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Abstract

A major thread of unsupervised domain adapta-
tion (UDA) methods uses unlabeled data from
both source and target domains to learn domain-
invariant representations for adaptation. How-
ever, these methods showcase certain limita-
tions, encouraging the use of self-supervised
learning through continued pre-training. The
necessity of continued pre-training or learning
domain-invariant representations is still unclear
in the prompt-based classification framework,
where an input example is modified by a tem-
plate and then fed into a language model (LM)
to generate a label string. To examine this new
paradigm of UDA in the prompt-based setup,
we propose a frustratingly easy UDA method
(FEUDA) that trains an autoregressive LM on
both unlabeled and labeled examples using two
different instruction-tuning tasks. Specifically,
the first task trains the LM on unlabeled texts
from both domains via masked language mod-
eling (MLM), and the other uses supervised
instruction-tuning on source-labeled data for
classification. We conduct extensive experi-
ments on 24 real-world domain pairs to show
the effectiveness of our method over strong
domain-invariant learning methods. Our analy-
sis sheds light on why masked language model-
ing improves target-domain classification per-
formance in prompt-based UDA. We discover
that MM helps the model learn both semantic
and background knowledge of a domain, which
are both beneficial for downstream classifica-
tion.

1 Introduction

Despite recent advancements in the pre-training
of language models, these models are still frag-
ile under certain kinds of data distribution shifts,
masking their real-world applications challeng-
ing (Ribeiro et al., 2020). The problem of unsuper-
vised domain adaptation (UDA) aims to leverage
learned knowledge from a labeled source domain
to an unlabeled target domain (Pan and Yang, 2010;
Ganin and Lempitsky, 2015; Long et al., 2015).

A vast class of existing UDA methods attempts
to learn representations that are invariant across
domains (Tzeng et al., 2014; Ganin et al., 2016;
Wu and Shi, 2022; Guo et al., 2022). The rationale
is that when the learned representations from both
domains cannot be distinguished by a classifier and
the classifier performs well on the source domain,
it will also exhibit strong performance on the tar-
get domain. However, previous work has shown
that domain-invariance is insufficient for adapta-
tion to the target domain (Zhao et al., 2019), and
is also prone to instability issues (Han and Eisen-
stein, 2019; Kashyap et al., 2021). This has encour-
aged the emergence of self-supervised approaches
through language model pre-training. Variants of
continued pre-training have proven to be effective
and stable for adapting pre-trained LMs to labeled
and unlabeled downstream tasks (Gururangan et al.,
2020; Karouzos et al., 2021).

However, the trade-offs between continued pre-
training and learning domain-invariant representa-
tions for UDA are both unexplored in the prompt-
based classification framework (Gao et al., 2021;
Liu et al., 2023). In such a framework, input ex-
amples are modified using instruction templates
and then fed into a language model (LM) to gen-
erate the label text based on the constructed in-
struction. This process bears resemblance to in-
struction tuning (Wei et al., 2022), except that the
training is done on a single task, and that the end
goal is adaptation to a specific task, rather than
generalization to unseen tasks. In this paper, we
call this new paradigm prompt-based UDA and
examine two research questions: Can we utilize un-
labeled data to construct useful instruction-tuning
tasks for UDA? Is domain invariance still neces-
sary in this paradigm? To answer these questions,
we present a “frustratingly easy” UDA method
(termed FEUDA), which smooths out the transi-
tion between pre-training and adaptation by two
instruction-tuning tasks using prompt templates.



First, unlabeled texts from both source and target
domains are modified by a prompt template and
then used to train an autoregressive LM to perform
the masked language modeling (MLM) task. Next,
the LM is instruction-tuned on labeled source texts
using another template for the classification task.

Through extensive experiments on 40 real-world
domain pairs, various adaptation methods, and few-
shot learning setups, we show that FEUDA is com-
petitive for UDA and even outperforms methods
that explicitly promote domain invariance (Sec-
tion 6.1). Additionally, our analysis sheds light on
how masked language modeling improves classifi-
cation performance on the unlabeled target domain
(Section 6.2). We discover that MLLM helps the
model learn both semantic and background knowl-
edge of a domain, which are both beneficial for
downstream classification. Our main contributions
can be summarized as follows:

1. We introduce prompt-based UDA, a new UDA
setting where the discriminative prediction is
converted into a generative task, enabling multi-
task adaptation as well as the reuse of all lan-
guage model parameters. We empirically ana-
lyze continued pre-training and domain invari-
ance based UDA methods in this setting.

2. We propose FEUDA, a simple and effective
UDA approach for prompt-based classification.
Through extensive experiments, we show that
FEUDA is competitive and outperforms the
domain-invariant learning approach. We estab-
lish the generalizability of FEUDA across vari-
ous models, adaption methods and limited data
settings, confirming that our approach remains
powerful in these settings.

3. We conduct an analysis understanding the im-
pact of the MLLM task in a UDA setup and dis-
cover that MLM helps the model learn both se-
mantic and background knowledge of a domain,
both of which are beneficial for downstream
classification.

2 Related Work

Ramponi and Plank (2020) categorize UDA meth-
ods into two general classes: Model-centric and
Data-centric methods. This work focuses on a new
data-centric UDA method in a prompt-based setup.

Model-centric UDA Methods This line of study
involves augmenting the feature space (Blitzer
et al., 2006; Pan et al., 2010; Ziser and Reichart,
2018, inter alia), editing models though weight

interpolation (Matena and Raffel, 2022; Cai et al.,
2023; Wortsman et al., 2022; Ilharco et al., 2022),
or altering the loss function and model architecture.
One typical framework aims to minimize HAH
divergence (Ben-David et al., 2010) between the
source and target domain features, through adver-
sarial training (Tzeng et al., 2014; Ganin et al.,
2016; Tzeng et al., 2017; Wu and Shi, 2022; Guo
et al., 2022, inter alia) or through minimizing mea-
sures of domain similarity (Bousmalis et al., 2016;
Ge et al., 2023; Malik et al., 2023). However, past
work has shown that domain-invariance is weak
constraint for adaptation to the target domain (Zhao
et al.,, 2019; Karouzos et al., 2021), could in-
troduce domain-specific hyperparameters (Trung
et al., 2022), and is also prone to instability is-
sues (Han and Eisenstein, 2019; Sun et al., 2019;
Wilson and Cook, 2020; Kashyap et al., 2021).

Data-centric UDA Methods The limitations of
invariance-based model-centric methods have en-
couraged the emergence of alternate approaches,
largely based on self-supervised learning through
contrastive learning (Kumar et al., 2022; Shen et al.,
2022; Long et al., 2022), pseudo-labeling (Zhou
and Li, 2005; Ruder and Plank, 2017, inter alia)
or language model pre-training. Despite not being
directly useful to certain downstream tasks (Up-
paal et al., 2023), Masked Language Modelling
(MLM) has been used for adaptation to labeled
tasks, in both full fine-tuning (Gururangan et al.,
2020; Lee et al., 2020; Gao et al., 2021) and PEFT
setups (Kim et al., 2021; Hung et al., 2023). A
smaller body of work has explored the utility of
MLM in a UDA setup (Han and Eisenstein, 2019;
Zhang et al., 2021b; Karouzos et al., 2021). This
class of methods is more stable than invariance-
based methods, but often requires additional com-
pute for extended pre-training.

Prompt-based UDA The emergence of large lan-
guage models (Brown et al., 2020; Scao et al., 2022;
Touvron et al., 2023, inter alia) introduced the
concept of instruction tuning, where a language
model is trained on strings of input-output pairs,
often using instruction-specific templates (Zhang
et al., 2023). Inspired by this, we introduce prompt-
based UDA, i.e., a new paradigm of data-centric
UDA using a prompt-based classifier that casts
the discriminative classification task into a gen-
erative next-token prediction task. This prompt-
based UDA formulation provides two unique ben-
efits compared to traditional UDA approaches: 1)



the prompt-based classifier can reuse all model pa-
rameters for adaptation, without requiring any task-
specific architectural changes; 2) furthermore, this
also enables multi-task instruction tuning bridging
the gap between pre-training and adaptation, as
the pre-training and fine-tuning phases of the exact
model can be naturally coupled together by using
different instruction prompts.

Our study aims to extend the existing body of
data-centric UDA methods by examining the behav-
ior of multi-task instruction tuning for adaptation
and the necessity of learning domain invariant rep-
resentations in this new UDA paradigm.

3 Preliminaries: The UDA Problem

We consider a text classification task, where X
is the input space of all text sentences and Y =
{1,...K} is the label space. In the UDA prob-
lem, we have access to a source labeled dataset
Dsre = { (i, yz)}f\il consisting of samples from

P)((sr;), and a target unlabeled

a joint distribution
dataset Dy = {z; }]]Vil sampling from a target
input distribution P/.(égt). We further denote P;rc)
as the marginal distribution of Pf\fgi) on X', where

P+ P)(;gt). The goal of UDA is to learn a
function f : X — )Y such that the error rate
E__puo 1[f(z) # y] is minimized.

X

4 FEUDA Method

In this section, we introduce our framework
FEUDA, a simple and effective two-phase training
method! for UDA with masked language model-
ing. In the first phase, we take a pre-trained auto-
regressive language model and perform unsuper-
vised training through masked language modeling,
on the combination of unlabeled data from both the
source and target domains. In the second phase,
we perform supervised fine-tuning on the down-
stream classification task using labeled data from
the source domain.

Task 1: MLM Pre-training We aim to utilize a
pre-trained autoregressive language model for con-
tinuing pre-training on unlabeled data from both
the source and target domains, with the masked
language modeling task. Here, we reuse all the
input sequences from the source-labeled dataset

'While we use the two-phase multi-task training pipeline
(sequential) in our main experiments, in Appendix B, we show
that an equivalent single-phase multi-task training pipeline
(joint) results in similar performance.

Dgrc as the source-unlabeled dataset, denoted as
Dy... Next, similar to (Raffel et al., 2020), for any
unlabeled sequence x € Dg., and Dy, we use a
prompt template to convert the sequence x to an
input-output sequence pair, i.e., M(z) = (Z, 7).
Here, the prompt template first randomly masks
words in the input sequence x and prepends an in-
struction (i.e., “Fill in the blanks:”) to create a new
input sequence Z. An output sequence g is then
constructed by concatenating all the masked words

separated by a special <sep> token. For example,

x = The movie was so cool! Two hours of fun.
Z = Fill in the blanks: "The _ cool! Two hours _

y

<sep> movie was so <sep> of fun. <sep>

Given a pair (Z,y), we use an autoregressive
LM parameterized by 6 to compute the negative
log-likelihood loss averaged over output words:

- 1 e~
4&,5:0) = —= > log Py(i|#, fre—1). (1)
t

Notably, we convert the MLM task into a next-
token prediction task by instructing an autoregres-
sive LM to predict the output words, which allows
us to reuse all the parameters of the LM without
adding any new randomly-initialized parameters.
Finally, we define the total loss on the combined

unlabeled dataset D = Dg U Dy as:
1
Lyim(D; 0) = Dl > eM(z);0). ()
z€D

While the above formulation uses the MLM task
for continued pre-training, the use of an autore-
gressive LM allows for an easy extension to the
Causal Language Modeling (CLM) task, which we
demonstrate in Section 6.3.

Task 2: Source Supervised Instruction-tuning
In the second phase, we only use labeled data from
the source domain to fine-tune the model for the
downstream classification task. Similar to the first
phase, we use a prompt template” to create input-
output sequence pairs from the labeled data in the
source domain. Specifically, for a labeled example
(z,y) € Dy, a new prompt template appends to
x an instruction for prompting the LM to perform
classification, and converts the label ¥ to its corre-
sponding text description 7, i.e., C(z,y) = (Z,9).
For example, a labeled example with the positive

ZPrompt templates were selected from the Public Pool of
Prompts (Bach et al., 2022).



sentiment from a sentiment classification task is
converted as follows:

x = I like this movie. y =1

Z = [x] Is this sentence positive or negative?

y = Positive

Given the augmented sequence pair (Z,7) and
the model trained after the first phase, we compute
the same negative log-likelihood loss £(z, 7; #) in
Eq. (1). This again allows us to reuse all model
parameters, including the language model predic-
tion head. Finally, we define the total loss on the
source-labeled dataset in the second phase as:

1
ECLS(Dsrc;H) = W Z(C(x,y),e)
sre (x,y)GDsrc
(3)

After training, we follow the practice of Liu et al.
(2022) to convert a label string ¢ to its correspond-
ing label y at test time for evaluation.

Parameter-Efficient Fine-Tuning (PEFT) The
above formulation is general and can be applied
to fine-tune all model parameters. Additionally,
our FEUDA framework is compatible with the
parameter-efficient fine-tuning approach. The
PEFT approach is desirable because it adds only a
small amount of learnable parameters ¢ to a pre-
trained language model 6, and fine-tunes only ¢ to
perform prediction while keeping the other model
parameters 6 frozen. We utilize two instantiations
in our implementations: Adapters (Houlsby et al.,
2019) and (IA)? (Liu et al., 2022). Both are high-
performing PEFT approaches, with (IA)? using
fewer learnable parameters. More details about
both methods can be found in Appendix A.

5 Experimental Setup

5.1 Datasets

We follow the setup from Malik et al. (2023), and
use two sentence classification datasets with 5 do-
mains each. This results in a total of 40 pairs of
source and target domains. Appendix C shows
more details about the evaluation benchmarks.

MNLI The MNLI corpus (Williams et al., 2018)
contains sentence pairs across multiple genres:
Travel (T), Fiction (F), Government (G), Slate (S),
and Telephone (Te). The task classifies every sen-
tence pair as entailment, neutral, or contradiction.

Amazon The Multi-Domain Sentiment Analy-
sis Dataset (Blitzer et al., 2007) contains Amazon

product reviews for different types of products. We
use reviews from the Apparel (A), Baby (B), Books
(Bo), Cameras (C), and Movies (M) domains. Each
review is labeled as either positive or negative.

5.2 Models and Training

Models For our main experiments, we use
T5v1.1, which is an improved version of the orig-
inal T5 model (Raffel et al., 2020). Unlike the
original TS5 model, T5v1.1 is not trained on any
supervised datasets. We use the base (60M pa-
rameters) and XL (3B parameters) versions of the
model. We also use TO (3B parameters), which
has been optimized for zero-shot generalization by
training on supervised natural language prompts
(Sanh et al., 2022). Furthermore, to test the sensi-
tivity of FEUDA across architectures and masking
styles, we also use GPT-2 medium (345M param-
eters) (Radford et al., 2019), from the class of au-
toregressive decoder-only language models.

Training We train each training phase for 30,000
steps on MNLI and 15,000 steps on the Amazon
dataset. We train with Adam and use a batch size
of 8, learning rate of 0.003. We set the maximum
sequence length to 256 tokens. We use length nor-
malization during evaluation, as proposed by Liu
et al. (2022). For each experiment, we report the
mean and standard deviation across 3 runs. More
details can be found in Appendix D.

5.3 Baselines

We compare FEUDA with three baselines below.

* Src Only: We fine-tune the model on the source
labeled data, in a single training phase.

* Src+Tgt (All labeled): We fine-tune the model
for classification, using labeled data from both
the source and target domains. This serves as
an upper bound on target domain performance.

e MMD: The current state of the art for UDA
in a PEFT setup promotes domain invariance
by maximum mean discrepancy (MMD) (Ma-
lik et al., 2023). This method measures the
multi-kernel maximum mean discrepancy (MK-
MMD) (Gretton et al., 2012; Bousmalis et al.,
2016) between source and target embeddings
from each transformer layer and sums them to
obtain an aggregate loss Lgiy. The final loss is
the weighted sum of L4, and the classification
loss, i.e., L=\ Los + (1 — A) Lagiy, where A
gradually changes from O to 1 during training.



Source — Target

Source Accuracy

Target Accuracy

Src Only Src+Tgt MMD FEUDA  SrcOnly Src+Tgt MMD FEUDA
T->F 78.4(22) 79.1(05) 783(0.1) 80.5(0.1) | 73.7(1.1) 77.2(04) 69.7(0.8) 74.1(0.9)
T->G 78.4(22) 79.8(0.1) 782(0.2) 80.1(0.3) | 73.7(1.1) 83.6(0.7) 79.3(0.5) 83.6(0.3)
T->S 784 (22) 80.6(3.5) 79.8(0.2) 79.8(04) | 73.7(1.1) 72.3(0.5) 69.6(0.1) 70.7 (0.6)
T->Te 78.4(22) 79.2(0.4) 78.0(0.0) 81.1(0.0) | 745(2.2) 77.8(0.1) 69.4(0.8) 76.8(0.0)
F->T 76.0(0.2) 77.6(03) 729(0.2) 67.6(1.5)|75.6(0.7) 79.9(0.1) 69.9(0.2) 654(1.8)
F->G 76.0(0.2) 77.6(0.6) 533 (21.4) 73.2(2.3) | 75.6(0.7) 82.3(0.1) 543(234) 78.8(2.5)
F->S 76.0(0.2) 77.4(03) 69.7(27) 69.8(1.8) | 75.6(0.7) 72.1(0.2) 64.6(1.8) 65.3(1.6)
F->Te 76.0(0.2) 77.8(0.6) 70.6(0.9) 74.4(04) | 75.6(0.7) 78.3(0.6) 64.6(0.7) 72.5(0.2)
G->T 82.1(0.3) 83.6(0.4) 80.9(0.7) 82.3(0.8) | 73.0(0.0) 79.9(0.4) 759(0.3) 75.8(0.6)
G->F 82.1(0.3) 81.6(0.1) 79.8(0.7) 81.7(0.2) | 73.0(0.0) 76.7(0.1) 69.9(0.2) 73.5(0.2)
G->S 82.1(0.3) 829(0.1) 80.9(0.00 79.8(1.7) | 73.0(0.0) 73.1(0.0) 69.4(0.1) 68.0(1.8)
G->Te 82.1(0.3) 83.2(0.2) 80.1(0.1) 82.1(0.1) | 73.0(0.0) 78.1(0.6) 69.9(0.3) 73.5(0.6)
S->T 709 (1.7) 71.9(0.1) 69.1(09) 71.2(0.2) | 729(1.5) 79.5(0.3) 74.4(1.7) 76.8 (1.0)
S->F 709 (1.7) 71.6(0.4) 70.4(0.0) 703(0.7) | 729(1.5) 77.7(0.2) 73.1(0.0) 72.4(0.7)
S->G 709 (1.7) 72.8(0.2) 68.5(0.8) 66.4(1.5) | 729(1.5) 83.4(0.2) 782(0.5 76.3(0.9)
S->Te 709 (1.7) 73.3(0.0) 67.5(1.4) 71.0(1.7) | 729(1.5) 785(0.0) 66.7(0.2) 74.8(1.3)
Te->T 77.5(0.2) 78.2(0.4) 755(0.5) 787(0.2) |749(0.2) 79.8(0.3) 71.4(0.0) 76.5(0.4)
Te->F 77.5(0.2) 78.1(0.4) 752(0.7) 77.1(0.0) | 749(0.2) 779(0.1) 699 (0.5 743 (0.5)
Te->G 77.5(0.2) 78.6(0.2) 74.8(0.5) 788(0.1) | 749(0.2) 82.5(0.1) 75.6(1.6) 82.0(0.6)
Te->S 77.5(0.2) 78.7(0.0) 75.3(0.1) 788(04) |74.9(0.2) 722(0.0) 68.0(04) 71.3(0.5)

Table 1: Comparison of FEUDA and MMD by classification accuracy on the MNLI dataset, using the T5v1.1 base
model, and (IA)? PEFT method. FEUDA is competitive with MMD, often outperforming it. The highest values
between FEUDA and MMD have been marked in bold. Cases where Src Only outperforms both FEUDA and
MMD on the target have been underlined. However, it must be noted that in a majority of these cases the upper
bound Src+Tgt is comparable to or weaker than Src Only, indicating noise in the domain pair.

Source Accuracy

Target Accuracy

Source — Target ¢ Only Src+Tgt MMD  FEUDA | SrcOnly Src+Tgt MMD  FEUDA
A->B 93.7(0.1) 93.8(0.3) 94.3(0.2) 93.1(0.3) | 93.3(0.4) 94.7(0.2) 93.8(0.3) 93.9(0.3)
A->B 93.7(0.1) 94.2(0.1) 93.8(0.1) 92.8(0.6) | 90.8 (0.6) 94.3(0.4) 92.5(1.1) 90.2(1.2)
A>C 93.7(0.1) 93.4(0.3) 95.0(0.0) 93.9(0.5) | 91.9(0.1) 95.0(0.2) 91.8(0.5) 92.1(0.5)
A->M 93.7(0.1) 94.1(0.3) 94.7(0.3) 93.5(04) | 81.3(1.4) 85.8(0.5) 81.3(0.6) 83.3(0.5)

Table 2: Comparison of FEUDA and MMD by classification accuracy on the Amazon Product Review dataset, using
the T5v1.1 base model, and (IA)? PEFT method. FEUDA is competitive with MMD, often outperforming it. The
highest values between FEUDA and MMD on the target domain have been marked in bold.

6 Results & Analysis

6.1 FEUDA is Competitive for UDA

We compare our method with other baselines over
24 domain pairs (16 additional pairs in Appendix E)
domain pairs across the MNLI and Amazon prod-
uct review datasets. In these experiments, we use
the T5v1.1 Base model and (IA)3 PEFT method.

FEUDA outperforms methods that explicitly
promote domain invariance Table 1 shows the
classification accuracy on the MNLI dataset. We
find that FEUDA is a competitive method to MMD.
For example, for Travel (T) — Government (G),
FEUDA yields an accuracy of 83.6% on the tar-
get domain, equalling the upper bound of the

Src+Tgt baseline. In comparison, MMD yields
an accuracy of only 79.3%. Additionally, FEUDA
performs more stably than MMD. For example,
for Fiction (F) — Government (G), minimizing
MMD yields a variance of over 20% across runs.
This observation is consistent with existing find-
ings (Kashyap et al., 2021; Han and Eisenstein,
2019) that minimizing divergence measures like
MMD, when combined with auxiliary task-specific
loss functions, result in training instabilities and
vanishing gradients. We discuss the performance
of the MMD method in more detail in Appendix J.

We also see similar results on the Amazon
dataset in Table 2 (full results in Appendix E).
For example, for Apparel (A) — Movies (M),
FEUDA yields an accuracy of 83.3% on the tar-



get domain, approaching the upper bound of the
Src+Tgt baseline. In comparison, MMD yields
an accuracy of 81.3%. A visualization of sen-
tence embeddings in Figure 4 (Appendix E) sug-
gests that representations learned through FEUDA
are not domain invariant. In Appendix I, we
show FEUDA outperforms additional baselines, in-
cluding DANN (Ganin et al., 2016), weight interpo-
lation (Ilharco et al., 2022), and domain divergence
minimization by Wasserstein distance.

6.2 Analyzing the Impact of MLM on UDA

In this section, we aim to understand how MLM
training on the source and target domains boosts
classification on the unlabeled target domain.

Impact of Masked Words We hypothesize that
by having to predict certain masked words during
MLM training, the model implicitly learns informa-
tion about the classification task on the unlabeled
domain. For example, given the masked sentence,

“I really _ the movie, it was a fascinating watch.”

The only way the model can predict the masked
word is by using the sentence context and identi-
fying the sentiment of certain words. In this case,
the word “fascinating” implies a positive sentiment,
so the model may predict the masked word to be
a positive word like “loved” or “enjoyed”. Thus,
the model would implicitly learn information about
the downstream task, by predicting masked words
(e.g., “fascinating”) indicative of the class label.
To test this hypothesis, we quantize the “infor-
mativeness” of each word to a classification task.
An informative word is one that is highly corre-
lated with any of the labels in the downstream task.
Specifically, we follow Gururangan et al. (2018)
and use pointwise mutual information (PMI) (Fano,
1961) of the word with respect to the class label:

d, cl
PMI(word, class) :logw’
p(word)p(class)

where we count the frequency of a word-class pair
on the labeled data Dy to estimate p(word, class),
and similarly estimate p(word) and p(class) by
counting a word and a class individually on Dy.
These informative words are similar to pivot fea-
tures (Blitzer et al., 2006; Ben-David et al., 2020,
inter alia), with the exception that they are chosen
based on information from the source domain only.

To compare with random masking of k% words,
we selectively mask the top k% or bottom k% of

informative words in a sentence, ranked by their
PMI with any inference label (kK = 15). We also
filter out low-frequency words from the selection.?
We use the T5v1.1 base model with (IA)? on the
Apparel — Movies pair for analyzing the impact of
masked words at inference and pre-training time.

Impact at Inference: We use a prompt-based clas-
sifier trained by FEUDA to classify three versions
of a test set at inference: the original test set and the
other two versions with informative and uninfor-
mative words masked respectively. Figure 1 (corre-
sponding Table 10 in Appendix G) shows us that
the presence of both informative and uninformative
words are essential for strong classification perfor-
mance, with performance being highest on the orig-
inal unmasked sequences. Interestingly, the source-
domain performance is only hurt by the masking
of informative words, confirming that these words
are highly indicative of the downstream classes.

Impact at Pre-training: To further confirm the
phenomenon, we alter the masking strategies in the
MLM pre-training phase of FEUDA. We compare
the original random masking with informative and
uninformative masking, maintaining a fixed mask-
ing rate (15%) across masking strategies. Table 3
confirms that random masking is most helpful for
target-domain classification. To isolate any effects
of PEFT methods or pre-training data, we repeat
the analysis by fine-tuning the instruction-tuned
Flan-T5 (Chung et al., 2022) and notice a similar
trend (Table 11 in Appendix G). We hypothesize
that the model learns semantic features through the
masking of informative words and background fea-
tures through the masking of uninformative words,
and both sets of features are essential for classifica-
tion on the unlabeled domain.

) Accuracy
Masking Strategy Source Target
Random 93.5(0.4) 83.3(0.5)
Informative 93.3(0.5) 78.3(0.7)
Uninformative 92.9 (0.1) 79.6 (0.6)

Table 3: Impact of word selection for masking during
training. Masking words at random is more powerful
than selectively masking informative or uninformative
words. This indicates that the model requires both se-
mantic features (learnt through masking informative
words) and background features (learnt through mask-
ing uninformative words) for classification on the unla-
belled target domain.

3Any word that occurs less than 10 times in the entire
training corpus is considered to be low frequency.
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Figure 1: Impact of masking at inference. We evaluate
FEUDA on the Apparel — Movies domain pair, and se-
lect words for masking based on their “informativeness”
to the classification task. The performance of the model
is best with the original unmasked sequences, indicat-
ing the presence of both informative and uninformative
words are essential.

Impact of Masking Rate While masking 15%
of a sequence is considered standard for random
masking, previous work has shown that BERT-
sized models (Devlin et al., 2019) can learn from
as high as 80% masking rates during pre-training
followed by adaptation to a labeled task. Here, we
explore the role of masking rates during continued
pre-training for adaptation to an unlabeled task.

Figure 2 (Table 12 in Appendix) shows the im-
pact of varying the masking rate on the source
and target domains. With masking rates under
the optimal value of 15%, the semantic and back-
ground features learned through model prediction
of masked words is limited, hurting performance
on the target domain. Beyond the 15% rate, the
classification performance on the source domain
is largely maintained, even at a 90% masking rate,
matching previous findings (Wettig et al., 2023).
However, the performance on the target domain
rapidly decreases with an increasing masking rate.

To explain the performance drop, we hypothe-
size that since the model never sees any labeled data
of the target domain, it heavily depends on the sig-
nal it gets from the unlabeled data through masking.
Effectively masking a majority of a sequence re-
moves the background and semantic features from
the sequence, both of which are necessary for down-
stream classification on the domain.

6.3 Extensions to More Settings

Prompting is common practice with large language
models which are too compute-intensive for tradi-
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Figure 2: Impact of Masking Rate on FEUDA. With
high masking rates, the performance on the source do-
main is largely maintained, but the performance on the
target domain rapidly deteriorates.

tional fine-tuning. For the same reasons, the setup
is also frequently combined with learning from lim-
ited examples and parameter-efficient fine-tuning.
In this section, we explore these settings, using the
Apparel (A) — Movies (M) domain pair from the
Amazon Reviews dataset.

Model Types & Scales We evaluate the perfor-
mance of FEUDA over larger and instruction tuned
encoder-decoder models, using T5v1.1 XL and TO
(Sanh et al., 2022). Table 9 (Appendix F) shows
a wider gap between MMD and FEUDA with
higher model capacity, and this gap is further in-
creased with instruction tuning. We also explore
the utility of FEUDA when using causal language
modeling (CLM) with a decoder-only language
model. Table 5 shows us that FEUDA provides
strong improvements on both domains, equalling
the Src+Tgt baseline on the target domain.

Adaptation Methods PEFT approaches have
been shown to introduce resilience to domain
shift (Fu et al., 2023). To isolate this effect from
the FEUDA framework, we evaluate our method in
a full-fine-tuning setup. Further, we compare with
two PEFT approaches: Adapters (Houlsby et al.,
2019) and (IA)? (Liu et al., 2022). We choose
Adapters because He et al. (2022) present a unified
view of PEFT approaches which shows that the
operations applied by Adapters are very similar to
those of Prefix Tuning (Li and Liang, 2021) and
LoRA (Hu et al., 2022). We choose (IA)? since
it is a state-of-the-art PEFT approach that uses a
fraction of the learnable parameters of Adapters.



Method Source Accuracy

Target Accuracy

Src Only Src+Tgt MMD FEUDA | SrcOnly Src+Tgt MMD FEUDA
Fine-Tuning 93.9 (0.5) 94.0(0.4) 93.8(0.3) 95.0(0.4) | 82.0(1.1) 86.4(04) 824(1.6) 84.4(0.3)
(I1A)3 93.7(0.1) 94.1(0.3) 94.7(0.3) 935(04) | 81.3(1.4) 85.8(0.5) 81.3(0.6) 83.3(0.5)
Adapters 93.6 (0.1) 94.6(0.3) 944 (0.7) 94.3(0.2) | 80.8(1.3) 85.3(0.5) 79.1(0.3) 82.7(0.5)

Table 4: Performance of FEUDA across different adaptation methods with the T5v1.1 base model on the Apparel
— Movies domain pair. FEUDA remains more powerful than MMD across all methods.

Method Accuracy
Source Target
SrcOnly 86.9(1.4) 65.9(1.4)
Src+Tgt  86.8(1.0) 73.4(0.1)
MMD 86.9 (0.9) 66.8(0.8)
FEUDA 89.3(0.5) 73.5(0.8)

Table 5: Performance of FEUDA with causal language
modeling and decoder-only architectures, with the GPT-
2 medium model on the Apparel — Movies domain pair.
FEUDA remains powerful, and improves performance
on the source and target domains.

Table 4 shows FEUDA beats MMD across different
adaptation methods. We also note that fine-tuning

yields slightly better performance on both domains
for all UDA methods.

Few-Shot Learning For the following experi-
ments, we assume access to k labeled source do-
main examples. For FEUDA, we assume access
to the full unlabeled dataset in both domains for
MLM pre-training, and k-shot access to labeled
source data points for the second phase of super-
vised training. For a fair comparison, we also in-
troduce a two-phase version of the MMD pipeline —
the first phase minimizes MMD between unlabeled
source and target domain embeddings (full data ac-
cess), while the second phase optimizes supervised
training on the source domain (k-shot).

Figure 3 (Table 13 in Appendix H) showcases
FEUDA clearly outperforming both variants of
MMD, across three different models. In Ap-
pendix H, we also repeat the analysis from Sec-
tion 6.2 and find that, like with the full-data setting,
semantic and background features are required for
classification on the unlabeled target domain. How-
ever in this setting, downstream classification is
aided more by the masking of informative words,
rather than uninformative words.

100
Src Only
Src+Tgt

FEUDA

901 MMD

Two Phase MMD

801

Accuracy

70 A

50

T5v1.1 Base T5v1.1 XL TO 3B

Figure 3: Target domain accuracy of FEUDA across
different models, in a 256-shot learning setup on the Ap-
parel — Movies domain pair. We see FEUDA retaining
strong performance on the target domain across models.

7 Conclusion

We introduce the setting of prompt-based UDA,
where the discriminative prediction is converted
into a generative task. We then study the necessity
of continued pre-training and domain-invariance
based methods for UDA by introducing FEUDA,
a “frustratingly easy” prompt-based UDA method.
FEUDA involves training an auto-regressive LM
on the unlabeled source and target data through
the MLM task, followed by supervised training on
the labeled source data. Across various datasets,
models, adaptation methods, and few-shot settings,
FEUDA is competitive with strong UDA meth-
ods that promote domain invariance. We also in-
vestigate the impact of continued pre-training on
the UDA setup. We discover that the MLM task
aids the model in learning both semantic and back-
ground knowledge of a domain, both of which are
required for effective classification on the unla-
beled target domain. We also discover that high
masking rates are harmful to only the target do-
main, shedding new light on prior studies that study
masking rates in single-domain setups. We hope
our study will inspire future investigations in the
prompt-based UDA setting.



Ethical Considerations

Our project aims to improve the reliability and
safety of language models, which can be fragile
under distribution shift (Ribeiro et al., 2020) and
incur great costs over incorrect predictions (Ulmer
et al., 2020; Zhang et al., 2021a). By improving
performance over distributions without access to
labelled data, our method can lead to direct benefits
in a wide array of real world applications.

Our study does not involve any human subjects
or violation of legal compliance. We do not an-
ticipate any potentially harmful consequences to
our work. As detailed in Appendix C, all of our
experiments are conducted using publicly avail-
able datasets. Our code shall be released for re-
producibility. Through our study and releasing our
code, we hope to raise stronger research and soci-
etal awareness toward the problem of unsupervised
domain adaptation in natural language processing.

Limitations and Risks

In our study, we consider a class of PEFT methods
that involve inserting learnable parameters between
the layers of the model. Other classes of PEFT
methods were not considered. However, we use
Adapters and He et al. (2022) have shown connec-
tions between the method with Prefix Tuning (Li
and Liang, 2021) and LoRA (Hu et al., 2022).

Due to the high variance across runs in PEFT-
based learning, we note that the performance can
vary significantly across random seeds. We attempt
to make our findings reproducible by averaging ev-
ery experiment over 3 seeds. Taking environmental
costs into consideration, we reduce our computa-
tional budget by running a majority of our experi-
ments with a smaller-sized model. Learning with
larger models is discussed in Appendix F.
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A PEFT Frameworks

The framework proposed in Section 4 is generic,
and can be applied to full-model fine-tuning.
However, we additionally explore learning in a
parameter-efficient setup. Specifically, we use two
instantiations in our implementations: Adapters
(Houlsby et al., 2019) and (IA)? (Liu et al., 2022).

(IA)? is a state of the art PEFT learning method,
and uses around a tenth of learnable parameters
compared to popular methods like Adapters. (IA)3
works by element-wise multiplication (i.e. rescal-
ing) of the model’s activations against a learned
vector. In this case, the set of learnable parame-
ters ¢ is a set of vectors {ly, lx, ¢} applied to each
attention mechanism and feed-forward layer as,
Qlke K T)

h:0< N )(zv@V)
h = (I ® v(Wiz)W2)

Here, K, ) and V' are the key, query and value
representations used in an attention block, and W}
and W are the weights in the feed-forward layer
following an attention block. [, € R%, [, € R%,
lg € R o is the softmax function while v is any
non-linearity.

Intuitively, each vector [ simply learns weights
measuring the importance of each feature in an
activation of the pre-trained model, for the specific
downstream task the model is trained on.

Adapters are a popularly used and high perform-
ing PEFT framework, and He et al. (2022) have
shown equivalence in the operations applied by
Adapters, Prefix Tuning (Li and Liang, 2021) and
LoRA (Hu et al., 2022).

Adapters work by adding small learnable
modules between transformer layers. Specifi-
cally, down and up projections Wygwn € RIX"
and Wy, € R are learnt such that ¢
{Wip, Waown}. A residual connection and non-
linearity + is added at every layer,

h=nh+ ’Y(thown)Wup

B Single Phase MLLM Training

Our proposed approach in Section 4 involves two
stages of training, which is more expensive than
standard single phase UDA approaches. In this sec-
tion, we propose a single training phase variant to
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FEUDA, and show that it performs similarly to the
original method. We use the two phase pipeline in
our experiments in the main paper, but note that the
single and two phase pipelines are interchangeable.

We simply replace the two phase training with a
joint multi-task objective as follows,

1 1

PPt = D] Dy

2.

2'€D (x,y) EDsre
(A 1(C(z,y);0)
+ (1= X) I(M(2");0))

where [ is the cross-entropy loss defined in Eq. (1),
and M and C are the templates defined in Section 4.
A is the adaptation factor which gradually changes
from 0O to 1 over the course of training. This results
in the model being trained almost exclusively on
the MLM task early on in training, and the CLS
task towards the end of training.

Table 6 compares the performance of the single
phase and two phase variants of FEUDA. We also
compare with a vanilla joint single phase objective,
where A is fixed at 0.5 through training (called Sin-
gle Phase Vanilla). The performance of the single
and two phase variants are almost identical, and
either can be used interchangeably. In compari-
son, the vanilla single phase method is significantly
weaker on the target domain.

Method Accuracy
Source Target
Two Phase 93.7(0.3) 83.3(0.9)
Singe Phase 93.5(0.4) 83.3(0.5)
Singe Phase Vanilla 93.6 (0.1) 75.0(5.7)

Table 6: Comparison of single and two-phase variants
of FEUDA, on the Apparel — Movies domain pair. The
single and two phase variants are almost identical in
performance.

C Preparation of Evaluation Benchmarks

We use two classification datasets, with 5 domains
each. This results in a total of 40 pairs of source
and target domains. For brevity, we include results
of 24 domain pairs in the main paper, and the re-
maining 16 in Appendix E. For both datasets, we
use the train, validation and test splits from (Malik
et al., 2023). More statistics about each dataset
is available in Table 7. The listed datasets are in-
tended for research purposes only. We do not make
any commercial use of them.



MNLI The Multigenre Natural Language Infer-
ence (MNLI) corpus (Williams et al., 2018) con-
tains sentence pairs across multiple genres: Travel
(T), Fiction (F), Government (G), Slate (S) and
Telephone (Te). The NLI task involves classifying
every premise-hypothesis sentence pair as Entail-
ment, Neutral or Contradiction.

Amazon The Multi Domain Sentiment Analy-
sis Dataset (Blitzer et al., 2007) contains Amazon
product reviews for different type of products. We
use reviews from the Apparel (A), Baby (B), Books
(Bo), Cameras (C) and Movies (M) domains. Each
review is labelled as positive or negative.

Statistics per Domain

Dataset Language License

Train Val Test
MNLI English cc-by-4.0  69600* 7735%* 1945
Amazon  English cc-by-4.0 1440 160 400

Table 7: Artifacts used in our study. The dataset statis-
tics report the values used in our study.

* All domains contain approximately 69,600 examples.
The exception is the Telephone domain, with 75,013
examples.

** All domains contain 7735 validation examples, ex-
cept for Slate and Telephone, which contain 7731 and
8336 examples respectively.

D Details on Implementation

Models and Implementation We use T5v1.1,
TO and GPT-2 from the HuggingFace library*, and
use PyTorch Lightning® to train our models. We
use the codebase of Liu et al. (2022)° for imple-
mentations of PEFT methods.

Training We use the default hyperparameters
from Liu et al. (2022), except for batch size and
training duration. We perform a grid search for
these values. We train each training phase for
30,000 steps on MNLI and 15,000 steps on the
Amazon dataset, with a batch size of 8. For the
T5v1.1 XL and TO models (3B parameters each),
we use a batch size of 1. We train with Adam and
use a learning rate of 0.003. We set the maximum
sequence length to 256 tokens. We use length nor-
malization during evaluation, as proposed by Liu
et al. (2022). For each experiment, we report the
mean and standard deviation across 3 runs.

*https://github.com/huggingface/transformers
Shttps://lightning.ai/docs/pytorch/latest/
6h'ctps ://github.com/r-three/t-few
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Source: Negative
Source: Positive

Target: Negative
Target: Positive

Figure 4: UMap visualizations of sentence embeddings
from the Apparel — Movies data pair, using the T5v1.1
base model and (IA)? PEFT method. Despite not pro-
moting domain-invariance, FEUDA learns sentence em-
beddings that are separable by class labels, regardless
of the domain of these sentences. The classification
hyperplane for the source domain has been imagined as
a solid line for illustration purposes, and its extension
to the target domain is shown as a dashed line.

Computations Using the (IA)> PEFT frame-
work, training the T5v1.1 Base model (60 million
parameters) for 15,000 steps takes approximately
two hours on a single NVIDIA RTX A6000 GPU.
The T5v1.1 XL model and TO model (3 billion pa-
rameters) take approximately 8 hours for 15,000
steps of training. For reproducibility, each exper-
iment is repeated thrice, with changing random
seeds. In total, we run 540 experiments with the
Base model and 72 experiments with the larger
models. This results in a total compute time of
approximately 2400 GPU hours.

E Results with Amazon Dataset

Table 8 shows the performance of our proposed
approach on the Amazon Product Reviews dataset.
On average, FEUDA is competitive with the state
of the art MMD method from Malik et al. (2023).

We confirm this by checking for a significant dif-
ference in the performance of FEUDA and MMD
on the 20 dataset pairs. The Mann-Whitney U test
and Student’s t-test both resulted in non-significant
p-values of 0.5516 and 0.8316, confirming the hy-
pothesis that there is no significant difference be-
tween FEUDA and MMD on the Amazon dataset.
However, on the MNLI dataset, where all domains
have larger gaps, both significant tests showed a
significant difference between FEUDA and MMD,
with FEUDA being more powerful.


https://github.com/huggingface/transformers
https://lightning.ai/docs/pytorch/latest/
https://github.com/r-three/t-few

Source Accurac
Source — Target v uracy

Target Accuracy

Src Only Src+Tgt MMD FEUDA  SrcOnly Src+Tgt MMD FEUDA
A->B 93.7(0.1) 93.8(0.3) 943(0.2) 93.1(0.3) | 93.3(0.4) 94.7(0.2) 93.8(0.3) 93.9(0.3)
A->B 93.7(0.1) 942(0.1) 93.8(0.1) 92.8(0.6) | 90.8 (0.6) 94.3(0.4) 92.5(1.1) 90.2(1.2)
A->C 93.7(0.1) 93.4(0.3) 95.0(0.0) 93.9(0.5) | 91.9(0.1) 95.0(0.2) 91.8(0.5) 92.1(0.5)
A->M 93.7(0.1) 94.1(03) 94.7(0.3) 93.5(04) | 81.3(1.4) 85.8(0.5) 81.3(0.6) 83.3(0.5)
B->A 95.5(0.2) 94.8(0.1) 958(0.5) 952(0.2) | 93.0(0.4) 93.4(0.3) 933(0.2) 93.4(0.4)
B->Bo 95.5(0.2) 949(0.1) 958(0.2) 94.3(0.3) | 93.0(0.9) 94.7(0.7) 93.8(0.3) 92.2(0.1)
B->C 95.5(0.2) 952(0.2) 96.0(0.8) 94.6(0.7) | 93.1(0.3) 94.7(0.8) 93.4(0.1) 92.1(0.3)
B->M 95.5(0.2) 945(0.4) 96.0(0.3) 93.9(0.7) | 82.0(0.5) 85.3(0.2) 81.3(0.7) 82.8(0.2)
Bo->A 94.3(0.6) 94.7(0.3) 93.8(0.4) 91.9(0.5) | 923(04) 94.6(0.3) 91.6(0.5) 91.3(0.2)
Bo->B 94.3(0.6) 94.4(0.5) 94.9(0.7) 922(0.3) | 93.6(0.3) 94.8(0.2) 92.9(0.6) 90.9 (0.2)
Bo->C 943 (0.6) 93.8(0.7) 94.7(0.5) 91.6(0.3) | 89.3(1.1) 94.3(0.2) 89.8(0.1) 90.3(0.4)
Bo->M 943 (0.6) 943(03) 942(0.4) 91.3(0.4) | 81.7(0.8) 855(0.9) 84.6(0.7) 80.1(1.2)
C->A 93.9(0.2) 94.6(0.1) 93.5(0.2) 93.4(0.5) | 92.1(0.3) 93.4(04) 923(0.3) 92.5(0.6)
C->B 93.9(0.2) 94.3(0.9) 93.3(0.7) 93.3(0.6) | 94.0(0.2) 95.0(0.6) 94.1(0.1) 92.1(0.2)
C->Bo 93.9(0.2) 939(0.1) 623(0.0) 923(0.2) | 91.1(04) 93.9(0.8) 91.3(0.5) 89.0(0.1)
C->M 93.9(0.2) 94.1(0.3) 929(09) 93.4(0.5) | 823 (1.1) 85.8(0.1) 81.5(0.7) 79.7(1.2)
M->A 85.5(0.2) 85.6(0.7) 86.3(0.6) 83.3(0.6) | 89.8(0.8) 94.2(0.7) 89.1(1.4) 90.1(0.5)
M->B 85.5(0.2) 86.1(0.4) 783(11.1) 83.7(0.3) | 91.7(0.5) 95.3(0.5) 81.0(16.1) 89.9(1.2)
M->Bo 85.5(0.2) 84.6(0.8) 76.4(13.7) 83.8(0.0) | 92.7(0.1) 94.1(0.4) 80.5(18.6) 91.5(0.0)
M->C 85.5(0.2) 86.1(0.7) 87.0(0.0) 84.6(0.6) | 90.1 (0.3) 94.3(0.5) 90.5(0.0) 89.7(0.3)

Table 8: Comparison of FEUDA and MMD by classification accuracy on the Amazon Product Review dataset,
using the T5v1.1 base model, and (IA)?> PEFT method. FEUDA is competitive with MMD on average. For
the target domain, the highest values between FEUDA and MMD have been marked in bold. Cases where Src
Only outperforms both FEUDA and MMD have been underlined.

FEUDA can learn representations that gener-
alize across domains To better understand the
improved UDA performance, we visualize the sen-
tence embeddings learned by FEUDA in Figure 4.
Using UMap (Mclnnes et al., 2018), the figure
visualizes embeddings for the Apparel—+Movies
domain pair from the Amazon Product Review
dataset. We see that FEUDA learns sentence em-
beddings that generalize across domains. For il-
lustration, we draw a black line that cuts across
both source and target domains. Note that the solid
line suggests that there exists a classification hyper-
plane learned on the source labeled data (in blue
and green). The same classifier can be potentially
used to separate target data (in gray and ).
The visualization suggests that FEUDA achieves
competitive UDA results without having to explic-
itly promote domain-invariant representations.

F Learning with Larger Models

The use of high capacity language models, which
are too compute intensive for traditional fine-
tuning, originally encouraged the use of prompting,
and prompting is now common with learning from
large language models (Brown et al., 2020; Schick
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and Schiitze, 2021a,b; Gao et al., 2021). Since our
approach makes use of prompting, we investigate
the performance of FEUDA with such models.

We experiment with two large models: T5v1.1
XL (3 billion parameters) and TO (3 billion param-
eters). TO is optimized for zero-shot generalization
by training on supervised prompts. We use the
Apparel (A) — Movies (M) domain pair from the
Amazon Reviews dataset. Table 9 shows the perfor-
mance gap between FEUDA and MMD increasing
with larger models. In the case of TO, we see partic-
ularly poor performance with MMD. This may be
due to the fact that the task of minimizing the diver-
gence between embeddings is highly different from
the tasks a model is trained on during instruction
tuning.

G More On Analyzing the Impact of
MLM on UDA

Table 10 accompanies the results from Figure 1,
which shows the impact of masking sequences at
inference. Words are selected for masking based
on their their “informativeness”, measured by their
PMI to the inference class label. The performance
of the model is best with the original unmasked



Model Src Only Src+Tgt MMD FEUDA
Source Target Source Target Source Target Source Target
T5vl.1 Base 93.7(0.1) 81.3(1.4) 94.1(03) 858(0.5) 93.4(0.2) 78.6(1.3) 935(04) 83.3(0.5)
T5vI.1 XL 954(0.2) 89.1(0.8) 953(0.6) 93.0(0.5) 74.8(15.6) 652(9.5) 951(0.2) 92.0(1.5)
TO 3B 95.5(04) 91.3(0.2) 955(0.2) 922(0.7) 52.1(1.1) 51.8(0.8) 95.5(0.4) 93.8(0.4)

Table 9: Performance of FEUDA across the T5v1.1 Base (60 million parameters), T5v1.1 XL (3 billion parameters)
and TO (3 billion parameters) models on the Apparel — Movies domain pair. We report the mean and standard
deviation over 3 runs. The performance gap between FEUDA and MMD increases with larger models.

sequences, indicating the presence of both infor-
mative and uninformative words are essential for
strong classification performance.

To isolate any effects of PEFT methods or pre-
training data, we repeat the analysis from Table 3
with fine-tuning Flan-T5 and notice a similar trend
in Table 11.

Table 12 accompanies results from Figure 2,
which show the impact of varying masking rates
on FEUDA. Using the T5v1.1 base model, we train
FEUDA using varying random masking rates on
the Apparel — Movies domain pair, and report the
mean and standard deviation over three runs. With
high masking rates, the performance on the source
domain is largely maintained, but the performance
on the target domain rapidly deteriorates.

Method Accuracy
Source Target

Original 93.5 83.3

Informative Masking 88.0 78.8

Uninformative Masking 92.0 79.0

Table 10: Impact of masking at inference. We evaluate
FEUDA on the Apparel — Movies domain pair, and
select words for masking based on their “informative-
ness” to the classification task. The performance of the
model is best with the original unmasked sequences,
indicating the presence of both informative and unin-
formative words are essential for strong classification
performance.

H Learning in a Few-Shot Setup

Classification Accuracy Table 13 accompanies
Figure 3 (Section 6.3), showing the 256-shot per-
formance of FEUDA and other baselines, across
model sizes.

Impact of Masked Words We extend the anal-
ysis on the impact of masked word selection from
Section 6.2 to the few-shot setting in Table 14,
where we compare the impact of masking informa-
tive or uninformative words. We also consider two
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. Accuracy
Masking Strategy Source Target
Random 95.8 (0.0) 86.8 (0.3)
Informative 93.9 (0.6) 85.3(0.3)
Uninformative 95.0 (0.0) 84.8(0.1)

Table 11: Impact of word selection for masking during
training. Using Flan-T5 base and no PEFT methods,
we find that masking words at random is more pow-
erful than selectively masking informative or uninfor-
mative words. This indicates that the model requires
both semantic features (learnt through masking infor-
mative words) and background features (learnt through
masking uninformative words) for classification on the
unlabelled target domain.

. Accuracy
Masking Rate Source Target
5% 92.8(0.8) 78.8(1.8)
15% 93.5(0.4) 83.3(0.5)
30% 92.8(0.6) 78.8(1.4)
60% 92.5(0.9) 71.0(3.0)
90% 92.3(0.5) 70.4(1.5)

Table 12: Impact of Masking Rate on FEUDA. We train
FEUDA using varying random masking rates on the
Apparel — Movies domain pair. With high masking
rates, the performance on the source domain is largely
maintained, but the performance on the target domain
rapidly deteriorates.

different few-shot setups: one with access to the
full unlabelled datasets in phase 1 pre-training, and
another where even the unlabelled data is few-shot.
Similar to the full-data setting, random masking re-
mains most powerful, indicating that both semantic
and background features are necessary for effective
classification on the unlabelled domain. However,
unlike the full-data setting where informative and
uninformative masking are comparable, in the few-
shot setting, informative masking is significantly
more useful.



Model Src Only Src+Tgt MMD Two Phase MMD FEUDA
Source Target Source Target Source Target Source Target Source Target
TS5vl.1 Base 92.0(0.4) 79.3(0.8) 93.2(0.1) 82.8(0.6) 80.1(0.7) 62.5(0.7) 92.3(0.5) 79.8(1.4) 90.1(0.5) 81.2(0.7)
T5vI.1 XL  91.1(6.1) 809(84) 957(0.1) 92.5(04) 873(6.8) 71.7(7.8) 92.2(0.1) 84.3(0.9) 952(0.3) 86.8(2.2)
TO 3B 953(0.3) 91.3(03) 95.6(03) 91.8(0.6) 91.3(5.1) 79.5(6.7) 54.0(4.8) 53.5(04) 958(0.1) 92.8(0.2)

Table 13: Performance of FEUDA across different models, in a 256-shot learning setup on the Apparel — Movies
domain pair. We see FEUDA retaining strong performance on the target domain across models.

. Accuracy
Phase 1 Data Masking Strategy Source Target
256 Shot Random 91.0 (0.9) 78.1(2.4)
Informative 90.4 (0.5) 76.0(0.7)
Uninformative 89.6 (1.2) 73.5(1.6)
Full Data Random 90.1(0.5) 81.2(0.7)
Informative 91.8 (0.5) 78.0(0.9)
Uninformative 89.3(0.5) 72.8(1.1)

Table 14: Impact of word selection for masking, in a
256-shot learning setup. We evaluate FEUDA on the
Apparel — Movies domain pair, and select words for
masking based on their “informativeness” to the clas-
sification task. Random masking is most powerful for
the target domain, indicating that both semantic and
background features are necessary for effective classifi-
cation on the unlabelled domain. However, informative
masking is significantly more useful than uninformative
masking.

I Comparison With More Baselines

Our main comparisons are made with the MMD
based method proposed by (Malik et al., 2023),
as it is a recent and powerful UDA method that
outperforms other popular invariance based UDA
approaches like DANN (Ganin et al., 2016; Li et al.,
2018) and DSN (Bousmalis et al., 2016).

For a more comprehensive evaluation, we in-
clude a comparison with more baselines in this
section. Using the T5v1.1 base model with (IA)?
on the Amazon Apparel—Movies data pair, we in-
clude a comparison with DANN, which is the most
widely used UDA method in NLP (Ramponi and
Plank, 2020). However, DANN has been shown to
be highly unstable in prior work, and we thus also
minimize alternate measures of domain divergence
based on Wasserstein distance and second order
statistics (CORAL) (Sun et al., 2017). Our method
is competitive with all baselines.

Additionally, with an emerging class of weight
interpolation based methods, we make a compari-
son with task vector arithmetic (Ilharco et al., 2022).
The use of task vectors with PEFT has been unex-
plored in the literature, and we find that the method
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does not work with IA3. With fully fine-tuned
models, the method improves in performance, but
is still weaker than FEUDA.

Method Accuracy
Source Target

FEUDA 93.7 (0.3) 83.3(0.9)
MMD 94.7 (0.3) 81.3(0.6)
DANN 53.5(2.3) 523@1.7)
CORAL 94.6 (0.2) 80.9 (0.4)
Wasserstein 94.5(0.2) 82.5(0.4)
Task Vectors 46.3 (0.3) 48.0(0.7)
Task Vectors (fine-tuning) 93.0 (0.2) 69.0 (0.4)

Table 15: Comparison of FEUDA with more baselines,
using the T5v1.1 base model and (IA)? PEFT method
on the Apparel—+Movies pair from the Amazon review
dataset. For task vectors, we include versions with (IA)3
as well as full fine-tuning. FEUDA outperforms all
baselines.

J More About MMD

The Maximum Mean Discrepancy (MMD) (Gret-
ton et al., 2012) measures the difference between
first order moments of variables in a Reproduc-
ing Kernel Hilbert Space (Aronszajn, 1950). Mul-
tiple lines of work have shown that minimiz-
ing divergence measures like MMD, when com-
bined with auxiliary task-specific loss functions,
results in training instabilities and vanishing gra-
dients (Kashyap et al., 2021; Han and Eisenstein,
2019).

We also note that as minimizing MMD does not
use any label information, there is a possibility
for embeddings of the target domain to be aligned
with the closest source domain class cluster. For
example, Figure 5 shows us a setting where both
classes of the target domain (shown in green and
gray) are mapped to the cluster of negative class
source embeddings (shown in blue).

We compare variants of the MMD method in
Table 16 and show that the loss is sensitive to small
changes in the loss design. Specifically we com-
pare the MMD method used in the main paper with:



* MMD over Logits: Measures the MMD be-
tween the logits of source and target domains,
instead of using intermediate model outputs.

* Fixed Weight MMD: Instead of the multi-task
loss for the MMD reduction and classification
tasks, we use fixed weights for both tasks’.

* Two Phase MMD: The first training phase is
used to minimize MMD between source and
target embeddings, while the second phase is
used to train the model for classification on
the source domain.

FEUDA remains more powerful than all variants.

Method Accuracy
Source Target

FEUDA 93.7(0.3) 83.3(0.9

MMD 94.7 (0.3) 81.3(0.6)

MMD over Logits 95.0(0.2) 81.3(0.7)
Fixed Weight MMD  93.4 (0.2) 78.6 (1.3)
Two Phase MMD 90.1 (0.1) 68.7 (2.0)

Table 16: Comparison of variants of minimizing MMD,
on the Apparel — Movies domain pair. FEUDA remains
more powerful than all variants.

Source: Negative Target: Negative
Source: Positive Target: Positive

Figure 5: UMap visualizations of sentence embeddings
from the Apparel — Movies data pair, using the T5v1.1
base model and (IA)?> PEFT method. Training with
MMD risks stability issues, and all embeddings from the
target domain can be mapped to the closest source class
cluster. This results in poor classification performance
on the target domain.

"For the weighted loss, Lcrs + 3 Lmmp was found to be
the best performing.



