
SAFER: Data-Efficient and Safe Reinforcement
Learning via Skill Acquisition

Dylan Slack∗
UC Irvine

dslack@uci.edu

Yinlam Chow
Google Research

yinlamchow@google.com

Bo Dai
Google Research

bodai@google.com

Nevan Wichers
Google Research

wichersn@google.com

Abstract: Methods that extract policy primitives from offline demonstrations using
deep generative models have shown promise at accelerating reinforcement learning
(RL) for new tasks. Intuitively, these methods should also help to train safe RL
agents because they enforce useful skills. However, we identify these techniques are
not well equipped for safe policy learning because they ignore negative experiences
(e.g., unsafe or unsuccessful), focusing only on positive experiences, which harms
their ability to generalize to new tasks safely. Rather, we model the latent safety
context using principled contrastive training on an offline dataset of demonstrations
from many tasks, including both negative and positive experiences. Using this
latent variable, our RL framework, SAFEty skill pRiors (SAFER) extracts task
specific safe primitive skills to safely and successfully generalize to new tasks.
In the inference stage, policies trained with SAFER learn to compose safe skills
into successful policies. We theoretically characterize why SAFER can enforce
safe policy learning and demonstrate its effectiveness on several complex safety-
critical robotic grasping tasks inspired by the game Operation,2 in which SAFER
outperforms state-of-the-art primitive learning methods in success and safety.
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1 Introduction

Reinforcement learning (RL) has demonstrated strong performance at solving complex control tasks.
However, RL algorithms still require considerable exploration to acquire successful policies. For many
complex safety-critical applications (i.e., autonomous driving, healthcare), extensive interaction with
an environment is impossible due to dangers associated with exploration. These difficulties are further
complicated by the challenging nature of specifying safety constraints in complex environments.
Nevertheless, relatively few existing safe reinforcement learning algorithms can rapidly and safely
solve complex RL problems with hard to specify safety constraints.

One promising route is offline primitive learning methods [1, 2, 3, 4]. These methods use offline
datasets to learn representations of useful actions or behaviors through deep generative models, such
as normalizing flow models or variational autoencoders (VAE). Specifically, they treat the latent
space of the generative model as the abstract action space of higher-level actions (i.e., skills). These
methods train an RL agent to map states onto the abstract action space of skills for each downstream
task using the learned primitives. This approach can significantly accelerate policy learning because
the generative model learns useful primitives from a dataset, simplifying the action space [5].
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However, primitive learning techniques suffer from a critical drawback when applied to safety
concerned tasks. Intuitively, if trained on datasets consisting of trajectories that are both safe and
successful, offline skill learning methods should capture safe and useful behaviors and encourage
the rapid acquisition of safe policies on future tasks (downstream learning). For example, when
trained on data from everyday household tasks, these methods should learn behaviors that successfully
and safely accomplish similar tasks, such as handling objects carefully or avoiding animals in the
environment. However, when offline skill learning methods are trained only with safe experiences,
the unsafe data is out of the training distribution. It is well known that deep generative models have
problems generalizing to out of distribution data, which increases the likelihood of unsafe actions (see
Fig. 1) [6, 7, 8]. Thus, current state of the art primitive learning techniques may, counter-intuitively,
encourage unsafe behavior.
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Figure 1: Evaluating the concentration of
unsafe data in high likelihood regions by
computing the % of unsafe state-action pairs
in a holdout dataset of a safe robotic grasping
task. PARROT assigns high likelihoods to
unsafe data, i.e., it does not encourage safety,
while SAFER has much lower likelihood in
unsafe data, so it will encourage safety.

In this work, we identify that modeling the latent
safety context is the key to overcoming these chal-
lenges. To this end, we introduce SAFER: safety
skill priors, a primitive learning technique that ac-
celerates reinforcement learning with safe actions.
(An overview is provided in Figure 2.) To acquire
safe skills, SAFER i) uses a contrastive loss to distin-
guish safe and unsafe data and ii) learns a posterior
sampling distribution of a latent safety variable, that
captures different safety contexts. Using the safety
context, SAFER established a set of task specific
safe actions, greatly improving safety generalization.
Consequently, policies trained using the SAFER ab-
stract actions as the action space will learn to com-
pose a set of safe policy primitives. As shown in
Figure 1, SAFER assigns much lower likelihood to
unsafe states and actions, indicating that it will better
promote safe behaviors when applied to downstream
RL. To demonstrate the effectiveness of SAFER, we
evaluate it on a set of complex safety-critical robotic
grasping tasks. When compared with state of the art
primitive learning methods, SAFER has both a higher
success rate and fewer safety violations.

2 Related Work

Safe Exploration Several related works focus on safe exploration in RL when there is access to
known constraint function [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In our work, we focus on
the setting where the constraint function cannot be easily specified and must be inferred entirely
from data, which is critical for scaling safe RL methods to the real world. To this end, a few works
consider a similiar setting where the constraints must be inferred from data. Thananjeyan et al. [21]
uses an offline dataset of safety constraint violations to learn about safety constraints and trains a
policy to recover from safety violations so the agent can continue exploring safely. Yang et al. [22]
use natural language to enforce a set of safety constraints during policy learning. Compared to our
work, these methods focus on constrained exploration in a single task setting. Instead, we consider
accelerating learning across multiple tasks through learned safe primitives.

Demonstrations for Safe RL The use of demonstrations to ensure safety in RL has received con-
siderable interest in the literature [23, 24, 25, 26]. Most relevant, Srinivasan et al. [27] use unsafe
demonstrations to constrain exploration to only a safe set of actions for task adaption. Thananjeyan
et al. [28] relies on a set of sub-optimal demonstrations to safely learn new tasks. Though these works
leverage demonstrations to improve safety, they each rely on task specific demonstrations. Instead,
we focus on learning generalizable safe primitives, which we transfer to downstream tasks, and we
demonstrate this can greatly accelerate safe policy learning.

Skill Discovery Various works consider learning skills in an online fashion [29, 30, 31, 32, 33].
These methods learn skills for planning [31] or online RL [29, 30]. In contrast, we focus on a setting
with access to an offline dataset, from which the primitives are learned. Further works also use offline
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Figure 2: Overview of SAFER: SAFER optimizes the posterior over a latent safety variable (left
hand side of figure) that encodes safety information of the environment. SAFER uses the safety
variable to learn an abstract action space Z that maps to safe and useful behaviors through fφ through
a normalizing flow (middle of figure). SAFER accelerates RL training by learning a latent-action
policy πθ(z|s) in Z (right hand side of figure).

datasets to extract skills, and transfer these to downstream learning [2, 3, 4], but they do not model
the safety of the downstream tasks, which we demonstrate is critical for safe generalization.

Hierarchical RL Numerous works have found learning high level primitives using auxiliary models
and controlling these with RL beneficial [1, 34, 35, 36, 37, 38, 39, 40, 41]. Though these works
propose methods that are capable of accelerating the acquisition of successful policies, they do
not specifically consider learning with safety constraints, which makes them susceptible to the
generalization issues discussed in Section 1 and Section 3, where these methods can inadvertently
make unsafe behavior high likelihood. In contrast, SAFER learns a hierarchical policy that explicitly
considers the safety of tasks, resulting in both safe and successful generalization to downstream tasks,
addressing the aforementioned issues.

3 Background

In this section, we provide background for our problem setting. Recall the motivating household
robotics example where we wish to train an agent to accomplish a series of household tasks. The
agent must learn to do tasks like set a cast iron pot to boil, remove dirt off a dish with a sponge, or cut
an apple with a knife. Within these tasks, there are different goals and notions of safety. For example,
the robot can safely drop the sponge but cannot safely drop the cast iron pot while cooking, because
this would be quite dangerous. From a training perspective, it is difficult to devise safety violation
functions for all tasks, given how many ways one could behave unsafely with a cast iron pot or knife.
However, it is straightforward to determine whether the task is successful (e.g., the apple is cut in half
or it isn’t). Consequently, it is more reasonable to assume an offline data collection process where a
large set of behaviors have been annotated for success and safety violation, through simulation or
real world experience, and agents must rely entirely on the existing data to learn safety constraints
when generalizing to downstream tasks, though they may have access to a sparse reward signal.

Safety MDP In a setting with different tasks and safety constraints, for each task T , the agent’s
interaction is modeled as a safety Markov decision process decision process (safety MDP). A safety
MDP is a tuple (S,A,T, r, γ, s0, ω(s,a)), where S and A are the state and action spaces, T(·|s,a) is
the transition probabilities, r(s,a) is the reward function, γ ∈ [0, 1) is the discount factor, s0 ∈ S
is the initial state, and ω(s,a) ∈ {0, 1} is the safety violation function, that indicates whether the
current state and action lead to a safety violation (1) or no safety violation (0). Given a policy µ, we
define the expected return as Rµ(s0) := E[

∑∞
t=0 γ

tr(st,at) | µ, s0] and at each given state s ∈ S the
safety constraint function (i.e., expected safety violation) asWµ(s) := E[ω(s,a) | µ, s]. The safety
constraint is then defined asWµ(s) ≤ ε, where ε ∈ [0, 1] is the tolerable threshold of violation. For
each task the goal in safety MDP is to satisfy the safety constraint while maximizing expected return.

Offline Primitive Learning In many problems, we may not have access to the underlying reward and
safety violation functions across many different tasks. Instead, we assume access to an offline dataset
D, which consists of state-action rollouts τ = {s0,a0, ..., st,at} collected across different tasks,
where the reward and safety violation are labeled for each state action pair. Further, when adapting
to new tasks, we assume that we do not have access to the underlying safety violation function and
only have a sparse reward signal for whether the task was completed successfully. Thus, the safety
constraints must be inferred entirely from the data.
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To use the offline dataset D to generalize to downstream tasks, offline primitive discovery techniques
[1, 4, 2, 3], use a policy structure consisting of a prior µψ = fφ(z; s) and policy z ∼ πθ(z|s). In
this parameterization, the prior fφ : Z × S → A with learnable parameters φ maps from the abstract
action space Z and state space S to the action space A and is trained to learn a set of useful skills
from the dataset D. The task-dependent, high-level policy πθ : S → P(Z) maps any state s ∈ S to
the corresponding distribution of abstract actions in Z . In this way, policies φθ trained on downstream
tasks learn to compose the primitives learned by fφ from the offline dataset. Different ways to
express the behavior prior mapping have been proposed and have been found to greatly accelerate
policy learning. For instance, Ajay et al. [4] optimizes the likelihood of actions, conditioned on the
state and abstract action space, log πθ(a|s, z). Singh et al. [1] directly optimizes the log-likelihood,
log p(a|s), and fix an invertible mapping through the use of a conditional normalizing flow [42]
between the abstract action space Z and the distribution over useful actions p(a|s).

Issues With Offline Primitive Discovery for Safe RL Though current offline primitive discovery
methods are highly useful at accelerating learning, they only increase the likelihood of useful actions.
Thus, when applied to a safety MDP problem, data containing unsafe or unsuccessful data should not
be used because it is counter-intuitive to increase the likelihood of these actions [1, 4]. Consequently,
unsafe states and actions may be out of distribution (OOD). It is well established in the literature on
deep generative models (including the techniques used in offline primitive discovery methods) that
OOD data is handled poorly and, in some cases, might have higher likelihood than in-distribution
data [6, 7, 8]. As we see in Figure 1, these observations hold true for current techniques where unsafe
data has high likelihood, indicating that they may encourage unsafe behavior. Since the proposed
offline primitive discovery policy structure relies on high likelihood actions from the prior [4, 1],
using the aforementioned behavior priors for safety will be problematic.

4 SAFER: Safety Skill Priors
Considering the shortcomings mentioned in Section 3 of existing offline primitive discovery tech-
niques and the need for methods that can learn complex safety constraints, ideally a method that
encourages safety should i) be capable of learning complex safety constraints by sufficiently exploit-
ing the data, thereby avoiding the OOD issue; ii) permit the specification of undesirable behaviors
through data; and iii) accelerate the learning of successful policies. Motivated by these requirements,
in this section we introduce SAFER, an offline primitive learning method that circumvents the
aforementioned shortcomings and is specifically designed for safety MDPs.

4.1 Latent Safety Variable
To address these criteria, we a latent variable called the safety variable c ∈ C that encodes safety
context about the environment, i.e., fφ : Z × C × S → A. This construction encodes information
beyond the current state s to help SAFER model complex per task safety dynamics. For example, the
safety variable could encode the locations of people or animals while a robot performs household
tasks. Because we do not assume the task variable C is provided, we infer it from a network.

4.2 Learning The Safety Variable
In order to train the prior fφ and posterior over the safety variable, we adopt a variational inference
(VI) approach. We jointly train an invertible conditional normalizing flow fφ [42] as the prior fφ and
posterior over the safety variable using VI. At each state s ∈ S and safety variable c ∈ C, the flow
model fφ maps a unit Normal abstract action z ∈ Z (i.e., samples z = f−1

φ (a|s, c) of the inverse
flow model follow the distribution pZ(·) := N (0, I)) onto the action space A of safe behaviors, and
thus, the corresponding prior action distribution is given by

pφ(a|s, c) := pZ(f−1
φ (a; s; c)) · |det(∂f−1

φ (a; s; c)/∂a)|. (1)

The flow model is a good choice for the mapping fφ because it allows computing exact log likelihoods.
Further, it yields a mapping such that actions taken in the abstract action space z ∈ Z can easily
be transformed into useful ones a = fφ(z; s; c). However, since VI approximates the lower bound
of maximum likelihood, it does not explicitly enforce the safety requirements in the safety variable
c. To overcome this issue, we encode safety to c by formulating the learning problem as a chance
constrained optimization [43] problem.

Chance Constrained Optimization Formally, our objective arises from optimizing a neural network
to infer the posterior over the safety variable C using amortized variational inference [44]. In
particular, we parameterize the posterior over the safety variable as qρ(c |Λ), where c is the safety
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variable, and Λ is information from which to infer the variable. We set Λ as a sliding window of
states, such that if st is the current state at time t and w is the window size, then the information
is given by Λ = [st, st−1, ..., st−w]. We infer the safety variable from the sliding window of states
Λ because we expect Λ to contain useful information concerning safe learning. For example, in a
robotics setting where the observations are images, previous states may contain useful information
concerning the locations of objects to avoid, which may be unobserved in the current state. We write
the evidence-lower bound (ELBO) of our model as

Ec∼qρ(·|Λ) [log pφ(a|s, c)]−DKL(qρ(·|Λ)||p(·)), (2)

where a is the safe action (i.e, ω(a, s) = 0) and p(c) is a prior over the safety variable c. To ensure
that SAFER only samples unsafe actions with low probability, we add a chance constraint about the
likelihood of unsafe actions [45] to the ELBO optimization,

max
ρ,φ,ξ

Ec∼qρ(·|s) [log pφ(a|s, c)]−DKL (qρ(·|Λ)||p(·))− λ′ξ

s.t. Pc∼qρ(·|s)(pφ(aunsafe|s, c) > ε) ≤ ξ,
(3)

where the constraint states that with probability ξ with the safety variable c drawn from C the
distribution of the corresponding unsafe actions (i.e., ω(aunsafe, s) = 1) is always less than the safety
threshold ε. Intuitively, this objective enforces that the safety variable makes safe actions as likely as
possible while minimizing the probability of unsafe actions.

Tractable Lower Bound Due to the difficulty in optimizing the chance constrained ELBO objective,
we instead consider optimizing an unconstrained surrogate lower bound [45]. We provide a proof in
Appendix Section A.

Proposition 4.1 Assuming the chance constrained ELBO is written as in Equation 3, we can write
the surrogate lower bound as,

max
ρ,φ

Ec∼qρ(·|s)

[
logpφ(a|s,c)−λlogpφ(aunsafe|s,c)

]
−DKL(qρ(·|Λ)||p(·)) (4)

We denote this objective as the SAFER Contrastive Objective. Further, this objective function has
an intuitive interpretation. The first two terms act as a contrastive loss that encourages safe actions
(high likelihood) while discourages unsafe ones (low likelihood). Together with the final term, the
variable c is forced to contain useful information about safety. Thus the objective satisfies our goals,
allowing for the inference of safety constraints through the task variable and discouraging unsafe
behaviors. Finally, since SAFER can increase the likelihood of any safe behaviors, the final criteria
that the offline primitive discovery technique can accelerate downstream policy learning will be met
by using safe and successful trajectory data during SAFER training.

Algorithm 1 Accelerating Safe Reinforcement Learning
with SAFER
Require: SAFER Prior fφ, Safety Posterior qρ(c|Λ),

Safety bound η, Task T , Window Λ = {}
for step k = 1, ...,K do
sk ← current state
ck ← Ec∼qρ(·|Λk) [c] { Mean safety var.}
zk ∼ πθ (·|sk) {Sample abstract action}
ak ← fφ(zk; sk; ck) {Get SAFER action}
sk+1, rk, ωk ← Perform ak in task T
Update πθ(z|s) using (sk, zk, sk+1, rk)
Update Λ with sk in FIFO order

end for
Return: Policy πθ(z|s) for task T

Parametization Choices To parameter-
ize the SAFER action mapping fφ, we
use the Real NVP conditional normaliz-
ing flow, proposed by Dinh et al. [42],
due to it being highly expressive and
allowing exact log-likelihood calcula-
tions. Next, we parameterize the poste-
rior distribution qρ(c|Λ) over the safety
variable as a diagonal Gaussian to com-
pute the KL efficiently while enabling
an expressive latent space. We use a
transformer architecture to model the se-
quential dependency between Gaussian
safety variable c and the window of pre-
vious states Λ [46]. Finally, because the
state space is an image pixel space, we
also encode each observation to a vec-
tor using a CNN. An overview of the
architecture is given in Figure 2.

Training It is necessary to use the reparameterization trick to compute gradients across the objective
in Equation 5 [47]. Second, optimizing Equation 5 involves minimizing an unbounded log-likelihood
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in the second term of the objective. This term can lead to numerical instabilities when pφ(aunsafe|s, c)
is too small. To overcome these issues, we use gradient clipping and freeze this term if it starts to
diverge. Psuedo code of the procedure to train SAFER is provided in Appendix F in Algorithm 2 and
hyperparameter details are provided in Appendix D.

4.3 Accelerating Safe RL with SAFER
When using SAFER on a safe RL task, the goal is to accelerate safe learning by leveraging the mapping
fφ in the hierarchical policy µψ(s, c) =

∫
z
fφ(z; s; c)dπθ(z|s) where the policy parameters of the

mapping φ are fixed and the parameters θ need to be optimized (Psuedo code of the procedure is
provided in Algorithm 1). The policy πθ(z|s) can be learned by any standard RL methods (e.g.,
SAC [48]) that produces continuous actions. To leverage SAFER at inference time, at each timestep
t the RL policy takes an action in the abstract action space zt ∼ πθ(z|s = st). Using the sliding
window of states Λ, the safety variable posterior computes the distribution over the safety variable
ct.3 Because a single safety variable value ct is required, we fix it at its mean, E[ct] =

∫
c dqρ(c|Λt).

Finally, SAFER computes the action at = fφ(zt; st; E[ct]), the action is taken the environment, and
the reward r(st,at) and safety violations ω(st,at) are returned. The action zt and reward rt are
added to the replay buffer for subsequent RL training.
4.4 Using SAFER to Guarantee Safety
Next, we demonstrate how it is straightforward to use SAFER to theoretically guarantee safety for
any policy trained under the prior. To show this is the case, we assume there always exists safe actions
to take in the environment and make an optimiality assumptions about the prior in (5). Then, we can
construct a bound on the range of abstracts actions that ensures only safe actions under the prior:

Proposition 4.2 There exists an η such that the corresponding bounded abstract actions z ∈ (−η, η)
are safe, i.e., ω(s, fφ(z; c; s)) = 0, ∀z ∈ (−η, η), s, c.

As a result, we can construct a latent variable bound around the mean of Z as the actions fφ(z; c; s)
that are more likely to be safe and successful are closer to the mean. Because unsafe actions under
the SAFER prior have lower likelihood and our assumption ensures that safe actions exists, there
must exist a finite latent variable bound η that contains all safe actions. Consequently, with such
an η from Proposition 4.2, any agent πθ that is trained under the SAFER prior and has a bounded
abstraction action output z ∈ (−η, η) is safe. The full proof details are provided in Appendix B.

In practice, we use an offline data set with safe (s, a) and unsafe (s, aunsafe) state-action pairs to
determine the value of η that ensures safety. Also, it is acceptable to fix a range (−η, η) that includes a
small number of unsafe actions (e.g., at most 1− ε portion of all actions in data is unsafe) to avoid an
overly tight bound. We optimize the real-valued η > 0 by a numerical gradient-free approach. First,
we initialize η = η0 with a large constant and use that to generate the corresponding SAFER abstract
actions z w.r.t. the offline data, whose latent variable is bounded in (−η0, η0). We sub-sample this
SAFER-action bootstrapped dataset to construct a refined one that only has at most 1− ε portion of
unsafe actions. Since the normalizing flow in SAFER is invertible, for every (s, a)-pair in this data
computing the corresponding latent action value is straightforward. This allows us to estimate η1,
which is the maximum latent action in this dataset. We repeat this procedure until convergence. If the
offline dataset contains sufficiently diverse state-action data that covers most situations encountered
by SAFER, we expect the above safety threshold to be generalizable [49]. We denote this procedure
computing the SAFER safety assurances and provide pseudo code in Algorithm 3 in the Appendix.

5 Experiments
We evaluate the calibration of the safety assurances introduced in Section 4.4 and how well SAFER
encourages both safe and successful policy learning compared to baselines.

5.1 Experiments Setup
To evaluate SAFER, we introduce a suite of safety-critical robotic grasping tasks that are inspired by
the game Operation4.

Safety-critical Robotic Grasping Tasks Based on the game Operation, whose goal is to extract
objects from different sized containers without touching the container, we construct a set of 40

3If there are insufficient states to compute a task window of size w (e.g., at the beginning of the rollout), we
pad the available states with 0’s in order to construct a window of w states.

4https://en.wikipedia.org/wiki/OperationGame
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tainer and extracts the object without
touching the container. On the bot-
tom row, the robot performs the same
task but commits safety violations by
touching the container.

grasping tasks, each consisting of a container and object defined in PyBullet [50]. We collect data
from these tasks to train SAFER and use 6 of the more complex tasks for evaluation. In our tasks,
the objects are randomly selected from ones available in PyBullet package, and the containers are
generated to fit the objects, whose dimensions (heights and widths) are generated randomly. Our
agent controls a 5DoF robotic arm and gripper. The agent receives positive reward (r(s, a) = 1)
when it extracts the object from the box and a negative reward (r(s, a) = −1) at every time step
while the task is incomplete. The agent incurs a safety violation (ω(s, a) = 1) if the arm touches the
box (examples of safe/unsafe trajectories in Figure 3, examples of the tasks are in Figure 10). The
states are 48× 48 pixel image observations of the scene collected from a fixed camera.

Offline Data Collection To generate the offline data for the SAFER training algorithm, for each
robot grasping task we use the scripted policy from Singh et al. [1] to collect trajectories with a
total of 1, 000, 000 steps. The scripted policy controls the robotic arm to grasp the object gen-
erally by minimizing the absolute distance between objects and the robot. To obtain more di-
verse/exploratory trajectories, one also adds random actuation noise to the policy. After collecting the
trajectories, for each state-action pair (s,a) in the dataset we provide labels for i) safety violation
ω(s, a) ∈ {0, 1}, and ii) whether the pair (s,a) is part of a successful rollout (i.e., (s,a) such that
E[r(sT ,aT )|µdata, s0 = s,a0 = a] = 1, where T is the trajectory length random variable). To
create the state window Λ for SAFER training, for each (s,a) in the data buffer we save the previous
w states. One can utilize these labels to categorize safe versus unsafe data to train SAFER.

Baseline Comparisons To demonstrate the improved safety performance of SAFER over existing
offline primitive learning techniques, we compare against baseline methods that leverage offline data
to accelerate learning, including PARROT [1], a contextual version of PARROT (Context. PAR) that
uses a latent variable to help accelerate learning, Prior Explore (a method that samples from SAFER
to help with data collection during training) and RL from scratch using SAC. See Appendix E for
more details. Last, because our setting requires learning safety constraints entirely from labeled
offline data, we do not compare against methods that require online safety constraint functions, such
as many existing safe RL methods which use a constraint function during training.

5.2 Results Discussion

Effectiveness of RL training with SAFER In Table 1 we compare SAFER with the baseline methods
both in terms of cumulative safety violations and success rate. Note, here we use the underlying
reward and safety violation functions for each task to evaluate performance. We choose a SAFER
policy primitive with a safety assurance upper bound that guarantees at most 15% unsafe actions,
which empirically maintains a good balance between performance and safety. For each downstream
task, we then train the RL agent πθ with SAC for only 50, 000 steps because we are more interested
to evaluate the power of the primitive learning algorithm. Overall, we see that SAFER has the lowest
cumulative safety violations, indicating that it is the most effective method in promoting safe policy
learning. Interestingly, SAFER also consistently outperforms other methods in policy performance.
The strong success rates of SAFER are potentially due to the fact that discouraging unsafe behaviors
may indeed help refining the space of useful behaviors, thus improves policy learning.

Safety Assurance Calibration We evaluate whether the safe abstract action bound of SAFER
computed in Section 4.4 is well calibrated, i.e., the empirical percent of unsafe actions should be less
than the upper bound. To study this, we compute the Z-action bound (−η, η) corresponding to an
upper bound of 0%, 15%, 30% and 45% unsafe actions for SAFER. We compute the percentage of
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Table 1: Training RL with SAFER, we give the mean ± SD success rate and cumulative safety
violations across different tasks and initializations. SAFER produces the lowest cumulative safety
violations throughout training and outperforms the baseline methods in terms of success rate.

Success Rate (%)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

SAC 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 2.3± 0.0
PARROT 0.0± 0.0 12.8± 0.2 25.7± 0.2 16.1± 0.2 33.9± 0.3 6.3± 0.1
Context PAR. 5.0± 0.0 24.2± 0.2 27.0± 0.3 0.7± 0.0 7.3± 0.1 12.0± 0.2
Prior Explore 1.8± 0.0 1.5± 0.0 3.0± 0.0 1.8± 0.0 1.1± 0.0 1.0± 0.0
SAFER 21.0± 0.1 87.4± 0.2 89.3± 0.0 28.1± 0.2 54.4± 0.1 83.3± 0.0

Total Number of Safety Violations (Out of 50,000 Steps)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

SAC 2045± 236 876± 117 1055± 216 2736± 147 2188± 405 756± 293
PARROT 6332± 3026 307± 291 13± 21 541± 461 2414± 314 932± 844
Context PAR. 5929± 2964 1576± 1208 1039± 777 5056± 1778 2796± 624 2085± 1951
Prior Explore 6203± 551 2240± 634 2867± 853 4525± 826 4669± 542 2596± 703
SAFER 610± 184 51± 61 10± 14 455± 470 1707± 292 7± 9
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Figure 4: Assessing the calibration of the SAFER safety assurances by randomly sampling
actions from the prior with various safety upper bounds across different evaluation tasks. Each
dot corresponds to the empirical percent of unsafe (s,a) pairs from a single rollout on the task.
Overall, we see that the SAFER safety assurances are quite well calibrated.

unsafe actions by randomly sampling actions from SAFER on each evaluation task and report the
results in Figure 4, showing that the SAFER bounds are indeed well calibrated.

Impact of latent safety variable We train SAFER on Tasks 2 and 5 using the contrastive objective
in Equation 5 but without the safety variable. In this case, the success rate never exceeds 10% and
the safety violations are quite high (see Appendix C for the Task 2 results). In contrast, the safety
variable in SAFER has at least a 60% success rate on both tasks ( Table 1). This result suggests that
the latent safety variable is crucial for success and safety.

6 Limitations
Though SAFER improves both safe and successful generalization to downstream tasks, there are
several critical limitations to consider. Foremost, SAFER relies on a labeled offline dataset. In certain
settings, it may be impractical to collect a sufficiently large dataset to ensure useful learned primitives
or to receive high quality labels. If the dataset is not sufficiently large or the labels are poor quality,
this could harm the capacity of SAFER to learn useful primitives. In the future, researchers should
benchmark and improve the sample efficiency of SAFER. Second, the offline dataset includes a
selection of unsafe demonstrations. In settings where there are not existing unsafe data points (e.g.,

8



from previous failures), or unsafe data cannot be simulated, it may be difficult for SAFER to learn
generalizable safety constraints from the data.

7 Conclusion
In this paper, we introduced SAFER, an offline primitive learning method that improves the data
efficiency of safe RL when there is access to both safe and unsafe data examples. This is particularly
important because most existing safe RL algorithms are very data inefficient. We proposed a set
of complex safety-critical robotic grasping tasks to evaluate SAFER, investigated limitations of
state-of-the-art offline primitive learning baselines, and demonstrated that SAFER can achieve better
success rates while enforcing safety with high-probability assurances.
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Appendix
A Proof: Tractable Lower Bound

Proposition 3.1: Assuming the chance constrained ELBO is written as in Equation 3, we can write
the surrogate lower bound as,

max
ρ,φ

Ec∼qρ(·|s)

[
logpφ(a|s,c)−λlogpφ(aunsafe|s,c)

]
−DKL(qρ(·|Λ)||p(·)) (5)

Proof: We rewrite the optimization 3 into the following form,

max
ρ,φ,λ′

Ec∼qρ(·|s)[log pφ(a|s, c)−DKL(qρ(·|Λ)||p(·))]− λ′Pc∼qρ(·|s)(pφ(aunsafe|s, c) > ε). (6)

With the Markov inequality we have

Pc∼qρ(·|s)(pφ(aunsafe|s,c)>ε)≤ Ec[pφ(aunsafe|s,c)]

ε
, (7)

such that the following objective function is a lower bound of that in Equation 3:

max
ρ,φ,λ′

Ec∼qρ(·|s)

[
logpφ(a|s, c)− λ

′

ε
pφ(aunsafe|s, c)

]
−DKL(qρ(·|Λ)||p(·)) (8)

For convenience, we write λ′

ε as the single hyperparameter λ and optimize the log of pφ(aunsafe|s, c)
for better numerical stability. We finally have the lower bound surrogate objective in Equation 5.

B Guaranteeing Safety with SAFER

In this section, we demonstrate how it is straightforward to show SAFER can guarantee safety for any
policy trained under the skill prior, demonstrating the utility of the method. We restate and clarify our
assumptions before providing the proof of the proposition. The first assumption ensures that there is
always a safe action to take.

Assumption B.1 At every state s, there always exists a safe action a, i.e., ∀s ∃a s.t. ω(s,a) = 0.

The second assumption ensures that the SAFER model is optimal according to the SAFER objective
given in Objective 5. In effect, this assumption means that safe actions have high likelihood while the
unsafe actions are much less likely under the SAFER prior.

Assumption B.2 The SAFER prior parameters ρ̂, φ̂ are optimal per Objective 5, such that all
safe actions have higher likelihood than unsafe actions under the prior, i.e., ∀a,aunsafe, s, c :
logpφ(a|s, c)� logpφ(aunsafe|s, c).

Next, we provide a proof for Proposition 4.2.

Proposition B.1 There exists an η such that the corresponding bounded abstract actions z ∈ (−η, η)
are safe, i.e., ω(s, fφ(z; c; s)) = 0, ∀z ∈ (−η, η), s, c.

Proof (Sketch): Because the abstract action space Z is unit Gaussian (Z ∼ N (0, I)) it is the case
that the z’s that are closer to the zero vector 0 have higher likelihood, i.e., z’s with lower norm ||z||
have higher likelihood. From the assumption, we know that in every state there exists safe actions
and with the way we train SAFER it will have much higher likelihood than unsafe actions in the prior
distribution, logpφ(a|s, c)� logpφ(aunsafe|s, c). Using the invertibility property of normalizing
flow, one concludes that for all state and action pairs, the unsafe abstract actions z are much farther
away from the zero vector 0. Consequently, there must exist a finite latent bound η that separates all
safe actions with unsafe ones. �
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Figure 6: Assessing the tradeoff between success and safety varying the safety assurances bound
on the abstract action space Z , (referred to as η in Algorithm 3). There is an sweet spot where success
rate is high and safety violations is low.

C Additional Results

In this Appendix, we present additional results with SAFER.

Cumulative Safety Violation Graphs In the main paper, we presented the cumulative safety viola-
tions at the end of training. Here, we present graphs of the cumulative safety violations in figure 5
throughout training for the baselines and SAFER. In these graphs, we see that SAFER is consistently
the safety method throughout training.
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Figure 5: The cumulative safety violations throughout training for SAFER and the baselines. We
see that SAFER is consistently the safest method throughout training.

Success & Safety Tradeoff In Figure 6 we assess the tradeoff between success and safety by varying
the Z-action bound in Algorithm 3. We sweep over different bounds and compute both the success
rate and safety violations at the end of training for Task 5. We see that there is a sweet spot with high
success rate and low safety violations when the safety assurances bound is close to 15%. Interestingly
when the bound is too tight (corresponding small z values), both the safety violation and success rate
become low, indicating SAFER cannot solve the task without sufficient exploration.

Per Step Safety Violations In the main paper, we provide cumulative safety violation graphs. Here,
we provide the safety violations over the last 1, 000 steps in Figure 7 in order to get a better sense of
the safety violations throughout training. We again consistently see SAFER is safety method over
the course of training. One interesting observation is that, in Section 3, we discussed how PARROT
rates unsafe (s,a) pairs as high likelihood. Because PARROT draws on higher likelihood actions
from the prior earlier in training, we would expect that PARROT would be more unsafe earlier in
training. Empirically, we see this to be the case. Looking at the graphs, PARROT has high safety
violation spikes at the beginning of training. These results demonstrate that our earlier observations
surrounding the unsafety of PARROT hold true when running RL.
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Figure 7: The safety violations over each step of training for each of the tasks (same task ordering as
Figure 5). We see that SAFER is consistently the most safe method throughout training.

Impact of Probabilistic Treatment One question worth considering is how necessary is it to treat
SAFER as a latent variable model and optimize the posterior over the safety variable using variational
inference, as is proposed in Section 4.2. It could be easier to treat c as a vector (without defining
it as a Guassian random variable), exclude the KL term from Equation 5, and optimize qρ(c|Λ)
with the rest of the objective. To assess whether this is the case, we ran a sweep across different
hyperparameter configurations, including the number of bijectors in the real NVP model, the learning
rate, λ, and the number of hidden units in each bijector. Doing this, however, we find SAFER quickly
diverges, indicating the probabilistic treatment greatly helps stabilize training and is necessary for the
success of the method.

Training SAFER Without the Safety Context Variable As an abalation in the main paper, we
considered training SAFER without the SAFETY context variable and found that it led to worse
success rate and relatively higher safety violations. In this Appendix, we provide the full training
results in Figure 8 in terms of success rate and per step safety violations. Here, we see that for the
tasks considered, training SAFER without the safety variable leads to worse success rates and less
safety (compared to the per step success rates in Figure 7).

Training PARROT With Unsafe Data In the paper, we performed experiments PARROT trained
using safe data. Meaning, w(s,a) = 0 for each training point. We also limited the data to only
those tuples in successful trajectories to promote PARROT acquiring safe and successful behaviors.
Though it makes the most sense to train PARROT for safety concerned tasks in this fashion, it is
worth considering what would happen if we also included unsafe data from successful trajectories.
To assess what would happen, we train PARROT using both safe and unsafe data from successful
trajectories, using the hyperparameters for PARROT in Section D. The results given in Figure 9
demonstrate that this leads to relatively higher per step safety violations, indicating that it is best to
train PARROT with only safe data from successful trajectories.
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Figure 8: Effectiveness of RL Training using the SAFER objective without the safety variable. We
see the prior without the safety variable is quite unsuccessful, indicating that the safety variable is
critical to enabling SAFER to promote both safe and successful learning.
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Figure 9: Training PARROT using unsafe data from successful trajectories as well as safe data.
We see that this leads to leads to relatively worse success rates (top row) as well as relatively higher
per step safety violations (bottom row). These results suggest it is best to train PARROT with safe
and successful data only.
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D SAFER Hyperparameter Details

Hyperparameter Details We explored a number of different parameter configurations with SAFER.
We tuned λ (1e− 4, 1e− 5), the number of bijectors in the real NVP flow model (3, 5), the number
of components in the context variable c (8, 32, 64), the size of the states window w (16, 32), the
optimizer (Adam, SGD+Momentum), and the learning rate (1e− 4, 5e− 5). We trained for 500k
steps and found that using a smaller number of components in the context variable led to more
stable training (8). Setting the learning rate to (1e− 4) led to much quicker convergence, without
sacrificing much stability. Furthermore, training with Adam led to divergence in some cases while
SGD+Momentum tended to diverge less often. Between the other parameters considered, there was
relatively little difference, and therefore we used a model with learning rate 1e − 4, 3 bijectors, 8
components, 16 states window size, and SGD+Momentum.

E Baseline Methods

We select several baseline methods to compare with SAFER. We mainly focus on methods leverage
action primitives trained with offline data to improve efficiency, e.g., PARROT, Prior-Explore. While
we are aware of additional baseline methods, e.g., TrajRL [51, 52], HIRL [53], in the literature, we
omit their comparisons here because it has been shown in prior work [1] that their performance is
consistently below that of the state of the art.

Soft Actor Critic: Soft-actor critic (SAC) [48] is one of the standard model-free policy-gradient
based RL methods. Here without using any action primitives we apply SAC to learn a policy that
directly maps states in X to actions in A. Later we also use SAC in all our action primitive based
RL methods (e.g., SAFER, PARROT) to optimize the high-level policy. Therefore, one can view
the SAC baseline as one ablation study as well. We use the implementation from TF-Agents [54].
We used SAC with autonmatic entropy tuning and tune the number of target network update period,
discount factor, policy learning rate, and Q-function learning rate.

PARROT: We compare against the state-of-the-art primitive learning RL method PARROT, proposed
by Singh et al. [1]. Similar to SAFER, PARROT leverages a conditional normalizing flow and
to train a behavioral prior using data from successful rollouts. To enforce safety in the PARROT
agent, we additionally limit the training data of its behavioral prior to both safe and successful
rollouts, otherwise PARROT may encourage unsafe behaviors. We tune the number of bijectors in
the conditional normalizing flow for PARROT (5, 3), the number hidden units in each bijector layer
(128, 256), the learning rate (1e − 4, 5e − 5, 1e − 5), the optimizer (Adam or SGD+Momentum),
and train for 500k steps. We find using 3 bijectors with learning rate 1e− 4, and the Adam optimizer
works best.

Prior-Explore: We also consider the prior-explore method proposed in Singh et al. [1] as one of our
baseline method. Here the prior-explore policy combines the mapping fφ action policy in Equation 1
with an SAC agent to aid exploration of the RL agent. It selects an action from the prior policy
with probability δ and from the SAC agent otherwise. Followed from Singh et al. [1], we set this
probability δ to 0.9 and use mapping fφ trained for SAFER.

Contextual PARROT (SAFER Without Contrastive Loss): As one ablation study we consider
SAFER without the contrastive loss. This setup also models the behavioral prior policy with a
conditional normalizing flow and the latent safety variable but trains that only with safe and successful
data. Note that this baseline method is equivalent to PARROT, with a policy that is a function of the
latent safety variable. We use the same parameters as PARROT with this baseline and 8 components
in safety variable because we found this number of components to be the most successful with
SAFER.

F Training SAFER

In this appendix, we provide psuedo code for the SAFER training procedure in Algorithm 2.
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Algorithm 2 SAFER Training

Require: SAFER Behavioral Prior fφ, Safety Variable Posterior qρ(c|Λ), safe dataset Dsafe, unsafe
dataset Dunsafe, Steps N , λ
Let flow loss(·) refer to Equation 1
for n = 1, ..., N do

(s,a,Λ)Safe ∼ DSafe {Sample safe + unsafe batches of data }
(s,a,Λ)Unsafe ∼ DUnsafe
cSafe ∼ qρ(c|ΛSafe) {Sample safety variables }
cUnsafe ∼ qρ(c|ΛSafe)
Lsafe ← log (flow loss(ssafe;asafe; csafe)) {Compute log-likelihoods}
Lunsafe ← log (flow loss(sunsafe;aunsafe; cunsafe))
DSafe

KL ← DKL (qρ(c|ΛSafe)||p(c)) {Compute KL of safety variables}
DUnsafe

KL ← DKL (qρ(c|ΛUnsafe)||p(c))
NLL← −(Lsafe − λ · Lunsafe −DSafe

KL −DUnsafe
KL )

Minimize NLL and update φ, ρ {Update SAFER}
end for
Return: SAFER Behaviors Prior fφ, Safety Variable Posterior qρ(c|Λ)

G Setting the Safety Assurance

In this appendix, we provide psuedo code for the SAFER safety assurances procedure in Algorithm 3.
This algorithm provided a numerical gradient-free approach to find an optimal bound η that included
ε portion safe actions.

Algorithm 3 SAFER Safety Assurances

Require: Initial bound η0, Desired percent safe actions ε, SAFER prior fφ, Safe datasetDsafe, Unsafe
dataset Dunsafe
define
function get in bound(dataset D, bound ηt)
// This function computes the abstract actions z within bound ηt
Z ← {}
for (s, a, Λ) in D do
// Iterate over tuple (state s, action a, and context Λ)
c← Eqρ(·|Λ) [c], z← f−1

φ (a; s; c) {Get abstract action z from s, a, and Λ }
if z within bound ηt then
Z = Z ∪ z {Add z if its within bound ηt }

end if
end for
return Z

end function
η← (−η0, η0) {Initialize bound }
done← False
while not done do
Zηsafe = get in bound(Dsafe, η), Zηunsafe = get in bound(Dunsafe, η) {Get z in current bound
η }
S ← |Zηsafe| + |Z

η
unsafe|

Zεsafe ∼ sample bS × εc items from Zηsafe, Z1−ε
unsafe ∼ sample bS × (1− ε)c items from Zηunsafe

η ← the max component absolute value across Z1−ε
unsafe and Zεsafe {Update bound }

if ε portion of items across Dsafe and Dunsafe within bound (−η, η) are safe then
done← True {Break if bound η contains desired portion safe actions }

end if
end while
return η
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Figure 10: Additional examples of tasks included in the safe robotic grasping environment (top
row). The tasks all use different sizes containers, to represent different difficulties in preserving safe
behavior. We also provide a zoomed in version of the task (right hand side). Finally, we also include
the examples of safe and unsafe trajectories provided in the main paper (Figure 3) for completeness

H Additional Task Examples

In this Appendix, we provide additional examples of the tasks included in the safe robotic grasping
environment in Figure 10.
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