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ABSTRACT

A common approach to learning mobile health (mHealth) intervention policies is
linear Thompson sampling. Two desirable mHealth policy features are (1) pooling
information across individuals and time and (2) incorporating a time-varying
baseline reward. Previous approaches pooled information across individuals but
not time, failing to capture trends in treatment effects over time. In addition, these
approaches did not explicitly model the baseline reward, which limited the ability
to precisely estimate the parameters in the differential reward model. In this paper,
we propose a novel Thompson sampling algorithm, termed “DML-TS-NNR” that
leverages (1) nearest-neighbors to efficiently pool information on the differential
reward function across users and time and (2) the Double Machine Learning
(DML) framework to explicitly model baseline rewards and stay agnostic to the
supervised learning algorithms used. By explicitly modeling baseline rewards, we
obtain smaller confidence sets for the differential reward parameters. We offer
theoretical guarantees on the pseudo-regret, which are supported by empirical
results. Importantly, the DML-TS-NNR algorithm demonstrates robustness to
potential misspecifications in the baseline reward model.

1 INTRODUCTION

Mobile health (mHealth) and contextual bandit algorithms share a connection in the realm of
personalized healthcare interventions. mHealth leverages mobile devices to deliver health-related
services for real-time monitoring and intervention. Contextual bandit algorithms, on the other
hand, are a class of machine learning techniques designed to optimize decision-making in situations
where actions have contextual dependencies. The synergy arises when mHealth applications deploy
contextual bandit algorithms to tailor interventions based on individual health data and context. For
example, in a mobile health setting, a contextual bandit algorithm might dynamically adapt the type
and timing of health-related notifications or interventions based on the user’s current health status,
historical behavior, and contextual factors like location or time of day Tewari & Murphy (2017).

At each decision point, a learner receives a context, chooses an action, and observes a reward. The
goal is to maximize the expected cumulative reward. High-quality bandit algorithms achieve rewards
comparable to those of an optimal policy. To achieve near-optimal performance in mobile health,
bandit algorithms must account for (1) the time-varying nature of the outcome variable, (2) nonlinear
relationships between states and outcomes, (3) the potential for intervention efficacy to change over
time (due, for instance, to habituation as in Psihogios et al. (2019)), and (4) the fact that similar
participants tend to respond similarly to interventions (Künzler et al., 2019).

Traditional mHealth intervention development—including just-in-time adaptive interventions (JI-
TAIs), which aim to tailor the timing and content of notifications to maximize treatment effect
(Nahum-Shani et al., 2018)—has centered on treatment policies pre-defined at baseline (e.g., Battalio
et al. (2021); Nahum-Shani et al. (2021); Bidargaddi et al. (2018); Klasnja et al. (2019)). As the
development of JITAIs shifts towards online learning (e.g., Trella et al. (2022); Liao et al. (2020);
Aguilera et al. (2020)), we have the opportunity to incorporate the four key characteristics listed above
into the development of optimal treatment policies through algorithms such as contextual bandits.
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Although some solutions to these problems have been presented, no existing method offers a com-
prehensive solution that simultaneously addresses all four challenges in a satisfactory manner. The
purpose of this paper is to fill this gap with a method that performs well in the mHealth setting where
data is high-dimensional, highly structured, and often exhibits complex nonlinear relationships. To
that end, this paper offers three main contributions: (1) A novel algorithm, termed as “DML-TS-NNR”
that flexibly models the baseline reward via the double machine learning (DML) framework and
pools efficiently across both users and time via nearest-neighbor regularization; (2) theoretical results
showing that DML-TS-NNR achieves reduced confidence set sizes and an improved regret bound
relative to existing methods; and (3) empirical analysis demonstrating the superior performance of
DML-TS-NNR relative to existing methods in simulation and two recent mHealth studies.

The paper proceeds as follows. Section 2 summarizes related work. Section 3 describes the model
and problem statement. Section 4 describes the algorithm along with the resulting theoretical results.
Section 5 describes experimental results for simulations and two mobile health studies. Section 6
concludes with a discussion of limitations and future work.

2 RELATED WORK

The closest works are Choi et al. (2022) and Tomkins et al. (2021). Choi et al. (2022) employs
a semi-parametric reward model for individual users and a penalty term based on the random-
walk normalized graph Laplacian. However, limited information is provided regarding the explicit
estimation of baseline rewards and the pooling of information across time. In contrast, Tomkins
et al. (2021) carefully handles the issue of pooling information across users and time in longitudinal
settings, but their approach (intelligentpooling) requires the baseline rewards to be linear and does
not leverage network information. Below, we provide a summary of other relevant work in this area.

Thompson Sampling. Abeille & Lazaric (2017) showed that Thompson Sampling (TS) can be posed
as a generic randomized algorithm constructed on the regularized least-squares (RLS) estimate rather
than one sampling from a Bayesian posterior. At each step t, TS samples a perturbed parameter, where
the additive perturbation is distributed so that TS explores enough (anti-concentration) but not too
much (concentration). Any distribution satisfying these two conditions introduces the right amount
of randomness to achieve the desired regret without actually satisfying any Bayesian assumption. We
use the high-level proof strategy of Abeille & Lazaric (2017) in this work to derive our regret bound,
although we need additional tools to handle our longitudinal setting with baseline rewards.

Partially-linear bandits. Greenewald et al. (2017) introduced a linear contextual bandit with
a time-varying baseline and a TS algorithm with Õ(d2

√
T ) regret, where they used the inverse

propensity-weighted observed reward as a pseudo-reward. By explicitly modeling the baseline, we
obtain a pseudo-reward with lower variance. Krishnamurthy et al. (2018) improved this to Õ(d

√
T )

regret using a centered RLS estimator, eliminating sub-optimal actions, and choosing a feasible
distribution over actions. Kim & Paik (2019) proposed a less restrictive, easier to implement, and
faster algorithm with a tight regret upper bound. Our regret bound (see Section 4) involves similar
rates but is based on a different asymptotic regime that is not directly comparable due to the presence
of an increasing pool of individuals.

Nonlinear bandits. (Li et al., 2017; Wang et al., 2019; Kveton et al., 2020) discussed generalized
linear contextual bandit algorithms that accommodate nonlinear relationships via parametric link
functions in a similar fashion to generalized linear models Nelder & Wedderburn (1972); McCullagh
(2019). Other work (e.g., Snoek et al. (2015); Riquelme et al. (2018); Zhang et al. (2019); Wang &
Zhou (2020)) allowed non-parametric relationships in both the baseline reward model and advantage
function via deep neural networks; however, these approaches typically lack strong theoretical
guarantees and are not designed for longitudinal settings in which pooling offers substantial benefit.

Graph bandits. In the study conducted by Cesa-Bianchi et al. (2013), individual-specific linear
models were employed, accompanied by a combinatorial Laplacian penalty to encourage similarity
among users’ learned models. This approach yielded a regret bound of Õ(nd

√
T ). Building upon

this work, Yang et al. (2020) made further improvements by utilizing a penalty involving the random
walk graph Laplacian. Their approach offers the following benefits: (1) it achieves a regret bound
of Õ(Ψd

√
nT ) for some Ψ ∈ (0, 1) and (2) it reduces computational complexity from quadratic to

linear by utilizing a first-order approximation to matrix inversion.
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Double Machine Learning. Chernozhukov et al. (2018) introduced the DML framework, which
provides a general approach to obtain

√
n-consistency for a low-dimensional parameter of interest

in the presence of a high-dimensional or “highly complex” nuisance parameter. This framework
combines Neyman orthogonality and cross-fitting techniques, ensuring that the estimator is insensitive
to the regularization bias produced by the machine learning model. Moreover, it allows us to stay
agnostic towards the specific machine learning algorithm while considering the asymptotic properties
of the estimator. Later, a number of meta-learner algorithms were developed to leverage the DML
framework and provide more precise and robust estimators (Hill, 2011; Semenova & Chernozhukov,
2021; Künzel et al., 2019; Nie & Wager, 2021; Kennedy, 2020).

Doubly Robust Bandits. Kim et al. (2021; 2023) use doubly robust estimators for contextual bandits
in both the linear and generalized linear settings, respectively. They use them to obtain a novel regret
bound with improved dependence on the dimensionality. In our setting, we use a doubly robust
pseudo-reward (robust to either the propensity weights or the mean reward estimate being incorrect)
in order to debias explicitly modeling the mean reward. We leave combining our approach with theirs
for improved dependence on the dimensionality as future work.

3 MODEL AND PROBLEM STATEMENT

We consider a doubly-indexed contextual bandit with a control action (a = 0) and K non-baseline
arms corresponding to different actions or treatments. Individuals i = 1, 2, . . . enter sequentially
with each individual observed at a sequence of decision points t = 1, 2, . . .. For each individual i at
time t, a context vector Si,t ∈ S is observed, an action Ai,t ∈ {0, . . . ,K} := [K] is chosen, and a
reward Ri,t ∈ R is observed. In this paper, we assume the conditional model for the observed reward
given state and action, i.e., E [Ri,t|Si,t = s,Ai,t = a] := ri,t(s, a), is given by

ri,t(s, a) = x(s, a)⊤θi,tδa>0 + gt(s), (1)

where x(s, a) ∈ Rp×1 is a vector of features of the state and action, δa>0 is an indicator that takes
value 1 if a > 0 and 0 otherwise, and gt(s) is a baseline reward that observed when individuals are
randomized to not receive any treatment. This can be an arbitrary, potentially nonlinear function of
state s and time t. Equation (1) is equivalent to assuming a linear differential reward for any a > 0;
i.e., ∆i,t(s, a) := ri,t(s, a)− ri,t(s, 0) is linear in x(s, a), whose parameter θi,t ∈ Rp is allowed to
depend both on the individual i and time t.

To mimic real-world recruitment where individuals may not enter a study all at once, we consider a
study that proceeds in stages. Figure 3 in Appendix A visualizes this sequential recruitment. At stage
1, the first individual is recruited and observed at time t = 1. At stage k, individuals j ≤ k have been
observed for k − j + 1 decision times respectively. Then each individual j ∈ [k + 1] is observed
in a random order at their next time step. Let Hi,t denote the observation history up to time t for
individual i.

We make the following two standard assumptions as in Abeille & Lazaric (2017).

Assumption 1. The reward is observed with additive error ϵi,t,conditionally mean 0 (i.e.,
E[ϵi,t|Hi,t] = 0) sub-Gaussian with variance σ2: E[exp(ηϵi,t)|Hi,t] ≤ exp(η2σ2/2) for η > 0.

Assumption 2. We assume ∥x(s, a)∥ ≤ 1 for all contexts and actions and that there exists B ∈ R+

such that ∥θi,t∥ ≤ B, ∀i, t and |gt(s)| ≤ B ∀s, t and B is known.

Here we consider stochastic policies πi,t : Hi,t ×S → P([K]), which map the observed history Hi,t

and current context to a distribution over actions [K]. Let πi,t(a|s) denote the probability of
action a ∈ [K] given current context s ∈ S induced by the map πi,t for a fixed (implicit) history.

3.1 DML AND DOUBLY ROBUST DIFFERENTIAL REWARD

We first consider a single individual i under a time-invariant linear differential reward, so that
θi,t = θ ∈ Rp. If the differential reward ∆(si,t, ai,t) was observed, we could apply ridge regression
with a linear model of the form x(si,t, ai,t)

⊤θ and a ridge penalty of λ∥θ∥22. However, the differential
reward is unobserved: we instead consider an inverse-probability weighted (IPW) estimator of the

3



Under review as a conference paper at ICLR 2024

differential reward based on the available data:

E
[(

δAi,t=ā

1− πi,t(0|s)
−

δAi,t=0

πi,t(0|s)

)
Ri,t|si,t, āi,t

]
= ∆i,t(si,t, āi,t) (2)

where āi,t ∈ [K] denotes the potential non-baseline arm that may be chosen if the baseline arm is not
chosen; i.e., randomization is restricted to be between Ai,t = āi,t and 0. Given the probabilities in
the denominators are known, the estimator is unbiased and therefore can replace the observed reward
in the Thompson sampling framework.

We refer to these ∆i,t(si,t, āi,t) as the differential reward. Below, we define a pseudo-reward with
the same expectation in reference to pseudo-outcomes from the causal inference literature (Bang
& Robins, 2005; Kennedy, 2020). Let fi,t(s, a) be a working model for the true conditional
mean ri,t(s, a). Then, following connections to pseudo-outcomes and doubly-robust (DR) esti-
mators (Kennedy, 2020; Shi & Dempsey, 2023), we define the pseudo-reward R̃f

i,t(s, ā) given
state Si,t = s and potential arm ā

R̃f
i,t(s, ā) ≡

(Ri,t − fi,t(s,Ai,t))

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā) (3)

where ∆f
i,t(s, ā) = fi,t(s, ā)− fi,t(s, 0). Going forward we will often abbreviate using R̃f

i,t, with
the state and action implied. Equation (3) presents a Doubly Robust estimator for the Differential
Reward; i.e., if either πi,t or fi,t are correctly specified, (3) is a consistent estimator of the differential
reward—so we refer to it as a DR2 bandit. See Appendix G.1 for proof of double robustness. The
primary advantage of this pseudo-reward is that by including the fi,t, it has lower variance than if we
simply used the inverse propensity-weighted observed reward as our pseudo-reward, which was done
in Greenewald et al. (2017). Lemma 5 and Remark 2 in Appendix G.2 show proofs and discuss why
this pseudo-reward lowers variance compared to Greenewald et al. (2017).

After exploring the properties of the pseudo-reward, an important question arises regarding how we
can learn the function f(s, a) using observed data. We hereby provide two options, each based on
different assumptions. Option 1 utilizes supervised learning methods and cross-fitting to accurately
learn the function while avoiding overfitting as demonstrated in Chernozhukov et al. (2018) and
Kennedy (2020). Our model (2) admits sample splitting across time under the assumption of additive
i.i.d. errors and no delayed or spill-over effects. Such an assumption is plausible in the mHealth
setting where we do not expect an adversarial environment.

In the following, we explain sample splitting as a function of time t as we currently consider a single
individual i. Step 1: Randomly assign each time t to one of M -folds. Let Im(t) ⊆ {1, . . . , t} denote
the m-th fold as assigned up to time t and I∁m(t) denote its complement. Step 2: For each fold
at each time t, use any supervised learning algorithm to estimate the working model for ri,t(s, a)
denoted f̂

(m)
i,t (s, a) using I∁m. Step 3: Construct the pseudo-outcomes using (3) and perform weighted,

penalized regression estimation by minimizing the loss function:
M∑

m=1

∑
t∈Im(T )

σ̃2
i,t

(
R̃f̂(m)

i,t − x(si,t, ai,t)
⊤θ

)2

(4)

with ridge penalty λ∥θ∥22, where σ̃2
i,t = πi,t(0|si,t) ·(1−πi,t(0|si,t)). The weights are a consequence

of unequal variances due to the use of DR estimators; i.e., var(R̃f
i,t) is inversely proportional to

(σ̃2
i,t)

2.

We explore an alternative, Option 2, based on recent work that avoids sample splitting via the use of
stable estimators Chen et al. (2022). To relax the i.i.d. error assumption to Assumption 1, we only
update fi,t(s, a) using observed history data in an online fashion, fixing pseudo-outcomes at each
stage based on the current estimate of the nonlinear baseline. See Appendix C for further discussion.

Finally, in order to obtain guarantees for this DML approach, we make the following two assumptions:
the first is on the convergence in L2 (with expectation over states and actions) of our estimate f to
the true mean reward and boundedness of the estimator. Similar assumptions were made in Chen
et al. (2022). The second is that the weights are bounded below, which would be a consequence if the
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probability of taking no action is bounded above and below, an assumption made in Greenewald et al.
(2017) .

Assumption 3. Both Ep(s,ā)

[
(ri,t(s, ā)− fi,t(s, ā))

2
]

= oP (k
−1/2) and

Ep(s)

[
(ri,t(s, 0)− fi,t(s, 0))

2
]
= oP (k

−1/2). Further, |f̂i,t| ≤ 2B.

Assumption 4. There exists c > 0 such that σ̃2
i,t > c for all i, t.

3.2 NEAREST NEIGHBOR REGULARIZATION

Above, we considered a single individual i under a time-invariant linear differential reward function;
i.e., x(si,t, ai,t)⊤θ where θ ∈ Rp. Here, we consider the setting of N independent individuals and a
time-invariant linear differential reward with individual-specific parameter; i.e., θi ∈ Rp. If θi were
known a priori, then one could construct a network based on L2-distances {d(i, j) := ∥θi−θj∥22}j ̸=i.

Specifically, define a graph G = (V,E) where each user represents a node, e.g., V := [N ], and (i, j)
is in the edge set E for the smallest M ≪ N distances. The working assumption is that connected
users share similar underlying vectors θi, implying that the rewards received from one user can
provide valuable insights into the behavior of other connected users. Mathematically, (i, j) ∈ E
implies that ∥θi − θj∥ is small.

We define the Laplacian via the N ×MN incidence matrix B. The element Bv,e corresponds to the
v-th vertex (user) and e-th edge. Denote the vertices of e as vi and vj with i ¿ j. Bve is then equal to
1 if v = vi, -1 if v = vj , and 0 otherwise. The Laplacian matrix is then defined as L = BB⊤. We
can then adapt (4) by summing over participants and including a network cohesion penalty similar
to Yang et al. (2020):

tr(Θ⊤LΘ) =
∑

(i,j)∈E

∥θi − θj∥22,

where Θ := (θ1, . . . , θN )⊤ ∈ RN×p. The penalty is small when θi and θj are close for connected
users. Following Assumption 2 and above discussion, we further assume:

Assumption 5. There exists D ∈ R+ such that ∥θi − θj∥22 ≤ D, ∀i, j, and D is known.

4 DML THOMPSON SAMPLING WITH NEAREST NEIGHBOR REGULARIZATION

4.1 ALGORITHM

Based on Section 3, we can now formally state our proposed DML Thompson Sampling with Nearest
Neighbor Regularization (DML-TS-NNR) algorithm. In our study, we adopt a sequential recruitment
setting in which individuals’ enrollment occurs in a staggered manner to mimic the recruitment
process in real mHealth studies. More specifically, we first observe individual i = 1 at time t = 1.
Then we observe individuals i = (1, 2) at times t = (2, 1). After k time steps, we observe individuals
i ∈ [k] at times (k + 1− i, k − i, . . . , 1) respectively. We then observe these individuals in a random
sequence one at a time before moving to stage k + 1. Define Ok = {(i, t) : i ≤ k & t ≤ k + 1− i}
be the set of observed time points across all individuals at stage k. Again see Figure 3 in Appendix A
for a visualization.

By performing a joint asymptotic analysis with respect to the total number of individuals (N ) and
time points (T ), we can relax the assumption of a single time-invariant linear advantage function and
allow θi,t ∈ Rp to depend on both the individual i and time t. Here, we let θi,t = θ + θind

i + θtime
t ;

i.e., include (i) an individual-specific, time-invariant term θi, and (ii) a shared, time-specific term θt.
This setup is similar to the intelligentpooling method of Tomkins et al. (2021); however, rather than
assume individuals and time points are unrelated iid samples, we assume knowledge of some network
information (e.g., the similarity of certain individuals or proximity in time) and regularize these
parameters accordingly to ensure network cohesion.

The DML-TS-NNR algorithm is shown in Algorithm 1. To see the motivation, consider the following.
We first assume that we have access to two nearest neighbor graphs, Guser and Gtime, where each
characterizes proximity in the user- and time-domains respectively. Then at at stage k, we estimate
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all parameters, e.g. Θk = vec[
(
θ, θind

1 , . . . , θind
k , θtime

1 , . . . , θtime
k

)
] ∈ Rp(2k+1) , by minimizing the

following penalized loss function Lk(Θk;λ, γ), which is defined as the following expression:

∑
(i,t)∈Ok

σ̃2
i,t

(
R̃f̂(m)

i,t − x(Si,t, Ai,t)
⊤(θ + θind

i + θtime
t )

)2
+

γ

(
∥θ∥22 +

k∑
i=1

∥θind
i ∥22 +

k∑
t=1

∥θtime
t ∥22

)
+ λ

(
tr
(
Θ⊤

userLuserΘuser
)
+ tr

(
Θ⊤

timeLtimeΘtime
))

,

(5)

where Θuser,Θtime ∈ Rp×k. In comparison to existing methods, the primary novelty in Equation (5) is
that (1) the observed outcome Ri,t is replaced by a pseudo-outcome R̃f(k)

i,t and (2) the doubly-robust
pseudo-outcome leads to a weighted least-squares loss with weights σ̃2

i,t. The network cohesion
penalties and time-specific parameters have been considered elsewhere (Yang et al., 2020; Tomkins
et al., 2021), though, not together. For more details regarding Algorithm 1, please refer to Appendix
B.

Algorithm 1 DML-TS with Nearest Neighbor Regularization (DML-TS-NNR)
Input: δ, σ, c, C, m, λ, γ, L, Bw, Dw

Set L⊗ = L⊗ Ip and B = k λ√
γ (Dind +Dtime) +

√
γn (Bind +Btime)

Initialize: V0 = diag(γIp, λL
ind
⊗ + γIkp, λL

time
⊗ + γIkp) and b0 = 0

for k = 1, . . . ,K do
Option 1: Randomly assign (i, t) ∈ Ok\Ok−1 to one of the M partitions
Observe Context variable Sl = Sil,k+il−1

Set Θ̂k = V −1
k bk

Calculate

βk(δ) = vk

[
2 log

(
det(Vk)

1/2

det(V0)1/2δ/2

)]1/2
+B

where v2k ≡ Cc log2m(k)k−1/2 + σ2c2

Generate ηk ∼ DTS and compute

Θ̃k = Θ̂k + βk(δ
′)V

−1/2
k ηk

For each (i, t) ∈ Ok\Ok−1 select Ai,t that maximizes:

x(Si,t, a)
⊤
(
θ̃ + θ̃ind

i + θ̃time
t

)
Observe rewards Ri,t

Construct feature xt = x(St, At) and ϕi,t = ϕ(xi,t)

Option 1: Re-construct predictions for all f̂ (m) partitions for m = 1, . . . ,M and re-compute
all pseudo-outcomes R̃f̂(m)

i,t for all (i, t) ∈ Ok.
Option 2: Construct predictions for next stage f̂ (k) partitions and compute pseudo-
outcomes R̃f̂(k)

i,t only for those (i, t) ∈ Ok\Ok−1 .

Update Vk = Vk−1+
∑

(i,t)∈Ok\Ok−1
σ̃2
i,tϕi,tϕ

⊤
i,t and bk = bk−1+

∑
(i,t)∈Ok\Ok−1

σ̃2
i,tR̃

f̂
i,tϕi,t

end for

4.2 REGRET ANALYSIS

Given the knowledge of true parameters Θ, the optimal policy is simply to select, at decision time t
for individual i, the action a∗i,t = argmaxa∈A x(Si,t, a)

⊤(θ + θi + θt) given the state variable Si,t.
This leads us to evaluate the algorithm by comparing it to this optimal policy after each stage. Given
both the number of individuals and the number of time points increases per stage, we define stage k
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regret to be the average across all individuals at stage k:

RegretK =

K∑
k=1

1

k

 ∑
(i,t)∈Ok\Ok−1

[
x(Si,t, a

∗
i,t)

⊤(θ∗ + θ⋆i + θ⋆t )− x(Si,t, Ai,t)
⊤(θ∗ + θ⋆i + θ⋆t )

]
This is a version of pseudo-regret Audibert et al. (2003). Compared to standard regret, the randomness
of the pseudo-regret is due to {Ai,t}⊤t=1 since the error terms {ϵi,t}⊤t=1 are removed in the definition.

Theorem 1. Under Assumptions 1 and 2, with probability at least 1− δ, Algorithm 1’s regret satisfies

(
βK(δ′) + γK(δ′)

[
1 +

4

d

])√
4cHKKd log

(
γ + λM +

K + 1

8d

)
− log det (V0)

+
4γK(δ′)

d

√
8K

λ
log

(
4

δ

)
,

where fK = logdetVK − logdetV0, V0 = λL⊗ Ip+ γInp, δ′ = δ/4K, min(π(0|s), 1−π(0|s)) >
1/c and HK = O(log(K)) is the harmonic number. βK and γK are defined in Appendix G.

Proof of Theorem 1 is in Appendix G. The regret bound is similar to prior work by Abeille &
Lazaric (2017); however, our bound differs in three ways: (1) the harmonic number HK enters as an
additional cost for considering average regret per stage with the regret being O(

√
K log2(K)) having

an additional log(K) factor; (2) the bound depends on the dimension of the differential reward model
rather than the dimension of the overall model which can significantly improve the regret bound;
and (3) the main benefit of our use of DML is in βK(δ′) and γK(δ′), which depend on the rate of
convergence of the model f to the true mean differential reward r as discussed in Appendix G.2,
which demonstrates the benefits of good models for this term and how it impacts regret.

Note this regret bound is sublinear in the number of stages and scales only with the differential reward
complexity d, not the complexity of the baseline reward g. As the second term scales with

√
K, for

large K we can focus on the first term which scales O

(√
c · d · log2(K)K

)
. Prior work scales

sublinearly with the number of decision times T as they assume either a single contextual bandit
(n = 1) or a fixed number of individuals n. Greenewald et al. (2017) scales as O(d2

√
T log(T ))

while Yang et al. (2020) scale as O(
√

d̃nT log(T )) where d̃ is the complexity of the joint baseline
and differential reward model. Interestingly, at stage K we see n = K individuals over n = K
decision times (with different number of observations per individual); however, we do not see a
regret scale with

√
nT = K. Instead, we only receive an extra log(K) factor reflecting the benefit of

pooling on average regret.

There are several technical challenges to this regret bound. First, the confidence ellipsoids βk and
γk depend on the sub-Gaussian variance factor of the pseudo-reward and need to be derived for
the DML pseudo-reward. Second, two results in Abbasi-Yadkori et al. (2011) need to be reproven:
the first is Lemma 7, a linear predictor bound that is used as a key step to derive the final regret
bound. It requires handling the fact that our regularized least squares estimate now uses our DML
pseudo-reward instead of the observed reward. The second, Proposition 1, requires care as we are
now doing weighted regularized least squares. The original version used in Abeille & Lazaric (2017)
requires an upper bound on the sum of squared feature norms, but applying Abbasi-Yadkori et al.
(2011) only gives us an upper bound on the sum of weighted squared norms. In order to derive the
needed bound, we use assumption 4 and then apply Abbasi-Yadkori et al. (2011) to obtain our version
of their results that has an upper bound that depends on c > 0, the lower bound on the weights.
Finally, the regret bound itself needs to handle the fact that we have stages with multiple individuals
(increasing by one) per stage. This leads to a sum over stages and participants within stages of the
difference between RLS and TS (and RLS and true) linear predictors. By some manipulation and an
application of Cauchy Schwartz, we see a sum of 1

k over stages, which leads to the harmonic number,
which describes the additional cost of handling multiple participants in a study in stages.
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5 EXPERIMENTS

5.1 COMPETITOR COMPARISON SIMULATION

In this section, we test three versions of our proposed method: (1) DML-TS-NNR-BLM: Our
algorithm using an ensemble of Bagged Linear Models, (2) DML-TS-NNR-BT: Our algorithm using
an ensemble of Bagged stochastic gradient Trees (Gouk et al., 2019; Mastelini et al., 2021), and (3)
DML-TS-SU-BT: Same as (2) but treating the data as if it were derived from a Single User.

We implemented these using Option 2 in Algorithm 1, and compared to four related methods: (1)
Standard: Standard Thompson sampling for linear contextual bandits, (2) AC: Action-Centered
contextual bandit algorithm (Greenewald et al., 2017), (3) IntelPooling: The intelligentpooling
method of Tomkins et al. (2021) fixing the variance parameters close to their true values, and (4)
Neural-Linear: a method that uses a pre-trained neural network to transform the feature space for
the baseline reward (similar to the Neural Linear method of Riquelme et al. (2018), which in turn
was inspired by Snoek et al. (2015)). In general, we expect our method to outperform these methods
because it is the only one that can (1) efficiently pool across users and time, (2) leverage network
information, and (3) accurately model a complex, nonlinear baseline reward.

We compare these seven methods under three settings that we label as Homogeneous Users, Het-
erogeneous Users, and Nonlinear. The first two settings involve a linear baseline model and time-
homogeneous parameters, but they differ in that the users in the second setting have distinct parameters.
The third setting is more general and includes a nonlinear baseline, user-specific parameters, and
time-specific parameters. Across all three settings, we simulate 125 stages following the staged
recruitment regime depicted in Figure 3 in Appendix A, and we repeat the full 125-stage simulation
50 times. Appendix D provides details on the setup and a link to our implementation.

Figure 1: Cumulative regret in the (a) Homogeneous Users, (b) Heterogeneous Users, and (c)
Nonlinear settings. The DML methods perform competitively in all three settings and appear to be
achieving sublinear regret as expected based on our theoretical results. The DML-TS-NNR-BLM and
DML-TS-NNR-BT algorithms perform best, and their final regret is statistically indistinguishable
(see Table 1 in Appendix D.2).

Figure 1 shows the cumulative regret for each method at varying stages. DML methods perform
competitively against the benchmark methods in all three settings and achieve sublinear regret as
expected based on our theoretical results. Across all settings, the best-performing method is either
DML-TS-NNR-BLM or DML-TS-NNR-BT. In the first setting, the difference between our methods
and IntelPooling is not statistically meaningful because IntelPooling is properly specified and network
information is not relevant. In the other two settings, our methods offer substantial and statistically
meaningful improvement over the other methods. Appendices D.2 and D.3 shows detailed pairwise
comparisons between methods and an additional simulation study using a rectangular array of data.

5.2 VALENTINE RESULTS

In parallel with the simulation study, we conducted a comparative analysis on a subset of participants
from the Valentine Study (Jeganathan et al., 2022), a prospective, randomized-controlled, remotely-
administered trial designed to evaluate an mHealth intervention to supplement cardiac rehabilitation
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for low- and moderate-risk patients. In the analyzed subset, participants were randomized to receive
or not receive contextually tailored notifications promoting low-level physical activity and exercise
throughout the day. The six algorithms being compared include (1) Standard, (2) AC, (3) IntelPooling,
(4) Neural-Linear, (5) DML-TS-SU-RF (RF stands for Random Forest (Breiman, 2001)), and (6)
DML-TS-NNR-RF. Figure 2 shows the estimated improvement in average reward over the original
constant randomization, averaged over stages (K = 120) and participants (N=108).

To demonstrate the advantage of our proposed algorithm in terms of average reward compared to the
competing algorithms, we conducted a pairwise paired t-test with a one-sided alternative hypothesis.
The null hypothesis (H0) stated that two algorithms achieve the same average reward, while the
alternative hypothesis (H1) suggested that the column-indexed algorithm achieves a higher average
reward than the row-indexed algorithm. Figure 2 displays the p-values obtained from these pairwise
t-tests. Since the alternative hypothesis is one-sided, the resulting heatmap is not symmetric. More
details on implementation can be found in Appendix E.

Figure 2: (left) Boxplot of unbiased estimates of the average per-trial reward for all six competing
algorithms, relative to the reward obtained under the pre-specified Valentine randomization policy
across 100 bootstrap samples. Within each box, the asterisk (∗) indicates the mean value, while the
mid-bar represents the median. (right) Heatmap of p-values from the pairwise paired t-tests. The last
column’s dark shade indicates that the proposed DML-TS-NNR-RF algorithm achieves significantly
higher rewards than the other five competing algorithms. This implies that after implementing our
proposed algorithm, the step counts increased by 3.5% more than what the constant randomization
policy achieved.

To further enhance the competitive performance of our proposed DML-TS-NNR algorithm, we
conducted an additional comparative analysis using a real-world dataset from the Intern Health Study
(IHS) (NeCamp et al., 2020). Further details regarding the analysis can be found in Appendix F.

6 DISCUSSION AND FUTURE WORK

In this paper, we have presented the DML Thompson Sampling with Nearest Neighbor Regularization
(DML-TS-NNR) algorithm, a novel contextual bandit algorithm specifically tailored to the mHealth
setting. By leveraging the DML framework and network cohesion penalties, DML-TS-NNR is able
to accurately model complex, nonlinear baseline rewards and efficiently pool across both individuals
and time. The end result is increased statistical precision and, consequently, the ability to learn
effective, contextually-tailored mHealth intervention policies at an accelerated pace.

While DML-TS-NNR achieves superior performance relative to existing methods, we see several
avenues for improvement. First, the algorithm considers only immediate rewards and, as such,
may not adequately address the issue of treatment fatigue. Second, the current algorithm involves
computing a log-determinant and matrix inverse, which can be computationally expensive for large
matrices. Third, we have made the simplifying assumption that the differential reward is linear in
the context vectors. Fourth, we have assumed that the network structure is known and contains only
binary edges. Fifth, our algorithm involves several hyperparameters whose values may be difficult to
specify in advance. Future work will aim to address these practical challenges in applied settings.
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