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ABSTRACT

It is widely assumed that standard GNNs perform better on graphs with high ho-
mophily, leading to the development of specialised algorithms for heterophilic
datasets in recent years. In this work, we both challenge and leverage this as-
sumption. Rather than creating new algorithms, we emphasise the importance of
understanding and enriching the data. We introduce a novel data engineering tech-
nique, Spectral Highways, that enhances the performance of both heterophilic and
non-heterophilic GNNs on heterophilic datasets. Our method augments a given
heterophilic graph by adding supernodes, thereby creating a network of highways
connecting spectral clusters in the graph. It facilitates additional paths to bring
similar nodes closer than dissimilar ones by reducing the average shortest path
lengths. We draw both intuitive and empirical connections between the relative
decreases in intraclass and interclass average shortest path lengths and shifts in
the graph’s homophily levels, providing a novel perspective that extends beyond
traditional homophily measures. We conduct extensive experiments on seven het-
erophilic datasets using various GNN architectures and also compare with data-
centric techniques, demonstrating significant improvements in node classification
performance. Furthermore, our empirical findings highlight the strong sensitivity
of several recent GNNs to the random seed used for data splitting, underscoring
the importance of this often-overlooked factor in GNN evaluation.

1 INTRODUCTION

In general, real-world networks fall into either of the two categories, i.e. homophilic or heterophilic,
decided by a network property called homophily. Homophily is the tendency to connect similar
nodes via edge linkage, where class labels of the connected nodes generally govern the notion of
similarity. For example, in citation networks, researchers often tend to cite research articles from
the same domain (Ciotti et al., 2016). In contrast, low homophily, i.e., heterophily, is observed in
heterophilic datasets, where edge formations do not favour similar class labels or actually favour
dissimilar class labels. E.g. in social media platforms, people tend to form connections irrespective
of gender, whereas, in dating networks, most people prefer to form connections with the opposite
gender (Zhu et al., 2021).

A large number of GNN algorithms tend to perform better on homophilic graphs (Xu et al., 2018;
Gasteiger et al., 2019; Wu et al., 2019; Deng et al., 2020; Bojchevski et al., 2020; Huang et al.,
2021; Brody et al., 2022) and are assumed to be not suitable for graphs with heterophily (Zhu
et al., 2020; 2021; Wang et al., 2022; He et al., 2022). This assumption has led to the designing of
specialised algorithms for heterophilic datasets. In the recent years, various algorithms have been
proposed specifically for heterophilic datasets (Jin et al., 2021; Chen et al., 2020; Chien et al., 2021;
Zhu et al., 2020; Lim et al., 2021; Bodnar et al., 2022; Li et al., 2022; Zheng et al., 2022). As
highlighted by Platonov et al. (2023), these recently proposed heterophilic GNNs are evaluated on
six heterophilic datasets used by Pei et al. (2020) wherein two datasets have a major drawback of
train-test data leakage due to the presence of duplicate nodes. Recently Lim et al. (2021) released
several new large-scale and diverse heterophilic datasets.

The research for specialised GNNs for heterophilic graphs has been driven by three primary factors
(i) the assumption that most GNNs perform better on homophilic graphs (as discussed above), (ii)
in heterophilic networks, vertices with high structural and label similarities are likely far away from
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each other (Liu et al., 2024; Suresh et al., 2021), and (iii) uniform neighbourhood aggregation and
updation is oblivious to the information between similar and dissimilar neighbours (Xu et al., 2023).
As discussed in Section 2.2 and Section 5, many specialised methods have attended to the above
factors. This motivates us to make further advancement along these directions. In this work, we
leverage and challenge the above assumption by injecting homophily into heterophilic graphs, also
shown empirically in Section 6. Intuitively, we enable information flow between different regions
of the heterophilic graph by comparatively bringing vertices with similar labels closer to each other
than the dissimilar ones.

To this end, we make the following contributions:

1. We propose Spectral Highways, a novel technique that enriches a given heterophilic graph
dataset with additional nodes and connections forming highways over the original graph.
These highways enable better information exchange between different spectral regions of
the heterophilic graph, boosting the performance of both heterophilic and non-heterophilic
GNNs for node classification.

2. We empirically relate the performance of Spectral Highways with homophily across het-
erophilic and homophilic datasets.

3. Empirical findings of our exhaustive experimentation shed light on the high sensitivity of
several recently proposed GNNs to the random seed used for data splitting.

4. To the best of our knowledge, we are the first to relate GNN performance with intraclass
and interclass average shortest path lengths in graph.

5. We intuitively discuss and empirically show a generic correlation between the changes in
graph homophily levels with the relative drop in intraclass and interclass average shortest
path lengths.

2 RELATED WORK

2.1 GRAPH DATASETS

Homophilic datasets Preliminary research works in GRL mainly evaluated their algorithms on
datasets that possess high homophily. The most widely used datasets for benchmarking are three
citation networks, namely Citeseer, Cora and Pubmed (Giles et al., 1998; Sen et al., 2008; McCal-
lum et al., 2000; Namata et al., 2012; Yang et al., 2016), and two co-purchasing networks, namely
amazon-photo and amazon-computers (Shchur et al., 2018). Other homophilic datasets used for
node classification are citation co-author networks: coauthor-cs and co-author-physics from (Shchur
et al., 2018). To evaluate GNNs on large-scale datasets, Hu et al. (2020) created Open Graph Bench-
mark and introduced highly homophilic datasets for node classification: ogbn-products, ogbn-arxiv,
ogbn-proteins, ogbn-mag and ogbn-papers100M.

Heterophilic datasets Pei et al. (2020) introduced six graph datasets possessing high heterophily
that prompted the designing of specific methods for heterophilic graphs. These six graphs, namely
Squirrel, Chameleon, Actor, Texas, Wisconsin, and Cornell, have become the standard benchmarks
for evaluating heterophilic GNNs. Platonov et al. (2023) corrected the node duplication in Squirrel
and Chameleon datasets and introduced Squirrel Filtered and Chameleon Filtered datasets along
with five new medium-size datasets: roman-empire, amazon-ratings, minesweeper, tolokers, and
questions. Lim et al. (2021) released seven new large-scale heterophilic datasets, namely Penn94,
pokec, arXiv-Year, snap-patents, genius, twitch-gamers, and wiki.

2.2 GRL ALGORITHMS

General GNNs GNNs have shown their effectiveness on a wide variety of graph learning tasks
on real-world datasets. The majority of GNN algorithms are based on the convolution principle
which is defined as neighbourhood aggregation and updation. GCN (Kipf & Welling, 2017) ag-
gregates the features of a node’s neighbours by learning a weight matrix and uses them to update
the node’s feature vector. GraphSAGE (Hamilton et al., 2017) samples nodes from the 1-hop and
2-hop neighbourhood for aggregation. GAT (Veličković et al., 2018) uses an attention mechanism
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to give varied importance to various neighbours. Xu et al. (2018) introduced Jumping Knowledge
networks to capture varied neighbourhood ranges for different nodes where subgraphs have diverse
local structures. Wu et al. (2019) proposed a Simple Graph Convolution by successively dropping
non-linearities and collapsing weight matrices between consecutive network layers, resulting in a
linear classifier following a low pass filter. Gasteiger et al. (2019) explored the relationship between
personalised PageRank and GCN to fast approximate the propagation of neural predictions. Liu
et al. (2020) proposed DAGNN to decouple representation transformation and propagation in con-
volution operations. He et al. (2021) introduced BernNet to learn arbitrary graph spectral filters by
an order-K Bernstein polynomial approximation. Brody et al. (2022) designed GATv2 to introduce
dynamic attention by reversing the order of attention and non-linearity operations in GAT. Topping
et al. (2022) studied bottleneck and over-squashing phenomena in message passing neural networks
from a geometric perspective. Wang et al. (2023) proposed Allen-Cahn message passing, using in-
teracting particle dynamics, where nodes are particles and edges represent attractive and repulsive
forces between particles. Yang et al. (2023) introduced PMLP, which is identical to standard MLP
in training but then adopts GNN’s architecture in testing. AeroGNN (Lee et al., 2023) highlights
vulnerability to over-smoothed features and smooth cumulative attention in attention-based GNNs.
Bo et al. (2023) devised Specformer to encode the set of all eigenvalues and performs self-attention
in the spectral domain, leading to a learnable set-to-set spectral filter. Huang et al. (2024) proposed
UniFilter that integrated the heterophily basis with the homophily basis to construct a universal
polynomial basis thus limiting over-smoothing and alleviating over-squashing.

Heterophilic GNNs Pei et al. (2020) directed focus towards heterophilic datasets by introducing
Geom-GCN that does bi-level aggregation over the structural neighbourhood obtained by mapping
the original graph into a latent continuous space. Zhu et al. (2020) discussed the limitations of
GNNs for learning under heterophily and proposed H2GCN. Zhu et al. (2021) proposed CPGNN
to learn a class compatibility matrix to model graph homophily. Chien et al. (2021) proposed the
use of Generalised PageRank (GPR) for GNN where GPR weights automatically learn to adjust
weights in accordance with node label pattern. Lim et al. (2021) proposed LINKX, a simple tech-
nique of embedding adjacency matrix and node features separately through MLPs and combining
them by concatenation. Fu et al. (2022) introduced p-Laplacian based GNN as an approximation
of a polynomial graph filter over the spectral domain of p-Laplacians. Wang et al. (2022) sug-
gested an adaptive propagation mechanism and aggregation process as per the homophily between
node pairs based on attribute and topological information. Li et al. (2022) suggested two models,
GloGNN and GLoGNN++, that capture node correlations by learning a coefficient matrix to guide
the neighbourhood aggregation further. Maurya et al. (2022) designed FSGNN highlighting the use
of softmax as a regulariser and soft-selector of neighbourhood features. Bodnar et al. (2022) pro-
posed neural sheaf diffusion models to achieve linear discrimination of classes in the infinite time
limit. GBK GNN (Du et al., 2022) suggested the use of bi-kernel feature transformation to capture
homophily and heterophily followed by a selection gate over kernels for given node pairs. He et al.
(2022) suggested block-guided classified aggregation to learn separate aggregation rules for neigh-
bours of varied classes. Luan et al. (2022) proposed Adaptive Channel Mixing to adaptively exploit
aggregation, diversification and identity channels node-wisely to extract richer localised information
for diverse node heterophily situations. Cavallo et al. (2023) proposed incorporating a learnable im-
portance coefficient per layer to balance the contributions of the neighbourhood and the ego node.
Zheng et al. (2023) proposed neural architecture search to build heterophilic GNN models automati-
cally. Liao et al. (2023) decoupled the full-graph dependency from the iterative training and adopted
an efficient precomputation algorithm for approximating multi-channel embeddings. Further, we
discuss the recent methods that align with our direction of work in Section 5.

3 PROPOSED TECHNIQUE

3.1 SPECTRAL HIGHWAYS

Spectral Highways (as shown in Fig.1) is a network of highways that run over the top of regions
formed by Spectral Clustering over a graph. Spectral Clustering uses connectivity information
between data points to form clusters using eigenvalues and eigenvectors of the data matrix. Let
G = (V,E) be an undirected graph with vertex set V = {v1, v2, . . . , vn} and edge set E. Let
W = (wij)i,j=1,...,n be the weighted adjacency matrix of the graph G where wij represents the
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GNN Algorithm

Downstream Task

Adjacency Matrix

Original Graph
Enriched Graph w/ 
Spectral Highways

Figure 1: Overview of the use of Spectral Highways. For a given heterophilic graph, we use Spectral
Highways to construct an enriched graph. We run available heterophilic or non-heterophilic GNN
algorithm on the enriched graph for a downstream node classification task. In this representative
enriched graph, the values of K, mincon and pcon are 4, 2 and 0.5 respectively. Colour of a node
depicts the node belonging to a particular spectral cluster.

edge weight between nodes vi and vj . If the graph is unweighted, then wij = 1 for an edge present
between nodes vi and vj ; otherwise wij = 0. Let di =

∑n
j=1 wij be the degree of a node vi ∈ V

and we define degree matrix D as a diagonal matrix with degrees d1, . . . , dn on its diagonal. Then,
we can define the unnormalised graph Laplacian matrix as L = D−W . We perform Spectral Clus-
tering according to the procedure laid down by Shi & Malik (2000). Let K be the number of clusters
we want to construct in G. Then, we compute the first K generalised eigenvectors u1, . . . , un of
the generalised eigenproblem Lu = λDu. We then stack u1, . . . , un as column vectors to construct
U ∈ Rn×K . We do not use the popular k-means algorithm (Lloyd, 1982) as it is an iterative scheme
sensitive to initialisation, which can lead to poor clusterings. We then directly extract clusters from
eigenvectors by cluster qr method (Damle et al., 2019).

Let C = {c1, . . . , cK} be the set of clusters obtained by Spectral Clustering where each such cluster
represents a subgraph or a region formed corresponding to the graph topology. We construct high-
ways over the obtained spectral clusters to allow information exchange between different regions of
the graph. We instantiate a new node called Spectral node for a cluster ci ∈ C ∀ i ∈ {1, . . . ,K}.
We then connect these Spectral nodes among each other to form a network layer. To construct high-
ways, we need to connect the network of spectral nodes to the underlying graph. For each Spectral
node si, we connect it to the corresponding spectral cluster ci via a suitable connectivity princi-
ple. Instead of making random connections, we define the connectivity principle based on node
importance. We propose the use of two popular algorithms to rank the node importance, rtype:
{PageRank,DivRank}. PageRank (Page, 1999) determines a node’s importance by considering
the incoming edges it receives from other important nodes in the graph. It outputs a probability
distribution over the network to represent the likelihood of a random surfer arriving at a particular
node. PageRank relates to the prestige of the nodes in a network, but diversity is another important
property that we can account for ranking important nodes. DivRank (Mei et al., 2010) ranks nodes in
a network by setting up an interplay between prestige and diversity. Similar to PageRank, DivRank
outputs a probability distribution over the network, indicating the node ranking. We experimentally
observed both PageRank and DivRank to perform similar in our task.

We then connect a Spectral node si to a certain number of nodes in the spectral cluster ci based on
a percentage connectivity parameter pcon consistent across all clusters. We choose percentage as
the connectivity measure rather than a fixed integer because spectral clusters are of variable sizes. It
ensures that we have a uniform extent of coverage across clusters. For small datasets, we can observe
a few clusters that are small in size such that they end up having zero connections as per pcon. To
account for this scenario, we introduce a mincon parameter that ensures a minimum number of
connections to be formed. Still, if the cluster size is too small to accommodate the mincon, we do
not connect to that cluster and drop the corresponding spectral node.

We have discussed the ranking algorithms and the connectivity coverage above for our connectivity
principle. These offer us two new hyperparameter choices, namely mode and ctype. We choose
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mode as a hyperparameter to decide whether to run ranking on a cluster level or graph level, i.e.,
local or global. ctype decides the type of nodes to choose for making connections. We explore
four different ways to select from ranked nodes: low, mid, high and lmh. Opting low enables
connections to the nodes at the bottom of the ranked node spectrum. Similarly, mid and high
lead to connection formation to the nodes in the middle and at the top of the ranked node spectrum,
respectively. lmh enforces an equally distributed number of link formations with each of the low,
mid and high ranked nodes. Intuitively, it may appear to make connections only to the highly
important nodes, but empirically, results show no absolute winner for the best choice of ctype.
Similarly, for mode, it may sound better to focus on the local level than the global one, as the Spectral
nodes are already connected in a separate network layer to account for global information exchange.
However, exhaustive experimentation indicates not to favour any particular mode type. Since we
design our method to be generic so that a variety of existing GNNs can run across diverse datasets,
a one size fits all scenario could not be obtained giving a specific combination of hyperparameters.

The above steps ensure the structural formation of Spectral Highways where nodes (not all) via a
highway of Spectral nodes interact with other nodes (not all) in the farther regions in the graph
as well as in the same spectral cluster, leading to an enhanced information flow. To initialise the
embeddings of a Spectral node, we would not want to compute the average of the representations
of nodes forming a connection with it, as this will lead to oversmoothing (Xu et al., 2023). Hence,
we initialise the embedding of a spectral node with a random sequence of zeroes and ones keeping
the same embedding dimension as those of its neighbouring nodes. To assign a class label to each
Spectral node, we take the majority voting of class labels of nodes belonging to the cluster and
assign it as the class label of the Spectral node.

Mathematically, we describe Spectral Highways (SH) for a given input graph G(V,E) as a data
engineering technique outlined by the following process:

SH(G(V,E)) ⇒ G′(V ′, E′) ≡ G′(V + S,E + E′′ + E′′′) (1)

where S = {s1, . . . , sK} is the set of Spectral nodes, E′′ is the set of all possible connections
formed amongst the Spectral nodes in the network layer and E′′′ = {Ne(s1), . . . , Ne(sK)}.

Ne(si) represents the edge neighbourhood of si in the underlying graph G and is given by

Ne(si) =f(mincon, pcon,mode, ctype, rtype, ci, G)

|Ne(si)| =max(mincon, [pcon ∗ |ci|]+)
(2)

where [x]+ represents greatest integer less than or equal to x. Also, the embedding and the class
label of Spectral node si is as follows:

si = [rand{0, 1}]d ; y(si) = M [y(c1i ), y(c
2
i ), . . . , y(c

|Ne(si)|
i )] (3)

where d is the dimension of node features, y is the class label, and M is mathematical mode operator.
Since, a cluster node cji can belong either to the training set, validation set or testing set, we take
y as the true class label only for the training nodes. We assign pseudo labels to validation and
testing nodes via modelling a probability distribution (P ) over the graph (Gtr) constituting only the
training nodes and the corresponding edges. Let PAB denotes the probability of having an edge
between two nodes with class labels A and B in Gtr respectively. Hence, for a validation/testing
node cji , we consider its 1-hop neighbours from the training set denoted by Ntr. Then the likelihood
of assigning a pseudo class label (l ∈ Ls) is given by L(l) =

∑
ntr∈Ntr

Ply(ntr), where Ls is
the set of node class labels in G, and thus we assign the pseudo class label with the maximum
likelihood, i.e., argmaxl∈Ls

L(l). Hence, the assigning the class label to Spectral node constitutes
three operations: (i) local label profiling captured by summation operator in argmaxl∈Ls

L(l) (ii)
spectral label profiling captured by M (iii) global label profiling encapsulated in P (Gtr).

4 EXPERIMENTS

Experimental setup We conduct extensive experimentation for node classification on a variety
of heterophilic datasets using both heterophilic and non-heterophilic GNNs. As Spectral Highways
augments the existing heterophilic graph, its merit is determined by the performance of downstream
GNNs. We take a heterophilic graph and use Spectral Highways to generate an enriched graph and
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then run an available GNN model on this enriched graph to predict the class of a node. For a fair
comparison, we only keep all the Spectral nodes in the train set and do not use them for validation
or in the test set. We use different GNN hyperparameters for Spectral Highways as the underlying
graph is now modified. For each dataset, we consider 5 different random seeds (Appendix A) for
data split and run 3 rounds of experiments for each of the splits. Following (Fu et al., 2022), we take
60/20/20 as the train/val/test split ratio. All the experiments are run for 100 epochs. We choose the
commonly used accuracy as a metric and report its mean and standard deviation over the 15 runs. We
run all experiments on 1 NVIDIA A100 80GB GPU. We share the details of all the hyperparameters
used for our models in the supplementary material.

Table 1: Performance comparison of Spectral Highways w.r.t. various models on seven heterophilic
datasets. We report the accuracy values for GNN models and Spectral Highways (SH). ChameleonF
and SquirrelF represents the filtered versions of Chameleon and Squirrel datasets. arXiv denotes
arXiv-Year dataset. We highlight global best result across GNNs for each dataset. Furthermore,
we highlight best result for each combination of dataset and GNN. Last column reports the average
accuracy jump across datasets observed for a baseline GNN. OOM represents Out Of Memory.

Cornell Texas Wisconsin Actor ChameleonF SquirrelF arXiv Avg (%↑)

MLP 84.34 ± 5.86 77.00 ± 12.98 94.81 ± 5.16 43.51 ± 2.72 54.13 ± 5.05 34.46 ± 10.48 39.48 ± 2.26
SH 87.17 ± 5.98 80.08 ± 6.31 95.12 ± 3.31 40.81 ± 2.51 57.22 ± 3.63 44.00 ± 10.18 40.11 ± 2.61 5.20

GraphSAGE 86.67 ± 4.10 71.83 ± 7.97 89.01 ± 5.98 40.46 ± 2.26 56.94 ± 3.80 40.25 ± 8.54 50.17 ± 0.60
SH 79.29 ± 5.36 81.50 ± 6.11 93.02 ± 3.32 38.67 ± 0.85 58.33 ± 2.93 46.04 ± 7.64 43.74 ± 1.58 1.29

GAT 45.96 ± 14.44 56.92 ± 20.98 64.94 ± 5.77 34.51 ± 1.80 58.51 ± 2.74 42.65 ± 7.26 21.81 ± 4.07
SH 47.68 ± 16.13 65.75 ± 12.58 71.42 ± 5.02 33.18 ± 2.11 58.44 ± 4.23 41.31 ± 2.65 41.34 ± 7.72 15.95

APPNP 86.06 ± 6.12 81.83 ± 5.09 96.60 ± 1.47 43.56 ± 3.70 59.93 ± 2.64 38.53 ± 4.18 37.46 ± 6.24
SH 86.67 ± 7.13 80.50 ± 5.86 96.98 ± 2.58 41.47 ± 1.91 61.94 ± 2.16 42.20 ± 10.46 39.61 ± 2.72 1.89

GPRGNN 82.02 ± 9.93 75.75 ± 12.29 92.96 ± 3.18 41.80 ± 2.09 60.52 ± 2.94 45.91 ± 3.90 21.58 ± 6.76
SH 82.73 ± 5.08 78.75 ± 7.92 94.14 ± 4.19 39.53 ± 1.85 60.97 ± 2.07 38.90 ± 8.43 37.95 ± 9.00 8.85

LINKX 67.88 ± 14.22 62.42 ± 14.60 81.17 ± 9.27 33.88 ± 3.55 57.74 ± 2.98 43.14 ± 8.33 52.94 ± 2.43
SH 81.82 ± 7.58 78.67 ± 11.51 95.12 ± 3.00 35.62 ± 3.80 61.46 ± 3.91 47.44 ± 6.29 45.40 ± 4.16 10.15

GATv2 39.49 ± 22.88 48.67 ± 28.00 65.06 ± 8.24 33.27 ± 1.87 57.60 ± 2.98 42.56 ± 6.15 24.86 ± 7.94
SH 48.38 ± 14.73 61.25 ± 9.89 73.21 ± 3.51 32.10 ± 2.06 58.89 ± 3.99 43.53 ± 3.95 44.84 ± 3.60 20.32

pGNN 73.03 ± 10.41 68.83 ± 8.58 80.06 ± 6.87 33.79 ± 2.18 58.19 ± 3.84 48.90 ± 3.58 41.11 ± 0.75
SH 78.28 ± 9.73 81.00 ± 6.88 85.99 ± 3.62 35.15 ± 1.90 58.92 ± 3.37 46.05 ± 4.00 42.26 ± 1.32 4.93

DAGNN 60.30 ± 14.15 55.00 ± 21.66 71.98 ± 4.78 34.10 ± 2.44 59.34 ± 3.26 39.18 ± 5.87 23.21 ± 9.28
SH 62.42 ± 7.27 68.17 ± 12.57 72.72 ± 3.05 34.36 ± 2.62 59.51 ± 3.12 37.21 ± 8.84 40.70 ± 9.39 14.26

BernNet 83.74 ± 4.91 82.67 ± 4.35 93.52 ± 3.25 38.80 ± 1.32 58.89 ± 2.20 42.83 ± 3.08 22.88 ± 2.78
SH 86.77 ± 3.64 83.83 ± 6.17 97.04 ± 2.13 37.63 ± 1.44 61.74 ± 2.97 43.33 ± 7.16 47.09 ± 2.22 16.79

AeroGNN 52.12 ± 32.38 35.67 ± 34.01 58.83 ± 12.26 29.38 ± 11.38 47.36 ± 9.96 39.70 ± 29.09 29.92 ± 17.77
SH 47.27 ± 25.15 42.83 ± 38.09 63.40 ± 19.66 32.39 ± 5.80 48.75 ± 9.28 50.14 ± 24.95 29.36 ± 18.39 8.02

DirSAGE 71.41 ± 11.01 79.00 ± 11.03 92.41 ± 4.48 38.80 ± 1.91 57.15 ± 5.76 42.58 ± 7.64 42.43 ± 2.21
SH 76.97 ± 7.54 81.83 ± 11.00 93.40 ± 3.73 38.30 ± 2.20 59.27 ± 2.87 52.96 ± 4.40 44.45 ± 2.72 6.28

PMLPGCN 41.01 ± 14.58 37.83 ± 26.40 55.62 ± 11.22 30.53 ± 6.36 57.78 ± 2.79 50.27 ± 5.15 34.56 ± 7.52
SH 46.87 ± 20.49 61.92 ± 15.75 68.58 ± 7.76 31.90 ± 5.00 54.41 ± 2.71 56.39 ± 7.44 37.42 ± 12.85 17.19

PMLPAPPNP 29.80 ± 17.89 24.67 ± 24.66 52.84 ± 14.45 31.86 ± 7.19 57.12 ± 4.38 46.66 ± 9.71 34.41 ± 10.46
SH 48.79 ± 23.37 68.83 ± 13.67 63.15 ± 11.62 31.83 ± 5.15 53.58 ± 4.96 54.45 ± 8.04 34.88 ± 15.19 37.70

UniFilter 27.47 ± 32.83 30.25 ± 37.25 74.32 ± 26.48 32.41 ± 10.30 41.81 ± 8.93 25.27 ± 16.69 22.69 ± 16.35
SH 53.64 ± 33.92 42.67 ± 42.14 61.36 ± 31.48 34.72 ± 5.69 45.07 ± 9.11 31.21 ± 18.21 29.33 ± 15.59 26.65

Specformer 55.56 ± 31.16 37.00 ± 32.31 75.56 ± 21.29 30.31 ± 7.58 43.40 ± 17.10 38.73 ± 24.08 OOM 7.43
SH 55.35 ± 23.93 53.08 ± 36.81 70.31 ± 24.56 35.80 ± 9.03 45.59 ± 18.57 33.04 ± 16.99 OOM

Baseline GNNs We employ various neural architectures as baseline models and compare their
respective performances with the use of Spectral Highways. Hence, for exhaustive benchmarking,
we choose: Only node features (MLP), General GNNs (GraphSAGE (Hamilton et al., 2017), GAT
(Veličković et al., 2018), APPNP (Gasteiger et al., 2019), GATv2 (Brody et al., 2022), DAGNN (Liu
et al., 2020), BernNet (He et al., 2021), AeroGNN (Lee et al., 2023), PMLP (Yang et al., 2023),
Specformer (Bo et al., 2023), UniFilter (Huang et al., 2024)) and Heterophilic GNNs (GPRGNN
(Chien et al., 2021), LINKX (Lim et al., 2021), pGNN Fu et al. (2022), DirSAGE (Rossi et al.,
2024)). Further, we consider two versions of PMLP based on GCN and APPNP.

Benchmark datasets For benchmarking and evaluating the performance of our proposed tech-
nique, we choose seven datasets with varied statistics, as shown in Table 5 (Appendix A). We
choose Cornell, Texas, Wisconsin, and Chameleon Filtered heterophilic datasets for their small
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size; Squirrel Filtered and Actor datasets for their medium size; and arXiv-Year dataset for its
large size. We could not take other datasets like pokec, genius, wiki, etc., as their experiments ran
out of memory, and twitch-gamers due to resource constraint. Cornell, Texas and Wisconsin are
datasets of WebKB 1 page data gathered from computer science departments of various universities.
Lim et al. (2021) introduced arXiv-Year dataset with the task of predicting the year of publication
or patent grant in citation network. Squirrel and Chameleon datasets are introduced for node predic-
tion by Pei et al. (2020) and have been extensively used for evaluating heterophilic GNNs. Recently,
Platonov et al. (2023) identified the issue of node duplication in these datasets and released their
corrected versions, namely Squirrel Filtered and Chameleon Filtered.

Results Table 1 shows the performance of several models with and without applying Spectral
Highways (SH) on various heterophilic datasets. We see average accuracy improvements for a GNN
across all datasets ranging from 1.29%− 37.7% as shown in the last column of Table 1. We observe
that the Wisconsin dataset obtains the highest accuracy, whereas the Actor dataset proves to be the
toughest to learn. The highest improvement in accuracy averaged over all GNNs is observed for the
Texas dataset with a value of 30.06%. Also, we achieve the best performance across all models on
5 out of 7 datasets. Interestingly, the experimental results reveal that recently proposed GNNs like
AeroGNN, PMLP, UniFilter and Specformer yield very high standard deviations in accuracy, clearly
depicting that their performance largely depends on the random seed used for data splitting. Fur-
thermore, we show an ablation study removing the connection between spectral nodes in Appendix
B. Also, we analyse the time and space aspect of Spectral highways in Appendix C and Appendix
D respectively.

5 COMPARISON WITH DATA-CENTRIC/REWIRING TECHNIQUES

At present, two different lines of thought prevail in the GRL field. One set of work discusses the
performance of GNNs regardless of the homophily levels (Luan et al., 2023), or the idea of good
homophily and bad homophily (Ma et al., 2022), or the heterophily not always being harmful to
GNN’s performance (Luan et al., 2022). The other set of work shows that GNN’s performance is
indeed proportional to the homophily (Rossi et al., 2024; Liu et al., 2024; Xu et al., 2023; Suresh
et al., 2021). DirGNN (Rossi et al., 2024) showed that treating graphs as directed improves learning
on heterophilic graphs and attributed it to the increase in homophily. SIGMA (Liu et al., 2024) used
SimRank (Jeh & Widom, 2002) as an aggregator to establish distinct relationships between similar
nodes even when they are not connected and bypassing dissimilar nodes in the local neighbour-
hood. ALT (Xu et al., 2023) presented a data-centric solution by decomposing the original graph
into two modified graphs and using a mixture of complementary filters. WRGNN (Suresh et al.,
2021) transformed the input graph, keeping the same number of nodes, into a computation graph
containing proximity and structural information as distinct types of edges. They showed that this
obtained multi-relational graph possessed an enhanced level of assortativity. The above-discussed
methods modify the original graph and use an existing GNN for prediction but not from the prin-
ciple of inserting super nodes like Spectral Highways. Specifically, Spectral Highways is a data
augmentation technique, whereas the above techniques are only data-centric. Azabou et al. (2023)
introduced HalfHop that upsamples edges in the original graph by adding “slow nodes” at each
edge that can mediate communication between a source and a target node. Qian et al. (2024) pro-
posed IPRMPNN which integrate implicit probabilistic graph rewiring into MPNNs to alleviate the
under-reaching and over-squashing issues. We then empirically compare our method with the above
discussed methods. We also show a comparison with (Luan et al., 2022) that discusses heterophily
not always being harmful and proposes Adaptive Channel Mixing (ACM) and a measure called
Aggregated Similarity/Homophily.

We consider GCN and GAT variants of WRGNN, APPNP variant of ALT, SAGE for Dir-GNN, and
ACMGCN++ and ACMIIGCN++ variants of ACM. We showed the results for Spectral Highways
with GNN variants of DirSAGE, LINKX, and BernNet. We could not report the results on the
arXiv-Year dataset as it led to out-of-memory (OOM) for many of the compared methods. The
results in Table 2 show that Spectral Highways performs best on all datasets except Actor, which is
just second to DirSAGE. Interestingly, we also observe that ACM yields high standard deviations
in predictive performance, just like AeroGNN, PMLP, UniFilter and Specformer. To reiterate, we

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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separately construct Table 2 to compare different rewiring models. The results in Table 2 shows the
baseline GNNs chosen by the authors of the proposed data centric/ rewiring methods. For example,
WRGNN choose only GCN and GAT in their proposed work. We do not create any separate artificial
setups that do not belong to the original proposed works.

Table 2: Comparison of Spectral Highways with other data-centric/rewiring techniques. We high-
light the best result and the second best for each dataset, respectively, clearly showing SH perform-
ing significantly better than the compared methods on 5 out of 6 datasets.

Cornell Texas Wisconsin Actor ChamF SquiF

WR-GCN 64.62 ± 6.76 77.81 ± 5.01 71.73 ± 5.79 34.64 ± 0.98 41.64 ± 3.30 35.06 ± 3.48
WR-GAT 64.44 ± 7.25 78.51 ± 6.12 76.53 ± 4.81 35.29 ± 1.05 40.00 ± 3.07 38.06 ± 2.07
ALT-APPNP 51.83 ± 7.12 58.62 ± 4.24 63.58 ± 5.30 34.13 ± 0.50 39.35 ± 2.03 35.66 ± 0.99
SIGMA 64.56 ± 8.07 78.07 ± 7.62 79.87 ± 6.44 32.93 ± 0.90 43.71 ± 3.21 40.10 ± 2.07
HalfHop 47.68 ± 24.13 34.83 ± 15.40 60.19 ± 12.68 25.24 ± 5.41 39.34 ± 10.64 39.17 ± 10.44
IPRMPNN 72.32 ± 2.37 78.26 ± 1.96 80.70 ± 0.85 36.31 ± 0.60 55.23 ± 1.63 42.10 ± 2.16
Dir-SAGE 71.41 ± 11.01 79.00 ± 11.03 92.41 ± 4.48 38.80 ± 1.91 57.15 ± 5.76 42.58 ± 7.64

ACMGCN++ 44.75 ± 27.75 44.50 ± 39.23 66.98 ± 25.33 27.98 ± 12.78 50.69 ± 13.97 32.56 ± 22.59
ACMIIGCN++ 50.00 ± 30.84 41.33 ± 38.87 67.47 ± 25.08 28.99 ± 12.72 47.85 ± 17.23 30.10 ± 19.09

SH (DirSAGE) 76.97 ± 7.54 81.83 ± 11.00 93.40 ± 3.73 38.30 ± 2.20 59.27 ± 2.87 52.96 ± 4.40
SH (LINKX) 81.82 ± 7.58 78.67 ± 11.51 95.12 ± 3.00 35.62 ± 3.80 61.46 ± 3.91 47.44 ± 6.29
SH (BernNet) 86.77 ± 3.64 83.83 ± 6.17 97.04 ± 2.13 37.63 ± 1.44 61.74 ± 2.97 43.33 ± 7.16

6 ANALYSIS AND DISCUSSION

Homophily Perspective As discussed in Sections 4 and 5, Spectral Highways gives superior per-
formance on several heterophilic datasets and downstream GNN models. To evaluate the assump-
tion that most GNNs perform better on graphs with high homophily, we explored several homophily
measures that are available in the literature. Let G = (V,E) is a graph with n nodes, and each node
u ∈ V has a class label yu ∈ {0, 1, . . . , C − 1}, where C is the total number of classes and Ck

represents the set of nodes in class k. Node homophily (Pei et al., 2020), which computes the ratio
of neighbours that have the same class for an ego node and then computes the mean of these ratios
across all nodes. Edge homophily (Zhu et al., 2020) is another standard measure for homophily,
which is the fraction of edges connecting two nodes with the same class. Lim et al. (2021) showed
that these two simple and intuitive homophily measures are sensitive to the number of classes and
their balance, and proposed an Improved homophily measure defined as

Himp =
1

C − 1

C−1∑
k=0

[hk − |Ck|
n

]+ (4)

where [a]+ = max(a, 0), and hk is the class-wise homophily metric defined as

hk =

∑
u∈Ck

|{u ∈ N(v) : yv = yu|∑
u∈Ck

|N(v)|
(5)

Platonov et al. (2022) showed that Improved homophily can also lead to unreliable results and thus
proposed a new measure, Adjusted homophily, by correcting the number of intra-class edges by
their expected value and is thus insensitive to the number of classes and their balance. Adjusted
homophily is based on Edge homophily and is computed as

Hadj =
Hedge −

∑C
k=1 D

2
k/(2|E|)2

1−
∑C

k=1 D
2
k/(2|E|)2

(6)

where Dk =
∑

v:yv=k d(v), and d(v) represents the degree of a node v.

Luan et al. (2022) proposed Aggregated homophily based on post aggregation node similarity.
Please refer the source for more details.

SH on heterophilic graphs: We compute all the above-discussed homophily scores on all seven
heterophilic datasets before and after using Spectral Highways. From Table 3, we can observe
that Spectral Highways consistently increases the Adjusted homophily and Edge homophily scores
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Table 3: Homophily analysis for different homophily measures across 7 heterophilic and 5 ho-
mophilic datasets. It shows injection of homophily into heterophilic datasets using Spectral High-
ways. ‘G’ represents original graph and ‘SH’ represents augmented graph after Spectral Highways.

Cornell Texas Wisc Actor ChamF SquiF arXiv Cora Cite Comp Photo Pubmed

Node Homophily

G 0.1182 0.0872 0.1706 0.2219 0.2481 0.1961 0.2893 0.8251 0.7062 0.7853 0.8364 0.7924
SH 0.1485 0.1214 0.1926 0.2251 0.2578 0.2063 0.2872 0.7790 0.6651 0.7782 0.8149 0.7589

Edge Homophily

G 0.1321 0.1118 0.2061 0.2194 0.2403 0.2095 0.2181 0.8099 0.7355 0.7772 0.8272 0.8023
SH 0.1782 0.1892 0.2508 0.2317 0.2596 0.2115 0.2219 0.7038 0.6248 0.7706 0.8164 0.7539

Adjusted Homophily

G -0.2029 -0.2260 -0.1323 0.0061 0.0347 0.0115 0.0051 0.7710 0.6706 0.6823 0.7850 0.6860
SH -0.1018 -0.0751 -0.0012 0.0135 0.0545 0.0137 0.0122 0.6393 0.5284 0.6716 0.7705 0.6056

Improved Homophily

G 0.0499 0 0.0495 0.0074 0.0465 0.0409 0.0671 0.7657 0.6267 0.7001 0.7722 0.6641
SH 0.0301 0.0313 0.1014 0.0171 0.0611 0.0601 0.0662 0.6687 0.5015 0.6906 0.7610 0.5904

Aggregated Homophily

G 0.2077 0.0984 0.2829 0.2362 0.3067 0.1053 0.1251 0.4679 0.4385 0.3873 0.2065 0.7094
SH 0.1823 0.0820 0.0811 0.2226 0.2468 0.1884 0.1403 0.1365 0.1895 0.3569 0.2582 0.3465

across all the datasets. We observe an almost similar trend for Node homophily. As shown in
Platonov et al. (2022), Improved homophily leads to unreliable results with no clear pattern in the
scores. We also observe a similar unclear pattern in Aggregated homophily. Analysing the results
from Table 1 and the homophily scores, we can observe that Spectral Highways achieves better
results in datasets where it leads to a high increase in homophily scores.

SH on homophilic graphs: To further verify our hypothesis empirically, we conduct another set of
experiments on five commonly used homophilic datasets, namely Cora, Citeseer, Photo, Computers,
and Pubmed. We show the statistics of these five datasets in Table 6 (Appendix A). We performed a
similar experimental setup for homophilic datasets to that used for heterophilic datasets. The node
prediction results are shown in Table 7 (Appendix A), and the homophily scores are reported in
Table 3. We observe that using Spectral Highways for homophilic graphs leads to a decrease in the
homophily level as measured by all five available homophily measures, with a minor exception in the
case of Aggregated homophily. The effect of homophily reduction reflects the drop in performance
across almost every homophilic dataset and the chosen GNN.

The exhaustive experimentation provides ample empirical evidence that homophily is a desired net-
work property, enabling most GNNs to perform better. We show empirically that Spectral Highways
injects homophily into heterophilic datasets, thus justifying the title of the paper. Therefore, we both
challenge and leverage the common assumption that most GNNs perform better on high homophily
datasets by injecting homophily into heterophilic datasets.

Beyond Homophily We design Spectral Highways to enable information flow between different
regions of the heterophilic graph by bringing vertices with similar labels closer to each other than
the dissimilar ones. Spectral Highways will likely facilitate additional paths between a pair of nodes
in a given heterophilic/homophilic graph, potentially reducing the shortest distance or keeping it
unchanged for the node pair under consideration. Globally, it reduces the average shortest path in
the given graph for nodes with the same class labels as well as different class labels. Intuitively, for
a heterophilic graph, where the number of direct connections between similar nodes is less than the
dissimilar ones, the additional paths are likely to reduce the average shortest path length for similar
nodes comparatively more than the dissimilar nodes. Similarly, in the homophilic graph, where the
number of direct connections between dissimilar nodes is less than the similar ones, it brings vertices
with dissimilar labels closer to each other than the similar ones.

For a given graph G, let dij denote the shortest path length between a pair of nodes i and j. If the
two nodes are not connected, we consider it one plus the graph’s diameter. Following the notations
used above in homophily equations, we define intraclass average shortest path length as follows:
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ASPLSC =
1

C

C−1∑
k=0

∑
i,j dij(|Ck|
2

) ∀ i, j ∈ Ck; i ̸= j (7)

and interclass average shortest path length as follows:

ASPLDC =
1(
C
2

) C∑
p,q=1
p<q

∑
i∈Cp

∑
j∈Cq

dij

|Cp||Cq|
(8)

As intuitively discussed above, we now empirically show in Table 4 the values of ASPLSC and
ASPLDC , and the corresponding % drops (∇) after applying Spectral Highways. Analysing Table3
and Table 4 together offer valuable insights. For heterophilic graphs, the increase in homophily
levels (Adjusted Homophily and Edge Homophily) directly correlates with the ASPL Drop Ratio,
ADR = ∇ASPLSC/∇ASPLDC . We observe the highest homophily injection for Texas, where
ADR is the highest, and the lowest homophily injection for Squirrel-Filtered, where ADR is the
lowest. Further insights into the results show that Texas obtains the highest performance gains after
applying Spectral Highways corresponding to its highest ADR. From Table 1, we see that the Actor
is the toughest to fit for various GNNs because it has the same intraclass and interclass ASPL. Also, it
obtains minimal accuracy gains after Spectral Highways as it observed the same drops in ASPLSC

and ASPLDC . For homophilic graphs, the decrease in homophily levels directly correlates with the
Inverse ASPL Drop Ratio, Inverse ADR = ∇ASPLDC/∇ASPLSC .

To summarise, we say that increasing homophily in a graph is desirable but we would also like to
achieve high ASPL Drop Ratio. Essentially the focus should be to bring similar nodes closer than
the dissimilar ones for obtaining better GNN performance.

Table 4: Analysis of average shortest path length computed between nodes with same class (SC)
and different class (DC) respectively.

Cornell Texas Wisc Actor ChamF SquiF Cora Citeseer Comp Photo Pubmed

Average Shortest Path Length – Original Graph

SC 3.262 39.307 3.161 4.101 3.835 3.139 387.016 1273.644 592.844 269.256 6.315
DC 3.3 3.205 3.229 4.101 3.921 3.165 416.893 1315.283 595.756 271.303 6.6199

Average Shortest Path Length – Spectral Highways

SC 3.032 2.518 2.81 3.578 3.334 2.992 233.757 980.329 326.735 206.88 3.661
DC 3.071 2.705 2.903 3.578 3.411 3.012 236.863 995.742 327.806 207.986 3.693

% ↓ Average Shortest Path Length – Spectral Highways

SC 7.050 93.594 11.104 12.752 13.063 4.683 39.600 23.029 44.886 23.166 42.026
DC 6.939 15.600 10.096 12.752 13.006 4.834 43.183 24.294 44.976 23.338 44.213

7 CONCLUSION

In this paper, we introduce a perspective of data enrichment that enables better performance of het-
erophilic and non-heterophilic GNN algorithms on heterophilic graphs by injecting homophily. We
propose Spectral Highways that enables better information flow in heterophilic graphs by introduc-
ing additional paths, thus bringing similar nodes that may be present in faraway regions in the graph
closer to each other. We prove the effectiveness of our technique through several experiments and
analyses. We offer a fresh perspective of intraclass and interclass average shortest path lengths be-
yond homophily. Exhaustive experimentation reveals the high sensitivity of many recent GNNs to
the random seed used for data splitting. Our work highlights the importance of data enrichment
rather than the need to design specialised models.

Limitations and Future Directions : Our work highlights the importance of reducing intraclass
ASPL more than interclass ASPL after graph augmentation. Computing ASPL is a costly operation
that limits the analysis of massive graphs, like arXiv-Year, in our case. We would like to jointly
model intraclass ASPL and interclass ASPL with homophily in a single measure for a given graph
without any augmentation to assess the difficulty of GNN in fitting the graph.
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A ADDITIONAL DETAILS

Spectral Highways offer the following hyperparameters to tune mainly in the concise range:

• Number of spectral clusters, K: {30, 40, 50}
• Choice of ranking algorithm, rtype: {PageRank,DivRank}
• Percentage connectivity, pcon: {0.3, 0.4, 0.5}
• Minimum number of connections, mincon: {3}
• Mode of ranking, mode: {local,global}
• Connectivity type, ctype: {low,mid,high,lmh}

We use the official code repositories of the authors for implementing GPRGNN 2, pGNN 3, LINKX
4, DAGNN 5, BernNet 6, AeroGNN 7, DirGNN 8, PMLP 9, UniFilter 10, and Specformer 11. For the
rest of the baseline GNNs, we use the respective implementations in PyTorch Geometric provided
by pGNN. We utilise scikit-learn (Pedregosa et al., 2011) implementation of Spectral Clustering.
We use five different random seeds for data split as (0, 5, 66, 244, 2020).

Table 5: Statistics of chosen heterophilic datasets.
Type Dataset # Nodes # Edges # Features # Classes

WebKB Webpage
Cornell 183 295 1703 5

Texas 183 309 1703 5
Wisconsin 251 499 1703 5

Actor Co-occurrence Actor 7,600 33,544 931 5

Wikipedia Webpage Chameleon filtered 890 8,904 2,325 5
Squirrel filtered 2223 47,138 2,089 5

Citation Network arXiv-Year 169,343 1,166,243 128 5

Table 6: Statistics of chosen homophilic datasets.
Dataset # Nodes # Edges # Features # Classes

Cora 2,708 5,278 1,433 7
Citeseer 3,327 4,552 3,703 6
Photo 7,487 119,043 745 8
Computers 13,381 245,778 767 10
Pubmed 19,717 44,324 500 3

2https://github.com/jianhao2016/GPRGNN
3https://github.com/guoji-fu/pGNNs
4https://github.com/CUAI/Non-Homophily-Large-Scale
5https://github.com/divelab/DeeperGNN
6https://github.com/ivam-he/BernNet
7https://github.com/syleeheal/AERO-GNN
8https://github.com/emalgorithm/directed-graph-neural-network
9https://github.com/chr26195/PMLP

10https://github.com/kkhuang81/UniFilter
11https://github.com/DSL-Lab/Specformer
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Table 7: Performance comparison of Spectral Highways w.r.t. various models on five homophilic
datasets. We report accuracy for GNN models and Spectral Highways. Performance drop is ob-
served for all GNNs as expected due to the decrease in homophily.

Cora Pubmed Citeseer Computers Photo

MLP 76.64 ± 1.37 88.69 ± 0.57 77.03 ± 1.23 86.47 ± 1.58 90.44 ± 2.69
SH 76.77 ± 1.39 88.56 ± 0.53 77.23 ± 0.82 86.71 ± 1.07 91.69 ± 2.09

GraphSAGE 88.93 ± 1.22 90.83 ± 0.47 81.44 ± 1.49 87.10 ± 1.60 92.41 ± 1.91
SH 84.45 ± 1.72 90.26 ± 0.35 79.63 ± 1.14 86.46 ± 1.21 91.60 ± 1.22

GAT 89.42 ± 0.73 90.31 ± 0.30 82.12 ± 1.46 89.29 ± 0.85 93.85 ± 0.59
SH 84.76 ± 1.22 88.60 ± 0.31 80.90 ± 1.09 86.94 ± 0.89 92.21 ± 0.69

APPNP 88.83 ± 0.65 89.25 ± 0.48 81.73 ± 1.73 88.73 ± 0.77 94.48 ± 0.85
SH 83.82 ± 1.05 89.16 ± 0.53 80.66 ± 0.68 88.15 ± 1.02 94.09 ± 1.04

GPRGNN 89.76 ± 1.00 91.56 ± 0.36 82.48 ± 1.73 88.94 ± 1.18 93.26 ± 1.34
SH 85.77 ± 1.94 89.74 ± 0.25 81.84 ± 1.06 86.42 ± 2.93 92.56 ± 1.12

LINKX 81.22 ± 2.78 88.09 ± 0.96 74.18 ± 1.27 89.50 ± 1.03 94.65 ± 1.07
SH 70.48 ± 5.81 87.88 ± 0.70 68.82 ± 2.05 88.14 ± 0.80 94.02 ± 0.92

GATv2 88.95 ± 1.05 90.34 ± 0.33 82.06 ± 0.94 90.19 ± 0.59 93.90 ± 0.80
SH 85.40 ± 1.13 88.71 ± 0.26 81.01 ± 1.40 87.43 ± 0.67 92.32 ± 0.56

pGNN 89.94 ± 1.43 91.75 ± 0.29 81.28 ± 1.10 89.30 ± 0.71 94.09 ± 0.91
SH 83.11 ± 1.05 90.00 ± 0.52 78.30 ± 0.94 86.91 ± 1.46 92.31 ± 1.32

DAGNN 89.61 ± 1.16 91.97 ± 0.43 81.81 ± 1.21 87.34 ± 7.13 93.07 ± 3.22
SH 84.92 ± 1.46 89.54 ± 0.38 80.28 ± 1.32 80.15 ± 10.46 80.25 ± 2.39

BernNet 89.52 ± 0.83 90.75 ± 0.63 82.13 ± 0.91 77.96 ± 19.51 82.38 ± 31.82
SH 84.26 ± 2.41 90.17 ± 0.37 80.54 ± 1.01 79.21 ± 8.64 89.45 ± 7.18

AeroGNN 40.51 ± 23.92 55.53 ± 6.70 33.97 ± 13.89 29.13 ± 17.03 36.99 ± 17.85
SH 35.21 ± 22.33 56.04 ± 5.04 32.90 ± 7.29 17.27 ± 18.74 21.37 ± 18.70

DirSAGE 85.14 ± 3.45 90.41 ± 0.52 79.40 ± 1.50 89.65 ± 0.96 95.85 ± 0.70
SH 84.08 ± 1.84 90.75 ± 0.38 77.53 ± 1.18 89.00 ± 1.49 95.49 ± 0.72

PMLPGCN 78.19 ± 9.25 89.47 ± 0.54 74.52 ± 6.03 83.18 ± 3.46 81.74 ± 11.59
SH 72.34 ± 8.10 85.68 ± 1.55 72.90 ± 3.51 82.93 ± 4.30 76.26 ± 14.48

PMLPAPPNP 73.63 ± 13.49 88.81 ± 1.31 73.44 ± 5.46 79.63 ± 6.41 77.44 ± 17.49
SH 70.58 ± 9.50 86.00 ± 1.51 72.87 ± 3.51 80.25 ± 8.39 72.63 ± 17.48

UniFilter 35.32 ± 25.68 59.45 ± 14.18 33.52 ± 7.70 28.73 ± 22.65 26.37 ± 21.03
SH 30.37 ± 24.18 60.00 ± 14.20 29.19 ± 10.43 31.26 ± 24.32 27.76 ± 19.08

Specformer 48.38 ± 24.03 60.82 ± 18.14 43.49 ± 12.45 34.31 ± 20.15 34.97 ± 19.64
SH 43.41 ± 24.15 60.29 ± 13.17 41.11 ± 10.61 35.57 ± 25.01 35.73 ± 18.91
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B ABLATION STUDY

To show the importance of various steps involved in the construction of Spectral Highways, we con-
duct three ablation studies as follows. (1) We switch off Spectral Clustering and randomly connect
the super nodes to the original graph. (2) We use random labeling for super nodes instead of our
designed probabilistic modeling. (3) We do not form connections amongst super nodes. We show
the percentage difference for each of these ablations w.r.t. our complete approach in Table 8. The
reported numerical values are the average changes observed in accuracy across all the discussed
GNNs as chosen in Table 1.

Table 8: Ablation analysis showing the impact of switching off Spectral Clustering (A1), proba-
bilistic modeling (A2), and connections between spectral nodes (A3) respectively. The table shows
the percentage difference for each of these ablations w.r.t. our complete approach. The reported
numerical values are the average changes observed in accuracy across all the discussed GNNs.

Cornell Texas Wisconsin Actor ChameleonF SquirrelF arXiv

A1 30.97 35.01 13.03 3.55 5.47 11.26 5.12

A2 5.78 17.57 6.53 5.45 6.04 6.85 2.48

A3 7.14 13.50 3.81 1.62 4.66 9.51 2.07

C TIME ANALYSIS

In this section, we analyse the time aspect of Spectral Highways in two different aspects. (1) Anal-
yse the model runtime on original graph as well as on the augmented graph, and (2) Analyse the
construction time of augmented graph which includes the time taken for (i) Spectral Clustering, (ii)
running ranking algorithm, (iii) forming connections between spectral nodes and the original graph
and also amongst themselves, and (iv) label and feature assignment of spectral nodes utilising like-
lihood estimation. We show the results for downstream node prediction task in Table 9 for three
GNNs to better analyse the variability in the construction time as different hyperparameters lead to
different augmented graphs. We then show the results for graph construction time in Table 10 that
also highlights the effect of chosen ranking algorithm. As we can see DivRank considerably takes
higher runtime than PageRank. As performance of both DivRank and PageRank are equivalent in
our experimentation, we thus prefer PageRank for making connections with spectral nodes.

Table 9: Model runtime comparison for downstream node prediction task. The numerical values
represent the time in seconds. values ‘G’ represents original graph and ‘SH’ represents augmented
graph after Spectral Highways.

Cornell Texas Wisconsin Actor ChameleonF SquirrelF arXiv

LINKX G 0.921 0.908 0.914 0.961 0.915 1.059 1.612
SH 1.036 1.017 1.007 1.058 1.022 1.075 1.676

BernNet G 2.554 2.662 2.658 2.537 2.19 2.343 6.146
SH 3.048 3.126 3.018 2.691 2.37 2.546 7.224

DirSAGE G 0.902 0.915 0.967 0.95 0.997 1.613 2.746
SH 1.146 1.032 1.132 1.14 1.137 1.773 3.778

Table 10: Graph construction time for downstream node prediction task using different GNNs. The
numerical values represent the time in seconds. ‘P’ represents PageRank and ‘D’ represents Di-
vRank.

Cornell Texas Wisconsin Actor ChameleonF SquirrelF arXiv

LINKX 0.290 (P) 0.352 (P) 0.335 (P) 44.637 (D) 0.735 (P) 2.402 (P) 13360.130 (D)

BernNet 0.326 (P) 0.292 (P) 0.647 (D) 4.998 (P) 0.699 (P) 18.016 (D) 22328.283 (D)

DirSAGE 0.275 (P) 0.341 (P) 0.643 (D) 5.429 (P) 0.752 (P) 2.256 (P) 3832.083 (P)
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D SPACE ANALYSIS

In this section, we analyse the space aspect of Spectral Highways. Following the setting discussed
above in Section C, we uncover the number of nodes and edges that are added through construction
of Spectral Highways by comparing their count in the original graph and the augmented graph in
Table 11.

Table 11: Space analysis for downstream node prediction task using different GNNs. ‘V’ and ‘E’
represents the total number of vertices and edges in the graph. ‘G’ represents the original graph and
‘SH’ represents augmented graph after Spectral Highways.

Cornell Texas Wisconsin Actor ChamF SquirrelF Arxiv
V E V E V E V E V E V E V E

G 183 295 183 309 251 499 7600 33544 890 8904 2223 47138 169343 1166243

SH(LINKX) 204 554 211 764 276 893 7640 37306 924 9911 2263 49026 169373 1242898

SH(BernNet) 213 808 210 727 287 1206 7640 36547 918 9567 2253 48680 169373 1242898

SH(DirSAGE) 204 554 205 610 286 1170 7630 36204 918 9648 2253 48680 169373 1242899
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