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ABSTRACT

Due to depth ambiguities and occlusions, lifting 2D poses to 3D is a highly ill-
posed problem. Well-calibrated distributions of possible poses can make these
ambiguities explicit and preserve the resulting uncertainty for downstream tasks.
This study shows that previous attempts, which account for these ambiguities via
multiple hypotheses generation, produce miscalibrated distributions. We identify
that miscalibration can be attributed to the use of sample-based metrics such as
minMPJPE. In a series of simulations, we show that minimizing minMPJPE,
as commonly done, should converge to the correct mean prediction. However,
it fails to correctly capture the uncertainty, thus resulting in a miscalibrated dis-
tribution. To mitigate this problem, we propose an accurate and well-calibrated
model called Conditional Graph Normalizing Flow (cGNFs). Our model is struc-
tured such that a single cGNF can estimate both conditional and marginal den-
sities within the same model – effectively solving a zero-shot density estimation
problem. We evaluate cGNF on the Human 3.6M dataset and show that cGNF
provides a well-calibrated distribution estimate while being close to state-of-the-
art in terms of overall minMPJPE. Furthermore, cGNF outperforms previous
methods on occluded joints while remaining well-calibrated 1. NEW

1 INTRODUCTION

The task of estimating the 3D human pose from 2D images is a classical problem in computer
vision and has received significant attention over the years (Agarwal & Triggs, 2004; Mori & Malik,
2006; Bo et al., 2008). With the advent of deep learning, various approaches have been applied
to this problem with many of them achieving impressive results (Martinez et al., 2017; Pavlakos
et al., 2016; 2018; Zhao et al., 2019; Zou & Tang, 2021). However, the task of 3D pose estimation
from 2D images is highly ill-posed: A single 2D joint can often be associated with multiple 3D
positions, and due to occlusions, many joints can be entirely missing from the image. While many
previous studies still estimate one single solution for each image (Martinez et al., 2017; Pavlakos
et al., 2017; Sun et al., 2017; Zhao et al., 2019; Zhang et al., 2021), some attempts have been made to
generate multiple hypotheses to account for these ambiguities (Li & Lee, 2019; Sharma et al., 2019; FIX
Biggs et al., 2020; Oikarinen et al., 2020; Li & Lee, 2020; Kolotouros et al., 2021; Wehrbein et al.,
2021). Many of these approaches rely on estimating the conditional distribution of 3D poses given
the 2D observation implicitly through sample-based methods. Since direct likelihood estimation
in sample-based methods is usually not feasible, different sample-based evaluation metrics have
become popular. As a result, the field’s focus has been on the quality of individual samples with
respect to the ground truth and not the quality of the probability distribution of 3D poses itself.

In this study, we show that common sample-based metrics in lifting, such as mean per joint position
error, encourage overconfident distributions rather than correct estimates of the true distribution. As
a result, they do not guarantee that the estimated density of 3D poses is a faithful representation of
the underlying data distribution and its ambiguities. As a consequence, their predicted uncertainty
cannot be trusted in downstream decisions, which would be one of the key benefits of a probabilistic
model (Fig. 1). NEW

In a series of experiments, we show that a probabilistic lifting model trained with likelihood provides
a higher-quality estimated distribution. First, we evaluate the distributions learned by minimizing

1Code and pretrained model weights are available at https://github.com/XXXX.

1

https://github.com/XXXX


Under review as a conference paper at ICLR 2023

Figure 1: Examples showcasing the consequences of an overconfident distributions vs.our well-
calibrated distribution. Ground truth marked with colored poses. Uses artificial 2D keypoint failures.

minMPJPE instead of negative log-likelihood (NLL) observing that, although minMPJPE opti-
mal distributions have a good mean they are not well-calibrated. Next, we use the SimpleBaseline
(Martinez et al., 2017) lifting model with a simple Gaussian noise model on Human3.6M to demon-
strate that a model optimized for NLL is well-calibrated but underperforms on minMPJPE. The
same model optimized for minMPJPE performs well in that metric but turns out to be miscali-
brated. To balance this trade-off, we propose an interpretable evaluation strategy that allows com-
paring sample-based methods, while retaining calibration. Finally, we introduce a novel method to
learn the distribution of 3D poses conditioned on the available 2D keypoint positions. To that end,
we propose a Conditional Graph Normalizing Flow (cGNF). Unlike previous methods, cGNF does
not require training a separate model for the prior and posterior. Thus, our model does not require an
adversarial loss term, as opposed to Wehrbein et al. (2021). By evaluating the cGNF’s performance
on the Human 3.6M dataset (Ionescu et al., 2014), we show that, in contrast to previous methods,
our model is well-calibrated while being close to state-of-the-art in terms of overall minMPJPE,
and that it significantly outperforms prior work on occluded joints.

2 RELATED WORK

Lifting Models Estimating the human 3D pose from a 2D image is an active research area
(Pavlakos et al., 2016; Martinez et al., 2017; Zhao et al., 2019; Wu et al., 2022). An effective ap-
proach is to decouple 2D keypoint detection from 3D pose estimation (Martinez et al., 2017). First,
the 2D keypoints are estimated from the image using a 2D keypoint detector, then a lifting model
uses just these keypoints to obtain a 3D pose estimate. Since the task of estimating a 3D pose from
2D data is a highly ill-posed problem, approaches have been proposed to estimate multiple hypothe-
ses (Li & Lee, 2019; Sharma et al., 2019; Oikarinen et al., 2020; Kolotouros et al., 2021; Li et al.,
2021; Wehrbein et al., 2021). However, these approaches i) do not explicitly account for occluded or
missing keypoints and ii) do not consider the calibration of the estimated densities. Wehrbein et al.
(2021) incorporate a Normalizing Flow (Tabak, 2000) architecture to model the well-defined 3D to
2D projection and exploit the invertible nature of Normalizing Flows to obtain 2D to 3D estimates.
Albeit structured as a Normalizing Flow it is not trained as a probabilistic model. Instead, the au-
thors optimize the model by minimizing a set of cost functions. All in some form depend on the
distance of hypotheses to the ground truth. In addition, they utilize an adversarial loss to improve
the quality of the hypotheses. The proposed model achieves high performance on popular met-
rics in multi-hypothesis pose estimation, which are all sample-based distance measures rather than
distribution-based metrics. Sharma et al. (2019) introduces a conditional variational autoencoder
architecture with an ordinal ranking to disambiguate depth. Similarly to Wehrbein et al. (2021),
the authors additionally optimize the poses on sample-based reconstruction metrics and report per-
formance on sample-based metrics only. Oikarinen et al. (2020) utilize a graph-based approach NEW
to construct a mixture density network of Gaussian distributions. Kolotouros et al. (2021) use a
volume-preserving normalizing flow model based on the GLOW architecture (Kingma & Dhariwal,
2018).

Sample-Based Metrics in Pose Estimation The most widely used metric in pose estimation is
the mean per joint position error (MPJPE) (Wang et al., 2021). It is defined as the mean Euclidean
distance between the K ground truth joint positions X ∈ RK×3 and the predicted joint positions
X̂ ∈ RK×3. Multi-hypothesis pose estimation considers N hypotheses of positions X̂ ∈ RN×K×3
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and adapts the error to consider the hypothesis closest to the ground truth (Jahangiri & Yuille, 2017).

minMPJPE(X̂,X) = min
n

1

K

K∑
k

∣∣∣∣∣∣X̂n,k −Xk

∣∣∣∣∣∣
2

In this work, we refer to this minimum version of the MPJPE as minMPJPE. Procrustes-Aligned NEW
MPJPE (PA-MPJPE) is a variation on MPJPE which first aligns the test pose to the ground
truth pose. The percentage of correct keypoints (PCK) (Toshev & Szegedy, 2013; Tompson et al.,
2014; Mehta et al., 2016) is another widely accepted metric in pose estimation which measures the
percentage of keypoints in a circle of 150mm around the ground truth in terms of minMPJPE.
Correct pose score (CPS) proposed by Wandt et al. (2021) considers a pose to be correct if all the
keypoints are within a radius r ∈ [0 mm, 300 mm] of the ground-truth in terms of minMPJPE.
CPS is defined as the area under the curve of percentage correct poses and r.

Calibration is an important property of a probabilistic model measuring a model’s ability to cor-
rectly reflect the uncertainty in the data. Thus, the confidence of an event assigned by a well- FIX
calibrated model should be equal to the true probability of the event (Brier, 1950). Guo et al. (2017)
show that calibration of densities is especially important in the field of deep learning, where dif-
ferent architecture choices have been shown to lead to miscalibrated. Naeini et al. (2015) propose
to measure the expected calibration error (ECE) metric which approximates the expectation of the
absolute difference between the predicted probability and the true probability.

ECE =
1

N

N∑
n=1

|p̂n − pn| (1)

The lower the ECE the better the calibration of the distribution. A model which predicts the same
probability for all samples has an ECE of 0.5, whereas a perfectly calibrated model has ECE = 0.
DeGroot & Fienberg (1983) and Niculescu-Mizil & Caruana (2005) provide a visual representation
of calibration using reliability diagrams. They display the calibration curve, which is a function of
confidence against the true probability. If the calibration curve is an identity function then the model
is perfectly calibrated.

3 OBSERVING MISCALIBRATION

In this section, we demonstrate that the current state-of-the-art lifting models are not well-calibrated.
We consider two of the latest methods: Sharma et al. (2019) and Wehrbein et al. (2021). We compute
the ECE for the two models and visualize their reliability diagrams (Fig. 2a).

3.1 QUANTILE CALIBRATION FOR POSE ESTIMATION

Algorithm 1 Quantile calibration for
pose estimation

for each X∗m and Cm do
drawN hypotheses X̂ | Cm

X̃m,k ← median(X̂:,m,k)

εn,m,k ← ||X̂n,m,k − X̃m,k||2
Φm(ε)← CDF(ε:,m,k)

ε∗m,k ← ||X
∗
m,k − X̃m,k||2

end for
ωk(q)← 1

M

∑M
m=1 1Φm(ε∗

m,k)≤q
ω(q)← median(ωk(q))
ECE = 1

|Q|
∑

q∈Q |ω(q)− q|

Quantile calibration (Song et al., 2019) defines a per-
fectly calibrated distribution as one for which ground-
truth values X∗ fall within the q-th quantile q% of the
time. However, for high dimensions estimating whether NEW
a point is contained within a given quantile is non-trivial.
We, therefore, propose to simplify the problem by pro-
jecting to the univariate space of squared errors ε from the
median X̃ of N hypotheses X̂ conditioned on 2D poses C
with K keypoints. We then compute ECE in the space of
ε over the set of quantiles Q ∈ [0, 1] (Algorithm 1). As
a measurement of central tendency we choose the median FIX
statistic, which is more robust to outlier samples. How-
ever, in practice, the choice of median vs. mean results in
minor differences in the calibration outcomes (sec. A.3).

3.2 SAMPLE-BASED METRICS PROMOTE MISCALIBRATION

In this section, we show that sample-based metrics are a major component that contributes to mis-
calibration. In principle, minMPJPE could be a good surrogate metric for NLL. However, as it
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Figure 2: a) Calibration curves of previous lifting models with the corresponding expected calibra-
tion error (ECE) scores. b) Standard deviation σ of a Gaussian distribution optimized to minimize
minMPJPE for different numbers of samples and dimensions. The true σ is 0.5 (black line), un-
derconfident σ > 0.5 (blue), overconfident σ < 0.5 (pink). The human pose equivalent distribution
(black point, 45 dimensions, 200 samples) compared to an oracle distribution (with true µ and σ) in
terms of minMPJPE and NLL. c) Gaussian noise model schematic to the left. The SimpleBaseline
model weights are not trained. Right bar plots compare the performance on minMPJPE and ECE
when optimizing for minMPJPE and NLL. d) Loss landscapes of minMPJPE and ECE for a 1D
Gaussian distribution with parameters σ and µ. The gold star represents the ground truth values of
σ∗ = 4 and µ∗ = 0. To the right is a schematic of the ECE constrained optimization.

became a common metric for selecting models it might become subject to Goodhart’s Law (Good-
hart, 1975) – “When a measure becomes a target, it ceases to be a good measure” (Strathern, 1997).
In the case of minimizing the mean MPJPE over hypotheses, the posterior distribution collapses
onto the mean (sec. A.1). Similarly, simulations indicate that minMPJPE converges to the correct
mean, but it encourages miscalibration (Fig. 2b,d and sec. A.2).

We illustrate this with a small toy example. Consider M samples X∗ ∈ RM×D from a D-
dimensional Isotropic Normal distribution with mean µ∗ ∈ RD and variance σ∗2 ∈ RD and an ap-
proximate isotropic Normal posterior distribution q(X) with mean µ ∈ RD and variance σ2 ∈ RD.
We assume the ground truth mean to be known µ = µ∗ and only optimize the variance σ2 to min-
imize minMPJPE with N hypotheses. We optimize σ2 for different numbers of dimensions D
and hypotheses N . If the distribution converges to a variance lower than the true variance σ∗2 we NEW
call such a distribution overconfident. However, if the converged variance is larger than the true
variance then the distribution is considered to be underconfident. Intuitively, for a small sampling
budget drawing samples at the mean constitutes the least risk of generating a bad sample. With an
increase in the number of hypotheses, increasing variance should gradually become beneficial, as
the samples cover more of the volume. For a sufficiently large number of hypotheses, we can expect
the variance to increase beyond the true variance, as the low-probability samples can have sufficient
representation. Increasing dimensions should have an inverse effect since the volume to be covered
increases with each dimension. We observe these effects in the toy example (Fig. 2b). When we
consider the case which corresponds to the 3D pose estimation problem (D = 45 and N = 200,
black point in Fig. 2b), we expect an overconfident distribution based on our toy example. This
is also what we observe for the current state-of-the-art lifting models (Fig. 2a). Furthermore, we
show that the minMPJPE optimal distribution outperforms the ground truth distribution in terms
of minMPJPE, but not in terms of negative log-likelihood (Fig. 2b). Together, the results imply
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that minimizing minMPJPE, directly or by model selection, is expected to result in miscalibrated
distributions and thus minMPJPE by itself is not sufficient to identify the best model.

3.3 UNCONDITIONAL GAUSSIAN NOISE BASELINE ON HUMAN 3.6M

To verify the conclusions from the toy model in section 3.2 we test the prediction with a simplified
model on the Human3.6M dataset (Catalin Ionescu, 2011; Ionescu et al., 2014) (see section 5 for
more details about the dataset). We train an additive Gaussian noise model on top of the SimpleBase-
line (Martinez et al., 2017) a well-established single-hypothesis model. We generate N hypotheses
X̂ ∈ RN×M×K×3 of poses with K keypoints for M observations C ∈ RM×K×2 according to:

X̂n,m = SimpleBaseline(Cm) + σzn

where SimpleBaseline(Cm) estimates the mean of the noise and σ is the standard deviation param-
eter scaling the standard normal samples z ∼ N (z;0, I) (Fig. 2c). It is important to note that we
do not condition σ on the 2D observation Cm, i.e. the same noise model is used for every input. We
test two optimization setups: 1) minimizing minMPJPE and 2) maximizing likelihood. Based on
the predictions from the toy problem (sec. 3), we expect the minMPJPE model to be overconfident
and outperform the NLL model on the minMPJPE, but the NLL model to be better calibrated.
This is exactly what we observe (Fig. 2c). Furthermore, each of these models achieve minMPJPE NEW
performance in a range similar to state-of-the-art multi-hypothesis methods and even outperform
some established single-hypothesis methods (Table 1).

3.4 EVALUATING SAMPLE-BASED METHODS

Given that minMPJPE is not sufficient to fully evaluate multi-hypothesis methods, we propose
an evaluation strategy that remains interpretable and promotes calibrated distributions. Consider
the landscapes of minMPJPE and ECE with respect to the mean and variance of an approximate
distribution (Fig. 2d). Simulations indicate that optimizing minMPJPE identifies the correct mean NEW
µ (sec. A.2), but not the correct σ. ECE, however, is minimized by a manifold of µ, σ values and
converges to a good standard deviation for each mean, but it does not guarantee an accurate model. NEW
We thus hypothesize that a likelihood-optimal distribution can be approximated when minMPJPE
is minimized on the ECE-optimal manifold. Thus, minMPJPE can become a measure of accuracy NEW
if it is constrained by ECE, but it should not be considered as accuracy if calibration is not matched.

4 CONDITIONAL GRAPH NORMALIZING FLOW

Given the observations made in sec. 3 we conclude that MPJPE-based objective functions are not NEW
sufficient to obtain a well-calibrated distribution. The objective function should instead be based
on likelihood, which in this case is maximized if and only if the estimated distribution recovers the
ground truth distribution i.e. if the distribution is well-calibrated (Hastie et al., 2009). Therefore, in
this section, we propose a method that can be optimized purely based on likelihood. Moreover, we
utilize the natural graph structure of the human pose providing zero-shot generalization capabilities
to occluded and unobserved body parts. We propose to learn the conditional distribution p(x | c) of
the 3D pose x given the 2D pose c using conditional graph normalizing flows (cGNF).

We define a target graph x = (Hx,Ex) of 3D poses and a context graph c = (Hc,Ec) of 2D detec-
tions. Hx ∈ Rn×Dx and Ex are the edges between the nodes of the target graph and Hc ∈ Rm×Dc

and Ec are the edges between the nodes of the context graph. In the case that an observation is not
present, the corresponding node is removed from c. The model is built of L transformation blocks,
each of which consists of a per-node feature split step, a graph merging step, an actnorm (Kingma
& Dhariwal, 2018) and two graph neural network layers (Gori et al., 2005) (Fig. 3). These elements
construct an affine coupling layer (Dinh et al., 2016), which is then followed by a permutation layer.
The transformation blocks are only applied to the target graph, while the context graph is passed
through unchanged.

Per-Node Feature Split Step splits the target node features Hx into two parts, Hx
:,1:D−1 and FIX

Hx
:,D across the feature dimension. We incorporate a leave-one-out strategy for splitting the features.

The ith feature dimension is propagated directly to the affine coupling layer and the remaining
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Figure 3: A schematic of the cGNF. Target variables x are represented by a graph with the feature
matrix Hx and the adjacency matrix Ax. The context variables are represented by a context graph
c with the feature matrix Hc and adjacency matrix Ax. In the inference path the target graph x is
transformed into a latent space z which follows a standard normal distribution. The transformation
is achieved through L transformation blocks.

dimensions are passed to the graph neural network layers. In the next block, the next ith dimension
is used.

Graph Merging When utilizing conditional normalizing flows Winkler et al. (2019) on graph-
structured data, a key challenge is incorporating the context graph in the transformation. We propose
to merge the context graph c with the target graph x into a heterogeneous graph x | c. The context
graph c forms directed edges from nodes in c to nodes in x as defined by Rc→x, the relations matrix.
Rc→x

i,j = 1 indicates that node i in the context graph forms an edge with node j in the target graph
x (Fig. 3).

Graph Neural Network Layers We define the graph neural network layers as relational graph
convolutions (R-GCNs) (Schlichtkrull et al., 2018). In the message passing step, the message re-
ceived by node v from the neighboring nodes is defined as

m
(v)
t+1 =

∑
u∈N c→x(v)

ψc→x

(
h(v)
c , e(u,v)

)
+

∑
r∈R

∑
u∈N r(v)

ψr

(
h
(u)
t , e(u,v)

)
where ψr : RDn 7→ RDh and ψc→x : RDc 7→ RDh , with Dh as the number of latent dimensions.
ψc→x should be flexible enough to allow the network to learn to distinguish between missing obser-
vations and zero observations i.e. ψc→x

(
0, e(u,v)

)
̸= 0. The Update step is defined by the mapping

g : RDh 7→ RDo which maps the latent space to the output dimension of size Do. We implement
the Update step as a single fully connected linear layer.

Affine Coupling Layer Similarly to Liu et al. (2019) the output of the GNN layers models the
scale s(x2, c) and translation t(x2, c) functions. The scale and translation functions are then applied
to the unchanged split x1 to produce the transformed graph zl

1.

zl
1 = x1 ⊙ exp (s(x2, c)) + t(x2, c)

zl
2 = x2

The x2 is copied to zl
2 unchanged. The zl

1 and zl
2 are then concatenated to form the transformed

graph zl, which is passed to the next transformation block.
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Estimating Conditional and Marginal Densities The cGNF architecture allows for estimating NEW
both the conditional and marginal densities within a single model. The conditional density p(x | c)
is estimated by merging the target graph x with the context graph c. Consequently, the output
density becomes constrained by the context. By removing nodes from c, the associated conditioning
variables are removed from p(x | c), functionally conditioning only on a subset of the possible nodes
in c. Finally, if the context graph is empty, the model provides a marginal density p(x).

Loss The standard optimization procedure for normalizing flows is to maximize the log probability
of the observed data x obtained through the inverse path (x → z) (Fig. 3). Assuming x are i.i.d.
the task of the flow is to model p (x | c) =

∏N
i p (xi | ci) where xi are the 3D poses and ci are the

corresponding 2D observations. We thus define the loss as the negative log probability of pairs of
observations x and c.

Lpost. = − ln q0(f(x, c)) +

K∑
k=1

ln
∣∣det∇zk−1

fk(zk−1, c)
∣∣

where q0 ∼ N (z;0, I) is the source distribution. We augment the training data by randomly re-
moving context variables to simulate new observations with missing keypoints in c. The augmented
observations contain 20%, 40%, 60% or 80% of all observable keypoints. For all 3D poses, we addi-
tionally compute the prior loss, which expresses the likelihood of a pose given that no 2D keypoints
were observed.

Lprior = − ln q0(f(x,∅)) +

K∑
k=1

ln
∣∣det∇zk−1

fk(zk−1,∅)
∣∣

Our overall loss function is thus the sum of the two partial losses. FIX

L =
1

2

(
Lprior + Lpost

)
(2)

The proposed training strategy and architecture formulate pose estimation as a zero-shot density
estimation problem. The cGNF model is trained on a subset of possible observations and is required
to evaluate previously unseen conditional densities. Such zero-shot capabilities are useful in reliably NEW
estimating occluded poses. The graph structure allows the cGNF to share information between
nodes and as a result allows modeling distributions with sets of conditioning variables that have not
been seen before. We observe that cGNF can solve these zero-shot density estimation problems
comparably to specialized conditional normalizing flow problems (sec B.3).

Root Node 3D poses are relative to a root node (usually the pelvis). Hence, the root node’s position
is deterministic. We, therefore, remove the root node and corresponding edges from the target graph
x and represent it as a root node-type r, which has features Hr ∈ R3 and a message generation
function ψr which is a fully connected neural network with 100 units.

Graph Symmetries The human pose graph has symmetries, e.g. the left and right limbs are
mirrored. We impose a hierarchical structure on the nodes of the target graph x. A node may have
a parent and a child, for example, the elbow node is the child of the shoulder node and the parent
of the wrist node. Messages passed from the parent to the child are forward messages generated by
ψx→x and messages from the child to the parent are backward messages generated by ψx←x.

Occlusion Representation We use 2D keypoint positions published by Wehrbein et al. (2021)
estimated using the HRNet model (Sun et al., 2019) and the provided Gaussian distribution fits for
evaluating occluded keypoints. If a keypoint is classified as occluded (2D detection σ > 5px) its
corresponding node is removed from the context graph. To adjust for the differences between the
pose definitions used by HRNet and H36M we employ an embedding network using the SageConv
architecture (Hamilton et al., 2017) with a learnable adjacency matrix. The embedding network
transforms the observed 2D keypoints into a 10-dimensional embedding vector for each of the key-
points. Additional implementation details of the architecture are given in the appendix (sec. B.1).
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Figure 4: a) Hypotheses generated by the cGNF (gray) vs the ground truth pose (blue). Original im-
age is shown to the right. b) Example of samples from the prior learned by the cGNF. c) Calibration
of the conditional density. Comparison of the frequency that the distance of the ground truth from
the median pose is within a given quantile. Median calibration curves for our model (cGNF, orange)
and Wehrbein et al. (2021) (ProHPE, gray). Left shows calibration curves for the whole Human
3.6M test set and right for only the occluded joints.

5 LIFTING HUMAN3.6M

Data We use the Human3.6M Dataset (H36M) on the academic use only license (Catalin Ionescu,
2011; Ionescu et al., 2014) which is the largest dataset for 3D human pose estimation. It consists of
tuples of 2D images, 2D poses, and 3D poses for 7 professional actors performing 15 different activ-
ities captured with 4 cameras. Accurate 3D positions are obtained from 10 motion capture cameras
and markers placed on the subjects. For evaluation, we additionally use the Human 3.6M Ambigu-
ous (H36MA) dataset introduced by Wehrbein et al. (2021). H36MA is a subset of the H36M dataset
containing only ambiguous poses from subjects 9 and 11. A pose is defined as ambiguous when the
2D keypoint detector is highly uncertain about at least one of the keypoints.

Evaluation We evaluate the model on every 64th frame of subjects 9 and 11 and the H36MA
subset. We compare our model’s performance to prior work on minMPJPE and ECE using 200
samples (Table 1). As expected from the observations made in section 3, our method underperforms
on minMPJPE but significantly outperforms on ECE (Fig. 4c). We further compare our method to NEW
Kolotouros et al. (2021) which utilizes a similar likelihood-based loss and a normalizing flow archi-
tecture, but does not account for occlusions and does not utilize graph inductive biases (Table 2). As
we predict in section 3 we find that Kolotouros et al. (2021) is well-calibrated. We show that cGNF
outperforms Kolotouros et al. (2021) even though fewer samples are used and remains comparably
well-calibrated. Samples from the posterior and prior are shown in figure 4a and b. Additional ex-
amples are included in the appendix (posterior samples Fig. S3; prior samples Fig. S4). We further NEW
compare our model performance in scenarios where other models exhibit overconfidence (Fig. 1 and
S6) and explore failure cases (Fig. S7).

Performance on individual occluded joints The poses contained in H36MA are not only oc-
cluded but also generally more difficult than the average pose in H36M. Therefore, we propose to
evaluate the performance on solely the occluded joints instead of the whole poses. We report these
errors in table 1 (Occluded), where we show that our method outperforms the competing methods
by a significant margin on both minMPJPE and ECE. Thus, this shows that our model is able to
learn a posterior distribution that is more calibrated than previous methods and is able to outperform
prior methods on minMPJPE for the occluded joints.

8
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Table 1: Comparison of the cGNF model to state-of-the-art methods for multi-hypothesis pose
estimation using expected calibration error (ECE) and minimum mean per joint position error
(minMPJPE) between the ground truth 3D pose and N hypotheses. Best model row is printed in
bold font. Reporting the mean across the outcomes of 3 different seeds and the standard deviation
(SD). For ECE the SD is smaller than 0.001 in all cases. Thus, we do not report the SD value for
ECE in this table. For all the metrics lower is better. We underlined the results that we did not
compute but instead used the originally reported value. With † we mark results which used ground
truth 2D keypoints and not estimated 2D keypoints and these are not included in the comparison.

Method H36M (mm) H36MA (mm) ECE Occluded (mm) ECE N # Params

Martinez et al. (2017) 62.9 - - - - 1 4,288,557
Zhao et al. (2019) 60.8 - - - - 1 434,703

Gaussian (minMPJPE) 54.8 ± 0.002 - 0.42 (84%) - - 200 4,288,572
Gaussian (NLL) 60.1 ± 0.002 - 0.07 (14%) - - 200 4,288,572

Kolotouros et al. (2021) (GT) 37.1† - 0.07† (14%) - - 200 25,475,744

Li & Lee (2019) 52.7 81.1 - - - 5 4,498,682
Sharma et al. (2019) 46.7 78.3 0.36 (72%) - - 200 9,100,080
Oikarinen et al. (2020) 46.2 - 0.16 (32%) - - 200 440,357
Wehrbein et al. (2021) 44.3 71.0 0.18 (36%) 51.1 ± 0.13 0.26 (52%) 200 2,157,176

cGNF 57.5 ± 0.06 87.3 ± 0.13 0.08 (16%) 47.0 ± 0.18 0.07 (14%) 200 852,546
cGNF w Lsample 53.0 ± 0.06 79.3 ± 0.05 0.08 (16%) 41.8 ± 0.04 0.03 (6%) 200 852,546
cGNF xlarge w Lsample 48.5 ± 0.02 72.6 ± 0.09 0.23 (46%) 39.9 ± 0.05 0.07 (14%) 200 8,318,741

Table 2: Comparison of methods on the
Procrustes-Aligned minMPJPE metric.

Method PA-MPJPE N

Kolotouros et al. (2021) 42.4 mm 4095

cGNF w Lsample 40.7 mm 200

Improving minMPJPE performance and
the effect on calibration We can incorpo-
rate a couple of additional steps to improve
the minMPJPE performance. We introduce
an additional loss term

Lsample = MPJPE
(
x∗, f−1(0, c)

)
that encourages the model to predict the
ground truth pose. The sample-based loss term is added to the vanilla loss (equation 2) with a
scaling coefficient λsample = 0.1. Analogously to Kolotouros et al. (2021) we sample a pose from NEW
the mode of the source distribution and minimize the minMPJPE between the sampled pose and
the ground truth pose. This additional loss term is shown to improve the minMPJPE performance.
At the original model capacity, the minMPJPE and calibration performance show improvement. FIX
However, while the model performance on minMPJPE increases further with model capacity, cali-
bration decreases significantly. We compare the performances in table 1. Additional model capacity
evaluations are made in sec. B.4.

6 CONCLUSION

In this study, we explored the problem of miscalibration in multi-hypothesis 3D pose estimation.
Obtaining calibrated density estimates is important for safety-critical applications, such as health-
care or autonomous driving. Here we provide evidence that a focus on sample-based metrics for
multi-hypothesis 3D pose estimation (e.g. minMPJPE) can lead to miscalibrated distributions.
We propose a flexible model which can be trained to minimize the negative log-likelihood loss and
show that, unlike previous methods, our model can learn a well-calibrated posterior distribution and NEW
outperforms comparably calibrated methods on minMPJPE. However, in particularly ambiguous
situations, i.e. for the occluded joints, we show that our model outperforms the state-of-the-art on
minMPJPE while maintaining a well-calibrated distribution. We believe that our findings will be
useful for future work in identifying and mitigating miscalibration in multi-hypothesis pose estima-
tion and will lead to more robust and safer applications of multi-hypothesis pose estimation.
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REPRODUCIBILITY STATEMENT

Our code for reproducing the results is open-sourced at https://github.com/XXXX. We NEW
also include code to reproduce the results we obtained for other works. Experimental logs and
downloadable pretrained models are fully available at https://wandb.ai/XXXX.
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A METRICS

A.1 MEAN PER JOINT POSITION ERROR

A popular optimization metric is the MPJPE. While this metric is especially popular in single-pose
estimation methods, it has also been used in various forms in multi-hypothesis methods. Optimizing
this metric causes the distribution of poses to be overconfident. We show this for a simple one-
dimensional distribution, the generalization to the multi-dimensional case is straightforward. Given
samples x ∼ p(x|c) from a data distribution given a particular context c, such as keypoints from a
image, consider an approximate distribution q(x̂|c) supposed to reflect the uncertainty about x|c.
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This below objective is equivalent to the mean position error for a single joint. Note that x and x̂ are
conditionally independent given c, i.e. x⊥x̂|c. The objective can then be expanded as follows:

L = Ex∼p(x|c),x̂∼q(x̂|c),c
[
(x− x̂)2

]
= Ec

[
Ex,x̂|c

[
(x− µc + µc − x̂)2

]]
= Ec

Var[x | c]︸ ︷︷ ︸
indep. of q

−2Ex,x̂|c [(x− µc)(x̂− µc)] + Ex̂|c
[
(x̂− µc)

2
]

= const.− 2Ec

Ex|c [(x− µc)]︸ ︷︷ ︸
=0

Ex̂|c [(x̂− µc)] + Ex̂|c
[
(x̂− µc)

2
]

= const.+ Ec

[
Ex̂|c

[
(x̂− µc)

2
]]
≥ 0

The expectation in the final line is non-negative and can be minimized by q(x̂|c) = δ(x̂ − µc),
i.e. setting x̂ = µc and shrinking the variance to zero. This means that q would be extremely
overconfident.

A.2 minMPJPE CONVERGES TO THE CORRECT MEAN

Consider 1D samples x∗ from a data distribution p(x) and an approximate Gaussian distribution
q(x) with parameters µ and σ. We sample N hypotheses from q(x) and minimize the minMPJPE
objective:

minMPJPE = Eq(z)

[
Ep(x)

[
min
i
(x∗ − µ− σzi)2

]]
Consider z∗j as the zi sample which minimizes the expression for the j-th data sample x∗j .

minMPJPE = Eq(z)

[
Ep(x)

[
(x∗ − µ− σz∗j )2

]]
Thus the derivative can be computed to be

∂

∂µ
minMPJPE = −2Eq(z)

[
Ep(x)

[
x∗ − µ− σz∗j

]]
= 0

= Ep(x) [x
∗]− µ− Eq(z)

[
z∗j
]

Simulations indicate that Eq(z)

[
z∗j
]

can be approximated by a sigmoid function

Eq(z)

[
z∗j
]
= S

(
Ep(x) [x

∗]− µ
)
· C(σ,N)

where C(σ,N) is a scalar scaling value dependent on σ and the number of hypotheses. Thus the
root of the derivative can be computed to be:

µ = Ep(x) [x
∗]

A.3 IMPACT OF CENTER TENDENCY MEASURE ON EXPECTED CALIBRATION ERROR

The choice of center tendency measure should be considered when computing the expected cali- NEW
bration error. Therefore on a subset of the models presented in table 1 we compare the effect of
choosing 3 different reference points. 1) The median of the samples 2) the mean of the samples and
3) the mode of the samples. We showcase the results in table 3. We observe that the use of median
in contrast to mean has little to no effect on the computation of ECE. Using the mode as a reference
point results in generally smaller values of ECE. Finally, it can be observed that regardless of the
reference point type our cGNF model remains better calibrated than the other methods.

B CONDITIONAL GRAPH NORMALIZING FLOW

B.1 ARCHITECTURE DETAILS

The cGNF model consists of 10 flow layers. Each flow layer fk consists of two GNN layers each
performing one message-passing step each as defined in eq. equation 4. In the first GNN layer each
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Supplementary Table 3: Comparison of different reference points definitions on the resulting ECE
score. In bold we mark the method that under the particular reference point has the lowest ECE.

Method Median Mean Mode

Sharma et al. (2019) 0.36 0.36 0.14
Wehrbein et al. (2021) 0.18 0.18 0.08

cGNF (ours) 0.08 0.09 0.04

message generation function ψ(1)
r is a single layer fully-connected neural network with 100 units

and a ReLU activation (Agarap, 2018). All the messages to a node are summed together resulting in
the output of the Message as in eq. equation 4. Then the Update step takes the message output as
its input to a single-layer fully connected neural network with 100 units and linear activation. The
context c is transformed via ψc to 100 dimensions and passed to the next GNN layer. In the next
GNN layer, the message generation functions ψ(2)

r are single layer fully connected neural networks
with 100 units and ReLU activation, The Update is a neural network layer with 3 output units. In
the next flow layer of the original context graph c is used and not the transformed context.

B.2 TRAINING DETAILS

We train the model on subjects 1, 5, 6, 7, and 8 on every 4th frame. We reduce the learning rate on FIX
plateau with an initial learning rate of 0.001 and patience of 10 steps reducing the learning rate by a
factor of 10. Training is stopped after the 3rd decrease in the learning rate or 200 epochs. The model
was trained on a single Nvidia Tesla V100 GPU, for about 6 days.

B.3 ZERO-SHOT DENSITY ESTIMATION

We evaluate cGNF’s zero-shot capability to estimate a previously unseen conditional density. We
simulated 50 different triple pendulums with initial velocities sampled from a normal distribution
v ∼ N (0, 10) for 25 timesteps each. Each pendulum was constructed from 4 nodes connected in a
chain. The zeroth node was fixed and the remaining x1, x2 and x3 were freely moving. The nodes
were observed with ci = xi + ε with ε ∼ N (0, 5 · 10−2). On this dataset, we trained 3 models. I.
A CNF trained to estimate the density when all positions are observed p(x | c1, c2, c3) II. A CNF
trained on a density where only one node is observed p(x | c1) III. A cGNF trained on the densities
where at most 2 nodes are observed i.e. the cGNF never sees examples of p(x | c1, c2, c3).
To test zero-shot capabilities we compare the performances of these 3 models on p(x | c1, c2, c3).
Model I (CNF) is used as reference for estimating this distribution when p(x | c1, c2, c3) is in dis-
tribution. Model II (CNF) is used to reference a model which cannot zero-shot estimate densities as
it is out of distribution. Model III (cGNF) shows that our model can zero-shot estimate a previously
unseen conditional density (Fig. S1).

B.4 CONSEQUENCES OF MODEL SCALE

We explore the effect of increasing the number of parameters of the model. We train 3 sizes of
models: 1) small with 852 546 parameters, 2) large with 3 301 546 parameters, and 3) xlarge with
8 318 741 parameters. The individual architectures were found by architecture search. We observe
that as the size increases the performance of cGNF applied to the lifting task improves decreasing
the gap to the state-of-the-art methods. The performance further improves outperforming the state-
of-the-art method on occluded joints. However, the improvement in performance comes at a cost of
calibration (Fig. S2).
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Supplementary Figure S1: Zero-shot capabilities of the cGNF model. Density estimates for 3 mod-
els: 1) CNF trained on p(x|c1, c2, c3) 2) CNF trained on p(x|c1) 3) cGNF which has never seen
p(x|c1, c2, c3). The black points represent the true positions of the triple pendulum, and the orange,
magenta and cyan represent samples for each node x1, x2, x3 respectively.
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Supplementary Figure S2: minMPJPE and ECE across different model sizes. a) shows the effect
of model scaling on calibration. b) shows the effect of model scale on accuracy. Performance on
both metrics is compared to prior methods at their respective model sizes.
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Supplementary Figure S3: Examples of samples from the posterior distribution learned by the cGNF
(gray) vs the ground truth pose (blue). Pink points show the 50 sampled hypotheses for the right
wrist positions. These examples are non-cherry picked and generated for subjects S9 and S11 from
the test dataset.
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Supplementary Figure S4: Examples of non-cherry picked samples from the prior learned by the
cGNF. Each are generated by randomly sampling a latent z ∼ N (0, I) and inverting to the pose
space x = f−1(z, ∅) without any context c. For each pose images are shown for two rotations.
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Supplementary Figure S5: Examples of the effect of artificially occluding a joint. Free joints like the
foot or wrist show a high increase in variance, while internal joints like the shoulder and hip show
smaller changes in variance. Gray poses mark samples from the cGNF and blue poses represent the
ground truth 3D poses. Yellow points mark the sampled positions of the occluded joint.
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Supplementary Figure S6: Examples showcasing the consequences of overconfident distributions.
Cases were artificially generated by shifting the 2d input and increasing the detection variance such
that the joint is classified as occluded. Comparison between Wehrbein et al. failure cases where
overconfident and wrong distributions were predicted and ours which produces a well-calibrated
distribution. Gray poses mark samples from the cGNF and blue and pink poses represent the ground
truth 3D poses. Yellow points mark the sampled positions of the joint of interest.
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Supplementary Figure S7: Examples showing failure cases. For each of these poses, the
minMPJPE exceeds 100 mm. In our experience, the most common cause of failure are over-
confident and incorrect 2D detections. Gray poses mark samples from the cGNF and blue poses
represent the ground truth 3D poses.
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