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Abstract

The discovery of causal relationships is a foundational problem in artificial intelligence,
statistics, epidemiology, economics, and beyond. While elegant theories exist for accu-
rate causal discovery given infinite data, real-world applications are inherently resource-
constrained. Effective methods for inferring causal relationships from observational data
must perform well under finite data and time constraints, where “performing well” implies
achieving high, though not perfect accuracy. In his seminal paper A Theory of the Learnable
(Valiant, 1984), Valiant highlighted the importance of resource constraints in supervised ma-
chine learning, introducing the concept of Probably Approximately Correct (PAC) learning
as an alternative to exact learning. Inspired by Valiant’s work, we propose the Probably
Approximately Correct Causal (PACC) Discovery framework, which extends PAC learning
principles to the causal field. This framework emphasizes both computational and sample
efficiency for established causal methods such as propensity score techniques and instrumen-
tal variable approaches. Furthermore, we show that it can provide theoretical guarantees for
other widely used methods, such as the Self-Controlled Case Series (SCCS) method, which
had previously lacked such guarantees.

1 Introduction

The challenge of teaching machines to discern causal relationships rather than mere associations has become
a central topic in modern statistics and computer science. This concern extends beyond machine learning,
as causality has emerged as a pivotal focus across diverse fields such as medicine, statistics, and economics
(Athey & Wager, 2021; Angrist & Pischke, 2008). Understanding hidden causal relationships enables not
only predictive tasks, answering “what?” questions, but also counterfactual reasoning, answering “what if ?”
questions. A typical example involves using electronic health records (EHRs) to determine whether a newly
released drug is causing previously unrecognized adverse effects in certain patients.

Although extensive research has been conducted on methods to uncover causal relationships from observa-
tional data (Pearl, 2009; Rosenbaum & Rubin, 1983; Spirtes et al., 2000; Peters et al., 2017), much of this
work emphasizes asymptotic performance under the assumption of unlimited data. For example, classical
methods such as the Peter-Clark (PC) algorithm (Spirtes et al., 2000) guarantee recovery of the correct
Markov equivalence class of the true directed acyclic graph (DAG) in the large-sample limit (n → ∞).
However, several studies have shown that the PC algorithm can produce incorrect outputs in finite-sample
regimes due to statistical errors in conditional independence testing (Kalisch & Bühlmann, 2007; Spirtes
et al., 2000). Moreover, the original PC algorithm provides no explicit guidance on how large sample must
be to achieve a desired error rate in finite-sample settings, limiting its practical applicability.

In supervised machine learning, a natural approach to addressing resource constraints is to aim for high,
rather than perfect accuracy. As more data and time become available, accuracy can improve accordingly.
This idea is formalized in the well-known Probably Approximately Correct (PAC) learning theory (Valiant,
1984), which introduces two parameters, ϵ and δ, to quantify approximate learning. Specifically, under
limited resources, the goal is for a learning algorithm L to achieve error no greater than ϵ with probability at
least 1− δ. As a result, the required sample size should depend upon 1

ϵ and 1
δ , since achieving smaller error

demands more data and computation. PAC learning thus provides a foundational framework for balancing
the trade-offs among accuracy, confidence, and resource availability.
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An analogue to PAC Learning theory for the causal field should preserve the same intuition. In particular, a
causal learning algorithm is expected to identify the true relationship or true treatment effect with probably
approximately high accuracy. Compared to existing causal frameworks, the new theory should prioritize
limited-sample performance over large-sample efficacy. It should also provide guidelines for calculating the
required sample size based on desired level of accuracy.

It is worth noting that the concept of sample size calculation is well-established in the context of power
analysis for randomized controlled trials (RCTs), particularly in clinical research. This practice has driven
significant advances in experimental causal inference and has provided biostatisticians with practical guidance
for designing robust and efficient trials (Friedman et al., 2010; Chow et al., 2008). The parallels between
parameters such as effect size and significance level in RCTs, and ϵ and δ in PAC Learning, are also clearly
evident. A similar protocol for sample size will be beneficial for other causal methods as well and, more
interestingly, provide approximate guarantees for inference in observational causal tasks. To address these
considerations, we propose a unified framework called Probably Approximately Correct Causal Discovery
(PACC Discovery), which adapts PAC Learning to causal inquiries under data and time constraints.

Building on this foundation, we explore potential applications of the PACC Discovery framework. In PAC
Learning, the theory can be used either to (1) demonstrate that an existing supervised machine learning
algorithm is likely to succeed on a specific task (Larsen et al., 2023; Xu & Raginsky, 2023), or (2) motivate
the development of a new supervised learning algorithm (Rothfuss et al., 2020; Kumar & et al., 2024).
Analogously, PACC Discovery can be applied to (1) validate the effectiveness of an existing causal algorithm,
or (2) inspire the creation of new causal discovery algorithms. In this paper, we focus on the first objective,
leaving the exploration of the second for future work. To define the success of a causal algorithm, we propose
that an algorithm is considered successful if it can reliably identify the true data-generating causal model
from a set of competing alternatives that include incorrect or spurious causal components. Occasional errors
are allowed but should occur with low probability.

Contributions. In this paper, we make the following contributions.

• We emphasize the need for causal discovery models tailored to resource-constrained contexts and mo-
tivate the proposed PACC framework, which can provide approximate sample efficiency guarantees
for observational causal tasks.

• In Section 3, we derive and formally define the PACC Discovery framework. This framework not
only inspires the development of new algorithms but also enriches the theoretical understanding of
existing ones.

• In Section 4, we demonstrate the application of PACC Discovery by providing the first theoretical
guarantee for a variant of the Self-Controlled Case Series (SCCS) method, establishing it as a valid
causal discovery algorithm.

• In Section 5, we show how PACC Discovery can be used to model sample complexity for other causal
inference approaches, including propensity score methods and instrumental variables.

2 Related Work

2.1 PAC Learning

After Valiant established the foundation of PAC learning theory (Valiant, 1984), it has grown into a fruitful
and vibrant field. In its early development, Blumer et al. (Blumer et al., 1989) showed that a concept class
is PAC-learnable if and only if it has a finite Vapnik–Chervonenkis (VC) dimension. Kearns and Valiant
(Kearns & Schapire, 1994) further extended PAC learning theory by demonstrating that, under standard
cryptographic assumptions, some concept classes are not efficiently learnable despite being PAC-learnable,
thereby establishing fundamental computational limits on what can be feasibly learned.

These theoretical insights also inspired a wave of practical algorithmic developments rooted in PAC principles.
For example, Schapire’s work on the strength of weak learnability (Schapire, 1990) led to the creation
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of AdaBoost by Freund and Schapire (Freund & Schapire, 1997), which combines multiple weak learners
into a strong ensemble. In parallel, PAC learning theory has been successfully extended to specialized
domains. For example, PAC-Bayesian methods (McAllester, 1998) integrate Bayesian priors with frequentist
generalization guarantees and have been used to derive non-vacuous generalization bounds for deep neural
networks (Dziugaite & Roy, 2017). In reinforcement learning, PAC analyses underpin sample-complexity
guarantees for algorithms such as R-MAX (Brafman & Tennenholtz, 2002), and later work unified PAC and
regret via Uniform PAC bounds (Dann et al., 2017) in finite-horizon Markov decision processes (MDPs).

Building on these developments, the PACC Discovery framework extends PAC learning into the causal
domain. This not only broadens the theoretical scope of PAC learning but also introduces new tools and
perspectives to causal discovery, especially in resource-constrained, real-world settings.

2.2 Causal Discovery

Classical causal methods typically emphasize asymptotic correctness, relying on the assumption of infinite
data availability. For example, constraint-based discovery algorithms such as the PC algorithm (Spirtes
et al., 2000) and score-based approaches like Greedy Equivalence Search (GES) (Chickering, 2002) provide
guarantees of structural recovery in the large-sample limit. Structural equation models (SEMs), including
linear non-Gaussian models (Shimizu et al., 2006), similarly offer theoretical identifiability results but often
lack explicit finite-sample performance guarantees. Likewise, traditional causal inference methods, such as
propensity score matching (Rosenbaum & Rubin, 1983) and instrumental variable techniques (Angrist et al.,
1996), generally depend on asymptotic assumptions to ensure valid inference.

Statistical refinements of the aforementioned traditional methods now incorporate finite-sample corrections,
enabling explicit sample complexity bounds (Kalisch & Bühlmann, 2007; Wadhwa & Dong, 2021; Yan et al.,
2024; Compton et al., 2020). In parallel, modern differentiable and neural causal discovery frameworks, such
as NO-TEARS (Zheng et al., 2018), reformulate causal discovery as a continuous optimization problem,
achieving improved empirical performance despite typically lacking formal finite-sample guarantees. In the
domain of causal inference, doubly robust estimators (Chernozhukov et al., 2018) and conformal inference
methods (Lei & Candes, 2021) explicitly control finite-sample error rates, enhancing the robustness and
reliability of inference in practice.

Integrating PAC learning theory with causal methodologies represents a significant recent advancement,
enabling formal guarantees on inference accuracy and robustness under resource constraints. While some
existing work provides PAC-style results, these efforts are often fragmented, problem-specific, and do not
offer a unified theoretical framework for causality. For example, Tadepalli and Russell (Tadepalli & Russell,
2021) proposed a PAC framework for causal trees with latent variables, strategically combining observational
data with targeted interventions. Other recent work such as Choo et al. (2024) provides finite-sample PAC
guarantees for causal effect estimation via covariate adjustment, including theoretical bounds and algorithms
for identifying ϵ–Markov blankets and minimal targeted adjustment sets. Complementary advances have also
been made in hypothesis testing for causal Bayesian networks with known structures (Acharya et al., 2018).
In contrast, our proposed PACC Discovery framework offers a unified theoretical foundation that generalizes
PAC-style reasoning across diverse causal methodologies.

3 PACC Discovery Framework

3.1 PAC Learning Preliminary

We begin with the fundamental components of PAC learning (Kearns & Vazirani, 1994; Kearns et al., 1992):

• A learning algorithm (or learner) L,

• A domain (or instance space) X consisting of all possible instances,

• A fixed probability distribution D over X ,

• An unknown target concept c from a known concept class C ⊆ 2X .
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Here 2X denotes the power set of X , i.e., the set of all subsets of X . The goal of the learning algorithm L
is to produce a hypothesis h ∈ C that closely approximates the unknown target concept c. To this end, the
learner is provided with a training sample S = {(x1, c(x1)), · · · , (xn, c(xn))} consisting of n labeled examples
drawn independently and identically distributed (i.i.d.) from the distribution D. After training on S, the
learner outputs a hypothesis h = L(S) ∈ C.

We say that L PAC-learns the concept class C if, for all ϵ > 0, and δ > 0, there exists a sample size n = n(ϵ, δ)
such that the following condition holds:

PS∼Dn [error(h) ≤ ϵ] ≥ 1− δ

where error(h) measures the distance between the output hypothesis h and the target concept c. A common
definition of this error is: error(h) = Px∼D[h(x) ̸= c(x)] (Kearns et al., 1992).

3.2 Instance Space and Causal Model

In modifying the PAC learning framework to a PAC Causal framework, we draw inspiration from Pearl’s
Causal Review (Pearl, 2009), where he observed that “such questions are causal questions because they
require some knowledge of the data-generating process.” For example, a typical causal question in RCTs is
whether taking a drug or receiving an exposure Z changes the probability of a subsequent outcome or event Y .
The corresponding data-generating process can be represented as a joint probability distribution consisting
of (i) a probability distribution over patient covariates; (ii) a uniform Bernoulli distribution governing the
assignment of treatment Z; and (iii) a conditional probability distribution over Y , given the covariates and
treatment value Z. The same causal question can also be investigated using observational data, such as
EHRs or health insurance claims. However, in the observational setting, the joint distribution may differ,
particularly in the distribution governing treatment assignment.

More generally, the data-generating process in a causal setting can be described using a variety of models,
including Bayesian networks, structural equation models, point process models, and randomized Turing
machines. Despite their differences, all of these frameworks induce probability distributions over some
domain. To unify these representations, we generalize them as causal models over an abstract instance space
I, formally defined as follows:
Definition 1 (Instance Space). Let the instance space I be the set of all possible examples considered in a
causal problem. Each element ξ ∈ I represents a complete configuration of variables relevant to the problem,
such as covariates, treatments, and outcomes.
Example 1 (Illustrative Instance Spaces). Several common forms of instance spaces include:

2.1 Assignments to n binary variables, represented as [0, 1]n.

2.2 Strings over an alphabet of n symbols. For example, the symbols may represent medical event types,
and a string may correspond to a patient’s sequential medical record.

2.3 Same as 2.2, but with real-valued times attached to events.

2.4 Assignments to n real-valued variables, represented as Rn, i.e., points in n-dimensional Euclidean
space.

Definition 2 (Causal Model). A causal model M over an instance space I is a generative mechanism that
induces a probability distribution over I.
Example 2 (Illustrative Causal Models). Examples of causal models corresponding to the instance spaces
introduced earlier include:

4.1 A Bayesian Network over n binary variables, where the causal structure is represented by a DAG.
Each node corresponds to a variable and is associated with a conditional probability table (CPT).

4.2 A probabilistic grammar or a randomized Turing machine generating strings over an alphabet of n
symbols.
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4.3 A marked point process, such as a Hawkes process, a piecewise-constant conditional intensity model,
or a neural point process, where event types and temporal dependencies are modeled causally.

4.4 An n-variate Gaussian distribution over Rn, where the covariance matrix captures the dependencies
among continuous variables.

3.3 Causal Concept

In the RCT example, although the joint probability distribution may be arbitrarily complex, the specific
causal question focuses on whether a direct causal edge exists from the exposure Z to the outcome Y . Many
causal questions share this property: they do not require recovering the full distribution over the instance
space I, but instead aim to identify a specific structural feature or causal relationship within the model. This
contrasts with supervised machine learning and PAC learning, where the goal is to recover the entire label-
generating mechanism. To formalize this notion, we introduce the concept of a causal concept, which refers
to a specific property or feature of a causal model—such as the presence or absence of a causal edge—that
we wish to identify.

In the RCT setting, randomized treatment assignment enables causal inference by allowing us to distinguish
between a single pair of competing causal models ⟨M1,M2⟩. These models are identical in all respects except
for the presence or absence of a direct causal edge from Z to Y , typically accompanied by a corresponding
change in the associated parameter. This binary comparison can be extended to observational studies by
considering a family of model pairs, where each pair differs only in the existence of the edge from Z to Y ,
while agreeing on all other aspects. These shared aspects may be arbitrarily complex and represented by
any valid joint distribution over the instance space. The goal of a causal learning algorithm is to consistently
identify the true causal model from competing pairs, even in the presence of challenges such as unmeasured
confounding, model misspecification, and distributional variation.
Definition 3 (Causal Concept). Let I be an instance space. A causal concept c is defined as any property
that a causal model over I may or may not possess. It is formally represented by a family of model pairs

Fc = {⟨Mj1,Mj2⟩}j≥1,

where for each pair, the model Mj1 possesses the property corresponding to concept c, and Mj2 does not.
All other aspects of the models in each pair are held fixed or assumed comparable.
Example 3 (Illustrative Causal Concepts). Examples of causal concepts corresponding to previously dis-
cussed causal models include:

6.1 Directed influence in a Bayesian network: Variable A influences variable B; i.e., pairs of Bayesian
networks in which the first model includes a directed edge A to B, while the second excludes it. If
desired, one may restrict to pairs where the causal effect of A on B exceeds a minimum threshold
δ, meaning the probability of B changes by at least δ when the value of A changes. If parts of the
structure are known, only models conforming to that structural constraint are included in the family.

6.2 Sequential dependency in probabilistic grammars: An occurrence of symbol b always immediately
follows an occurrence of symbol a in any sequence, e.g., a might represent an ischemic stroke and
b the administration of tPA. We consider pairs of probabilistic prefix grammars (Frazier & Page,
1994), where in the first model of each pair, every occurrence of b follows an a on the right-hand
side of all production rules, and no production rule deletes any b that immediately follows an a. In
contrast, the second model in each pair includes at least one violation of this constraint.

6.3 Excitation in temporal point processes: The occurrence of one event type (e.g., ischemic stroke)
increases the rate or likelihood of another event type (e.g., administration of tPA). Pairs of marked
Hawkes processes are constructed such that the first model encodes positive influence (shortened
time-to-event), while the second encodes no such effect.

6.4 Marginal independence in multivariate Gaussians: Continuous variables A and B are dependent vs.
independent. The first model in each pair is a multivariate Gaussian distribution in which A and B
have non-zero covariance; in the second model, their covariance is zero.
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In the PAC learning framework, the effectiveness of a learning algorithm L is influenced by the complexity
of the concept class, typically quantified using the VC dimension (Vapnik & Chervonenkis, 2015). In the
causal setting, however, additional complexity arises from two key sources: (i) the inherent complexity of
individual causal models, and (ii) the degree of similarity between competing causal models.

Regarding the first, PAC learning commonly assumes a specific representation language for target concepts,
such as decision trees, Boolean formulae, or deterministic finite automata (DFAs), with an associated notion
of representation size (e.g., the number of symbols or bits).1 By analogy, a natural measure of the size
|M| of a causal model M could be the total number of bits required to represent the DAG structure and
its associated parameters (e.g., CPTs in a Bayesian network). Alternative complexity measures, such as
the number of edges or parameters, provide intuitive and computationally convenient proxies for model
size, especially in sparse or low-dimensional settings. However, these metrics may not fully capture the
descriptive or inferential complexity of a causal model. Their use should therefore be context-sensitive, as
they can introduce additional challenges or oversimplify model comparisons.

As for the second aspect, we constrain the family of causal model pairs so that the difference between
models in each pair is at least δ. In the simplest case, Fδ,c contains just one pair ⟨M1,M2⟩, for example, a
Bayesian network B generating the data and an alternative network B′. In this case, the concept c is simply
B itself, and δ is a numerical summary of how different B′ is from B. This difference might be measured
using Kullback–Leibler (KL) divergence (Cover & Thomas, 1999) between the distributions, or, if B and B′

share the same structure, it might be the maximum difference between corresponding parameters such as
conditional probabilities. More generally, δ can be expressed as a function over the parameter spaces Θ and
Θ′ of models B and B′respectively, i.e., δ = f(Θ, Θ′). Our approach is to set a threshold between 0 and δ
and to test a sample drawn from data against that threshold.

We extend this further by allowing a family Fδ,c of model pairs instead of just a single pair, in order to
account for uncertainty about the true models. For example, B could be any Bayesian network that includes
an edge from variable X to Y , without placing constraints on the rest of the network, thus permitting the
presence of additional confounding components. We require that the learning algorithm succeeds for every
possible pair in the family, and δ is well-defined for all such pairs. We thus update the notation of the causal
family to include this threshold parameter, writing it as Fδ,c.

3.4 PACC Discovery

We are now ready to present the formal definition of PACC Discovery in Definition 4, followed by a corre-
sponding general algorithm in Algorithm 1.
Definition 4. For any 0 < δ and 0 < ϵ < 1, let c be a target causal concept, and let Fδ,c = {⟨Mj1,Mj2⟩}j≥1
denote the corresponding causal family over the instance space I.

For a specific pair ⟨Mj1,Mj2⟩ ∈ Fδ,c, the learner L is given access to a sample S generated from either
Mj1 or Mj2, and is tasked with identifying which model generated the data. We say that the learner L
PACC-discovers the causal concept c if, for any such pair, it correctly identifies the data-generating model
with probability at least 1− ϵ, using a sample of size |S| that is polynomial in 1

ϵ and 1
δ .

One may observe a similarity between classical hypothesis testing and the PACC Discovery framework,
as both rely on statistical tests to distinguish between a null and an alternative hypothesis (or model).
If the causal family contains only a single pair of models, the problem reduces to a standard hypothesis
testing task: determining whether the null hypothesis (represented by the second model) can be rejected
in favor of the alternative (the first model). However, in the more general case where the causal family
contains multiple pairs of models, the problem becomes fundamentally different. In this setting, one can
conceptualize an adversary that selects which specific model pair the learner must evaluate. The learner is
required to succeed regardless of which pair is chosen, effectively performing a “worst-case” analysis. This
setup emphasizes the robustness of the algorithm with respect to the target causal concept. In contrast,

1Different representations can affect the difficulty of the learning problem, even when describing the same concept. For
example, DFAs may require exponentially more states than equivalent NFAs, decision trees and Boolean formulae can vary in
compactness, and bit-level encodings often yield longer descriptions than symbolic ones.
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Algorithm 1 PACC Discovery General Framework
Requirements Parameters: ϵ ∈ (0, 1), δ > 0; a causal concept c; and the corresponding causal family
Fδ,c = {⟨Mj1,Mj2⟩}j≥1.

1: Input: Any pair ⟨Mj1,Mj2⟩ ∈ Fδ,c, and a sample S generated from either Mj1 or Mj2, where the
sample size |S| is polynomial in 1

ϵ and 1
δ .

2: Evaluation: The learner L evaluates the consistency of each model in the pair with the observed sample
S.

3: Output: The learner L outputs the model (eitherMj1 orMj2) that it predicts to be the data-generating
model.

4: Guarantee: With probability at least 1− ϵ, the output model is the true data-generating process.

traditional multiple hypothesis testing often focuses on identifying a single instance where one hypothesis is
more easily distinguished from the others (i.e., an “easiest case” analysis). PACC Discovery, on the other
hand, demands uniform performance across the entire causal family, ensuring reliability even under the
hardest-to-distinguish scenarios.

4 Applying PACC Discovery to Self-Controlled Case Series

In this section, we demonstrate the efficacy of the PACC Discovery framework in establishing resource-
bounded causal discovery guarantees for the SCCS method (Whitaker et al., 2006). The SCCS approach
is widely used to identify potential risk factors associated with medical products and has shown strong
performance in detecting adverse effects from observational healthcare data (Overhage et al., 2012; Schuemie
et al., 2013). However, it is not traditionally considered a causal discovery method. To our knowledge, this
is the first work to provide formal causal discovery guarantees for a practical variant of SCCS commonly
employed in real-world applications.

4.1 SCCS Preliminaries

SCCS was introduced in the 1990s as an innovative method for assessing vaccine safety. It was first used
to identify an association between the Measles, Mumps, and Rubella (MMR) vaccine and idiopathic throm-
bocytopenic purpura (ITP) (Farrington et al., 1995; Farrington, 1995). Since its introduction, SCCS has
been widely applied in observational studies, including investigations of the association between antipsy-
chotic drug use and stroke (Douglas & Smeeth, 2008), as well as the risks of acute myocardial infarction and
COVID-19 infection (Katsoularis et al., 2021). In 2012, the Observational Medical Outcomes Partnership
(OMOP) (Overhage et al., 2012) conducted an empirical evaluation of various statistical methods for adverse
drug effect (ADE) detection, finding that SCCS outperformed many alternatives in terms of both predictive
accuracy and bias. Subsequent studies have confirmed these findings (Schuemie et al., 2013; Ryan et al.,
2013).

The strong empirical performance of SCCS can be intuitively attributed to its self-controlled design, which
treats each patient as their own control. This structure inherently adjusts for all time-invariant confounders,
including unobserved ones. Below, we introduce the SCCS method and outline the key assumptions on which
it relies.

SCCS Likelihood

Consider a cohort of patients indexed by i = 1, 2, . . . , P , each of whom experiences at least one outcome
event. The observation period for each patient is divided into shorter time intervals according to treatment
status, indexed by k, and time-varying covariates such as age, indexed by r. We assume that treatment
durations fully cover the period during which the treatment may affect the outcome. For example, in the
vaccination study (Miller et al., 1993), the exposure is considered effective for 21 days following vaccine
administration.
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Let ϕi denote the baseline event risk for patient i, and let αir represent the effect of the time-varying covariate
group r. We use β to denote the logarithm of the relative incidence rate, capturing the effect of treatment on
the outcome event. Define βik as the treatment effect during period k, where βik = β if patient i is exposed
during time period k and βik = 0 if unexposed. The number of events nikr observed for individual i during
treatment status interval k and time-varying covariate group r is assumed to follow a Poisson distribution
with rate λikr defined as:

λikr = exp(ϕi + βik + αir), nikr ∼ Poisson(λikrτikr)
where τikr denotes the length of time interval indexed by k and r for patient i. The goal of the SCCS method
is to estimate the treatment effect parameter β by maximizing the conditional log-likelihood:

l(α, β) =
∑
ikr

nikr log
(

τikrexp(ϕi + βik + αir)∑
pq τipqexp(ϕi + βip + αiq)

)
(1)

Case 1
1 120 141 250

95

Event

vaccination

Case 2
1 150 171 250

160

Event

vaccination

Figure 1: Timelines for two cases illustrating event occurrences and vaccination periods. Red arrows indicate
event times, black arrows indicate vaccination dates, and gray shaded boxes represent the post-vaccination
risk periods.

A simple example is illustrated in Figure 1. Suppose two individuals are each observed over a 250-day period,
with no time-varying covariates involved. Each individual receives a single vaccination during this time, and
the exposure effect is assumed to last for 21 days post-vaccination. Then the log-likelihood for these two
cases is:

l = log
(

120eϕ1

229eϕ1 + 21eϕ1+β

)1

+ log
(

21eϕ1+β

229eϕ1 + 21eϕ1+β

)1

Assumptions

In the potential outcomes framework for causal inference, ignorability (or the “no unmeasured confounders
assumption”, NUCA) plays a central role. It states that, conditional on observed covariates X, the treatment
assignment Z is independent of the potential outcome events Y . For longitudinal data, this assumption
extends to sequential ignorability, which requires that at each time point t, the time-varying exposure Zt is
conditionally independent of the potential outcome Yt, given the history of observed covariates Xt and past
exposures. The SCCS method, however, offers greater flexibility by allowing for unobserved time-invariant
confounders. Instead, it relies on the following weaker condition:
Assumption 1 (No Unmeasured Time-Varying Confounders (NUTVC)). Let Zt denote the exposure as-
signed at time t, and let Z̄t = (Z1, . . . , Zt) represent the exposure history up to time t. Similarly, let Yt

denote the observed outcome at time t, with Ȳt = (Y1, . . . , Yt) representing the outcome history up to time
t. Let Xt be the vector of observed time-varying covariates at time t, and X̄t = (X1, . . . , Xt) the covariate
history up to time t.

We assume that, for all time points t, conditional on the entire history of past exposures, outcomes, and
time-varying covariates, the exposure at time t is independent of future potential outcomes. Formally,

Zt ⊥ Yt+1(z̄t) | Z̄t−1, Ȳt, X̄t, for all t,
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where z̄t = (z1, . . . , zt) is a fixed realization of the exposure history, and Yt+1(z̄t) is the potential outcome at
time t + 1 under exposure history z̄t.

Another common assumption in causal inference is the Stable Unit Treatment Value Assumption (SUTVA)
assumption:
Assumption 2 (SUTVA). For all units i and time points t, the observed outcome Yit depends only on the
exposure received by unit i, and not on the exposures assigned to any other units j ̸= i:

Yit(Zi) = Yit(Zi, Z−i),

where Zi is the exposure assigned to unit i, and Z−i is the vector of exposures assigned to all other units.

The following assumption ensures the validity of within-individual comparisons in SCCS. If an outcome event
delays or prevents subsequent exposures, it can introduce systematic bias into the estimation of the relative
incidence, as observed changes may reflect altered exposure patterns rather than true causal effects. For
example, this assumption is violated when the outcome is death, which precludes any future exposures. In
such cases, corrective measures such as incorporating pre-exposure risk periods or applying methodological
extensions, are necessary to mitigate bias and preserve the validity of SCCS estimates (Whitaker et al., 2006;
Lee & Cheung, 2024).
Assumption 3. Following (Petersen et al., 2016), we adopt the following key assumptions for the SCCS
design:
(1) The occurrence of an event does not influence the probability of subsequent exposures:

P(Zt|Ȳt−1) = P(Zt)

(2) Event rates are constant within each defined time interval:

P(Yt) = P(Yt′), for all t, t′ within the same risk period.

(3) Events are either independently recurrent or sufficiently rare:

P(Yt, Yt′) = P(Yt)P(Yt′) for t ̸= t′, or P(Yt)≪ 1.

The next assumption aligns with the characteristics of EHRs data and vaccination studies, where the SCCS
method is most commonly applied. Given that events are sufficiently rare or independently recurrent, the
likelihood of multiple occurrences of the same outcome within a single day is negligible. Moreover, repeated
events on the same day are typically interpreted as consequences of an initial occurrence or as recurrences.
Therefore, it is reasonable to assume that the number of daily events follows a binomial distribution, which
approximates a Poisson distribution as the observation period increases and the event incidence remains low.
Assumption 4 (Single Event per Day). Only the first occurrence of a specific outcome type within a single
day is recorded.

Under Assumptions 1– 4, the SCCS method provides consistent estimates of the relative incidence associated
with exposure (Farrington, 1995; Whitaker et al., 2006). A significant deviation of the estimated parameter
β from 0, or equivalently of exp(β) from 1, indicates a causal effect of the treatment on event incidence.
In addition, we require that the probability of exposure Z, denoted by λ := P(Z = 1), is sufficiently large
to ensure a minimal fraction of exposure time across the population, independent of Y . This condition is
formalized in the following assumption:
Assumption 5 (Active-mass lower bound). There exists λmin ∈ (0, 1] such that the per-patient active
(exposure) mass satisfies λ ≥ λmin > 0.

4.2 SCCS Under the PACC Discovery Framework

We define the causal concept c for SCCS as whether exposure Z influences the incidence of experiencing the
event Y . Specifically, we require the change in event probability to be sufficiently large such that P(Y |Z)

P(Y |¬Z) ≥ δ,

9
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for some δ > 0, where ¬Z denotes the absence of exposure. We refer to this condition as “Y is δ-dependent
on Z.” The corresponding causal family is defined as Fδ,c = {⟨Mj1,Mj2⟩}. In Mj1, Y follows a Poisson
distribution with intensity that depends only on a time-invariant, patient-specific latent variable ϕi. InMj2,
the intensity of Y is a function of both ϕi and the exposure status Z, with the effect of Z captured by the
coefficient β.
Theorem 1. Under Assumptions 1-5, for any 0 < δ and 0 < ϵ < 1, we define the target causal concept c as
whether the event Y is δ-dependent on the exposure Z within the instance space I. The corresponding causal
family is given by Fδ,c = {⟨Mj1,Mj2⟩}j≥1 as defined above.

Then, given O
(

1
λ2

min log2(δ) log
( 1

ϵ

))
test examples, the SCCS algorithm can correctly distinguish betweenMj1

and Mj2 with probability at least 1− ϵ. Therefore, c is PACC discoverable by the SCCS method.

Algorithm 2 PACC Discoverability with SCCS
Requirements Parameters: ϵ ∈ (0, 1), δ > 0. Target causal concept c: whether event Y is δ-dependent on

exposure Z. Causal family Fδ,c = {⟨Mj1,Mj2⟩}j≥1, where:

• Under Mj1: Y is δ-dependent on Z.

• Under Mj2: Y is independent of Z.

1: Input: ϵ, δ, any model pair ⟨Mj1,Mj2⟩ ∈ Fδ,c, and a sample S generated from one of the two models
with size O

(
1

λ2
min log2(δ) log

( 1
ϵ

))
.

2: Test: Estimate the log-relative incidence β using SCCS from sample S via Equation 1. Decide whether
Y is independent of Z based on the following criterion:

3: if β ≥ log(δ)/2 then
4: output: Mj1 is identified as the data-generating model.
5: else
6: output: Mj2 is identified as the data-generating model.
7: end if
8: Guarantee: The SCCS algorithm correctly distinguishesMj1 fromMj2 with probability at least 1− ϵ.

The proof of the theorem is provided in Appendix A.1. The algorithmic formulation and implementation
details are presented in Algorithm 2. We also include a corollary in Appendix A.2 showing that, under the
same conditions but without Assumption 5, if λ is not bounded away from zero by λmin, the target remains
identifiable but is not PACC-discoverable uniformly over the model class. This result helps illustrate the
connection between our PACC framework and the classical causal identifiability argument.

One potential extension involves addressing the current limitation that observed time-varying covariates are
excluded. While such covariates can often be adjusted for using weighting or matching techniques, a more
general SCCS framework may incorporate them directly, such as through αir in Equation 1. In Theorem 1
and Algorithm 2, we consider the simplified setting where r = 1, meaning no time-varying covariates are
included. Extending the PACC framework to the case with time-varying covariates is a natural next step. In
such cases, the likelihood becomes a function of both the drug effect β and an additional nuisance parameter
α representing the time-varying effect. The inclusion of these nuisance parameters may reduce the statistical
efficiency of estimating β, thereby increasing the required sample size.

In addition, several notable extensions of the SCCS framework have been proposed. Simpson and Madigan
(Simpson et al., 2013) introduced the Multiple SCCS (MSCCS) model, which enables the simultaneous anal-
ysis of multiple drugs rather than a single intervention. Kuang (Kuang et al., 2017) further extended SCCS
to incorporate time-varying, patient-specific baseline risks, partially addressing the challenge of unmeasured
time-varying confounders. In such cases, the definition of the causal concept and the design of competing
causal models would require more deliberate and context-specific considerations. However, these directions
go beyond the scope of this foundational work, and a detailed analysis of these extensions is left for future
research.
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5 Analyzing Other Algorithms Using the PACC Discovery Framework

In this section, we demonstrate the alignment between the PACC Discovery framework and classical causal
literature, including results from both graphical causal models and the potential outcomes framework. This
alignment illustrates that PACC Discovery can express and extend existing results by translating traditional
asymptotic inference into a PAC-style analysis, thereby shedding new light on the utility of these methods
under finite-sample constraints. Importantly, we emphasize that the assumptions commonly imposed to
ensure the validity of classical methodologies often coincide with those required to derive favorable theoretical
guarantees in the PACC framework.

5.1 Propensity Score

In observational studies, covariate imbalance and confounding variables pose significant challenges to causal
inference. To mitigate these challenges, researchers often use propensity score methods (Rosenbaum &
Rubin, 1983), which estimate the probability of receiving a specific treatment, typically via logistic regression.
Techniques such as matching, weighting, or stratification based on these scores aim to replicate the balance
achieved in RCTs, thereby supporting valid causal conclusions. This section extends the PACC framework
by integrating it with the foundational ideas of propensity scoring.

We introduce the following notation. The instance space I consists of feature vectors defined over n variables,
denoted as {X, Y, Z}, where Z ∈ {0, 1} represents treatment assignment, X includes all pre-treatment
covariates, and Y ∈ {0, 1} is the outcome event. A specific configuration of the covariates is written as
X = x, and similarly for Y and Z. For each individual i, we define the potential outcomes (Yi(0), Yi(1)),
corresponding to the outcomes under treatment conditions Z = 0 and Z = 1 respectively. The average
treatment effect (ATE) is then estimated as:

ATE = EX [Y |Z = 1]− EX [Y |Z = 0]. (2)

Feature vectors in the instance space I are drawn from a joint probability distribution D(x, y, z), which can
be factorized as a product of three components: P, Q, and R:

D(x, y, z) = Q(X = x)P(Z = z|X = x)R(Y = y|Z = z, X = x).

In this setup, Qmodels the distribution of patient covariates and is well-behaved 2. P captures how treatment
assignment is determined based on covariates in observational studies, while R models subsequent outcome
events, conditional on treatment and covariates. In a randomized experiment, Q still describes the target
population, but the treatment assignment follows a Bernoulli distribution with equal probability (i.e. B0.5).
As a result, the treated sample follows the distribution QB0.5 rather than QP as in the observational settings.
The primary goal of propensity scoring is to use observational data drawn from QPR to emulate the RCT
distribution QB0.5R.

We impose the following standard assumptions, commonly used in propensity score-based analyses (Rosen-
baum & Rubin, 1983; 1984; Dehejia & Wahba, 2002):
Assumption 6 (Ignorability). (Y (0), Y (1)) ⊥ Z|X.
Assumption 7 (Consistency). Y = Y (Z).
Assumption 8 (Bounded Positivity). For 0 < δ1 < 1, δ1 < P(Z = 1|x) < 1− δ1, ∀x ∈ X.
Assumption 9 (Logistic Model for Treatment). The treatment assignment P can be represented by a logistic
regression model over X.

We assume that the treatment has a non-negligible effect, denoted as δ2 = P(Y |Z)− P(Y |¬Z) ∈ (0, 1). Let
δ = min{δ1, δ2}, and characterize the causal relationship by assessing whether the outcome Y is δ-dependent
on Z. Under these assumptions, we present Theorem 2 and the corresponding Algorithm 3, along with an
outline of the proof; full details are provided in Appendix B.1.

2Q should satisfy certain measurability conditions, including bounded support, absolute continuity, and Lipschitz continuity.
More details can be found in (Van der Vaart & Wellner, 2000)
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Theorem 2. Under Assumptions 6-9, let I be the instance space consisting of n variables {X, Y, Z} as
defined above. For any 0 < δ < 1 and 0 < ϵ < 1, define the target causal concept c as whether Y is
δ-dependent on Z, with the corresponding causal family given by Fδ,c = {⟨Mj1,Mj2⟩}1≤j.

Let γ = min{ϵ, δ, δ2

4 }. Then given O
(

1
γ3 log( 1

γ )
)

test examples, the propensity score method can correctly
distinguish between any pair ⟨Mj1,Mj2⟩ with probability at least 1 − ϵ. Therefore, c is PACC discoverable
by propensity score method.

Algorithm 3 PACC Discoverability Using Propensity Score
Requirements Parameters: ϵ ∈ (0, 1), δ ∈ (0, 1). Instance space I contains n variables denote as {X, Y, Z}.

Target causal concept c and the corresponding causal family Fδ,c = {⟨Mj1,Mj2⟩}1≤j , where:

• Under Mj1, Y is δ-dependent on Z.

• Under Mj2, Y is independent of Z.

Input: A sample S of size O
(

1
γ3 log( 1

γ )
)

drawn from Mj1 or Mj2, where γ = min{ϵ, δ, δ2

4 }.
Step 1: Propensity Model Estimation. Build a propensity model P ′ that approximates P using
64
γ2 (2n log( 16e

γ ) + log( 48
ϵ )) samples to predict treatment assignment.

Step 2: Rejection Sampling. Obtain O
(

1
γ2 log( 1

ϵ )
)

samples from Q P
P′ by rejection sampling.

Step 3: Final Decision. Compute the ATE using Equation (2) on the adjusted sample:
if ATE ≥ δ/2 then

output: Mj1 is identified as the data-generating model.
else

output: Mj2 is identified as the data-generating model.
end if
Guarantee: The algorithm correctly distinguishes betweenMj1 andMj2 with probability at least 1− ϵ.

Our goal is to approximate the randomized distribution QB0.5R from the observational distribution QPR.
We start by developing a linear propensity model P ′ to approximate P, using logistic regression on pre-
treatment variables. The sample complexity required for this approximation is polynomial, as established
by Kearns and Schapire in their foundational work on learning probabilistic concepts (p-concepts) (Kearns
& Schapire, 1994), and by Haussler’s extension of VC dimension theory to p-concepts via pseudodimension
(Haussler, 1992). Because the pseudodimension of linear models is low, P ′ can approximate P with high
accuracy and confidence. This approximation enables rejection sampling based on the estimated propensity
distribution P ′, thereby generating a new sample from Q P

P′ , which closely mimics the randomized treatment
assignment of QB0.5. To determine the total number of samples required, we use results from agnostic PAC
learning (Kearns et al., 1992), accounting for both the data needed to fit the propensity model and the
rejection sampling process. Finally, we determine that Y is independent on Z if the ATE is smaller than
δ
2 . Future research may investigate whether alternative techniques, such as overlap weighting or propensity
score matching, could enhance sample efficiency or expand applicability.

5.2 Instrumental Variable

This subsection explores another predominant method in observational studies for addressing confounders:
instrumental variables (IVs). Introduced in the early 20th century (Wright, 1928), IV methodology has
fostered a dynamic and fruitful area of research, with significant applications in the fields of economics,
statistics, and medicine (Sexton & Hebel, 1984; Card, 1993; Angrist & Pischke, 2008). The intuition behind
IVs is to identify an external variable, an instrument, that influences the treatment but has no direct effect on
the outcome except through the treatment. This setup allows researchers to isolate the exogenous component
of the treatment variation that causally impacts the outcome.

12
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While the propensity score results rely on the ignorability assumption, this condition is often violated in
practice due to the unmeasured confounders. To address this limitation, we explore how IVs provide a
potential solution by relaxing Assumption 6 and replacing it with the following assumption:
Assumption 10 (Perfect IV). Let D be a perfect IV, with the causal models follow the structure illustrated
in Figure 2. The variable D satisfies the following three conditions:

• (Relevance) D is correlated with the treatment Z: D ⊥̸⊥ Z|X ;

• (Independence) D is conditionally independent of all unmeasured confounders U that affect the
outcome Y : D ⊥⊥ U |X;

• (Exclusion restriction) D influences the outcome Y only through its effect on the treatment Z:
Y (D, Z) = Y (Z).

D Z Y

X

U

(a) M1

D Z Y

X

U

(b) M2

Figure 2: Bayesian network structures that define the relationships between the outcome Y , treatment Z,
unmeasured confounders U , an instrumental variable D, and all other observed covariates X.

Algorithm 4 PACC Discoverability Using 2SLS
Requirements Parameters: ϵ ∈ (0, 1), δ ∈ (0, 1). Instance space I contains n variables denoted as
{Z, Y, X, U, D}. Target causal concept c and the corresponding causal family Fδ,c = {⟨Mj1,Mj2⟩}1≤j ,
where:

• Under Mj1, Y is δ-dependent on Z.

• Under Mj2, Y is independent of Z.

Input: Sample S of size O
( 1

δ2ϵ

)
, drawn from either Mj1 or Mj2.

Stage I: Regress Z on D: Z = αD + ξ1, α̂ =
∑

i
DiZi∑
i

D2
i

, Ẑ = α̂D

Stage II: Regress Y on Ẑ: Y = βẐ + ξ2, β̂ =
∑

i
DiYi∑

i
DiZi

Final Decision
if β̂ ≥ δ/2 then

output: Mj1 is identified as the data-generating model.
else

output: Mj2 is identified as the data-generating model.
end if
Guarantee: The 2SLS method correctly distinguishes between Mj1 and Mj2 with probability at least
1− ϵ.

Under Assumption 10, we apply d-separation to the full causal DAGs M1 and M2 (Figure 2) to derive
reduced models over the observed variables (X, D, Y ) (Figure 3). In M1, the path D → Z → Y induces a
dependence between D and Y , which remains active as long as Z is not conditioned on. After marginalizing
over the unobserved confounder U , this dependence is preserved and represented as an effective direct edge

13
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D → Y in the simplified graph M′
1, indicating that D ⊥̸⊥ Y | X. In contrast, in M2, once we condition on

X, all paths between D and Y are blocked. This follows from two structural properties: (i) the exclusion
restriction ensures there is no direct edge from D to Y , and (ii) conditioning on X blocks any back-door
paths through the unobserved confounder U . After marginalizing over U , the resulting simplified graphM′

2
contains no direct edge between D and Y ; instead, both share a common parent X, forming a v-structure
D ← X → Y . In this configuration, conditioning on X d-separates D and Y , implying D⊥⊥ Y | X.

D Y

X

(a) M′
1

D Y

X

(b) M′
2

Figure 3: Simplified Bayesian network structures specify the relationships between the outcome Y , instru-
mental variable D, and all other measured variables X.

With the simplified Bayesian network, we implement the just-identified case of the Two-Stage Least Squares
(2SLS) algorithm and demonstrate its applicability within the PACC framework. The 2SLS method is widely
used in econometrics and causal inference, particularly when randomized experiments are not feasible and
unmeasured confounding threatens the validity of observational analyses.The just-identified 2SLS procedure
proceeds in two stages:

Stage I: Regress the endogenous variable Z on the instrument D to obtain predicted values, i.e.: Z = αD+ξ1;
Stage II: Regress the outcome Y on the predicted values Ẑ obtained from the first stage, i.e., Y = βẐ + ξ2.

Here, ξ1 and ξ2 are error terms with mean zero and finite variance. Similar to the propensity score analysis,
we define the target causal concept c as whether the outcome Y is δ-dependent on the treatment Z, where
δ = min{δ1, δ2}. Here, δ1 ∈ (0, 1) comes from the positivity assumption, and δ2 ∈ (0, 1) denotes the minimum
difference between the probabilities of Y occurring when Z is true versus when Z is false, specifically
among compliers—individuals whose treatment status changes in response to the instrument. This quantity
captures the minimal causal effect of the instrument on the outcome, mediated through the treatment,
within the subpopulation affected by the instrument. Under these assumptions, we present Theorem 3 and
the corresponding Algorithm 4.
Theorem 3. Under Assumptions 7-8, let I be the instance space consisting of the binary variables: treatment
Z, outcome Y , measured covariates X, unmeasured confounders U , and a perfect IV D that together satisfy
Assumption 10.

For any 0 < δ < 1 and 0 < ϵ < 1, define the target causal concept c as whether Y is δ-dependent on Z,
with the corresponding causal family given by Fδ,c = {⟨Mj1,Mj2⟩}1≤j. Then given a test sample of size
O
( 1

δ2ϵ

)
, the 2SLS method can correctly distinguish between any pair ⟨Mj1,Mj2⟩ with probability at least

1− ϵ. Therefore, c is PACC discoverable via 2SLS methods.

To prove the theorem, we bound both the false positive and false negative errors. Specifically, when the true
treatment effect β = 0 (i.e., no causal effect), the estimated coefficient β̂2SLS should, with high probability,
satisfy |β̂2SLS| ≤ δ/2. Conversely, when the true effect satisfies |β| ≥ δ, the estimator should exceed the
decision threshold, i.e., |β̂2SLS| > δ/2, with high probability. These guarantees are established by applying
Chebyshev’s inequality under the assumption that the covariance between Z and D, and the variance of D,
are finite. The complete proof is provided in Appendix B.2.

6 Conclusions and Future Work

The first contribution of this paper is to highlight the need for causal discovery models tailored to resource-
limited settings, especially in observational studies. The proposed PACC Discovery framework offers new
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theoretical insights that inspire novel algorithms. It also improves our understanding of existing methods by
quantifying their resource requirements. The third contribution is to present some initial results within the
PACC Discovery framework, demonstrating its practical value and potential. Specifically, we provide the
first theoretical guarantee for the SCCS method in causal discovery. We also offer theoretical justifications
for established methods such as propensity score and instrumental variables.

Future research can extend in several directions. One direction is to refine the current PACC Discovery
framework. Although it is designed to be broadly applicable, this paper focuses on the causal concept of
whether an outcome depends on a treatment. Future work could explore alternative concepts, such as causal
direction (we include an example of this in Appendix C), where competing models imply opposite causal
directions, and causal structure, where model pairs differ in their structural assumptions. Another open
question concerns the number of causal model pairs. While the total number of pairs can be large, practical
constraints and background knowledge often reduce the number of relevant comparisons. A promising
direction for future work is to establish theoretical bounds that relate the number of model pairs to the
required sample size.

Additionally, exploring variations of the PACC Discovery framework opens new avenues for research. One
promising direction is a Bayesian variant of PACC Discovery. This approach would begin with a prior distri-
bution over all plausible causal models and aim to either identify the correct model or converge to an accu-
rate posterior distribution with high probability. Such an extension would parallel the role of U-Learnability
(Muggleton & Page, 1998), which redefined PAC-learnability by introducing a probability distribution over
target concepts in addition to the distribution over training examples. However, this direction poses sig-
nificant computational challenges: computing exact posteriors over DAGs is known to be intractable, and
approximate methods such as MCMC-based sampling often struggle to scale to large model spaces.

A further direction is to extend the PACC Discovery framework to a broader class of causal algorithms.
For example, under appropriate assumptions, the framework can be applied to differential prediction tasks,
which aim to identify models that perform better for one subgroup than another. For instance, predicting
postpartum depression more accurately in younger women than in older women, or predicting preeclampsia
more effectively for one racial group than another (Kuusisto et al., 2014). The PACC Discovery frame-
work provides a formal, sample-efficient lens to interpret such disparities causally. In particular, it enables
principled testing of whether a sensitive attribute has a causal influence on predictions or outcomes. In this
spirit, PACC Discovery supports a “probably approximately fair” paradigm, wherein fairness properties hold
with high probability and small error under limited data, paralleling how PACC ensures causal correctness.
Given its flexibility and resource-aware design, the PACC Discovery framework holds promise as a theoretical
foundation for deriving approximate learning guarantees and sample complexity bounds across a wide range
of causal algorithms.
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