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Abstract
A major thread of unsupervised domain adapta-001
tion (UDA) methods uses unlabeled data from002
both source and target domains to learn domain-003
invariant representations for adaptation. How-004
ever, these methods showcase certain limita-005
tions, encouraging the use of self-supervised006
learning through continued pre-training. The007
necessity of continued pre-training or learning008
domain-invariant representations is still unclear009
in the prompt-based classification framework,010
where an input example is modified by a tem-011
plate and then fed into a language model (LM)012
to generate a label string. To examine this new013
paradigm of UDA in the prompt-based setup,014
we propose a frustratingly easy UDA method015
(FEUDA) that trains an autoregressive LM on016
both unlabeled and labeled examples using two017
different instruction-tuning tasks. Specifically,018
the first task trains the LM on unlabeled texts019
from both domains via masked language mod-020
eling (MLM), and the other uses supervised021
instruction-tuning on source-labeled data for022
classification. We conduct extensive experi-023
ments on 24 real-world domain pairs to show024
the effectiveness of our method over strong025
domain-invariant learning methods. Our analy-026
sis sheds light on why masked language model-027
ing improves target-domain classification per-028
formance in prompt-based UDA. We discover029
that MLM helps the model learn both semantic030
and background knowledge of a domain, which031
are both beneficial for downstream classifica-032
tion.033

1 Introduction034

Despite recent advancements in the pre-training035

of language models, these models are still frag-036

ile under certain kinds of data distribution shifts,037

masking their real-world applications challeng-038

ing (Ribeiro et al., 2020). The problem of unsuper-039

vised domain adaptation (UDA) aims to leverage040

learned knowledge from a labeled source domain041

to an unlabeled target domain (Pan and Yang, 2010;042

Ganin and Lempitsky, 2015; Long et al., 2015).043

A vast class of existing UDA methods attempts 044

to learn representations that are invariant across 045

domains (Tzeng et al., 2014; Ganin et al., 2016; 046

Wu and Shi, 2022; Guo et al., 2022). The rationale 047

is that when the learned representations from both 048

domains cannot be distinguished by a classifier and 049

the classifier performs well on the source domain, 050

it will also exhibit strong performance on the tar- 051

get domain. However, previous work has shown 052

that domain-invariance is insufficient for adapta- 053

tion to the target domain (Zhao et al., 2019), and 054

is also prone to instability issues (Han and Eisen- 055

stein, 2019; Kashyap et al., 2021). This has encour- 056

aged the emergence of self-supervised approaches 057

through language model pre-training. Variants of 058

continued pre-training have proven to be effective 059

and stable for adapting pre-trained LMs to labeled 060

and unlabeled downstream tasks (Gururangan et al., 061

2020; Karouzos et al., 2021). 062

However, the trade-offs between continued pre- 063

training and learning domain-invariant representa- 064

tions for UDA are both unexplored in the prompt- 065

based classification framework (Gao et al., 2021; 066

Liu et al., 2023). In such a framework, input ex- 067

amples are modified using instruction templates 068

and then fed into a language model (LM) to gen- 069

erate the label text based on the constructed in- 070

struction. This process bears resemblance to in- 071

struction tuning (Wei et al., 2022), except that the 072

training is done on a single task, and that the end 073

goal is adaptation to a specific task, rather than 074

generalization to unseen tasks. In this paper, we 075

call this new paradigm prompt-based UDA and 076

examine two research questions: Can we utilize un- 077

labeled data to construct useful instruction-tuning 078

tasks for UDA? Is domain invariance still neces- 079

sary in this paradigm? To answer these questions, 080

we present a “frustratingly easy” UDA method 081

(termed FEUDA), which smooths out the transi- 082

tion between pre-training and adaptation by two 083

instruction-tuning tasks using prompt templates. 084
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First, unlabeled texts from both source and target085

domains are modified by a prompt template and086

then used to train an autoregressive LM to perform087

the masked language modeling (MLM) task. Next,088

the LM is instruction-tuned on labeled source texts089

using another template for the classification task.090

Through extensive experiments on 40 real-world091

domain pairs, various adaptation methods, and few-092

shot learning setups, we show that FEUDA is com-093

petitive for UDA and even outperforms methods094

that explicitly promote domain invariance (Sec-095

tion 6.1). Additionally, our analysis sheds light on096

how masked language modeling improves classifi-097

cation performance on the unlabeled target domain098

(Section 6.2). We discover that MLM helps the099

model learn both semantic and background knowl-100

edge of a domain, which are both beneficial for101

downstream classification. Our main contributions102

can be summarized as follows:103

1. We introduce prompt-based UDA, a new UDA104

setting where the discriminative prediction is105

converted into a generative task, enabling multi-106

task adaptation as well as the reuse of all lan-107

guage model parameters. We empirically ana-108

lyze continued pre-training and domain invari-109

ance based UDA methods in this setting.110

2. We propose FEUDA, a simple and effective111

UDA approach for prompt-based classification.112

Through extensive experiments, we show that113

FEUDA is competitive and outperforms the114

domain-invariant learning approach. We estab-115

lish the generalizability of FEUDA across vari-116

ous models, adaption methods and limited data117

settings, confirming that our approach remains118

powerful in these settings.119

3. We conduct an analysis understanding the im-120

pact of the MLM task in a UDA setup and dis-121

cover that MLM helps the model learn both se-122

mantic and background knowledge of a domain,123

both of which are beneficial for downstream124

classification.125

2 Related Work126

Ramponi and Plank (2020) categorize UDA meth-127

ods into two general classes: Model-centric and128

Data-centric methods. This work focuses on a new129

data-centric UDA method in a prompt-based setup.130

Model-centric UDA Methods This line of study131

involves augmenting the feature space (Blitzer132

et al., 2006; Pan et al., 2010; Ziser and Reichart,133

2018, inter alia), editing models though weight134

interpolation (Matena and Raffel, 2022; Cai et al., 135

2023; Wortsman et al., 2022; Ilharco et al., 2022), 136

or altering the loss function and model architecture. 137

One typical framework aims to minimize H∆H 138

divergence (Ben-David et al., 2010) between the 139

source and target domain features, through adver- 140

sarial training (Tzeng et al., 2014; Ganin et al., 141

2016; Tzeng et al., 2017; Wu and Shi, 2022; Guo 142

et al., 2022, inter alia) or through minimizing mea- 143

sures of domain similarity (Bousmalis et al., 2016; 144

Ge et al., 2023; Malik et al., 2023). However, past 145

work has shown that domain-invariance is weak 146

constraint for adaptation to the target domain (Zhao 147

et al., 2019; Karouzos et al., 2021), could in- 148

troduce domain-specific hyperparameters (Trung 149

et al., 2022), and is also prone to instability is- 150

sues (Han and Eisenstein, 2019; Sun et al., 2019; 151

Wilson and Cook, 2020; Kashyap et al., 2021). 152

Data-centric UDA Methods The limitations of 153

invariance-based model-centric methods have en- 154

couraged the emergence of alternate approaches, 155

largely based on self-supervised learning through 156

contrastive learning (Kumar et al., 2022; Shen et al., 157

2022; Long et al., 2022), pseudo-labeling (Zhou 158

and Li, 2005; Ruder and Plank, 2017, inter alia) 159

or language model pre-training. Despite not being 160

directly useful to certain downstream tasks (Up- 161

paal et al., 2023), Masked Language Modelling 162

(MLM) has been used for adaptation to labeled 163

tasks, in both full fine-tuning (Gururangan et al., 164

2020; Lee et al., 2020; Gao et al., 2021) and PEFT 165

setups (Kim et al., 2021; Hung et al., 2023). A 166

smaller body of work has explored the utility of 167

MLM in a UDA setup (Han and Eisenstein, 2019; 168

Zhang et al., 2021b; Karouzos et al., 2021). This 169

class of methods is more stable than invariance- 170

based methods, but often requires additional com- 171

pute for extended pre-training. 172

Prompt-based UDA The emergence of large lan- 173

guage models (Brown et al., 2020; Scao et al., 2022; 174

Touvron et al., 2023, inter alia) introduced the 175

concept of instruction tuning, where a language 176

model is trained on strings of input-output pairs, 177

often using instruction-specific templates (Zhang 178

et al., 2023). Inspired by this, we introduce prompt- 179

based UDA, i.e., a new paradigm of data-centric 180

UDA using a prompt-based classifier that casts 181

the discriminative classification task into a gen- 182

erative next-token prediction task. This prompt- 183

based UDA formulation provides two unique ben- 184

efits compared to traditional UDA approaches: 1) 185

2



the prompt-based classifier can reuse all model pa-186

rameters for adaptation, without requiring any task-187

specific architectural changes; 2) furthermore, this188

also enables multi-task instruction tuning bridging189

the gap between pre-training and adaptation, as190

the pre-training and fine-tuning phases of the exact191

model can be naturally coupled together by using192

different instruction prompts.193

Our study aims to extend the existing body of194

data-centric UDA methods by examining the behav-195

ior of multi-task instruction tuning for adaptation196

and the necessity of learning domain invariant rep-197

resentations in this new UDA paradigm.198

3 Preliminaries: The UDA Problem199

We consider a text classification task, where X200

is the input space of all text sentences and Y =201

{1, ...K} is the label space. In the UDA prob-202

lem, we have access to a source labeled dataset203

Dsrc = {(xi, yi)}Ni=1 consisting of samples from204

a joint distribution P (src)
XY , and a target unlabeled205

dataset Dtgt = {xj}Mj=1 sampling from a target206

input distribution P
(tgt)
X . We further denote P (src)

X207

as the marginal distribution of P (src)
XY on X , where208

P (src)
X ̸= P

(tgt)
X . The goal of UDA is to learn a209

function f : X → Y such that the error rate210

E
x∼P

(tgt)
X

1[f(x) ̸= y] is minimized.211

4 FEUDA Method212

In this section, we introduce our framework213

FEUDA, a simple and effective two-phase training214

method1 for UDA with masked language model-215

ing. In the first phase, we take a pre-trained auto-216

regressive language model and perform unsuper-217

vised training through masked language modeling,218

on the combination of unlabeled data from both the219

source and target domains. In the second phase,220

we perform supervised fine-tuning on the down-221

stream classification task using labeled data from222

the source domain.223

Task 1: MLM Pre-training We aim to utilize a224

pre-trained autoregressive language model for con-225

tinuing pre-training on unlabeled data from both226

the source and target domains, with the masked227

language modeling task. Here, we reuse all the228

input sequences from the source-labeled dataset229

1While we use the two-phase multi-task training pipeline
(sequential) in our main experiments, in Appendix B, we show
that an equivalent single-phase multi-task training pipeline
(joint) results in similar performance.

Dsrc as the source-unlabeled dataset, denoted as 230

Dx
src. Next, similar to (Raffel et al., 2020), for any 231

unlabeled sequence x ∈ Dx
src and Dsrc, we use a 232

prompt template to convert the sequence x to an 233

input-output sequence pair, i.e., M(x) = (x̃, ỹ). 234

Here, the prompt template first randomly masks 235

words in the input sequence x and prepends an in- 236

struction (i.e., “Fill in the blanks:”) to create a new 237

input sequence x̃. An output sequence ỹ is then 238

constructed by concatenating all the masked words 239

separated by a special <sep> token. For example, 240

x = The movie was so cool! Two hours of fun. 241

x̃ = Fill in the blanks: "The _ cool! Two hours _ 242

ỹ = <sep> movie was so <sep> of fun. <sep> 243

Given a pair (x̃, ỹ), we use an autoregressive 244

LM parameterized by θ to compute the negative 245

log-likelihood loss averaged over output words: 246

ℓ(x̃, ỹ; θ) = − 1

|ỹ|
∑
t

logPθ(ỹt|x̃, ỹ1:t−1). (1) 247

Notably, we convert the MLM task into a next- 248

token prediction task by instructing an autoregres- 249

sive LM to predict the output words, which allows 250

us to reuse all the parameters of the LM without 251

adding any new randomly-initialized parameters. 252

Finally, we define the total loss on the combined 253

unlabeled dataset D = Dx
src ∪ Dtgt as: 254

LMLM(D; θ) =
1

|D|
∑
x∈D

ℓ(M(x); θ). (2) 255

While the above formulation uses the MLM task 256

for continued pre-training, the use of an autore- 257

gressive LM allows for an easy extension to the 258

Causal Language Modeling (CLM) task, which we 259

demonstrate in Section 6.3. 260

Task 2: Source Supervised Instruction-tuning 261

In the second phase, we only use labeled data from 262

the source domain to fine-tune the model for the 263

downstream classification task. Similar to the first 264

phase, we use a prompt template2 to create input- 265

output sequence pairs from the labeled data in the 266

source domain. Specifically, for a labeled example 267

(x, y) ∈ Dsrc, a new prompt template appends to 268

x an instruction for prompting the LM to perform 269

classification, and converts the label y to its corre- 270

sponding text description ỹ, i.e., C(x, y) = (x̃, ỹ). 271

For example, a labeled example with the positive 272

2Prompt templates were selected from the Public Pool of
Prompts (Bach et al., 2022).
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sentiment from a sentiment classification task is273

converted as follows:274

x = I like this movie. y = 1275

x̃ = [x] Is this sentence positive or negative?276

ỹ = Positive277

Given the augmented sequence pair (x̃, ỹ) and278

the model trained after the first phase, we compute279

the same negative log-likelihood loss ℓ(x̃, ỹ; θ) in280

Eq. (1). This again allows us to reuse all model281

parameters, including the language model predic-282

tion head. Finally, we define the total loss on the283

source-labeled dataset in the second phase as:284

LCLS(Dsrc; θ) =
1

|Dsrc|
∑

(x,y)∈Dsrc

l(C(x, y); θ).

(3)285

After training, we follow the practice of Liu et al.286

(2022) to convert a label string ỹ to its correspond-287

ing label y at test time for evaluation.288

Parameter-Efficient Fine-Tuning (PEFT) The289

above formulation is general and can be applied290

to fine-tune all model parameters. Additionally,291

our FEUDA framework is compatible with the292

parameter-efficient fine-tuning approach. The293

PEFT approach is desirable because it adds only a294

small amount of learnable parameters ϕ to a pre-295

trained language model θ, and fine-tunes only ϕ to296

perform prediction while keeping the other model297

parameters θ frozen. We utilize two instantiations298

in our implementations: Adapters (Houlsby et al.,299

2019) and (IA)3 (Liu et al., 2022). Both are high-300

performing PEFT approaches, with (IA)3 using301

fewer learnable parameters. More details about302

both methods can be found in Appendix A.303

5 Experimental Setup304

5.1 Datasets305

We follow the setup from Malik et al. (2023), and306

use two sentence classification datasets with 5 do-307

mains each. This results in a total of 40 pairs of308

source and target domains. Appendix C shows309

more details about the evaluation benchmarks.310

MNLI The MNLI corpus (Williams et al., 2018)311

contains sentence pairs across multiple genres:312

Travel (T), Fiction (F), Government (G), Slate (S),313

and Telephone (Te). The task classifies every sen-314

tence pair as entailment, neutral, or contradiction.315

Amazon The Multi-Domain Sentiment Analy-316

sis Dataset (Blitzer et al., 2007) contains Amazon317

product reviews for different types of products. We 318

use reviews from the Apparel (A), Baby (B), Books 319

(Bo), Cameras (C), and Movies (M) domains. Each 320

review is labeled as either positive or negative. 321

5.2 Models and Training 322

Models For our main experiments, we use 323

T5v1.1, which is an improved version of the orig- 324

inal T5 model (Raffel et al., 2020). Unlike the 325

original T5 model, T5v1.1 is not trained on any 326

supervised datasets. We use the base (60M pa- 327

rameters) and XL (3B parameters) versions of the 328

model. We also use T0 (3B parameters), which 329

has been optimized for zero-shot generalization by 330

training on supervised natural language prompts 331

(Sanh et al., 2022). Furthermore, to test the sensi- 332

tivity of FEUDA across architectures and masking 333

styles, we also use GPT-2 medium (345M param- 334

eters) (Radford et al., 2019), from the class of au- 335

toregressive decoder-only language models. 336

Training We train each training phase for 30,000 337

steps on MNLI and 15,000 steps on the Amazon 338

dataset. We train with Adam and use a batch size 339

of 8, learning rate of 0.003. We set the maximum 340

sequence length to 256 tokens. We use length nor- 341

malization during evaluation, as proposed by Liu 342

et al. (2022). For each experiment, we report the 343

mean and standard deviation across 3 runs. More 344

details can be found in Appendix D. 345

5.3 Baselines 346

We compare FEUDA with three baselines below. 347

• Src Only: We fine-tune the model on the source 348

labeled data, in a single training phase. 349

• Src+Tgt (All labeled): We fine-tune the model 350

for classification, using labeled data from both 351

the source and target domains. This serves as 352

an upper bound on target domain performance. 353

• MMD: The current state of the art for UDA 354

in a PEFT setup promotes domain invariance 355

by maximum mean discrepancy (MMD) (Ma- 356

lik et al., 2023). This method measures the 357

multi-kernel maximum mean discrepancy (MK- 358

MMD) (Gretton et al., 2012; Bousmalis et al., 359

2016) between source and target embeddings 360

from each transformer layer and sums them to 361

obtain an aggregate loss Ldiv. The final loss is 362

the weighted sum of Ldiv and the classification 363

loss, i.e., L = λ Lcls + (1 − λ) Ldiv, where λ 364

gradually changes from 0 to 1 during training. 365
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Source → Target Source Accuracy Target Accuracy
Src Only Src+Tgt MMD FEUDA Src Only Src+Tgt MMD FEUDA

T->F 78.4 (2.2) 79.1 (0.5) 78.3 (0.1) 80.5 (0.1) 73.7 (1.1) 77.2 (0.4) 69.7 (0.8) 74.1 (0.9)
T->G 78.4 (2.2) 79.8 (0.1) 78.2 (0.2) 80.1 (0.3) 73.7 (1.1) 83.6 (0.7) 79.3 (0.5) 83.6 (0.3)
T->S 78.4 (2.2) 80.6 (3.5) 79.8 (0.2) 79.8 (0.4) 73.7 (1.1) 72.3 (0.5) 69.6 (0.1) 70.7 (0.6)
T->Te 78.4 (2.2) 79.2 (0.4) 78.0 (0.0) 81.1 (0.0) 74.5 (2.2) 77.8 (0.1) 69.4 (0.8) 76.8 (0.0)

F->T 76.0 (0.2) 77.6 (0.3) 72.9 (0.2) 67.6 (1.5) 75.6 (0.7) 79.9 (0.1) 69.9 (0.2) 65.4 (1.8)
F->G 76.0 (0.2) 77.6 (0.6) 53.3 (21.4) 73.2 (2.3) 75.6 (0.7) 82.3 (0.1) 54.3 (23.4) 78.8 (2.5)
F->S 76.0 (0.2) 77.4 (0.3) 69.7 (2.7) 69.8 (1.8) 75.6 (0.7) 72.1 (0.2) 64.6 (1.8) 65.3 (1.6)
F->Te 76.0 (0.2) 77.8 (0.6) 70.6 (0.9) 74.4 (0.4) 75.6 (0.7) 78.3 (0.6) 64.6 (0.7) 72.5 (0.2)

G->T 82.1 (0.3) 83.6 (0.4) 80.9 (0.7) 82.3 (0.8) 73.0 (0.0) 79.9 (0.4) 75.9 (0.3) 75.8 (0.6)
G->F 82.1 (0.3) 81.6 (0.1) 79.8 (0.7) 81.7 (0.2) 73.0 (0.0) 76.7 (0.1) 69.9 (0.2) 73.5 (0.2)
G->S 82.1 (0.3) 82.9 (0.1) 80.9 (0.0) 79.8 (1.7) 73.0 (0.0) 73.1 (0.0) 69.4 (0.1) 68.0 (1.8)
G->Te 82.1 (0.3) 83.2 (0.2) 80.1 (0.1) 82.1 (0.1) 73.0 (0.0) 78.1 (0.6) 69.9 (0.3) 73.5 (0.6)

S->T 70.9 (1.7) 71.9 (0.1) 69.1 (0.9) 71.2 (0.2) 72.9 (1.5) 79.5 (0.3) 74.4 (1.7) 76.8 (1.0)
S->F 70.9 (1.7) 71.6 (0.4) 70.4 (0.0) 70.3 (0.7) 72.9 (1.5) 77.7 (0.2) 73.1 (0.0) 72.4 (0.7)
S->G 70.9 (1.7) 72.8 (0.2) 68.5 (0.8) 66.4 (1.5) 72.9 (1.5) 83.4 (0.2) 78.2 (0.5) 76.3 (0.9)
S->Te 70.9 (1.7) 73.3 (0.0) 67.5 (1.4) 71.0 (1.7) 72.9 (1.5) 78.5 (0.0) 66.7 (0.2) 74.8 (1.3)

Te->T 77.5 (0.2) 78.2 (0.4) 75.5 (0.5) 78.7 (0.2) 74.9 (0.2) 79.8 (0.3) 71.4 (0.0) 76.5 (0.4)
Te->F 77.5 (0.2) 78.1 (0.4) 75.2 (0.7) 77.1 (0.0) 74.9 (0.2) 77.9 (0.1) 69.9 (0.5) 74.3 (0.5)
Te->G 77.5 (0.2) 78.6 (0.2) 74.8 (0.5) 78.8 (0.1) 74.9 (0.2) 82.5 (0.1) 75.6 (1.6) 82.0 (0.6)
Te->S 77.5 (0.2) 78.7 (0.0) 75.3 (0.1) 78.8 (0.4) 74.9 (0.2) 72.2 (0.0) 68.0 (0.4) 71.3 (0.5)

Table 1: Comparison of FEUDA and MMD by classification accuracy on the MNLI dataset, using the T5v1.1 base
model, and (IA)3 PEFT method. FEUDA is competitive with MMD, often outperforming it. The highest values
between FEUDA and MMD have been marked in bold. Cases where Src Only outperforms both FEUDA and
MMD on the target have been underlined. However, it must be noted that in a majority of these cases the upper
bound Src+Tgt is comparable to or weaker than Src Only, indicating noise in the domain pair.

Source → Target Source Accuracy Target Accuracy
Src Only Src+Tgt MMD FEUDA Src Only Src+Tgt MMD FEUDA

A->B 93.7 (0.1) 93.8 (0.3) 94.3 (0.2) 93.1 (0.3) 93.3 (0.4) 94.7 (0.2) 93.8 (0.3) 93.9 (0.3)
A->B 93.7 (0.1) 94.2 (0.1) 93.8 (0.1) 92.8 (0.6) 90.8 (0.6) 94.3 (0.4) 92.5 (1.1) 90.2 (1.2)
A->C 93.7 (0.1) 93.4 (0.3) 95.0 (0.0) 93.9 (0.5) 91.9 (0.1) 95.0 (0.2) 91.8 (0.5) 92.1 (0.5)
A->M 93.7 (0.1) 94.1 (0.3) 94.7 (0.3) 93.5 (0.4) 81.3 (1.4) 85.8 (0.5) 81.3 (0.6) 83.3 (0.5)

Table 2: Comparison of FEUDA and MMD by classification accuracy on the Amazon Product Review dataset, using
the T5v1.1 base model, and (IA)3 PEFT method. FEUDA is competitive with MMD, often outperforming it. The
highest values between FEUDA and MMD on the target domain have been marked in bold.

6 Results & Analysis366

6.1 FEUDA is Competitive for UDA367

We compare our method with other baselines over368

24 domain pairs (16 additional pairs in Appendix E)369

domain pairs across the MNLI and Amazon prod-370

uct review datasets. In these experiments, we use371

the T5v1.1 Base model and (IA)3 PEFT method.372

FEUDA outperforms methods that explicitly373

promote domain invariance Table 1 shows the374

classification accuracy on the MNLI dataset. We375

find that FEUDA is a competitive method to MMD.376

For example, for Travel (T) → Government (G),377

FEUDA yields an accuracy of 83.6% on the tar-378

get domain, equalling the upper bound of the379

Src+Tgt baseline. In comparison, MMD yields 380

an accuracy of only 79.3%. Additionally, FEUDA 381

performs more stably than MMD. For example, 382

for Fiction (F) → Government (G), minimizing 383

MMD yields a variance of over 20% across runs. 384

This observation is consistent with existing find- 385

ings (Kashyap et al., 2021; Han and Eisenstein, 386

2019) that minimizing divergence measures like 387

MMD, when combined with auxiliary task-specific 388

loss functions, result in training instabilities and 389

vanishing gradients. We discuss the performance 390

of the MMD method in more detail in Appendix J. 391

We also see similar results on the Amazon 392

dataset in Table 2 (full results in Appendix E). 393

For example, for Apparel (A) → Movies (M), 394

FEUDA yields an accuracy of 83.3% on the tar- 395
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get domain, approaching the upper bound of the396

Src+Tgt baseline. In comparison, MMD yields397

an accuracy of 81.3%. A visualization of sen-398

tence embeddings in Figure 4 (Appendix E) sug-399

gests that representations learned through FEUDA400

are not domain invariant. In Appendix I, we401

show FEUDA outperforms additional baselines, in-402

cluding DANN (Ganin et al., 2016), weight interpo-403

lation (Ilharco et al., 2022), and domain divergence404

minimization by Wasserstein distance.405

6.2 Analyzing the Impact of MLM on UDA406

In this section, we aim to understand how MLM407

training on the source and target domains boosts408

classification on the unlabeled target domain.409

Impact of Masked Words We hypothesize that410

by having to predict certain masked words during411

MLM training, the model implicitly learns informa-412

tion about the classification task on the unlabeled413

domain. For example, given the masked sentence,414

“I really _ the movie, it was a fascinating watch.”415

The only way the model can predict the masked416

word is by using the sentence context and identi-417

fying the sentiment of certain words. In this case,418

the word “fascinating” implies a positive sentiment,419

so the model may predict the masked word to be420

a positive word like “loved” or “enjoyed”. Thus,421

the model would implicitly learn information about422

the downstream task, by predicting masked words423

(e.g., “fascinating”) indicative of the class label.424

To test this hypothesis, we quantize the “infor-425

mativeness” of each word to a classification task.426

An informative word is one that is highly corre-427

lated with any of the labels in the downstream task.428

Specifically, we follow Gururangan et al. (2018)429

and use pointwise mutual information (PMI) (Fano,430

1961) of the word with respect to the class label:431

PMI(word, class) = log
p(word, class)
p(word)p(class)

,432

where we count the frequency of a word-class pair433

on the labeled data Dsrc to estimate p(word, class),434

and similarly estimate p(word) and p(class) by435

counting a word and a class individually on Dsrc.436

These informative words are similar to pivot fea-437

tures (Blitzer et al., 2006; Ben-David et al., 2020,438

inter alia), with the exception that they are chosen439

based on information from the source domain only.440

To compare with random masking of k% words,441

we selectively mask the top k% or bottom k% of442

informative words in a sentence, ranked by their 443

PMI with any inference label (k = 15). We also 444

filter out low-frequency words from the selection.3 445

We use the T5v1.1 base model with (IA)3 on the 446

Apparel → Movies pair for analyzing the impact of 447

masked words at inference and pre-training time. 448

Impact at Inference: We use a prompt-based clas- 449

sifier trained by FEUDA to classify three versions 450

of a test set at inference: the original test set and the 451

other two versions with informative and uninfor- 452

mative words masked respectively. Figure 1 (corre- 453

sponding Table 10 in Appendix G) shows us that 454

the presence of both informative and uninformative 455

words are essential for strong classification perfor- 456

mance, with performance being highest on the orig- 457

inal unmasked sequences. Interestingly, the source- 458

domain performance is only hurt by the masking 459

of informative words, confirming that these words 460

are highly indicative of the downstream classes. 461

Impact at Pre-training: To further confirm the 462

phenomenon, we alter the masking strategies in the 463

MLM pre-training phase of FEUDA. We compare 464

the original random masking with informative and 465

uninformative masking, maintaining a fixed mask- 466

ing rate (15%) across masking strategies. Table 3 467

confirms that random masking is most helpful for 468

target-domain classification. To isolate any effects 469

of PEFT methods or pre-training data, we repeat 470

the analysis by fine-tuning the instruction-tuned 471

Flan-T5 (Chung et al., 2022) and notice a similar 472

trend (Table 11 in Appendix G). We hypothesize 473

that the model learns semantic features through the 474

masking of informative words and background fea- 475

tures through the masking of uninformative words, 476

and both sets of features are essential for classifica- 477

tion on the unlabeled domain. 478

Masking Strategy Accuracy
Source Target

Random 93.5 (0.4) 83.3 (0.5)
Informative 93.3 (0.5) 78.3 (0.7)
Uninformative 92.9 (0.1) 79.6 (0.6)

Table 3: Impact of word selection for masking during
training. Masking words at random is more powerful
than selectively masking informative or uninformative
words. This indicates that the model requires both se-
mantic features (learnt through masking informative
words) and background features (learnt through mask-
ing uninformative words) for classification on the unla-
belled target domain.

3Any word that occurs less than 10 times in the entire
training corpus is considered to be low frequency.
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Figure 1: Impact of masking at inference. We evaluate
FEUDA on the Apparel → Movies domain pair, and se-
lect words for masking based on their “informativeness”
to the classification task. The performance of the model
is best with the original unmasked sequences, indicat-
ing the presence of both informative and uninformative
words are essential.

Impact of Masking Rate While masking 15%479

of a sequence is considered standard for random480

masking, previous work has shown that BERT-481

sized models (Devlin et al., 2019) can learn from482

as high as 80% masking rates during pre-training483

followed by adaptation to a labeled task. Here, we484

explore the role of masking rates during continued485

pre-training for adaptation to an unlabeled task.486

Figure 2 (Table 12 in Appendix) shows the im-487

pact of varying the masking rate on the source488

and target domains. With masking rates under489

the optimal value of 15%, the semantic and back-490

ground features learned through model prediction491

of masked words is limited, hurting performance492

on the target domain. Beyond the 15% rate, the493

classification performance on the source domain494

is largely maintained, even at a 90% masking rate,495

matching previous findings (Wettig et al., 2023).496

However, the performance on the target domain497

rapidly decreases with an increasing masking rate.498

To explain the performance drop, we hypothe-499

size that since the model never sees any labeled data500

of the target domain, it heavily depends on the sig-501

nal it gets from the unlabeled data through masking.502

Effectively masking a majority of a sequence re-503

moves the background and semantic features from504

the sequence, both of which are necessary for down-505

stream classification on the domain.506

6.3 Extensions to More Settings507

Prompting is common practice with large language508

models which are too compute-intensive for tradi-509

5% 15% 30% 60% 90%
Masking Rate

70

75

80

85

90

95

Ac
cu

ra
cy

Source
Target

Figure 2: Impact of Masking Rate on FEUDA. With
high masking rates, the performance on the source do-
main is largely maintained, but the performance on the
target domain rapidly deteriorates.

tional fine-tuning. For the same reasons, the setup 510

is also frequently combined with learning from lim- 511

ited examples and parameter-efficient fine-tuning. 512

In this section, we explore these settings, using the 513

Apparel (A) → Movies (M) domain pair from the 514

Amazon Reviews dataset. 515

Model Types & Scales We evaluate the perfor- 516

mance of FEUDA over larger and instruction tuned 517

encoder-decoder models, using T5v1.1 XL and T0 518

(Sanh et al., 2022). Table 9 (Appendix F) shows 519

a wider gap between MMD and FEUDA with 520

higher model capacity, and this gap is further in- 521

creased with instruction tuning. We also explore 522

the utility of FEUDA when using causal language 523

modeling (CLM) with a decoder-only language 524

model. Table 5 shows us that FEUDA provides 525

strong improvements on both domains, equalling 526

the Src+Tgt baseline on the target domain. 527

Adaptation Methods PEFT approaches have 528

been shown to introduce resilience to domain 529

shift (Fu et al., 2023). To isolate this effect from 530

the FEUDA framework, we evaluate our method in 531

a full-fine-tuning setup. Further, we compare with 532

two PEFT approaches: Adapters (Houlsby et al., 533

2019) and (IA)3 (Liu et al., 2022). We choose 534

Adapters because He et al. (2022) present a unified 535

view of PEFT approaches which shows that the 536

operations applied by Adapters are very similar to 537

those of Prefix Tuning (Li and Liang, 2021) and 538

LoRA (Hu et al., 2022). We choose (IA)3 since 539

it is a state-of-the-art PEFT approach that uses a 540

fraction of the learnable parameters of Adapters. 541
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Method Source Accuracy Target Accuracy
Src Only Src+Tgt MMD FEUDA Src Only Src+Tgt MMD FEUDA

Fine-Tuning 93.9 (0.5) 94.0 (0.4) 93.8 (0.3) 95.0 (0.4) 82.0 (1.1) 86.4 (0.4) 82.4 (1.6) 84.4 (0.3)
(IA)3 93.7 (0.1) 94.1 (0.3) 94.7 (0.3) 93.5 (0.4) 81.3 (1.4) 85.8 (0.5) 81.3 (0.6) 83.3 (0.5)
Adapters 93.6 (0.1) 94.6 (0.3) 94.4 (0.7) 94.3 (0.2) 80.8 (1.3) 85.3 (0.5) 79.1 (0.3) 82.7 (0.5)

Table 4: Performance of FEUDA across different adaptation methods with the T5v1.1 base model on the Apparel
→ Movies domain pair. FEUDA remains more powerful than MMD across all methods.

Method Accuracy
Source Target

Src Only 86.9 (1.4) 65.9 (1.4)
Src+Tgt 86.8 (1.0) 73.4 (0.1)
MMD 86.9 (0.9) 66.8 (0.8)
FEUDA 89.3 (0.5) 73.5 (0.8)

Table 5: Performance of FEUDA with causal language
modeling and decoder-only architectures, with the GPT-
2 medium model on the Apparel → Movies domain pair.
FEUDA remains powerful, and improves performance
on the source and target domains.

Table 4 shows FEUDA beats MMD across different542

adaptation methods. We also note that fine-tuning543

yields slightly better performance on both domains544

for all UDA methods.545

Few-Shot Learning For the following experi-546

ments, we assume access to k labeled source do-547

main examples. For FEUDA, we assume access548

to the full unlabeled dataset in both domains for549

MLM pre-training, and k-shot access to labeled550

source data points for the second phase of super-551

vised training. For a fair comparison, we also in-552

troduce a two-phase version of the MMD pipeline –553

the first phase minimizes MMD between unlabeled554

source and target domain embeddings (full data ac-555

cess), while the second phase optimizes supervised556

training on the source domain (k-shot).557

Figure 3 (Table 13 in Appendix H) showcases558

FEUDA clearly outperforming both variants of559

MMD, across three different models. In Ap-560

pendix H, we also repeat the analysis from Sec-561

tion 6.2 and find that, like with the full-data setting,562

semantic and background features are required for563

classification on the unlabeled target domain. How-564

ever in this setting, downstream classification is565

aided more by the masking of informative words,566

rather than uninformative words.567

T5v1.1 Base T5v1.1 XL T0 3B
50

60

70

80

90

100

Ac
cu

ra
cy

Src Only
Src+Tgt
FEUDA
MMD
Two Phase MMD

Figure 3: Target domain accuracy of FEUDA across
different models, in a 256-shot learning setup on the Ap-
parel → Movies domain pair. We see FEUDA retaining
strong performance on the target domain across models.

7 Conclusion 568

We introduce the setting of prompt-based UDA, 569

where the discriminative prediction is converted 570

into a generative task. We then study the necessity 571

of continued pre-training and domain-invariance 572

based methods for UDA by introducing FEUDA, 573

a “frustratingly easy” prompt-based UDA method. 574

FEUDA involves training an auto-regressive LM 575

on the unlabeled source and target data through 576

the MLM task, followed by supervised training on 577

the labeled source data. Across various datasets, 578

models, adaptation methods, and few-shot settings, 579

FEUDA is competitive with strong UDA meth- 580

ods that promote domain invariance. We also in- 581

vestigate the impact of continued pre-training on 582

the UDA setup. We discover that the MLM task 583

aids the model in learning both semantic and back- 584

ground knowledge of a domain, both of which are 585

required for effective classification on the unla- 586

beled target domain. We also discover that high 587

masking rates are harmful to only the target do- 588

main, shedding new light on prior studies that study 589

masking rates in single-domain setups. We hope 590

our study will inspire future investigations in the 591

prompt-based UDA setting. 592
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Ethical Considerations593

Our project aims to improve the reliability and594

safety of language models, which can be fragile595

under distribution shift (Ribeiro et al., 2020) and596

incur great costs over incorrect predictions (Ulmer597

et al., 2020; Zhang et al., 2021a). By improving598

performance over distributions without access to599

labelled data, our method can lead to direct benefits600

in a wide array of real world applications.601

Our study does not involve any human subjects602

or violation of legal compliance. We do not an-603

ticipate any potentially harmful consequences to604

our work. As detailed in Appendix C, all of our605

experiments are conducted using publicly avail-606

able datasets. Our code shall be released for re-607

producibility. Through our study and releasing our608

code, we hope to raise stronger research and soci-609

etal awareness toward the problem of unsupervised610

domain adaptation in natural language processing.611

Limitations and Risks612

In our study, we consider a class of PEFT methods613

that involve inserting learnable parameters between614

the layers of the model. Other classes of PEFT615

methods were not considered. However, we use616

Adapters and He et al. (2022) have shown connec-617

tions between the method with Prefix Tuning (Li618

and Liang, 2021) and LoRA (Hu et al., 2022).619

Due to the high variance across runs in PEFT-620

based learning, we note that the performance can621

vary significantly across random seeds. We attempt622

to make our findings reproducible by averaging ev-623

ery experiment over 3 seeds. Taking environmental624

costs into consideration, we reduce our computa-625

tional budget by running a majority of our experi-626

ments with a smaller-sized model. Learning with627

larger models is discussed in Appendix F.628
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A PEFT Frameworks1008

The framework proposed in Section 4 is generic,1009

and can be applied to full-model fine-tuning.1010

However, we additionally explore learning in a1011

parameter-efficient setup. Specifically, we use two1012

instantiations in our implementations: Adapters1013

(Houlsby et al., 2019) and (IA)3 (Liu et al., 2022).1014

(IA)3 is a state of the art PEFT learning method,1015

and uses around a tenth of learnable parameters1016

compared to popular methods like Adapters. (IA)31017

works by element-wise multiplication (i.e. rescal-1018

ing) of the model’s activations against a learned1019

vector. In this case, the set of learnable parame-1020

ters ϕ is a set of vectors {lv, lk, lff} applied to each1021

attention mechanism and feed-forward layer as,1022

h = σ

(
Q(lk ⊚• KT )√

dk

)
(lv ⊚• V )1023

h = (lff ⊚• γ(W1x)W2)1024

Here, K, Q and V are the key, query and value1025

representations used in an attention block, and W11026

and W2 are the weights in the feed-forward layer1027

following an attention block. lk ∈ Rdk , lv ∈ Rdv ,1028

lff ∈ Rdff , σ is the softmax function while γ is any1029

non-linearity.1030

Intuitively, each vector l simply learns weights1031

measuring the importance of each feature in an1032

activation of the pre-trained model, for the specific1033

downstream task the model is trained on.1034

Adapters are a popularly used and high perform-1035

ing PEFT framework, and He et al. (2022) have1036

shown equivalence in the operations applied by1037

Adapters, Prefix Tuning (Li and Liang, 2021) and1038

LoRA (Hu et al., 2022).1039

Adapters work by adding small learnable1040

modules between transformer layers. Specifi-1041

cally, down and up projections Wdown ∈ Rd×r1042

and Wup ∈ Rr×d are learnt such that ϕ =1043

{Wup,Wdown}. A residual connection and non-1044

linearity γ is added at every layer,1045

h = h+ γ(hWdown)Wup1046

B Single Phase MLM Training1047

Our proposed approach in Section 4 involves two1048

stages of training, which is more expensive than1049

standard single phase UDA approaches. In this sec-1050

tion, we propose a single training phase variant to1051

FEUDA, and show that it performs similarly to the 1052

original method. We use the two phase pipeline in 1053

our experiments in the main paper, but note that the 1054

single and two phase pipelines are interchangeable. 1055

We simply replace the two phase training with a 1056

joint multi-task objective as follows, 1057

L(D,Dsrc; θ) =
1

|D|
1

|Dsrc|
∑
x′∈D

∑
(x,y)∈Dsrc

1058

(λ l(C(x, y); θ) 1059

+ (1− λ) l(M(x′); θ)) 1060

where l is the cross-entropy loss defined in Eq. (1), 1061

and M and C are the templates defined in Section 4. 1062

λ is the adaptation factor which gradually changes 1063

from 0 to 1 over the course of training. This results 1064

in the model being trained almost exclusively on 1065

the MLM task early on in training, and the CLS 1066

task towards the end of training. 1067

Table 6 compares the performance of the single 1068

phase and two phase variants of FEUDA. We also 1069

compare with a vanilla joint single phase objective, 1070

where λ is fixed at 0.5 through training (called Sin- 1071

gle Phase Vanilla). The performance of the single 1072

and two phase variants are almost identical, and 1073

either can be used interchangeably. In compari- 1074

son, the vanilla single phase method is significantly 1075

weaker on the target domain. 1076

Method Accuracy
Source Target

Two Phase 93.7 (0.3) 83.3 (0.9)
Singe Phase 93.5 (0.4) 83.3 (0.5)
Singe Phase Vanilla 93.6 (0.1) 75.0 (5.7)

Table 6: Comparison of single and two-phase variants
of FEUDA, on the Apparel → Movies domain pair. The
single and two phase variants are almost identical in
performance.

C Preparation of Evaluation Benchmarks 1077

We use two classification datasets, with 5 domains 1078

each. This results in a total of 40 pairs of source 1079

and target domains. For brevity, we include results 1080

of 24 domain pairs in the main paper, and the re- 1081

maining 16 in Appendix E. For both datasets, we 1082

use the train, validation and test splits from (Malik 1083

et al., 2023). More statistics about each dataset 1084

is available in Table 7. The listed datasets are in- 1085

tended for research purposes only. We do not make 1086

any commercial use of them. 1087
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MNLI The Multigenre Natural Language Infer-1088

ence (MNLI) corpus (Williams et al., 2018) con-1089

tains sentence pairs across multiple genres: Travel1090

(T), Fiction (F), Government (G), Slate (S) and1091

Telephone (Te). The NLI task involves classifying1092

every premise-hypothesis sentence pair as Entail-1093

ment, Neutral or Contradiction.1094

Amazon The Multi Domain Sentiment Analy-1095

sis Dataset (Blitzer et al., 2007) contains Amazon1096

product reviews for different type of products. We1097

use reviews from the Apparel (A), Baby (B), Books1098

(Bo), Cameras (C) and Movies (M) domains. Each1099

review is labelled as positive or negative.1100

Dataset Language License Statistics per Domain
Train Val Test

MNLI English cc-by-4.0 69600* 7735** 1945
Amazon English cc-by-4.0 1440 160 400

Table 7: Artifacts used in our study. The dataset statis-
tics report the values used in our study.
* All domains contain approximately 69,600 examples.
The exception is the Telephone domain, with 75,013
examples.
** All domains contain 7735 validation examples, ex-
cept for Slate and Telephone, which contain 7731 and
8336 examples respectively.

D Details on Implementation1101

Models and Implementation We use T5v1.1,1102

T0 and GPT-2 from the HuggingFace library4, and1103

use PyTorch Lightning5 to train our models. We1104

use the codebase of Liu et al. (2022)6 for imple-1105

mentations of PEFT methods.1106

Training We use the default hyperparameters1107

from Liu et al. (2022), except for batch size and1108

training duration. We perform a grid search for1109

these values. We train each training phase for1110

30,000 steps on MNLI and 15,000 steps on the1111

Amazon dataset, with a batch size of 8. For the1112

T5v1.1 XL and T0 models (3B parameters each),1113

we use a batch size of 1. We train with Adam and1114

use a learning rate of 0.003. We set the maximum1115

sequence length to 256 tokens. We use length nor-1116

malization during evaluation, as proposed by Liu1117

et al. (2022). For each experiment, we report the1118

mean and standard deviation across 3 runs.1119

4https://github.com/huggingface/transformers
5https://lightning.ai/docs/pytorch/latest/
6https://github.com/r-three/t-few

Source: Negative
Source: Positive

Target: Negative
Target: Positive

Figure 4: UMap visualizations of sentence embeddings
from the Apparel → Movies data pair, using the T5v1.1
base model and (IA)3 PEFT method. Despite not pro-
moting domain-invariance, FEUDA learns sentence em-
beddings that are separable by class labels, regardless
of the domain of these sentences. The classification
hyperplane for the source domain has been imagined as
a solid line for illustration purposes, and its extension
to the target domain is shown as a dashed line.

Computations Using the (IA)3 PEFT frame- 1120

work, training the T5v1.1 Base model (60 million 1121

parameters) for 15,000 steps takes approximately 1122

two hours on a single NVIDIA RTX A6000 GPU. 1123

The T5v1.1 XL model and T0 model (3 billion pa- 1124

rameters) take approximately 8 hours for 15,000 1125

steps of training. For reproducibility, each exper- 1126

iment is repeated thrice, with changing random 1127

seeds. In total, we run 540 experiments with the 1128

Base model and 72 experiments with the larger 1129

models. This results in a total compute time of 1130

approximately 2400 GPU hours. 1131

E Results with Amazon Dataset 1132

Table 8 shows the performance of our proposed 1133

approach on the Amazon Product Reviews dataset. 1134

On average, FEUDA is competitive with the state 1135

of the art MMD method from Malik et al. (2023). 1136

We confirm this by checking for a significant dif- 1137

ference in the performance of FEUDA and MMD 1138

on the 20 dataset pairs. The Mann-Whitney U test 1139

and Student’s t-test both resulted in non-significant 1140

p-values of 0.5516 and 0.8316, confirming the hy- 1141

pothesis that there is no significant difference be- 1142

tween FEUDA and MMD on the Amazon dataset. 1143

However, on the MNLI dataset, where all domains 1144

have larger gaps, both significant tests showed a 1145

significant difference between FEUDA and MMD, 1146

with FEUDA being more powerful. 1147
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Source → Target Source Accuracy Target Accuracy
Src Only Src+Tgt MMD FEUDA Src Only Src+Tgt MMD FEUDA

A->B 93.7 (0.1) 93.8 (0.3) 94.3 (0.2) 93.1 (0.3) 93.3 (0.4) 94.7 (0.2) 93.8 (0.3) 93.9 (0.3)
A->B 93.7 (0.1) 94.2 (0.1) 93.8 (0.1) 92.8 (0.6) 90.8 (0.6) 94.3 (0.4) 92.5 (1.1) 90.2 (1.2)
A->C 93.7 (0.1) 93.4 (0.3) 95.0 (0.0) 93.9 (0.5) 91.9 (0.1) 95.0 (0.2) 91.8 (0.5) 92.1 (0.5)
A->M 93.7 (0.1) 94.1 (0.3) 94.7 (0.3) 93.5 (0.4) 81.3 (1.4) 85.8 (0.5) 81.3 (0.6) 83.3 (0.5)

B->A 95.5 (0.2) 94.8 (0.1) 95.8 (0.5) 95.2 (0.2) 93.0 (0.4) 93.4 (0.3) 93.3 (0.2) 93.4 (0.4)
B->Bo 95.5 (0.2) 94.9 (0.1) 95.8 (0.2) 94.3 (0.3) 93.0 (0.9) 94.7 (0.7) 93.8 (0.3) 92.2 (0.1)
B->C 95.5 (0.2) 95.2 (0.2) 96.0 (0.8) 94.6 (0.7) 93.1 (0.3) 94.7 (0.8) 93.4 (0.1) 92.1 (0.3)
B->M 95.5 (0.2) 94.5 (0.4) 96.0 (0.3) 93.9 (0.7) 82.0 (0.5) 85.3 (0.2) 81.3 (0.7) 82.8 (0.2)

Bo->A 94.3 (0.6) 94.7 (0.3) 93.8 (0.4) 91.9 (0.5) 92.3 (0.4) 94.6 (0.3) 91.6 (0.5) 91.3 (0.2)
Bo->B 94.3 (0.6) 94.4 (0.5) 94.9 (0.7) 92.2 (0.3) 93.6 (0.3) 94.8 (0.2) 92.9 (0.6) 90.9 (0.2)
Bo->C 94.3 (0.6) 93.8 (0.7) 94.7 (0.5) 91.6 (0.3) 89.3 (1.1) 94.3 (0.2) 89.8 (0.1) 90.3 (0.4)
Bo->M 94.3 (0.6) 94.3 (0.3) 94.2 (0.4) 91.3 (0.4) 81.7 (0.8) 85.5 (0.9) 84.6 (0.7) 80.1 (1.2)

C->A 93.9 (0.2) 94.6 (0.1) 93.5 (0.2) 93.4 (0.5) 92.1 (0.3) 93.4 (0.4) 92.3 (0.3) 92.5 (0.6)
C->B 93.9 (0.2) 94.3 (0.9) 93.3 (0.7) 93.3 (0.6) 94.0 (0.2) 95.0 (0.6) 94.1 (0.1) 92.1 (0.2)
C->Bo 93.9 (0.2) 93.9 (0.1) 62.3 (0.0) 92.3 (0.2) 91.1 (0.4) 93.9 (0.8) 91.3 (0.5) 89.0 (0.1)
C->M 93.9 (0.2) 94.1 (0.3) 92.9 (0.9) 93.4 (0.5) 82.3 (1.1) 85.8 (0.1) 81.5 (0.7) 79.7 (1.2)

M->A 85.5 (0.2) 85.6 (0.7) 86.3 (0.6) 83.3 (0.6) 89.8 (0.8) 94.2 (0.7) 89.1 (1.4) 90.1 (0.5)
M->B 85.5 (0.2) 86.1 (0.4) 78.3 (11.1) 83.7 (0.3) 91.7 (0.5) 95.3 (0.5) 81.0 (16.1) 89.9 (1.2)
M->Bo 85.5 (0.2) 84.6 (0.8) 76.4 (13.7) 83.8 (0.0) 92.7 (0.1) 94.1 (0.4) 80.5 (18.6) 91.5 (0.0)
M->C 85.5 (0.2) 86.1 (0.7) 87.0 (0.0) 84.6 (0.6) 90.1 (0.3) 94.3 (0.5) 90.5 (0.0) 89.7 (0.3)

Table 8: Comparison of FEUDA and MMD by classification accuracy on the Amazon Product Review dataset,
using the T5v1.1 base model, and (IA)3 PEFT method. FEUDA is competitive with MMD on average. For
the target domain, the highest values between FEUDA and MMD have been marked in bold. Cases where Src
Only outperforms both FEUDA and MMD have been underlined.

FEUDA can learn representations that gener-1148

alize across domains To better understand the1149

improved UDA performance, we visualize the sen-1150

tence embeddings learned by FEUDA in Figure 4.1151

Using UMap (McInnes et al., 2018), the figure1152

visualizes embeddings for the Apparel→Movies1153

domain pair from the Amazon Product Review1154

dataset. We see that FEUDA learns sentence em-1155

beddings that generalize across domains. For il-1156

lustration, we draw a black line that cuts across1157

both source and target domains. Note that the solid1158

line suggests that there exists a classification hyper-1159

plane learned on the source labeled data (in blue1160

and green). The same classifier can be potentially1161

used to separate target data (in gray and orange).1162

The visualization suggests that FEUDA achieves1163

competitive UDA results without having to explic-1164

itly promote domain-invariant representations.1165

F Learning with Larger Models1166

The use of high capacity language models, which1167

are too compute intensive for traditional fine-1168

tuning, originally encouraged the use of prompting,1169

and prompting is now common with learning from1170

large language models (Brown et al., 2020; Schick1171

and Schütze, 2021a,b; Gao et al., 2021). Since our 1172

approach makes use of prompting, we investigate 1173

the performance of FEUDA with such models. 1174

We experiment with two large models: T5v1.1 1175

XL (3 billion parameters) and T0 (3 billion param- 1176

eters). T0 is optimized for zero-shot generalization 1177

by training on supervised prompts. We use the 1178

Apparel (A) → Movies (M) domain pair from the 1179

Amazon Reviews dataset. Table 9 shows the perfor- 1180

mance gap between FEUDA and MMD increasing 1181

with larger models. In the case of T0, we see partic- 1182

ularly poor performance with MMD. This may be 1183

due to the fact that the task of minimizing the diver- 1184

gence between embeddings is highly different from 1185

the tasks a model is trained on during instruction 1186

tuning. 1187

G More On Analyzing the Impact of 1188

MLM on UDA 1189

Table 10 accompanies the results from Figure 1, 1190

which shows the impact of masking sequences at 1191

inference. Words are selected for masking based 1192

on their their “informativeness”, measured by their 1193

PMI to the inference class label. The performance 1194

of the model is best with the original unmasked 1195
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Model Src Only Src+Tgt MMD FEUDA
Source Target Source Target Source Target Source Target

T5 v1.1 Base 93.7 (0.1) 81.3 (1.4) 94.1 (0.3) 85.8 (0.5) 93.4 (0.2) 78.6 (1.3) 93.5 (0.4) 83.3 (0.5)
T5 v1.1 XL 95.4 (0.2) 89.1 (0.8) 95.3 (0.6) 93.0 (0.5) 74.8 (15.6) 65.2 (9.5) 95.1 (0.2) 92.0 (1.5)
T0 3B 95.5 (0.4) 91.3 (0.2) 95.5 (0.2) 92.2 (0.7) 52.1 (1.1) 51.8 (0.8) 95.5 (0.4) 93.8 (0.4)

Table 9: Performance of FEUDA across the T5v1.1 Base (60 million parameters), T5v1.1 XL (3 billion parameters)
and T0 (3 billion parameters) models on the Apparel → Movies domain pair. We report the mean and standard
deviation over 3 runs. The performance gap between FEUDA and MMD increases with larger models.

sequences, indicating the presence of both infor-1196

mative and uninformative words are essential for1197

strong classification performance.1198

To isolate any effects of PEFT methods or pre-1199

training data, we repeat the analysis from Table 31200

with fine-tuning Flan-T5 and notice a similar trend1201

in Table 11.1202

Table 12 accompanies results from Figure 2,1203

which show the impact of varying masking rates1204

on FEUDA. Using the T5v1.1 base model, we train1205

FEUDA using varying random masking rates on1206

the Apparel → Movies domain pair, and report the1207

mean and standard deviation over three runs. With1208

high masking rates, the performance on the source1209

domain is largely maintained, but the performance1210

on the target domain rapidly deteriorates.1211

Method Accuracy
Source Target

Original 93.5 83.3
Informative Masking 88.0 78.8
Uninformative Masking 92.0 79.0

Table 10: Impact of masking at inference. We evaluate
FEUDA on the Apparel → Movies domain pair, and
select words for masking based on their “informative-
ness” to the classification task. The performance of the
model is best with the original unmasked sequences,
indicating the presence of both informative and unin-
formative words are essential for strong classification
performance.

H Learning in a Few-Shot Setup1212

Classification Accuracy Table 13 accompanies1213

Figure 3 (Section 6.3), showing the 256-shot per-1214

formance of FEUDA and other baselines, across1215

model sizes.1216

Impact of Masked Words We extend the anal-1217

ysis on the impact of masked word selection from1218

Section 6.2 to the few-shot setting in Table 14,1219

where we compare the impact of masking informa-1220

tive or uninformative words. We also consider two1221

Masking Strategy Accuracy
Source Target

Random 95.8 (0.0) 86.8 (0.3)
Informative 93.9 (0.6) 85.3 (0.3)
Uninformative 95.0 (0.0) 84.8 (0.1)

Table 11: Impact of word selection for masking during
training. Using Flan-T5 base and no PEFT methods,
we find that masking words at random is more pow-
erful than selectively masking informative or uninfor-
mative words. This indicates that the model requires
both semantic features (learnt through masking infor-
mative words) and background features (learnt through
masking uninformative words) for classification on the
unlabelled target domain.

Masking Rate Accuracy
Source Target

5% 92.8 (0.8) 78.8 (1.8)
15% 93.5 (0.4) 83.3 (0.5)
30% 92.8 (0.6) 78.8 (1.4)
60% 92.5 (0.9) 71.0 (3.0)
90% 92.3 (0.5) 70.4 (1.5)

Table 12: Impact of Masking Rate on FEUDA. We train
FEUDA using varying random masking rates on the
Apparel → Movies domain pair. With high masking
rates, the performance on the source domain is largely
maintained, but the performance on the target domain
rapidly deteriorates.

different few-shot setups: one with access to the 1222

full unlabelled datasets in phase 1 pre-training, and 1223

another where even the unlabelled data is few-shot. 1224

Similar to the full-data setting, random masking re- 1225

mains most powerful, indicating that both semantic 1226

and background features are necessary for effective 1227

classification on the unlabelled domain. However, 1228

unlike the full-data setting where informative and 1229

uninformative masking are comparable, in the few- 1230

shot setting, informative masking is significantly 1231

more useful. 1232
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Model Src Only Src+Tgt MMD Two Phase MMD FEUDA
Source Target Source Target Source Target Source Target Source Target

T5v1.1 Base 92.0 (0.4) 79.3 (0.8) 93.2 (0.1) 82.8 (0.6) 80.1 (0.7) 62.5 (0.7) 92.3 (0.5) 79.8 (1.4) 90.1 (0.5) 81.2 (0.7)
T5v1.1 XL 91.1 (6.1) 80.9 (8.4) 95.7 (0.1) 92.5 (0.4) 87.3 (6.8) 71.7 (7.8) 92.2 (0.1) 84.3 (0.9) 95.2 (0.3) 86.8 (2.2)
T0 3B 95.3 (0.3) 91.3 (0.3) 95.6 (0.3) 91.8 (0.6) 91.3 (5.1) 79.5 (6.7) 54.0 (4.8) 53.5 (0.4) 95.8 (0.1) 92.8 (0.2)

Table 13: Performance of FEUDA across different models, in a 256-shot learning setup on the Apparel → Movies
domain pair. We see FEUDA retaining strong performance on the target domain across models.

Phase 1 Data Masking Strategy Accuracy
Source Target

256 Shot Random 91.0 (0.9) 78.1 (2.4)
Informative 90.4 (0.5) 76.0 (0.7)
Uninformative 89.6 (1.2) 73.5 (1.6)

Full Data Random 90.1 (0.5) 81.2 (0.7)
Informative 91.8 (0.5) 78.0 (0.9)
Uninformative 89.3 (0.5) 72.8 (1.1)

Table 14: Impact of word selection for masking, in a
256-shot learning setup. We evaluate FEUDA on the
Apparel → Movies domain pair, and select words for
masking based on their “informativeness” to the clas-
sification task. Random masking is most powerful for
the target domain, indicating that both semantic and
background features are necessary for effective classifi-
cation on the unlabelled domain. However, informative
masking is significantly more useful than uninformative
masking.

I Comparison With More Baselines1233

Our main comparisons are made with the MMD1234

based method proposed by (Malik et al., 2023),1235

as it is a recent and powerful UDA method that1236

outperforms other popular invariance based UDA1237

approaches like DANN (Ganin et al., 2016; Li et al.,1238

2018) and DSN (Bousmalis et al., 2016).1239

For a more comprehensive evaluation, we in-1240

clude a comparison with more baselines in this1241

section. Using the T5v1.1 base model with (IA)31242

on the Amazon Apparel→Movies data pair, we in-1243

clude a comparison with DANN, which is the most1244

widely used UDA method in NLP (Ramponi and1245

Plank, 2020). However, DANN has been shown to1246

be highly unstable in prior work, and we thus also1247

minimize alternate measures of domain divergence1248

based on Wasserstein distance and second order1249

statistics (CORAL) (Sun et al., 2017). Our method1250

is competitive with all baselines.1251

Additionally, with an emerging class of weight1252

interpolation based methods, we make a compari-1253

son with task vector arithmetic (Ilharco et al., 2022).1254

The use of task vectors with PEFT has been unex-1255

plored in the literature, and we find that the method1256

does not work with IA3. With fully fine-tuned 1257

models, the method improves in performance, but 1258

is still weaker than FEUDA. 1259

Method Accuracy
Source Target

FEUDA 93.7 (0.3) 83.3 (0.9)
MMD 94.7 (0.3) 81.3 (0.6)
DANN 53.5 (2.3) 52.3 (1.7)
CORAL 94.6 (0.2) 80.9 (0.4)
Wasserstein 94.5 (0.2) 82.5 (0.4)
Task Vectors 46.3 (0.3) 48.0 (0.7)
Task Vectors (fine-tuning) 93.0 (0.2) 69.0 (0.4)

Table 15: Comparison of FEUDA with more baselines,
using the T5v1.1 base model and (IA)3 PEFT method
on the Apparel→Movies pair from the Amazon review
dataset. For task vectors, we include versions with (IA)3

as well as full fine-tuning. FEUDA outperforms all
baselines.

J More About MMD 1260

The Maximum Mean Discrepancy (MMD) (Gret- 1261

ton et al., 2012) measures the difference between 1262

first order moments of variables in a Reproduc- 1263

ing Kernel Hilbert Space (Aronszajn, 1950). Mul- 1264

tiple lines of work have shown that minimiz- 1265

ing divergence measures like MMD, when com- 1266

bined with auxiliary task-specific loss functions, 1267

results in training instabilities and vanishing gra- 1268

dients (Kashyap et al., 2021; Han and Eisenstein, 1269

2019). 1270

We also note that as minimizing MMD does not 1271

use any label information, there is a possibility 1272

for embeddings of the target domain to be aligned 1273

with the closest source domain class cluster. For 1274

example, Figure 5 shows us a setting where both 1275

classes of the target domain (shown in green and 1276

gray) are mapped to the cluster of negative class 1277

source embeddings (shown in blue). 1278

We compare variants of the MMD method in 1279

Table 16 and show that the loss is sensitive to small 1280

changes in the loss design. Specifically we com- 1281

pare the MMD method used in the main paper with: 1282
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• MMD over Logits: Measures the MMD be-1283

tween the logits of source and target domains,1284

instead of using intermediate model outputs.1285

• Fixed Weight MMD: Instead of the multi-task1286

loss for the MMD reduction and classification1287

tasks, we use fixed weights for both tasks7.1288

• Two Phase MMD: The first training phase is1289

used to minimize MMD between source and1290

target embeddings, while the second phase is1291

used to train the model for classification on1292

the source domain.1293

FEUDA remains more powerful than all variants.1294

Method Accuracy
Source Target

FEUDA 93.7 (0.3) 83.3 (0.9)
MMD 94.7 (0.3) 81.3 (0.6)
MMD over Logits 95.0 (0.2) 81.3 (0.7)
Fixed Weight MMD 93.4 (0.2) 78.6 (1.3)
Two Phase MMD 90.1 (0.1) 68.7 (2.0)

Table 16: Comparison of variants of minimizing MMD,
on the Apparel → Movies domain pair. FEUDA remains
more powerful than all variants.

Source: Negative
Source: Positive

Target: Negative
Target: Positive

Figure 5: UMap visualizations of sentence embeddings
from the Apparel → Movies data pair, using the T5v1.1
base model and (IA)3 PEFT method. Training with
MMD risks stability issues, and all embeddings from the
target domain can be mapped to the closest source class
cluster. This results in poor classification performance
on the target domain.

7For the weighted loss, LCLS + 3 LMMD was found to be
the best performing.
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