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1 Motivation

Figure 1: Comparison of Hyperparameter Tuning Ap-
proaches: state-of-the-art hyperparameter tuning tools,
in this case DEHB, match or outperform hand tuning via
grid search, while using less than 1/12 of the budget.

Deep Reinforcement Learning (RL) has been
adopting better scientific practices in order to
improve reproducibility such as standardized
evaluation metrics and reporting as well as
greater attention to implementation details and
design decisions [13, 10, 14, 1, 16]. How-
ever, the process of hyperparameter optimiza-
tion still varies widely across papers with in-
efficient grid searches being most commonly
used [18, 5, 3, 12]. This makes fair comparisons
between RL algorithms challenging. In this pa-
per, we show that hyperparameter choices in RL
can significantly affect the agent’s final perfor-
mance and sample efficiency, and that the hy-
perparameter landscape can strongly depend on
the tuning seed which might lead to overfitting
to single seeds. We therefore propose adopting
established best practices from AutoML, such
as the separation of tuning and testing seeds, as well as principled hyperparameter optimization (HPO)
across a broad search space [9, 15]. We support this by comparing multiple state-of-the-art HPO
tools on a range of RL algorithms and environments to their hand-tuned counterparts, demonstrating
that HPO approaches often have higher performance and lower compute overhead (see Figure 1).

As a result of our findings, we recommend a set of best practices for the RL community going
forward, which should result in stronger empirical results with fewer computational costs, better
reproducibility, and thus faster progress in RL. In order to encourage the adoption of these practices,
we provide plug-and-play implementations of the tuning algorithms used in this paper at https:
//github.com/facebookresearch/how-to-autorl.
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Figure 2: Tuning Results for PPO on Brax (top) and IDAAC on PrcGen (bottom). Shown is the mean evaluation
reward across 10 episodes for 3 tuning runs as well as the 98% confidence interval across tuning runs.

2 Exploring the RL Hyperparameter Landscape

In order to gain insights into the sensitivity of RL algorithms to hyperparameters, we utilize uniform
sweeps across several hyperparameters of DQN, SAC, and PPO on two MiniGrid environments [7],
three Brax environments (namely Ant, Halfcheetah, and Humanoid) [11], as well as two classic
control environments (namely Pendulum and Acrobot) [6]. For each environment, we find that these
algorithms are highly sensitive to the majority of their hyperparameters. Their interactions, at least
on the classic control environments, are relatively simple in our experiments. We also find that
fairly wide ranges of hyperparameter values are likely to work well for any given algorithm and
environment. A major challenging factor for Hyperparameter Optimization in RL, however, is the
performance instability of the same configuration between different random seeds which can make
the comparison betwen different hyperparameter settings unreliable.

3 Tuning Reinforcement Learning Algorithms

To validate our results on the RL hyperparameter landscape, we compare different categories of Hy-
perparameter Optimization algorithms on classic control environments as well as on challenging tasks
from Procgen [8] and Brax. We find that DEHB [2], performed best overall even with small budgets
of only 16 or 64 full runs (see Figure 2). Even Random Search [4] proved to be able to outperform
large Grid Searches, though showed less reliable scaling properties. The dynamic tuning approaches
PB2 [17] and BGT [19] were able to provide well-performing hyperparameter configurations during
training, but overall failed to generalize to new test seeds. In all these experiments, we saw significant
performance discrepancies between tuning and test seeds. Since neither are usually reported in RL,
fair comparisons between algorithms currently depend on whether researchers reproducing results
by chance choose the test seeds on all methods. We therefore recommend to adapt best practices
for tuning and reporting hyperparameters in RL to ensure better comparisons and therefore faster
progress in the field.

4 Concluding Remarks

We find that RL algorithms can benefit immensely from using established hyperparameter tuning
methods, often producing better results at much lower budgets than grid searches. Thus adopting
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state of the art HPO methods would increase both the efficiency and accessibility of the field.
Additionally adopting the reporting standards in Algorithm Configuration can furthermore prevent
unfair comparisons between RL algorithms, which is currently a widespread phenomenon due to
underreporting of tuning methods and seeds.
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