6
78 9

012
3

4
5

6
789

0.5 0.0 0.5
PC3

0.50

0.25

0.00

0.25

0.50

PC
2

0 1

2

3
4 5

6

7
8
9 01

2

3
4 5

6

7
8

9 0 1

2

3
4 5

6

7
8

9 01

2

3
4 5

6

7
8

9

0.5 0.0 0.5
PC4

0.50

0.25

0.00

0.25

0.50

PC
3 01

2

3 4

5

6
7

8 9

0 1
2

34

5

6
7

8 9

01
2

3 4

5

6
7

89

0.5 0.0 0.5
PC5

0.50

0.25

0.00

0.25

0.50

PC
4

0
1

2 3
4

5

6
7

8

9 0
1

23
4

5

6
7

8

9

0.5 0.0 0.5
PC6

0.50

0.25

0.00

0.25

0.50

PC
5

0
12

3

4

5
6

7

8

9

Pure MED Mean PCA of Embed. Acc. (99%) size=297K

0.5 0.0 0.5
PC2

0.4

0.2

0.0

0.2

0.4

PC
1

0 1 2
3

4

5

6
789

012
3

4

5

6
789

01 2
3

4

5

6
7 89

01 2
3

4

5

6
789

0 12
3

4

5

6
78 9

0.5 0.0 0.5
PC3

0.4

0.2

0.0

0.2

0.4

PC
2

01
2

3
4 5

6

7
89 01

2

3
45

6

7
89 01

2

3
45

6

7
89 0 1

2

3
45

6

7
8 9

0.5 0.0 0.5
PC4

0.4

0.2

0.0

0.2

0.4

PC
3

01
2

3 4

5

6

7

8
9

01
2

34

5

6

7

8
9

0 1
2

34

5

6

7

8
9

0.5 0.0 0.5
PC5

0.4

0.2

0.0

0.2

0.4

PC
4 0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0.5 0.0 0.5
PC6

0.4

0.2

0.0

0.2

0.4

PC
5

0 1

2
3

4

5

6

7

8

9

Mixed MED Mean PCA of Embed. Acc. (99%) size=323K

0.0 0.5
PC2

0.25

0.00

0.25

0.50

0.75

PC
1

0

1

2

3

4
5

6

7

8

9

0

1

2

3

4
5

6

7

8

9

0

1

2

3

4
5

6

7

8

9

0

1

2

3

4
5

6

7

8

9

0

1

2

3

4
5

6

7

8

9

0.0 0.5
PC3

0.25

0.00

0.25

0.50

0.75

PC
2

0 1
2

3

4

5
6

7

89

0 1
2

3

4

5
6

7

89

0 1
2

3

4

5
6
7

89

01
2

3

4

5
6

7

89

0.0 0.5
PC4

0.25

0.00

0.25

0.50

0.75

PC
3

0

1

2

3

4

5

67

89
0

1

2

3

4

5

67

89
0

1

2

3

4

5

67

89

0.0 0.5
PC5

0.25

0.00

0.25

0.50

0.75

PC
4

0

1

23

4
5

6

7

89 0

1

2 3

4
5

6

7

89

0.0 0.5
PC6

0.25

0.00

0.25

0.50

0.75

PC
5

0

1 2
3

4

5

67

8

9

Pure SUM Mean PCA of Embed. Acc. (99%) size=775K

0.5 0.0 0.5
PC2

0.4

0.2

0.0

0.2

0.4

PC
1

0 1 2
3

4

5
6

789

0 12
3

4

5
6

78 9

01 2
3

4

5
6
7 89

0 1 2
3

4

5
6

789

0 12
3

4

5
6

78 9

0.5 0.0 0.5
PC3

0.4

0.2

0.0

0.2

0.4

PC
2

0
1

2

3
4 5

6

7
8 9 0

1

2

3
45

6

7
89 0

1

2

3
45

6

7
89 0

1

2

3
45

6

7
8 9

0.5 0.0 0.5
PC4

0.4

0.2

0.0

0.2

0.4

PC
3

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0.5 0.0 0.5
PC5

0.4

0.2

0.0

0.2

0.4

PC
4

0
1

23

4

5 6 7

8
9

0
1

2 3

4

5 67

8
9

0.5 0.0 0.5
PC6

0.4

0.2

0.0

0.2

0.4

PC
5

0
1

2

3

45

6

7

8

9

Mixed SUM Mean PCA of Embed. Acc. (99%) size=342K

Figure 19: PCA of embeddings: We choose all models which reached over 95% test accuracy. Each
row shows the average correlation matrix and top PCs for models trained on either a single operation,
e.g. Pure+MAX, or all mixtures involving a given operation, e.g. Mixed+MAX. Again, pure SUM
does not show a discernible structure in the embeddings, whereas all cases do.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.5

1.0

Te
st

 A
cc

ur
ac

y

MAX
Logistic fit
Transit.: 9.53e+03

MIN
Logistic fit
Transit.: 9.89e+03

MED
Logistic fit
Transit.: 1.99e+04

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+MED
Logistic fit
Transit.: 2.21e+04

MED+MIN
Logistic fit
Transit.: 2.29e+04

MAX+MIN
Logistic fit
Transit.: 2.58e+04

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+MED+MIN
Logistic fit
Transit.: 2.76e+04

MAX+SUM
Logistic fit
Transit.: 3.37e+04

MIN+SUM
Logistic fit
Transit.: 3.61e+04

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+MED+SUM
Logistic fit
Transit.: 3.71e+04

MAX+MED+MIN+SUM
Logistic fit
Transit.: 3.89e+04

MED+MIN+SUM
Logistic fit
Transit.: 4.05e+04

103 104 105 106

Number of Parameters

0.5

1.0

Te
st

 A
cc

ur
ac

y MAX+MIN+SUM
Logistic fit
Transit.: 4.28e+04

103 104 105 106

Number of Parameters

MED+SUM
Logistic fit
Transit.: 4.43e+04

103 104 105 106

Number of Parameters

SUM
Logistic fit
Transit.: 2.43e+05

Continuous Logistic Fit (20K steps, no early stopping)

104

105

Tr
an

sit
io

n
Po

in
t

M
AX

M
IN

M
ED

M
AX

+M
ED

M
ED

+M
IN

M
AX

+M
IN

M
AX

+M
ED

+M
IN

M
AX

+S
UM

M
IN

+S
UM

M
AX

+M
ED

+S
UM

M
AX

+M
ED

+M
IN

+S
UM

M
ED

+M
IN

+S
UM

M
AX

+M
IN

+S
UM

M
ED

+S
UM

SU
M

Logistic Fit Midpoint by Operation

Figure 20: Emergence of of abilities in ListOps, Mod 10: Each plot shows the same group of small
transformer models trained on different variants of ListOps. Each variant uses a different mix of the
four operations MAX, MIN, MED, SUM. Red dots are model reaching more than 50% accuracy,
and blue are less than 50%. The dashed green line is a logistic fit and the yellow star indicates the
transition point at 50%. The x axis is the model size and the plots are sorted in ascending order
of transition points. The bottom is a bar plot showing the model size at the transition point. We
observe that SUM is a clear outlier, with models requiring significantly more parameters to learn
SUM. Surprisingly, combining SUM with other operations dramatically reduces the transition point,
with model less than half the size easily reaching 100% accuracy.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

0 1 2
3

4
5

6
789

01 2
3

4
5

6
7 8 9

01 2
3

4
5

6
7 89

PC3

PC
2

01
2

3
45

6
7

8 9 01
2

3
456

7
89

PC4

PC
3

01
2

3 4
5

6 7
8

9

PCA of Digit Embeddings
Pure MAX Avg. Embed Corr. of Acc. (100%) mean size=256K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

0 1 2
3

4
5

6
789

01 2
3

4
5

6
7 8 9

0 12
3

4
5

6
78 9

PC3

PC
2

01
2

3
45

6
7

8 9 0 1
2

3
4 5

6
7

8 9

PC4

PC
3

0 12

3

4 5

6

7
8

9

PCA of Digit Embeddings
Mixed MAX Avg. Embed Corr. of Acc. (99%) mean size=341K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

01 2
3

4
5

6
789

012
3
4

5
6

789

012
3

4
5

6
7 8 9

PC3

PC
2

01
2

3
4 5

6
7

89 01
2

3
4 5

6
7

8 9

PC4

PC
3 01

2
3 4

5
6

7

8 9

PCA of Digit Embeddings
Pure MED Avg. Embed Corr. of Acc. (100%) mean size=321K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

01 2
3

4
5

6
789

01 2
3
4

5
6

7 89

0 12
3

4
5

6
7 8 9

PC3

PC
2

01
2

3
45

6

7
89 0 1

2

3
4 5

6

7
8 9

PC4

PC
3

0 1

2
34

56
7

8
9

PCA of Digit Embeddings
Mixed MED Avg. Embed Corr. of Acc. (99%) mean size=348K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

0

1

2

3
4

5
6

7

8

9

0

1

2

3
4

5
6

7

8

9

0

1

2

3
4

5
6

7

8

9

PC3

PC
2

0
1

2

3

4

5

67 89

0
1

2

3

4

5

67 8 9

PC4

PC
3

0 1
2

3
4

5 67

8 9

PCA of Digit Embeddings
Pure SUM Avg. Embed Corr. of Acc. (99%) mean size=799K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

PC2

PC
1

0 1 2
3

4
5

6
789

01 2
3

4
5

6
7 89

012
3

4
5

6
789

PC3

PC
2

01 2

3
45

6

7
89 01

2

3
4 5

6

7
89

PC4

PC
3 0

1

2

3

4

5

6

7

8

9

PCA of Digit Embeddings
Mixed SUM Avg. Embed Corr. of Acc. (99%) mean size=372K

Figure 21: PCA of embeddings with the same sample size (67): We choose the smallest 67 models
which reached over 95% test accuracy. Each row shows the average correlation matrix and top PCs
for models trained on either a single operation, e.g. Pure+MAX, or all mixtures involving a given
operation, e.g. Mixed+MAX. We observe that the PCs get slightly distorted with the smaller sample
size compared to fig. 19, but the overall structure stays the same. Again, pure SUM does not show a
discernible structure in the embeddings, whereas all cases do.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

MAX MIN MED MAX+MEDMED+MINMAX+MINMAX+MED+MINMAX+SUMMIN+SUMMAX+MED+SUMMAX+MED+MIN+SUMMED+MIN+SUMMAX+MIN+SUMMED+SUM SUM
104

105

M
id

po
in

t (
x0

)

Continuous Logistic Fit Parameters by Operation

MAX MIN MED MAX+MEDMED+MINMAX+MINMAX+MED+MINMAX+SUMMIN+SUMMAX+MED+SUMMAX+MED+MIN+SUMMED+MIN+SUMMAX+MIN+SUMMED+SUM SUM
0

10

20

30

St
ee

pn
es

s (
k)

MAX MIN MED MAX+MEDMED+MINMAX+MINMAX+MED+MINMAX+SUMMIN+SUMMAX+MED+SUMMAX+MED+MIN+SUMMED+MIN+SUMMAX+MIN+SUMMED+SUM SUM
0.6

0.8

1.0

M
ax

 V
al

ue
 (L

)

MAX
MIN

MED

MAX+MED

MED
+MIN

MAX+MIN

MAX+MED
+MIN

MAX+SU
M

MIN+SU
M

MAX+MED
+SU

M

MAX+MED
+MIN+SU

M

MED
+MIN+SU

M

MAX+MIN+SU
M

MED
+SU

M
SU

M

Operation

0.00

0.05

0.10

0.15

0.20

Of
fs

et
 (y

0)

Figure 22: Parameters of continuous logistic regression fitting accuracy to number of parameters
(No Early stopping).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 23: Evolution of training loss, accuracy, and principal components of cosine similarities
in the embedding layer. Modulo 10 ListOps. The top main figure shows the evolution of training
loss (solid lines) and test accuracy (dashed lines) for models with an embedding dimension of 128
and 3 layers, trained either on SUM-only data (blue) or on mixed MAX+MED+SUM data (red).
Curves represent the mean across three independent runs, with shaded regions indicating one standard
deviation. All models were trained for 20000 iterations. The red and blue boxes beneath the main plot
display the average embedding representations at different training stages (indicated by vertical gray
dashed lines). PCA reveals that models trained on MAX+MED+SUM data progressively develop
a structured representation of numerical concepts, accompanied by a steady decrease in loss. In
contrast, models trained solely on SUM data exhibit no clear structure in the embedding space and
show long plateaus in the loss curve. This suggests that discovering an effective algorithm for the
SUM operation in isolation requires significantly more exploration during training, in contrast to the
more efficient joint training setting.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 24: Evolution of training loss, accuracy, and PCs of cosine similarities in the embedding
layer. ListOps base 10. The top main figure shows the evolution of training loss (solid lines) and test
accuracy (dashed lines) for models with an embedding dimension of 128 and 3 layers, trained either
on SUM-only data (blue) or on mixed MAX+MED+SUM data (red). Curves represent the mean
across three independent runs, with shaded regions indicating one standard deviation. All models
were trained for 20000 iterations. The red and blue boxes beneath the main plot display PCs revealing
that models trained on MAX+MED+SUM data progressively develop a structured representation of
numerical concepts, accompanied by a steady decrease in loss. In contrast, models trained solely on
SUM data exhibit no clear structure in the embedding space and show long plateaus in the loss curve.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B PERMUTATION GROUPS.

0 2 4

0

1

2

3

4

5

#0

0 2 4

0

1

2

3

4

5

#1

0 2 4

0

1

2

3

4

5

#2

0 2 4

0

1

2

3

4

5

#3

0 2 4

0

1

2

3

4

5

#4

0 2 4

0

1

2

3

4

5

#5

0 2 4

0

1

2

3

4

5

#6

0 2 4

0

1

2

3

4

5

#7

0 2 4

0

1

2

3

4

5

#8

0 2 4

0

1

2

3

4

5

#9

0 2 4

0

1

2

3

4

5

#10

0 2 4

0

1

2

3

4

5

#11

0 2 4

0

1

2

3

4

5

#12

0 2 4

0

1

2

3

4

5

#13

0 2 4

0

1

2

3

4

5

#14

0 2 4

0

1

2

3

4

5

#15

0 2 4

0

1

2

3

4

5

#16

0 2 4

0

1

2

3

4

5

#17

0 2 4

0

1

2

3

4

5

#18

0 2 4

0

1

2

3

4

5

#19

0 2 4

0

1

2

3

4

5

#20

0 2 4

0

1

2

3

4

5

#21

0 2 4

0

1

2

3

4

5

#22

0 2 4

0

1

2

3

4

5

#23

0 2 4

0

1

2

3

4

5

#24

0 2 4

0

1

2

3

4

5

#25

0 2 4

0

1

2

3

4

5

#26

0 2 4

0

1

2

3

4

5

#27

0 2 4

0

1

2

3

4

5

#28

0 2 4

0

1

2

3

4

5

#29

0 2 4

0

1

2

3

4

5

#30

0 2 4

0

1

2

3

4

5

#31

0 2 4

0

1

2

3

4

5

#32

0 2 4

0

1

2

3

4

5

#33

0 2 4

0

1

2

3

4

5

#34

0 2 4

0

1

2

3

4

5

#35

Figure 25: Permutation - block diagonal with two 3x3 block matrix Red indicates a cycle sub-
block, while blue indicates a non-cycle block.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Operation Table

0

5

10

15

20

25

30

35

Figure 26: Operation table (OP) - block diagonal with two 3x3 block matrix

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Operation Table Bottom

0

5

10

15

20

25

30

35

Figure 27: Operation table (OP_BOTTOM) - block diagonal with two 3x3 block matrix

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Operation Table Top

0

5

10

15

20

25

30

35

Figure 28: Operation table (OP_TOP) - block diagonal with two 3x3 block matrix

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C TRIPLET EXPERIMENTS

To increase control in our experimental setup, we train models only on triplet inputs 29. We construct
1000 unique triplet samples, splitting them into 900 for training and 100 for testing.

For joint training on the MAX, MED, and SUM operations, we use a combined training set of 2700
triplets (900 per operation) and evaluate performance on the same 100 excluded SUM samples. For a
fair comparison, we also create a balanced training set of 900 samples by selecting 300 examples
from each of MAX, MED, and SUM.

With early stopping, models trained on the full 2700-sample mixed dataset achieve 100% accuracy on
the SUM test set, while those trained on only 900 SUM samples reach approximately 50% accuracy.
When trained for 50k steps without early stopping, models eventually learn the task, but SUM requires
significantly more parameters—consistent with earlier observations. These results highlight that
learning the SUM operation in isolation is more challenging and slower (Fig. 29).

Figure 29: Training only on triplet ListOps data. The first row shows the same group of small
transformer models trained on different variants of the triplet dataset. Each training set is constructed
from 900 unique triplets. The 2700 MAX+MED+SUM dataset includes all 900 triplets, each labeled
with three different operations. The 900 MAX+MED+SUM dataset contains 300 examples per
operation, randomly sampled from the 2700 set. The 900 SUM dataset contains only the 900 unique
SUM triplets. In all cases, the test set comprises the same held-out 100 SUM triplets. Red dots
indicate models that exceed 50% test accuracy, while blue dots denote models that fall below this
threshold. The dashed green line represents a logistic fit, and the yellow star marks the transition
point at 50% accuracy. The x-axis shows the model size (in number of parameters), and subplots
are ordered by increasing transition threshold. The red and blue boxes beneath the main plot display
the average PCA embedding representations at selected regions; red corresponds to high-accuracy
models, while blue indicates low-accuracy ones. Models trained on the combined MAX+MED+SUM
task develop a discernible structure during training, unlike models trained solely on SUM. Notably,
augmenting MAX and MED data with only 300 SUM samples allows the model to achieve 50%
accuracy on a held-out 100 SUM sample test set, using a model 10× smaller than those trained on
900 SUM samples alone, which only reach ≈ 80% accuracy.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D RELATED WORKS

Scaling laws for language models characterize how validation loss scales with model size (number
of parameters) Hoffmann et al. (2022), compute (FLOPs) Muennighoff et al. (2024), dataset size
(number of examples) Hestness et al. (2017), and information capacity (in bits) Allen-Zhu & Li
(2024), offering a foundation for model design. However, this perspective overlooks critical aspects
of learning. Our results show that the composition of the training data—specifically, the mix of
tasks—can significantly alter what and how a model learns. Even models with identical sizes can
follow different learning trajectories depending on the training setup, suggesting that task structure
shapes the internal algorithms that emerge during training.

Joint training Joint training on compositional tasks allows models to acquire the foundational primi-
tives necessary for solving complex operations, often leading to abrupt performance improvements
once all constituent skills are learned Lubana et al. (2024); Okawa et al. (2023). Similarly, training on
multiple arithmetic tasks has been shown to improve accuracy on individual operations, highlighting
the benefits of shared representations for compositional generalization Lee et al. (2024).

Number representation Neural networks trained on modular addition tasks develop structured
embedding spaces that reflect underlying arithmetic operations. Mechanistic analyses have shown
that small models can exhibit ordered number patterns and implement distinct algorithmic strategies,
depending on initialization and hyperparameters Zhong et al. (2023). Some models converge to known
solutions such as the Clock algorithm, while others discover novel procedures like the Pizza algorithm,
illustrating the algorithmic diversity that can emerge from fixed training data. Periodic structures in
the embeddings can be characterized via Fourier analysis, offering additional interpretability Nanda
et al. (2023). These behaviors have also been linked to grokking dynamics, where models abruptly
generalize after extended training, accompanied by the emergence of structured embedding patterns
Power et al. (2022); Liu et al. (2022).

In general language models performs poorly on symbolic mathematical tasks Frieder et al. (2024);
Dziri et al. (2024); Dave et al. (2024) such as the ListOps dataset Nangia & Bowman (2018) used
in this study. Models often struggle with generalization, tending to memorize tasks rather than
simulate the underlying algorithms. While mathematical tasks prove challenging for large language
models to learn, they provide a controllable playground to test how models learn different tasks
and to evaluate their accuracy quantitatively. Furthermore it allows us to tune the task difficulty by
combining different operations.

Here, we investigate how language models acquire arithmetic skills by training small models on
the ListOps dataset, which enables explicit evaluation through structured mathematical expressions.
Adopting a bottom-up approach, we find that models learn to solve these tasks once the number
of trainable parameters surpasses a critical threshold. This threshold shifts with the difficulty of
the target operation (MAX = MIN < MED < SUM), indicating a dependency on task difficulty.
Surprisingly, joint training on multiple operations often facilitates learning, outperforming models
trained on individual operations (e.g. MAX+MED+SUM < SUM). This suggests that task diversity
can ease optimization by promoting shared representations.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

E DATA AND PROCESSING

E.1 DATASET NOTATION

ListOps consists of nested mathematical equations involving operations such as min, max, median,
and sum modulo 10 applied to single-digit numbers (0-9). It uses the Polish notation: (operation,
[inputs]) For example: max(3,min(7,4,9))=4.

max(3,min(7,4,9))=4 ⇒ Polish: (max,3,(min,7,4,9))=4

To disentangle any complexity arising from tokenization we further simplify these expression by
representing the by symbols: ’+’ for max, ’−’ for min, ’/’ for median, and ’%’ for sum modulo 10.
For example:

(max,3,(min,7,4,9))=4 ⇒ Our notation: s(+3(-749))=4e

In this notation, ’s’ denotes the start of the expression, ’e’ marks the end, and parentheses indicate
nesting levels.

E.2 TOKENIZATION

We employ a character-based tokenization strategy for processing ListOps expressions. This approach
offers several advantages:

1. Simplicity: Character-level tokenization eliminates the need for complex tokenization rules
or a large vocabulary.

2. Generalizability: It allows the model to potentially generalize to unseen number combina-
tions or deeper nesting levels.

Each character in the ListOps expression, including digits, operation symbols, and structural elements
(parentheses, ’s’, ’e’), is treated as a separate token. This granular representation enables the model
to learn the syntactic structure of the expressions alongside their semantic content.

E.3 CHAIN OF THOUGHT IMPLEMENTATION

We find that directly solving nested ListOps in one step can be quite challenging for transformer
model (Fig. 30) Even with a maximum of three nesting levels with three operands (inputs) we
find that GPT models with over 10 million parameters still fail to learn the task. To enhance model
performance, particularly on more complex operations like sum modulo 10, we introduced a chain of
thought (CoT) approach in our training data. This method involves providing step-by-step solutions
that resolve the deepest nesting level at each step. For example:

s(%12(%34))>(%127)>0=0e

In this CoT representation:

• The initial expression is s(%12(%34))
• The first step resolves the innermost operation: (%34) becomes ‘7‘
• The intermediate result is shown: s(%12(7))>(%127)
• The process continues until the final result is reached: s(%12(7))>(%127)>0=0e

This CoT approach serves multiple purposes: 1. It guides the model through the problem-solving
process, mimicking human-like reasoning. 2. It provides more granular supervision, potentially
aiding in learning complex operations. 3. It allows us to study how models learn to break down and
solve nested problems. Our experiments show that this CoT method significantly improves model
performance, particularly for the challenging sum modulo 10 operation (Fig. 30).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

103 104 105 106

Number of parameters

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

no - CoT vs CoT
MAX - CoT
MAX - no CoT
MED - CoT
MED - no CoT
SUM - CoT
SUM - no CoT
MAX,MED,SUM - CoT
MAX,MED,SUM - no CoT

Figure 30: no - CoT vs. CoT. Providing solutions as chain-of-thought (CoT) helps models learn the
tasks. In almost all cases, CoT accelerates learning, enabling smaller models to succeed. This effect
is especially strong for the sum operation, which cannot be learned without CoT.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

F OBSERVATIONS FROM THE NORM OF ATTENTION AND FEEDFORWARD
OUTPUTS

To investigate the internal dynamics of our models, we focused on the final layer of a 3-layer trans-
former network, featuring a single attention head and an embedding dimension of 128. Our analysis
centered on comparing the behavior of models trained on ”ALL3” operations (MAX+MED+SUM)
versus those trained solely on the ”SUM” operation.

We introduced a novel metric to quantify the impact of different components within the network:
the ratio of output to input norms for both the self-attention (SA) and feedforward (FFN) sublayers.
Specifically, we computed:

1. Attention ratio: rattn = ∥SA(LN1(x))∥
∥x∥

2. Feedforward ratio: rffwd = ∥FFN(LN2(x1))∥
∥x1∥

where LN1 and LN2 are layer normalization operations, and x1 is the output of the self-attention
sublayer. These ratios provide insight into how much each component modifies its input, serving as a
proxy for the component’s impact on the overall computation.

We analyzed the distribution of these ratios across a test set consisting of sum operations for both
the ’ALL3’ and ’SUM’ models. Kernel Density Estimation (KDE) plots were used to visualize the
distributions, and we employed several statistical measures to quantify the differences.

Attention Sublayer The attention sublayer showed moderate but statistically significant differences
between the ’ALL3’ and ’SUM’ models:

• Kolmogorov-Smirnov test: statistic = 0.1592, p-value < 0.0001

• Jensen-Shannon divergence: 0.1591

• Wasserstein distance: 0.0696

• Effect size (Cohen’s d): 0.1761

• 95% CI for mean difference: (0.0466, 0.0860)

The KDE plot revealed that the ’ALL3’ model’s attention ratio distribution was more concentrated
and peaked higher than the ’SUM’ model’s distribution. The positive effect size and confidence
interval indicate that the ’ALL3’ model generally had higher attention ratios.

Feedforward Sublayer The feedforward sublayer exhibited more pronounced differences:

• Kolmogorov-Smirnov test: statistic = 0.2461, p-value < 0.0001

• Jensen-Shannon divergence: 0.1617

• Wasserstein distance: 0.2830

• Effect size (Cohen’s d): -0.3379

• 95% CI for mean difference: (-0.3042, -0.2226)

The KDE plot for the feedforward ratios showed a clear shift between the two distributions. The
’SUM’ model’s distribution was shifted towards higher values, as confirmed by the negative effect
size and confidence interval.

Interpretation These results reveal distinct operational patterns between models trained on ’ALL3’
operations versus those trained solely on ’SUM’:

1. In the attention sublayer, the ’ALL3’ model shows slightly higher ratio values, suggesting
that attention mechanisms play a more pronounced role when the model is trained
on diverse operations. This could indicate that the attention sublayer is capturing more
complex patterns or relationships necessary for handling multiple operations.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

2. Conversely, in the feedforward sublayer, the ’SUM’ model demonstrates significantly higher
ratio values. This suggests that when trained on ’Sum’ alone, the model relies more
heavily on the feedforward network for computation. This could imply that the ’SUM’
operation is being implemented more directly through feedforward transformations.

3. The larger effect size in the feedforward layer (-0.3379) compared to the attention layer
(0.1761) indicates that the difference in behavior is more pronounced in the feedforward
component.

These observations suggest a trade-off in how the network allocates its computational resources. The
’ALL3’ model appears to leverage its attention mechanism more, potentially to handle the diversity of
operations it was trained on. In contrast, the ’SUM’ model seems to channel more of its computation
through the feedforward network, possibly developing a more specialized but less flexible approach
to solving the sum operation.

This analysis provides evidence that the internal dynamics of transformer models adapt significantly
based on the diversity of tasks they are trained on, even when evaluated on the same type of operation
(’SUM’). It highlights the importance of considering task diversity in understanding and optimizing
neural network architectures.

1.5 1.0 0.5 0.0 0.5 1.0
log ratio (layer_out / layer_in)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Layer attn ratio histogram

all3
sum
Diff. (all3-sum)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log ratio (layer_out / layer_in)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Layer ffwd ratio histogram

all3
sum
Diff. (all3-sum)

Figure 31: Comparison of layer output/input ratio distributions for models trained on all three
operations (all3 - MAX+MED+SUM) versus sum operation alone (SUM). Left: Attention layer
ratio histogram. Right: Feedforward layer ratio histogram. The x-axis represents the log ratio of
layer output norm to input norm, while the y-axis shows the density. The black line represents
the difference between the all3 and sum distributions (all3 - sum). These plots illustrate distinct
operational patterns between the two models, with the attention layer showing increased activity in
the all3 model and the feedforward layer demonstrating higher ratios in the sum model.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

G ABLATION STUDIES

103 104 105 106

Number of parameters

20

40

60

80

100
Co

rre
ct

 a
ns

we
rs

 [%
]

Name
MAX,MED,SUM
MAX,MED,SUM-RANDOM
MAX,MED-RANDOM,SUM
MAX,MED-RANDOM,SUM-UINFORM
SUM
SUM-RANDOM
SUM-UNIFORM
n_layer
2
3
4
5
6
Training data type
CoT

Figure 32: Random sum table. Joint training helps in learning even randomized sum tables. The
numbers in the sum table follow a uniform distribution. We found that a randomized sum table with
a non-uniform distribution is also easy to learn. However, a randomized sum table with the same
uniform distribution remains as hard to learn as the original sum table. Early stopping criteria were
applied during training in all simulations.

M
od

el
 A

ll3
Su

m
 +

 o
rd

er

Whittaker-Shannon number rep for cyclic sum mod 10

Figure 33: Whittaker-Shannon number representation for cyclic SUM Modulo 10. Top row:
Cyclic matrices generated using Whittaker–Shannon interpolation illustrate how digit embeddings
can encode modular addition via matrix multiplication. Middle row (red box): Embeddings learned
by a model trained on MAX+MED+SUM. Bottom row (blue box): Cyclic SUM representation
constructed using Whittaker–Shannon numbers and digit ordering, showing a similar structure to the
model’s embeddings—suggesting that the model discovers an emergent encoding of cyclic SUM.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

H COMPLEXITY: NUMBER OF OPERANDS AND NESTING LEVEL.

In previous studies, task complexity has been characterized through various measures, including the
number of bits required to memorize the task, which corresponds to the length of the expression
Dave et al. (2024), the number of operands and nesting depth Petruzzellis et al. (2024), and the
structure of the computational graph Dziri et al. (2024), which captures the number of nestings.
Here, we examine how the number of operands and nesting levels affect the learning ability of small
language models. Focusing on the all3 task, which combines max, med, and sum operations,
we manipulate complexity by varying the number of operands (arg = {3, 4, 5}) and nesting
depth (depth = {3, 4, 5}). The length of equations, measured by the number of characters,
depends on both the number of operands and the nesting level. We find that nesting has a greater
impact: increasing the nesting level from 3 to 4 results in longer equations than increasing the number
of operands from 3 to 5 at a fixed nesting level. We train the GPT model on the all3 dataset with
all combinations of arg (number of operands) and depth (nesting levels), finding that the model’s
performance correlates with the sum of operands and nesting levels (arg + depth). Notably,
transition points tend to group together for configurations with the same sum (Fig. 34, 35b). While
Fig. 35a demonstrates that the model requires more parameters to solve longer equations, it also
indicates that arg + depth serves as a reliable predictor of the transition point.

103 104 105 106

Number of parameters

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

Name
arg-3,depth-3
arg-3,depth-4
arg-3,depth-5
arg-4,depth-3
arg-4,depth-4
arg-4,depth-5
arg-5,depth-3
arg-5,depth-4
arg-5,depth-5
n_layer
2
3
4
5
6
Training data type
CoT

Figure 34: Learning MAX+MED+SUM operations with varying numbers of operands and
nesting levels. The model requires more parameters as the number of operands and nesting levels
increases. Higher nesting levels particularly demand larger model sizes to learn the task. We present
the average of five simulations for each configuration and fit a sigmoid function, with the cross
marking the middle value (transition point). The transition points reveal an interesting pattern: the
sum of the number of operands and nesting levels groups together. For example, the transition
points for arg-3,depth-4 (orange) and arg-4,depth-3 (red) are close to each other, as are those for
arg-4,depth-5 (brown), and arg-5,depth-4 (grey). Early stopping criteria were applied during training
in all simulations.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

12 14 16 18 20 22
Avg. equation length, no CoT

105

Tr
an

sit
io

n
po

in
t (

pa

ra
m

et
er

s)

Number of operands
3.0
4.0
5.0
Nesting depth
3.0
4.0
5.0

(a) Average equation length vs. transition point.

3 4 5
Nesting depth

3
4

5
Nu

m
be

r o
f o

pe
ra

nd
s

14808 21277 30145

23156 32215 78564

27983 64418 192346

Transition point (# parameters)

20000

40000

60000

80000

100000

120000

140000

160000

180000

(b) Transition points.

Figure 35: Transition point vs. Equation Lenght and Nesting Depth. (a) Transition point in
function of the average equation length. (b) Heat plot of transition point in function number of
operands and nesting depth.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

I EXPERIMENT SETTINGS.

1. Model: GPT model (Karpathy (2022))
2. Number of layers: 1, 2, 3, 4, 5, 6
3. Number of head: 1
4. Embedding dimension: 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256
5. Number of random seed: 5
6. Context window size: 128
7. Batch size: 64
8. Optimizer: Adam
9. Minimum learning rate: 1e-4

10. Maximum interation steps: 20000/50000
11. Early Stopping criteria: Early stopping was applied after 2000 iterations when the change

in training loss was below ∆min = 2.5e-4 for 10 consecutive evaluation steps.
12. Data We generate 50,000 initial equations and split them into training and test sets by

excluding 100 randomly selected triplets. The training set consists of approximately 45,000
examples that do not contain any of the excluded triplets. The test set comprises around
2,000 examples, carefully curated to ensure that the excluded triplets do not appear, even in
the final step of each equation. We evaluate model performance on a subset of 1,000 final
test examples.

13. Vocab - Base 10 ListOps: %()+-/0123456789=>es
14. Vocab - Base 26 ListOps: ABCDEFGHIJKLMNOPQRSTUVWXYZse()+-/%=>
15. Hardware: All simulations were run on a mix of GPUs, including NVIDIA A100, H200,

RTX 4090, and A30, as well as on a standard modern laptop. The experiments are
lightweight, requiring approximately 1.5GB of RAM, and can be executed efficiently
on any recent laptop-class device.

J EXPERIMENTS ON LISTOPS.

1. Base 10: - no CoT/CoT: MAX, MED, SUM, MAX/MED/SUM
2. Base 10: - all combination: MAX, MIN, MED, SUM + MAX/MED/SUM-RANDOM

SHUFFLED
3. Base 26: - all combination: MAX, MIN, MED, SUM + MAX/MED/SUM-RANDOM

SHUFFLED
4. Triplet: MAX+MED+SUM 2700 (2700 training data samples = 900 MAX + 900 MED +

900 SUM), MAX+MED+SUM 900 (900 training data samples = 300 MAX + 300 MED +
300 SUM), SUM (900 training data samples)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

103 104 105 106

Number of Parameters

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y
MAX+MED+SHUF+SUM
Logistic fit
Transit.: 3.82e+04

103 104 105 106

Number of Parameters

SHUF+SUM
Logistic fit
Transit.: 7.62e+04

Shuffled SUM (20K steps)

104

105

2 × 104

3 × 104
4 × 104

6 × 104

Tr
an

sit
io

n
Po

in
t

M
AX

+M
ED

+S
HU

F+
SU

M

SH
UF

+S
UM

Logistic Fit Midpoint

Figure 36: Shuffled symmetric sum table, Mod 10: We find that this shuffled version of sum
is again more difficult to learn than any of the math operations except for the original Pure SUM,
which remains slightly more difficult than even the shuffled version. Additionally, we observe that
MAX+MED+Shuffled SUM is again more difficult than all operations except pure sum, suggesting
that the number properties played an important role in the other tasks becoming easier in mixed
training.

K SHUFFLED SUM

The Shuffled SUM table was constructed using the following code:

Listing 1: Generate upper triangle and diagonal matrices
1 # Generate upper triangle and diagonal matrices.
2 # To ensure commutativity i+j=j+i, we will transpose the
3 # the upper triangle.
4 upper_triangle_matrix = {(i, j): (i + j) % MOD
5 for i in range(MOD)
6 for j in range(MOD) if i < j}
7

8 # To ensure uniform distribution after shuffling the values,
9 # we must shuffle the diagonal separately.

10 # This is because all off-diag r.h.s. are repeated twice
11 # for commutativity, but not the diagonal entries.
12 diagonal_matrix = {(i, i): (2 * i) % MOD for i in range(MOD)}
13

14 # Function to shuffle values in a dictionary
15 def shuffle_dict_values(d):
16 keys = list(d.keys())
17 values = list(d.values())
18 random.shuffle(values)
19 return dict(zip(keys, values))
20

21 # Apply shuffling
22 shuffled_triangle = shuffle_dict_values(upper_triangle_matrix)
23 shuffled_diagonal = shuffle_dict_values(diagonal_matrix)

As a result, there is no consistent mapping between the original and shuffled values (e.g., the number
1 does not always map to 2), making it difficult for the model to learn a deterministic transformation.
While the shuffled sum table remains commutative, we did not enforce associativity. A direct check
also confirmed that it does not satisfy the associative property for most triplets.

K.1 SHUFFLED SUM MODULO 10

K.2 SHUFFLED SUM MODULO 26

We make a symmetric sum table (A + B = B + A), with a randomly shuffled right hand side,
meaning where if in the table A+B = C, C does not the actual arithmetic sum of A+B modulo
26. We do this to test a couple of hypotheses:

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
MAX MED SHUF SUM Avg. Embed Corr. of High Acc. (94%) mean size=670K

0 1 2 3 4 5 6 7 8 9 ()
M

AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

0
1
2
3
4
5
6
7
8
9
(
)

MAX
MIN

MED
SUM

=

END
START

Avg Embedding Correlation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
SHUF SUM Avg. Embed Corr. of High Acc. (97%) mean size=624K

Figure 37: PCA of embeddings mod 10 for Shuffled symmetric SUM, pure vs mixed with MAX
and MED: The numbers are colored based on parity (odd is red, even is blue). It is not expected that
the embeddings show strong signals. There seems to be partial ordering of the numbers, but the clear
wave patterns and clear parity separation is not evident.

1. Hypothesis 1: The SUM trained alone is not really learning the logic arithmetic of numbers,
but rather memorizing the sum table.

2. Hypothesis 2: Joint training with max and med leads to learning number properties.

If the first hypothesis holds, the shuffled sum would also require similarly high number of parameters
as the normal sum and show similarly random patterns in the embedding space. If the second
hypothesis holds, then joint training of shuffled sum should actually have detrimental effects on
learning sum because number properties don’t play a role in learning shuffled sum. Thus we expect
the jointly trained model to struggle to learn all three operations, or require significantly higher
number of parameters to master shuffled sum, compared to joint training on regular sum.

103 104 105 106

Number of Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MAX+MED+SHUF+SUM
Logistic fit
Transit.: 2.03e+04

103 104 105 106

Number of Parameters

SHUF+SUM
Logistic fit
Transit.: 1.32e+05

103 104 105 106

Number of Parameters

MAX+MED+ShSUM Test ShSUM
Logistic fit
Transit.: 2.4e+05

Shuffled SUM Base 26 (20K steps)

105

Tr
an

sit
io

n
Po

in
t

M
AX

+M
ED

+S
HU

F+
SU

M

SH
UF

+S
UM

M
AX

+M
ED

+S
hS

UM
 Te

st
 S

hS
UM

Base 26 Logistic Fit

Figure 38: Shuffled symmetric sum table, Mod 26, 20k steps: We find that this shuffled version
of sum is again more difficult to learn than any of the math operations except for the original Pure
SUM, which remains slightly more difficult than even the shuffled version. We also observe that
MAX+MED+Shuffled SUM never reaches more than 80% accuracy. The third scatter plot from
the let shows the accuracy of the MAX+MED+Shuffled SUM model on the Shuffled SUM test set.
We see that the accuracy is very low (∼ 20% top), showing that the mixed model never learned the
shuffled SUM. This may suggest that MAX+MED revealed number properties, but Shuffled SUM
was incompatible with those properties, leading to a model that overall cannot solve the two problems
(MAX+MED and Shuffled SUM) simultaneously.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

103 104 105 106

Number of Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MAX+MED+SHUF+SUM
Logistic fit
Transit.: 1.6e+04

103 104 105 106

Number of Parameters

SHUF+SUM
Logistic fit
Transit.: 7.41e+04

103 104 105 106

Number of Parameters

MAX+MED+ShSUM Test ShSUM
Logistic fit
Transit.: 2.98e+05

Shuffled SUM Base 26 (40K steps)

105

Tr
an

sit
io

n
Po

in
t

M
AX

+M
ED

+S
HU

F+
SU

M

SH
UF

+S
UM

M
AX

+M
ED

+S
hS

UM
 Te

st
 S

hS
UM

Base 26 Logistic Fit

Figure 39: Shuffled symmetric sum table, Mod 26, 40 steps: We find that this shuffled version
of sum is again more difficult to learn than any of the math operations except for the original Pure
SUM, which remains slightly more difficult than even the shuffled version. We also observe that
MAX+MED+Shuffled SUM never reaches more than 80% accuracy. The third scatter plot from
the let shows the accuracy of the MAX+MED+Shuffled SUM model on the Shuffled SUM test set.
We see that the accuracy is very low (∼ 20% top), showing that the mixed model never learned the
shuffled SUM. This may suggest that MAX+MED revealed number properties, but Shuffled SUM
was incompatible with those properties, leading to a model that overall cannot solve the two problems
(MAX+MED and Shuffled SUM) simultaneously.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

012345678910111213141516171819202122232425()MAXMINMEDSUM=
ENDSTART

Avg Embedding Correlation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
MAX MED SHUF SUM Avg. Embed Corr. of High Acc. (62%) mean size=255K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
()

M
AX M
IN

M
ED SU
M =

EN
D

ST
AR

T

012345678910111213141516171819202122232425()MAXMINMEDSUM=
ENDSTART

Avg Embedding Correlation

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

PC2

PC
1

PC3

PC
2

PC4

PC
3

PC5

PC
4

PCA of Digit Embeddings
SHUF SUM Avg. Embed Corr. of High Acc. (90%) mean size=404K

Figure 40: PCA of embeddings for Shuffled symmetric SUM, pure vs mixed with MAX and
MED, Mod 26: The numbers are colored based on parity (odd is red, even is blue). There seems to
be partial ordering of the numbers, but the clear wave patterns are not visible. We do almost observe
parity separation in PC3 and PC4, albeit with some noise. It is curious that the system still learns
partial parity, but evidently this feature did not allow the system to learn the shuffled SUM perfectly.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

L ATTENTION AND FEEDFORWARD OUTPUTS MODULO 10

Attention and feedforward layers. To investigate the internal dynamics of the sum-only vs
MAX+MED+SUM (all3) models, we focused on the final layer of a 3-layer transformer network,
featuring a single attention head and an embedding dimension of 128 (Appendix F). We find:

1. In the attention sublayer, the MAX+MED+SUM model shows slightly higher ratio values,
suggesting that attention mechanisms play a more pronounced role when the model is
trained on diverse operations. This could indicate that the attention sublayer is capturing
more complex patterns or relationships necessary for handling multiple operations.

2. Conversely, in the feedforward sublayer, the SUM model demonstrates significantly higher
ratio values. This suggests that when trained on SUM alone, the model relies more
heavily on the feedforward network for computation. This could imply that the SUM
operation is being implemented more directly through feedforward transformations.

3. The larger effect size in the feedforward layer (-0.34) compared to the attention layer (0.18)
indicates that the difference in behavior is more pronounced in the feedforward component.

These observations suggest a trade-off in how the network allocates its computational resources. The
MAX+MED+SUM model appears to leverage its attention mechanism more, potentially to handle
the diversity of operations it was trained on. In contrast, the SUM model seems to channel more of
its computation through the feedforward network, possibly developing a more specialized but less
flexible approach to solving the sum operation.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Figure 41: Attention patterns and layer dynamics in SUM vs MAX+MED+SUM (all3) models.
Each panel shows (CoT) solution to a SUM modulo 10 problem, where ’>’ indicates solution
steps. The first row shows the input sequence, with curved lines representing attention weights from
Layer 2 in a 3-layer network. Black lines highlight attention patterns for a specific digit (shown in
orange). Below are shown various layer metrics including the ratio of self-attention to feedforward
norms (sa/ffwd), self-attention output norms (sa_out), feedforward output norms (ffwd_out),
and ratios of layer outputs to inputs (sa_out/x, ffwd/x). Top: Model trained only on SUM
operations shows attention primarily focused on parentheses and structural elements. Bottom: Model
trained on MAX+MED+SUM (all3) shows attention strongly connecting to digits being combined
in each CoT step, suggesting direct involvement in numerical computation. These distinct patterns
suggest fundamentally different algorithms learned by each model.

1.5 1.0 0.5 0.0 0.5 1.0
log ratio (layer_out / layer_in)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Layer attn ratio histogram

all3
sum
Diff. (all3-sum)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log ratio (layer_out / layer_in)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Layer ffwd ratio histogram

all3
sum
Diff. (all3-sum)

Figure 42: Comparison of layer output/input ratio distributions for models trained on
MAX+MED+SUM vs pure SUM. Left: Attention layer ratio histogram. Right: Feedforward
layer ratio histogram. The x-axis represents the log ratio of layer output norm to input norm, while
the y-axis shows the density. The black line represents the difference MAX+MED+SUM minus SUM
distributions.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

MAX+MED+SUM, layer: 0
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

MAX+MED+SUM, layer: 1
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

MAX+MED+SUM, layer: 2
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

MAX+MED, layer: 0
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity
MAX+MED, layer: 1

attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

MAX+MED, layer: 2
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

MAX, layer: 0
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

De
ns

ity

MAX, layer: 1
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.2

0.4

0.6

0.8

De
ns

ity

MAX, layer: 2
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

MED, layer: 0
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

De
ns

ity

MED, layer: 1
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.00

0.25

0.50

0.75

1.00

1.25

De
ns

ity

MED, layer: 2
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

SUM, layer: 0
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.5

1.0

1.5

2.0

De
ns

ity

SUM, layer: 1
attn
ffwd

2 1 0 1 2 3
log(ratio in/out)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

SUM, layer: 2
attn
ffwd

Figure 43: Attention layer and Feedforward layer ratio histogram. Each row shows the attention
and feedforward layer ratio histogram for models trained on MAX, MED, SUM, MAX+MED,and
MAX+MED+SUM. Each column shows the ratio histogram in different attention blocks. The model
had 128 embedding and 3 layers and all models rechec 99% accuracy.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

0.94 0.95 0.96 0.97
log(attn)

0.40

0.45

0.50

0.55

0.60

lo
g(

ffw
d)

layer: 0
MAX+MED+SUM
MAX+MED
MAX
MED
SUM

0.85 0.80 0.75 0.70 0.65 0.60 0.55
log(attn)

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

layer: 1

MAX+MED+SUM
MAX+MED
MAX
MED
SUM

0.55 0.50 0.45 0.40 0.35
log(attn)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

layer: 2
MAX+MED+SUM
MAX+MED
MAX
MED
SUM

Figure 44: The mean attention layer ratio vs the feedforward layer ratio. Each plots show the
means in different layers.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
log ratio (layer_out / layer_in)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Layer 0 attn Effect size (Cohen's d): 0.0184

2.0 1.5 1.0 0.5 0.0
log ratio (layer_out / layer_in)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Layer 1 attn Effect size (Cohen's d): 0.6419

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0
log ratio (layer_out / layer_in)

0.0

0.2

0.4

0.6

0.8

1.0
Layer 2 attn Effect size (Cohen's d): 0.2978
MAX+MED+SUM
SUM
Diff. (ALL3 - SUM)

0.5 0.0 0.5 1.0
log ratio (layer_out / layer_in)

0.5

0.0

0.5

1.0

1.5

De
ns

ity

Layer 0 ffwd Effect size (Cohen's d): -0.4022

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
log ratio (layer_out / layer_in)

0.0

0.2

0.4

0.6

0.8

Layer 1 ffwd Effect size (Cohen's d): -0.1444

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log ratio (layer_out / layer_in)

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Layer 2 ffwd Effect size (Cohen's d): -0.2340
MAX+MED+SUM
SUM
Diff. (ALL3 - SUM)

Figure 45: Comparison of layer output/input ratio distributions for models trained on all three
operations (MAX+MED+SUM) versus sum operation alone (SUM). The title of the figures contain
the Effective size showing the difference between the model.

47

	Introduction
	Methodology
	Results
	Testing the embedding restriction hypothesis.
	Model Scaling with modulo n.
	Permutation groups

	Discussion and Limitations
	Additional plots
	Modulo 20
	Modulo prime - PROD
	Modulo 26
	Modulo 10

	Permutation groups.
	Triplet Experiments
	Related works
	Data and processing
	Dataset Notation
	Tokenization
	Chain of Thought Implementation

	Observations from the norm of Attention and Feedforward outputs
	Ablation studies
	Complexity: Number of operands and nesting level.
	Experiment settings.
	Experiments on ListOps.
	Shuffled SUM
	Shuffled SUM modulo 10
	Shuffled SUM modulo 26

	Attention and Feedforward outputs modulo 10

