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ABSTRACT

In this paper, built upon TAPTRv2, we present TAPTRv3. TAPTRvV2 is a simple
yet effective DETR-like point tracking framework that works fine in regular videos
but tends to fail in long videos. TAPTRv3 improves TAPTRv2 by addressing its
shortcomings in querying high-quality features from long videos, where the target
tracking points normally undergo increasing variation over time. In TAPTRv3,
we propose to utilize both spatial and temporal context to bring better feature
querying along the spatial and temporal dimensions for more robust tracking in long
videos. For better spatial feature querying, we identify that off-the-shelf attention
mechanisms struggle with point-level tasks and present Context-aware Cross-
Attention (CCA). CCA introduces spatial context into the attention mechanism to
enhance the quality of attention scores when querying image features. For better
temporal feature querying, we introduce Visibility-aware Long-Temporal Attention
(VLTA), which conducts temporal attention over past frames while considering
their corresponding visibilities. This effectively addresses the feature drifting
problem in TAPTRvV2 caused by its RNN-like long-term modeling. TAPTRv3
surpasses TAPTRv2 by a large margin on most of the challenging datasets and
obtains state-of-the-art performance. Even when compared with methods trained
on large-scale extra internal data, TAPTRv3 still demonstrates superiority.

1 INTRODUCTION

Localizing points across different frames in a video is a long-standing problem (Sand & Teller, |2008)).
Recently, with the growing demand for the trajectory and visibility information of arbitrary points in
videos for various down-stream tasks, such as video editing (Huang et al.,|2023), SLAM (Teufel et al.}
2024)), and manipulation (Vecerik et al., [2024), the Tracking Any Point (TAP) task has gradually
regained attention (Harley et al.| 2022; |Doersch et al., [2023; [Karaev et al., |2024bj |Li et al., 2024cb;
Neoral et al.| 2024} Xiao et al.,[2024; Wang et al., 2023} Tumanyan et al., 2024).

To solve this problem, some methods try to construct a 4D field (Wang et al.||2023)) and track points
in the constructed 3D space while also achieving 3D scene perception. Though promising, such
methods are normally not general and have inferior performance. By contrast, more methods attempt
to solve the TAP task directly from a 2D perspective (Harley et al.,2022; |Doersch et al., [2023; |Karaev
et al., [2024bja; L1 et al., 2024cib; [Tumanyan et al.| 2024; |Aydemir et al., [2025} |Zholus et al., [2025)).
Some of these methods follow the traditional optical flow estimation pipeline, RAFT (Teed & Deng,
2020) more specifically, and highly rely on the dense cost-volume (Xu et al.,[2017) to perform point
tracking like sparse optical flow. Although such methods have achieved impressive performance, the
computation of dense cost-volume is resource-consuming, especially when the number of points, the
length of videos, or the video resolution increases.

Inspired by recent visual prompt-based detection methods (Li et al. [2024a; Jiang et al., [2025)),
TAPTR (Li et al.| [2024c)) proposes a DEtection-TRansformer (DETR)-like framework, which regards

*Equal contribution, random listing order. Work done during an internship at IDEA Research.
"Corresponding author.



Published as a conference paper at ICLR 2026

each tracking point as a point query and addresses the TAP task from the perspective of point-level
visual prompt detection. TAPTRvV2 (Li et al.,|2024b) further improves TAPTR by eliminating the
requirement of dense cost-volume input, as it will contaminate the point query’s content feature
and introduce redundancy. To compensate for its localization role, TAPTRvV2 proposes an attention-
based position update (APU) operation that utilizes key-aware deformable attention (Li et al., 2023)
to compare a query point with a set of key sampling points and find a better position. With this
improvement, TAPTRv2 obtains both a simpler framework and a better performance.

However, we find that TAPTRV?2 still struggles with long videos due to its shortage of feature querying
in both spatial and temporal dimensions in long videos, in which the target tracking points normally
undergo increasing variation over time. In the spatial dimension, TAPTRv2 introduces key-aware
deformable attention (Li et al., 2023)) to extract features and directly perform position update by
comparing the feature similarity between a query point and a set of surrounding sampled key points.
However, when migrating this module from an object-level detection task to a point-level tracking
task, TAPTRv2 overlooks the fact that the point-level query and key features, obtained simply through
bilinear interpolation, are too local. This makes the resulting attention weights susceptible to noise.
This instability significantly affects point tracking, which requires the most fine-grained spatial
understanding. In the temporal dimension, the RNN-like long-temporal modeling in TAPTRv2 often
suffers from the drifting problem, as the feature of a tracking point may be gradually affected by
ambiguous surrounding features and unknown occlusion over time. Moreover, there is a significant
discrepancy in video length between the current training and testing sets. The training set consists of
short videos with fixed 24 frames, while the testing videos vary from 50 to 1300 frames in length.
Excessive feature updates in long videos during testing further exacerbate the feature drifting problem.
In our study, we also observe the existence of scene cuts in many videos. While such videos are
the result of artificial editing, they are quite prevalent in public datasets. For instance, in TAP-Vid-
Kinetics (Doersch et al.,[2022), which is one of the challenging test sets, approximately 27% of the
videos contain scene cuts. The lack of global matching in TAPTRv2 makes it hard to reestablish
tracking effectively when a scene cut occurs with sudden, large motions.

With these insights, we propose to enhance the feature querying ability of TAPTRv3 in both spatial
and temporal dimensions. For spatial feature querying, inspired by the prior 4D cost volume-based
optical flow (Teed & Deng} [2020; Ilg et al., 2017} |Sun et al.| 2018; Wang et al., 2020} Jiang et al.|
2021; Xu et al.;,[2021) and point tracking methods (Cho et al.| 2024; Bian et al., 2023), we introduce
the context information to the attention mechanism. Specifically, we develop a Context-aware Cross-
Attention (CCA) operation to optimize the key-aware deformable attention mechanism. Instead of
using unstable point-level similarity, our method leverages patch-level similarity to compute the
attention weights. The patch-level attention utilizes more context features to prevent the attention
weights from being disturbed, thereby bridging the gap between object-level and point-level tasks.
For temporal feature querying, to address the drifting issue, we discard the RNN-like long-temporal
modeling in TAPTRV2. Instead, for any tracking point, we resort to the initial feature sampled from
its starting frame, as this feature is the most reliable, and use it as input in any frame. To compensate
for feature change over time, we introduce a Visibility-aware Long-Temporal Attention (VLTA)
operation, which treats the initial feature as a query and performs dense attention over the past frames
to aggregate past feature changes. This not only enables the perception of longer temporal context but
also makes TAPTRv3 an online tracker. Meanwhile, recognizing that the target tracking point may
be occluded in some frames, we reweight the long-temporal attention weights using the estimated
visibility scores in the past frames, directing more attention to frames where the point is visible. This
further enhances the feature querying ability along the temporal dimension.

For the scene cut issue, we introduce an auto-triggered global matching mechanism to reinitialize the
point query’s positional part for subsequent frames. Note that we only trigger the global matching
when detecting a scene cut. This is based on our observation that in regular videos, using the predicted
positions from the previous frame as the initial position for the current frame yields better results.

In summary, our contributions are threefold: (1) The primary contribution is the development of a
more robust solution for point tracking in long videos, which improves upon TAPTRV2 by leveraging
both spatial and temporal context. The two corresponding operations, namely Context-aware Cross-
Attention and Visibility-aware Long-Temporal Attention, effectively improve the quality of spatial
cross attention and long-term feature updating, enhancing feature querying. (2) To address the scene
cut issue, we introduce an auto-triggered global matching mechanism, which is only triggered when
a scene cut is detected. This ensures stable tracking on regular videos while being able to quickly
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reestablish tracking when encountering scene cuts. (3) Extensive experimental results show that
TAPTRv3 significantly outperforms TAPTRv?2 and achieves state-of-the-art performance on most
datasets. Even when compared to models trained on large-scale extra internal real data, TAPTRv3
remains competitive.

2 RELATED WORK

Optical Flow Estimation. Establishing the correspondences for every pixel between two consecutive
frames is a long-standing problem. Over the past few decades, extensive research has been dedicated
to addressing this issue. Traditional methods (Horn & Schunckl (1981} Black & Anandan,|[2002; Bruhn
et al., [2005) use carefully designed descriptors to find correspondences and apply manually designed
rules to filter out distractions. DCFlow (Xu et al.} 2017) first demonstrated the feasibility of using the
features learned from deep neural network to obtain optical flow estimation through cost-volume that
is constructed by calculating 4D correlation, and dominant this field (Teed & Deng| [2020; Dosovitskiy
et al., 20155 Ilg et al., 2017} |Xu et al.,|2017;Sun et al., 2018} |Wang et al., 2020; Jiang et al., 2021}
Xu et al., 2021} Zhang et al., 2021; |Huang et al.l 2022} |Zhao et al., 2022). Although the features
extracted by deep neural networks are much stronger, the cost-volume still suffers from ambiguity.
To address this, these methods typically feed the cost-volume into convolutions to normalize it based
on contextual information. Although the recent optical flow estimation methods (Shi et al.| 2023aj;
Saxena et al.l 2024} Shi et al., [2023b) have shown remarkable results, they still can not handle video
data well, especially when points of interest are occluded.

Tracking Any Point. Influenced by optical flow estimation methods, especially the RAFT (Teed &
Dengl, 2020)), most approaches (Doersch et al., [2022; 2023; 2024} [Zheng et al., 2023} |[Karaev et al.,
2024bga; |Cho et al., 2024) follow a similar framework, calculating a cost-volume between the target
tracking point and every frame, and then feeding the cost-volume into a transformer (Vaswani et al.|
2017)) to regress the position of the point in each frame. Inspired by the optical flow method (Teed
& Dengl 2020), LocoTrack (Cho et al.l |2024) introduces a local 4D correlation to enhance perfor-
mance. TAG (Harley et al., [2024) extends tracking points to tracking arbitrary targets in videos.
AnthroTAP (Kim et al.| 2025) proposes a pipeline to generate training labels for point tracking
from human motion data. Track-On (Aydemir et al.,|2025) focuses on online tracking, introducing
memory modules to capture temporal information for reliable point tracking. TAPNext (Zholus et al.|
2025) is also an online model that casts this task as sequential masked token decoding and removes
tracking-specific inductive biases. In another line, TAPTR and TAPTRv2 (L1 et al.| 2024cfb) address
the TAP task from the perspective of detection with their DETR-like (Carion et al., 2020; [Liu et al.|
2022} |Li et al., 2022} |Zhang et al., [2023a) framework. However, TAPTRV?2 still lacks designs for
more challenging long-term tracking, resulting in suboptimal performance in long sequences.

3 METHOD

3.1 OVERVIEW

Before describing TAPTRV3, for clarity and without loss of generality, we assume that only a single
point is being tracked, starting from the first frame Iy. Given I and the user-specified point to be

tracked at 1y € R?, TAPTRv3 is expected to detect this point in every subsequent frame {It}tT:_ll,

determining its location {lt};‘tll and visibility {at}tT:jl, where I; € R?, o € [0,1], and T is an
integer that indicates the length of the video. As shown in Fig.|l| (a), TAPTRv3 can be roughly

divided into the Point Query Preparation stage and the Sequential Point Tracking stage.

Point Query and Spatial Context Preparation. As depicted in Fig.[l|(a), given a user-specified
coordinate 1y on the initial frame I, the point query preparation stage will sample a point-level feature
f € RP to describe the target tracking point, where D is the number of channels. Following TAPTRV2,
we conduct bilinear interpolation on the Iy’s corresponding image feature map| X, € R *WxD a
lp, where H and W indicate the height and width of the feature map. To create a more comprehensive

description of the point, TAPTRv3 additionally samples N2 context features C € RY” %P around 1,
in a grid form to describe the point’s initial spatial context:
C:Bili(X0510+G)a (1)

'For clarity, without loss of generality, we assume that each frame’s feature map, obtained from the backbone
and transformer encoder, has only one scale.
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Figure 1: Overview (a) and core components (b) (c) of TAPTRv3. After the user specifies the
point to track, the point query preparation stage prepares the content and spatial context features for
this point in the initial frame. When TAPTRv3 receives a new frame, the sequential point tracking
stage uses the content feature and the specified location as the point query, and regards the new
frame’s image feature map as keys and values. The points query, keys, and values are fed into a
multi-layer transformer decoder to detect the tracking point in the new frame. The predicted location
then updates the point query’s positional part, providing a better initial position for tracking in the
next frame. For clarity, the global matching module is not plotted.

where N is a hyperparameter and is set as 3 by default, G € RY *X2 s the sampling grid, and Bili
is the bilinear interpolation operation. After that, f and 1y will be regarded as the initial content part
and the positional part of the target tracking point’s corresponding point query. The point query will
be sent to the transformer decoder as a query to detect the target tracking point in subsequent frames
in the next Sequential Point Tracking stage.

Sequential Point Tracking. As shown in Fig. |I| (b), when TAPTRvV3 receives a new frame, I,
for example, its corresponding feature map X, which is regarded as a set of keys and values, as
well as the point query, will be sent to the multi-layer transformer decoder. In each transformer
decoder layer, both the content part and the positional part of the point query will be refined by our
Visibility-aware Long-Temporal Attention, Context-aware Cross-Attention with APU, Self-Attention,
and Feed Forward Network. After the multi-layer refinement. The output refined positional part of
the point query 1; will be regarded as the detection result of the target tracking point in I;, and the
output refined content feature of the point query f; will be sent to an MLP-based binary classifier to
predict the confidence «; that the point is visible in I;. After that, the position prediction 1; will be
used to update the point query’s positional part, providing a better initial position for detecting the
target tracking point in the next frame, while the content part remains as the initial content feature f.
This process proceeds repeatedly until the end of the video.

3.2 VISIBILITY-AWARE LONG-TEMPORAL ATTENTION

The RNN-like long-temporal modeling in TAPTR and TAPTRv2 can lead to feature drift, primarily
due to the excessive feature updates during testing, rooted in the disparity in video lengths between
training (24 frames) and testing (ranging from 50 to 1300 frames). Thus, as shown in Fig.[T](b), we
resort to the attention mechanism for its ability to handle varying token lengths, as demonstrated in
modern LLMs (Zhang et al.| [2025};|2023b} |(OpenAl, 2023} |Google, [2023)). Following modern LLMs,
we also utilize the rotary positional embedding (Su et al.,[2024) to help our long-temporal attention
pay more attention to recent frames. More specifically, the long-temporal attention weights of the
target tracking point between the ¢-th frame and all past frameﬁ can be first computed as:

F, = [fo,f1,---,fi 1] Ry = [ro,r1,...,1 1],

2
d; = SoftMax ((Ft + Rt) ® (ft/ + I‘t)) s ( )

where F; € R**P and R; € R**P are the point query’s refined content features in the past frames of
the ¢-th frame, and their corresponding rotary frame index embeddings, d} € R? is the long-temporal

*In practice, it is not necessary to interact with all past frames, and this is only for ease of description. For
more details, please refer to the Sec. @in our appendix.
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attention distribution (weights), ® indicates the matrix multiplication, and f] € RP is the content
feature of the point query in the ¢-th frame that has not been fully refined by decoder. In the first
decoder layer, f] = f.

Different from the textual scenarios, since the target tracking point will be occluded sometimes, the
refined content features from the frames in which the target tracking point is occluded may contribute
noise to the long-temporal attention. To prevent being affected by the noise, we utilize the visibility
predictions in the past frames a;, € R! = [ag, a1, .. ., at,l]T to reweight the attention distribution,
making it visibility-aware. The final visibility-aware attention weights are used to weight-sum their
corresponding content features to obtain the temporal querying result AftT € RP. The querying
result will be further utilized as a residual to update the point query’s content feature to complete the
VLTA. The process can be formulated as:

. d;@at

d; =
"7 sum(ay)

, Af] =F] ®@d;, f/<1N(f]+Af]), 3)
where d; € R? is the attention distribution that is reweighted by visibility predictions, f/ is the output
and will be sent to the following modules for further refinement, LN is the Layernorm (Le1 Ba et al.}
2016), and ® is the element-wise multiplication.

3.3 CONTEXT-AWARE CROSS-ATTENTION WITH APU

Unlike object-level DETR-like methods, the content feature of a point query in TAPTRV2 is a point-
level feature. This granularity limits the model’s receptive field during cross-attention with the image
feature map, often causing ambiguity in attention weights. This issue becomes more serious when
the target tracking point undergoes significant variations or when the image contains uniform regions
or repetitive patterns. Such conditions can lead to noisy querying of spatial features as well as noisy
position updates in the cross-attention’s belonging APU block. Inspired by previous methods (Teed
& Deng, |2020; |Bian et al., 2023} |Cho et al.,|2024)), we propose integrating richer spatial context into
the attention mechanism. This provides point queries with a more comprehensive understanding of
their surroundings, resulting in more accurate and robust attention weights.

As illustrated in Fig. (1] (c), different from the vanilla key-aware
deformable attention (Li et al.| |2023), the query’s point-level
content feature will only be used to predict M sampling offsets

O; € RM*2 = [0}, 0f,..., oy_l}T by an MLP. For the cor-
responding attention weights, we obtain them by leveraging the
patch-level context features. More specifically, as shown in Fig. [2]
for the m-th sampling point, its corresponding spatial context

features in the ¢-th frame K7 € RN %P can be constructed by:

Figure 2: Illustration of patch- m_niq / m
level similarity calculation. K" =Bili Xyl +0" +G), @)

where 1, € R? is the positional part of the point query in the ¢-th frame that has not been fully refined
by decoder layers. In the first decoder layer’s CCA module 1} = 1,_;. After that, the m-th sampling
point’s corresponding patch-level similarity w;* € R is calculated as:

Sy e RVVN = Co KT, wi =MLp(Flatten(S]), ©)

where S}" is the intermediate representation of the patch-level similarity, and F1at ten indicates the
flatten operation. By sending the intermediate representation S}* to an MLP, the more fine-grained
similarities between every two points in the two patches are comprehensively considered, leading to
a high-quality patch-level similarity. The similarities between the point query and all sampling points
wi € RM = [ w}, ..., ng _1]T will work as attention weights to aggregate their corresponding
values V; € RM*P obtaining the spatial querying result Af® € RP:

10 1 M-17T m_ g / m
Vi=[vi,vp,--, v ], viP=Bili(Xy, L + of"),

AfP = V] ® softMax (wt/\/ﬁ) ,

where V are the sampled values of M sampling points on X;. After that, the spatial querying results
will be utilized as a residual to complete the CCA:

f| < LN(f] + Af]), (7)

(©)
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Following TAPTRv2, we also add the attention-based position update (APU) in CCA, to benefit
from the attention weights’ resilience to the domain gap without contaminating the point query. This
process can be formulated as:

Al, = O/ ® softMax (MLP (we) /\/5) , L <1+ AL, (8)

where Al; € R? is the additional position update. We follow TAPTRv2, using an MLP to decouple
the attention weights used for content and position updates.

3.4 AUTO-TRIGGERED GLOBAL MATCHING

In general, point motions are smooth in video. However, in long videos, especially in offline scenarios,
scene cut often occurs, leading to sudden large motions. Since the initial position of a point query in
the current frame is inherited from the last frame’s prediction, as we have described in Sec@ the
sudden large motion will cost many frames for TAPTRV3 to catch up with the target tracking point.

Thus, when a scene cut occursﬂ at the ¢-th frame, we trigger the global matching module to help
TAPTRVv3 reestablish tracking. Similar to the previous method (Doersch et al., 2023)), the global
matching module will construct a similarity map H; € R *"W between the target tracking point and
the current frame’s feature map. However, instead of relying on a point-level feature as in previous
methods, similar to CCA, we leverage the spatial context features to help improve the accuracy of the
similarity map. After that, SoftArgMax is conducted on the similarity map to obtain a final position
prediction 1; € R? that is differentiable. The prediction will be used to replace the unreliable position
prediction of the current frame from the transformer decoder. The replacement helps TAPTRvV3 to
prevent wrong predictions in the subsequent frames. The process can be formulated as:

H, =X, ®C", H, = softmax(MLP(H})),

9
l; = SoftArgMax(H,), 2

where Hj, € R¥*WxN? i the similarity maps between the initial context features and the current
frame’s feature map. These maps will be fused through an MLP to obtain the H;.

To avoid misunderstanding, we emphasize that our main contribution in global matching lies in the
novel auto-trigger mechanism, rather than the global matching itself. Compared to the predictions
of previous frame from our model, the localization provided by global matching is less precise.
However, its key advantage is the ability to quickly provide a coarse global position, and our approach
successfully combines the strengths of both methods.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

Training Data. For fair comparison, following the previous methods (Doersch et al., 2023} Karaev
et al., 2024b; [L1 et al., 2024cib)), we trained our model on the TAP-Vid-Kubric (Doersch et al., [2022)
dataset, which consists of 11,000 synthetic videos generated by Kubric Engine (Greff et al.| [2022)),
each containing 24 frames showing 3D rigid objects falling to the ground and bouncing. Each video
has 2,048 points sampled on moving objects and backgrounds to be tracked, and their corresponding
trajectories are also generated for training. The points to be tracked in the video are occasionally
occluded to allow the model to cope with this situation. During training, the resolution of the videos
is resized to 384 x 512, and we randomly select 800 trajectories in each video for efficient training.

Evaluation Data. We follow previous methods to evaluate TAPTRvV3 on the challenging TAP-
Vid (Doersch et al.l 2022)) benchmark, which consists of 3 subsets, TAP-Vid-Kinetics, TAP-Vid-
DAVIS, and RGB-Stacking. TAP-Vid-DAVIS comprises 30 real-world videos from the DAVIS 2017
validation set (Perazzi et al.,2016). These videos are relatively short, averaging less than 70 frames,
so we include the experiments on this subset in Section [A.3]of the appendix. TAP-Vid-Kinetics
contains 1,144 YouTube videos from the Kinetics-700-2020 validations set (Carreira & Zisserman),
2017), with camera shakes, complex environments, and even scene cuts. These videos are relatively
long, averaging about 250 frames per video. RGB-Stacking is a synthetic dataset that captures the
process of a robotic arm grasping solid-colored blocks, with an average duration of about 250 frames.
Although it has a relatively smaller domain gap compared to the training set, which is also a synthetic

3We use the off-the-shelf PySceneDetect (Castellano) to detect the scene cuts.
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Table 1: Comparison of TAPTRv3 with prior methods. We use T to indicate the introduction
of additional training data. Specifically, CoTracker3' additionally incorporates 15K real videos.
BootsTAPIRT and BootsTAPNext-B train on an additional 15M real videos. Anthro-LocoTrackR"
leverages an extra 1.4K human motion data. TAPTRv3 obtains state-of-the-art performance on most
datasets and remains competitive with methods trained on extra internal data. Training data: (Kub24),
(Kub48), and (Kub64) refer to Kubric (Greff et al., 2022) with 24, 48, and 64 frames per video,
respectively. (PO) PointOdyssey (Zheng et al.,[2023)), (FT) FlyingThings++ (Mayer et al.||2016). For
fair comparison, we do not utilize auto-triggered global matching here.

Training Kinetics RGB-Stacking RoboTAP

Method Data Al <6y, OA | Al <43, OA | Al <dg, OA
PIPs (Harley et al.|[2022) FT 31.7 53.7 72.9 - 59.1 - - - -

PIPs++ (Zheng et al.[[2023) PO - 63.5 - - 58.5 - - 63.0 -

TAP-Net (Doersch et al.|[2022) Kub24 385 544  80.6 | 535 68.1 86.3 | 45.1 62.1 82.9
TAPIR (Doersch et al.[[2023) Kub24 496 642 850|555 697 8.0 5.6 734 870
CoTracker (Karaev et al.|[2024b) Kub24 49.6 643 833 | 674 789 852|586 706 87.0
TAPTR (Li et al.{[2024c) Kub24 490 o644 852|608 762 87.0 | 60.1 753 86.9
TAPTRv2 (Li et al.|[2024b) Kub24 497 642 857|534 705 812|609 746 877
LocoTrack (Cho et al.[[2024) Kub24 529  66.8 853 | 69.7 832 895|623 762 871
CoTracker3 (online) (Karaev et al.|[2024a) Kub64 54.1 66.6 87.1 | 71.1 81.9 90.3 | 60.8 73.7 87.1
Track-On (online) (Aydemir et al.[[2025) Kub24 539 67.3 878 | 714 85.2 91.7 | 63.5 764 89.4
TAPTRv3 (online) | Kub24 | 549 675 882|723 841 908|645 773 897

dataset, the objects in this dataset often lack texture, making them difficult to track. In addition, we
also evaluated TAPTRv3 on RoboTAP (Vecerik et al.,2024), which comprises 265 real-world videos
from robotic manipulation tasks. The video length in this dataset varies significantly, with the longest
videos reaching up to 1,300 frames and the average length of about 270 frames per video.

Evaluation Metrics and Settings. We use the standard metrics proposed in TAP-Vid (Doersch et al.,
2022) for evaluation, including three important metrics. Occlusion Accuracy (OA), describes the
accuracy of classifying whether a target tracking point is visible or occluded. < 6%, , reflecting the
average precision of visible points’ position at thresholds of 1, 2, 4, 8, and 16 pixels. Average Jaccard
(AJ), a comprehensive metric, considers both the precision of position and visibility prediction. Since
TAPTRvV3 is an online tracker, we use the “First query” mode (Doersch et al., 2022) to evaluate the
model, which tracks the target tracking point from the first frame when they are visible until the end
of the video. This is much more difficult than the “Strided query” mode for offline trackers. Besides,
since the resolution of the input video has a large impact on the final performance, we limit the
resolution of the input video to 256 x 256 for a fair comparison with other methods during evaluation.

4.2 IMPLEMENTATION DETAIL

Unlike previous works (Li et al.|[2024cgb)), we use Resnet-18 instead of Resnet-50 as the backbone for
higher efficiency. In the Transformer, we employ two encoder layers with deformable attention (Zhu
et al.,[2021)) to further enhance the image features. While benefiting from our improvement, only
4 decoder layers are required to achieve optimal performance. For the supervision of location and
visibility prediction, we utilize the L1 loss and binary cross-entropy loss, respectively, as in previous
works. We use the AdamW (Loshchilov, [2017) optimizer with §; = 0.9 and 82 = 0.999 and set the
weight decay to 1 x 10~%. We train TAPTRv3 on a cluster of 8 NVIDIA A100 GPUs for about 33,000
iterations with a batch size of 8 in total. To make the training process more stable, we accumulate
gradients 4 times to approximate a batch size of 32. After the training of TAPTRV3, we freeze it
and add the additional global matching for the second stage of training. Since there are only a few
parameters to be trained in this stage, it only requires about 5,300 iterations to converge.

For efficiency, in ablation studies in Sec. we have a few modifications in our experimental settings.
We reduce the number of encoder and decoder layers to 1 and 3, respectively, resize the resolution of
the input video to 384 x 384, and also reduce the number of tracking points on each video to 200.
The ablation studies are conducted on 4 GeForce RTX3090 GPUs for about 33,000 iterations with
randomly sampled half-size training and evaluation sets.
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Table 2: Ablations on key component of TAPTRv3. Table 3: Ablation on patch-level simi-
“LTA” refers to Long-Temporal Attention, “Vis-Aware” is larity calculation.
short for visibility-aware, “Re. Win.” indicates the removal Patchlevel Similarity | Al <07 OA
of the sliding window, and “Sup. Vis.” represents only su- - -

.. .. . .- . .. Element-wise 51.3 64.8 87.4
pervising the visible points’ positions during training. Every two point ‘ 529 659 878

Row | LTA | Vis-Aware | Re. Win. | Sup. Vis. | CCA | AJ  Table 4: Ablation of methods for con-

1 X X X X x | 445 text features updating.

2 v X X X X | 478 ~

3 v v X X X | 4838 Update Methods | AJ <47, OA
4 v v v X X 49.5 VLTA 51.2 64.4 86.1
5 v v v v X 51.1 MLP 51.7 65.4 87.7
6 v v v v v 52.9 No Updates 529 659 87.8

4.3 COMPARISON WITH THE STATE OF THE ARTS

We evaluate TAPTRv3 on the Kinetics, RGB-Stacking, and RoboTAP datasets, which have relatively
long videos, and compare it with previous methods to demonstrate its superiority on long videos. As
shown in Table|I} TAPTRv3 achieves state-of-the-art on most metrics on these three datasets. With
our insights and careful designs, TAPTRv3 shows a significant improvement (9.2 AJ on average)
compared to TAPTRv2 (Li et al.| |2024b) even with a more lightweight backbone and fewer decoder
layers. Meanwhile, compared with the previous state-of-the-art Track-On (Aydemur et al.,[2025)) that
uses DINOvV2 (Oquab et al.| 2023)) as the backbone, we achieve an average improvement of 1.0 AJ.

Although Cotracker3 (Karaev et al., |2024a) and BootsTAPIR (Doersch et al.l 2024} achieve re-
markable performance, they both introduced extra internal real-world data for training. Specifically,
CoTracker3 re-renders the Kubric training set with a length of 64 frames, which narrows the gap
in video length between training and evaluation. Then, an additional 15K real-world videos are
introduced for fine-tuning. BootsTAPIR trains its model on the original Kubric training set but
introduces an extra 15M real-world video clips, which is approximately 1,360 times more than the
synthetic data (11K) we use for training. The results show that despite these methods utilizing much
more additional data for training, TAPTRv3 still achieves competitive performance. Note that, for fair
comparison, we do not utilize auto-triggered global matching to help reestablish tracking here. When
the global matching is also enabled, the results are further improved, as shown in Table [6]of Sec.

4.4 ABLATION STUDIES AND ANALYSIS

We start our ablation from TAPTRv2 and conduct ablation studies on every key component in
TAPTRvV3 to validate their effectiveness. We further conduct some more detailed ablations to
investigate the best implementation choice. To focus on the ability of TAPTRvV3 in handling long
videos, we conduct ablations on TAP-Vid-Kinetics.

Visibility-aware Long-Temporal Attention. We first replace the RNN-like long-temporal modeling
with the long-temporal attention. As shown in Table [2] the comparison between Row 2 and Row
1 shows that the replacement provides a large improvement (3.3 AJ), indicating the superiority of
the attention mechanism over RNN in handling varying length, which aligns with the findings in
modern LLMs. Furthermore, the comparison between Row 3 and Row 2 shows that enabling the
long-temporal attention to utilize visibility prediction to reduce noises caused by occlusion will
further improve the performance by 1.0 AJ. The significant improvements brought by the VLTA
validate the effectiveness of incorporating richer temporal information.

Removal of the Sliding Window. With VLTA, the model captures temporal information from
previous frames, making it redundant to recompute temporal attention within a small window.
Therefore, we eliminate the sliding window by reducing the window size from 8 to 1. In this case,
the original temporal attention in TAPTRv2 will degenerate to an MLP with residual connections.
We retain this module in the following ablations for fair comparison. As shown in Table 2] the
comparison between Row 4 and Row 3 shows a 0.7 AJ improvement. We attribute this to better
position initialization. More specifically, initializing the position of the target tracking point in the
current frame with the estimation from a nearby frame simplifies the estimation process. In addition,
this modification also enables TAPTRV3 to process input videos in a streaming manner.

Context-aware Cross-Attention. As shown in Table 2} the comparison between Row 6 and Row 5
shows that the introduction of CCA further brings a significant improvement of 1.8 AJ, verifying the
effectiveness of CCA in improving the robustness of the spatial feature querying.
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Table 5: Ablation on the input positions Table 6: Ablation on global matching. Whether to use

of decoder. auto-triggered global matching.
Input Positions of Decoder | AJ < 4%,, OA Input Positions of Decoder | Dataset | Al <47, OA
Global Matching Calculation | 51.1  64.0  86.5 Previous Frame’s Prediction

Kin. ‘ 549 675 882

Previous Frame’s Prediction | 52.9 659  87.8 Global Matching if S.C. Kin. 55.1 67.7 884

Only Supervise the Position of Visible Points. It is worth noting that predicting the position of the
target tracking point when it is occluded is an ill-posed problem. Forcing the model to localize the
occluded point can destabilize the learning process and may lead the model to learn a bias toward
a fixed motion pattern. As shown in Rows 5 and 4 of Table [2] simply ignoring the supervision of
invisible points’ location predictions results in an improvement of 1.6 AJ.

Patch-level Similarity Calculation in CCA. As shown in Table[3] we conduct comparative experi-
ments on different methods to obtain patch-level similarity. The results show that the “Element-wise”,
which only considers the similarities between two points that are located at the same position in the
two patches, is less effective than the “Every two point” strategy that is adopted in our current CCA.
This is because the “Every two point” strategy has an advantage in handling more complex spatial
variations, such as rotation, and is more tolerant of the sampling point’s location. For more details,
please refer to Sec.[A.4]in our appendices.

Spatial Context Updating. As shown in Table[d] neither utilizing our VLTA nor an MLP to update
the query’s context features yields better results. This indicates that maintaining the target tracking
points’ spatial context throughout the tracking process not only reduces computation costs but also
helps spatial feature querying. For more details, please refer to Sec. in our technical appendix.

Ablation on Auto-Triggered Global Matching As discussed in Sec. TAPTRv3 triggers global
matching only when a scene cut is detected. This design is based on the empirical finding that
naively applying global matching at every frame results in inferior performance, as shown in Table 5]
Therefore, TAPTRvV3 defaults to using the previous frame’s prediction for initialization. It activates
global matching only when a scene cut is detected, which serves to re-establish tracking and prevent
failure. This automatic trigger mechanism boosts the performance of our best model by 0.2 AJ,
as shown in Table [6] We further construct a subset of Kinetics by selecting all videos with scene
cuts. On this subset, this module brings an improvement of 0.5 AJ in the same experiment setting,
confirming its effectiveness. More details can be found in Sec.[A.T]of the appendix.

5 VISUALIZATION

We select a real-world video with 351 frames to showcase the improvement of our model. The video
captures a very long train passing through the scene. At the beginning of the video, we generate query
points using a 40 x 40 grid over the foreground region (excluding the sky). This example presents
a typical long-term occlusion scenario of nearly 300 frames, posing a considerable challenge to
model robustness. As shown in the Fig. 3] TAPTRv2 makes large-scale visibility mispredictions once
the train enters the frame, and after the train leaves, its predicted point locations become unstable,
with most tracks lost. In contrast, TAPTRv3 maintains stable and accurate tracking throughout the
entire video, correctly predicts visibility during occlusion, and recovers accurate point locations
once the train leaves the frame. This result highlights the effectiveness of our proposed components
in mitigating feature drifting and achieving more accurate and robust tracking. Notably, for fair
comparison, the global matching mechanism in TAPTRv3 was disabled.

6 CONCLUSION

In this paper, we have presented TAPTRvV3, a strong method for the TAP task. TAPTRv3 improves
TAPTRV2 primarily by developing the Context-aware Cross-Attention (CCA) and Visibility-aware
Long-Temporal Attention (VLTA) to address the shortage of feature querying. CCA improves key-
aware deformable attention by leveraging spatial context, which helps point-level tasks obtain more
robust and accurate attention weights for updating both features and positions. VLTA replaces the
RNN-like long-temporal modeling with an attention mechanism, enabling the perception of longer
temporal context and mitigating the issue of feature drifting. VLTA further utilizes the visibilities
to improve the quality of long-temporal attention, leading to a better feature querying ability along
the temporal dimension. Additionally, TAPTRv3 further improves its performance in long videos
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Figure 3: Visual comparison between TAPTRv3 and TAPTRv2.

by introducing the auto-triggered global matching mechanism. With the help of our insights and
these novel designs, TAPTRv3 surpasses TAPTRvV2 by a large margin and obtains state-of-the-art
performance on multiple challenging datasets. Even when compared with the methods trained on
extra internal data, TAPTRv3 remains competitive.

ETHICS STATEMENT

Our work focuses on developing algorithms for tracking any points in videos, which is a fundamental
computer vision problem with broad applications in robotics, video editing, and manipulation. This
research relies exclusively on publicly available datasets and does not involve collecting or annotating
data containing personal or sensitive information. All of our experiments are limited to standard
academic benchmarks that are widely adopted in the community. We acknowledge that point tracking
techniques could potentially be misused for surveillance or privacy-invasive applications. However,
our intent is to advance the scientific understanding of visual correspondence and to enable positive
downstream applications such as video editing, motion analysis, and embodied Al. We encourage
responsible use of this technology in line with community norms and ethical guidelines.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of TAPTRv3. Our method is described
in detail in Sec[3] including the model design, architecture, and inference procedure. The training
settings and hardware environment are provided in Sec[4.2] Additional implementation details and
hyperparameter choices can be found in Sec[A.4]in the appendix. The datasets used for training and
evaluation are introduced in Sec[41] all of them are publicly available and widely adopted benchmark
datasets. All source code and model weights will be released to the public upon acceptance of this
paper to further support research and development in the community.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

In this appendix, we provide more ablation studies on the design of our key components and some
hyper-parameters (see Sec.[A.T). Beyond demonstrating the superior performance of our model, we
also analyze its efficiency, including inference speed and GPU memory usage (see Sec.[A.Z). To
comprehensively evaluate our model, we also conduct additional tests on the relatively short DAVIS
dataset in TAP-Vid (Doersch et al.,[2022) benchmark and the extremely long PointOdyssey |[Zheng
et al.|(2023)) benchmark (see Sec@. Furthermore, we provide more details on the implementation
and experimental settings (see Sec/A.4). In addition, we also discuss the limitations of our model to
provide a comprehensive understanding (see Sec[A.5). To address potential concerns, we also provide
additional discussions on the model design (see Sec.[A.6). In accordance with the requirements, we
include a statement on the use of Large Language Models (see Sec.[A.7). Finally, we present some
more visualization results to show the superiority of TAPTRv3 and the effectiveness of our designs
(see Sec.[A.§|and the supplementary videos).

A.1 MORE ABLATION STUDIES

Number of Context Features. As discussed in Sec. and Sec. we sample N? features in the
form of a grid with 1-pixel grid interval when preparing the point query’s context features C and each
sampling point’s context features Kj* in cross-attention. At different scales of the feature map, the
grid interval is the same. This allows us to fuse information from receptive fields of different sizes.
As N increases, it effectively means that the patch size becomes larger, and the context features tend
to represent more global information. To find the optimal value of /N, we conduct experiments with
N = 1El, N = 3,and N = 5 using the same settings as Sec. The results are shown in Table
where N = 3 obtains the best performance. Compared with sampling 25 context features (N = 5),
sampling 9 context features (/N = 3) around the point not only requires fewer computing resources
but also yields better performance, with an AJ improvement of 0.7. These results indicate that for the
task of point tracking, context features are important, but they should not be so excessive or represent
too large areas of the image as this could prevent accurate description of the tracked points.

Table 7: Ablation on number of context features N2.

Number of Context Features N2 | A) < OA

avg
N2=1 513 646 874
N2=9 529 659 878
N2 =25 522 658 878

Memory Size of VLTA. TAPTRvV3 eliminates the sliding window (Li et al.,[2024cib) and introduces
the Visibility-aware Long-Temporal Attention (VLTA) module to extend the temporal attention to an
arbitrary length, while considering the visibility. Excluding the use of visibility, the recent SAMZE]
adopts a similar temporal modeling approach, where SAM?2 maintains a memory to record features
from past frames in a FIFO manner and limits the memory size to 8 to focus on recent frames. To
demonstrate the advantage of extending temporal attention to arbitrary lengths and the generalization
ability of our VLTA to temporal lengths, we conduct ablation studies on the memory size. Specifically,
we use the trained TAPTRv3 model from Sec and perform evaluations on the Kinetics dataset
with different memory sizes. As illustrated in Table[8] the significant positive correlation between
memory size and model performance indicates that, although the perception range of our VLTA is
limited to 1 to 23 frames during trainingﬂ our VLTA is still able to generalize beyond 24 frames. This
generalization ability enables us to expand the range of temporal perception, allowing the collection
of long-term temporal information from all past frames to help improve the robustness of long-term
point tracking.

*When N = 1, the CCA will actually degenerate to the vanilla key-aware deformable attention, we can also
find this performance in Row 5 of Table

SNikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr,
Roman R™"adle, Chloe Rolland, Laura Gustafson, et al. SAM 2: Segment Any-thing in Images and Videos. arXiv
preprint arXiv:2408.00714, 2024. 12.

SBecause our training data are videos with fixed lengths of 24 frames
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Table 8: Ablation on the memory size of VLTA (Kinetics).

Memory Size of VLTA | AJ <47 OA

avg

12 519 652 865
24 53.1 66.3 87.3
48 545 672  88.0
All Past 549 675  88.2

However, unconstrained temporal memory size will lead to CUDA out-of-memory problems in
practical applications. We find that when processing videos with up to 3,500 frames, the GPU
memory requirement reaches 24GB because of the large amount of cached temporal memory. To
balance performance and efficiency, and to enable the model to handle videos of arbitrary length, we
need to limit the size of the temporal memory and manage it with FIFO mechanism. To this end, we
further evaluated RoboTAP (with videos up to 1,300 frames) with more diverse memory sizes. As
shown in Fig.[d] the performance converges when the memory size reaches 512. With the help of
temporal memory management, TAPTRv3 is capable of handling downstream applications, which
usually require the model to process online streaming videos.

66

64.2 64.3 64.4 64.5 64.5

-3
B

62.5

o
[N}

60.3

o
o

Performance

57.5

[
®

w
=)

8 16 32 64 128 256 512 1024
Temporal Memory Size

Figure 4: Ablation on the memory size of VLTA (RoboTAP).

The Method of Obtaining Similarity Map in Global Matching. In Sec.[3.4 we propose the
auto-triggered global matching to reestablish point tracking when a scene cut is encountered to
prevent the loss of tracking targets. Instead of simply relying on a point-level feature to construct
a similarity map in global matching as in previous works (Cho et al., 2024; Doersch et al.|[2023),
we propose incorporating spatial context features, similar to the CCA module, to enhance accuracy.
(For more implementation details, please refer to Sec.[A.4). To investigate the effectiveness of this
approach, we conduct an ablation study on it. As shown in Table 9] the incorporation of spatial
context features brings a relatively small performance improvement. However, considering that we
only trigger global matching when a scene cut is detected and its computational cost is negligible, we
adopt the use of spatial context features in TAPTRv3.

Table 9: Ablation on calculation of similarity map.

Feature of Tracking Point | AJ < 47 OA

avg

Point-level Feature 55.75 67.88 87.57
Spatial Context Features | 55.79 67.94 87.57

To avoid misunderstanding, we emphasize that our main contribution in global matching lies in the
novel auto-trigger mechanism, rather than the global matching itself.

More Ablation on Auto-Triggered Global Matching.
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We evaluate the proposed auto-triggered global matching mechanism on the full Kinetics dataset. As
shown in Table[6] while the method yields performance gains, the improvement is relatively modest.
This is largely because only a subset of videos in Kinetics contain scene cuts, and thus actually
activate the mechanism, whereas evaluation metrics are averaged over the entire dataset. To better
isolate the effectiveness of our approach, we construct a scene-cut subset comprising all videos in
Kinetics that contain at least one scene cut, accounting for approximately 27% of the 1,144 total
videos. We conduct the same ablation study on this subset. As shown in Table[I0] triggering global
matching upon detecting scene cuts leads to a significant improvement (0.5 AJ), demonstrating the
effectiveness of our method in relevant scenarios.

Table 10: Ablation on auto-triggered global matching. Whether to trigger the global matching
when encountering scene cuts on the Kinetics scene-cut subset. “Kin.” is short for TAP-Vid-Kinetics,
and “S.C.” indicates scene cuts

Input Positions of Decoder | Dataset | AJ <47 OA

avg

Kin. w/S.C. | 553 67.0 86.9
Kin. w/S.C. | 558 679 87.6

Previous Frame’s Prediction
Global Matching if S.C.

A.2 EFFICIENCY ANALYSIS

Inference Speed. Notably, while TAPTRvV3 introduces two additional modules, CCA and VLTA,
which increase computational overhead compared to TAPTRvV2, the inference speed of TAPTRV3 is
even faster than that of TAPTRv2. We benchmark the runtime performance on the TAP-Vid-DAVIS
dataset using a single GeForce RTX3090 GPU, measuring the total number of video frames and
the model’s inference time to calculate the average FPS. We also include CoTracker (Karaev et al.|
2024b), which is a highly representative and influential method, as a baseline. For all experiments,
we set the input video resolution to 384 x 512, with an average of 22 tracked points per video. Each
experiment was repeated five times to report a stable average. For a fair comparison, we set the
window size to 8 and the window stride to 4 for all models. As shown in Table[TT] under the same
conditions, TAPTRv3 achieves 15 FPS higher than TAPTRv2.

Table 11: Average FPS of TAPTRv2 and TAPTRv3.

Method | Average FPS | Method | Average FPS | Method | Average FPS
Cotracker | 264 | TAPTRv2 | 419 | TAPTRv3 | 5722

We attribute the faster speed to the following reasons. (1) The CCA module introduces only 9 more
sparse sample points, with the additional computational overhead negligible compared to the overall
network. (2) While we introduce VLTA, we also remove the Temporal Attention module and the
complex Window Post-processing in TAPTRv2. (3) TAPTRv3 uses a more lightweight backbone
(Resnet-18 vs. Resnet-50) and fewer decoder layers (4 layers vs. 5 layers), making the model more
efficient. Additionally, it utilizes lower-resolution training data (384 x 512 vs. 512 x 512), resulting
in lower-resolution inputs during inference as well.

GPU Memory Overhead. When the memory size in VLTA is set to 512 (as discussed in Sec[A.T)),
our model is capable of processing videos of arbitrary length in a streaming manner. When tracking
100 points simultaneously in a streaming video, the GPU memory usage is less than 2GB, making its
deployment cost-effective.

A.3 MORE COMPARISONS

Comparisons on DAVIS Benchmark. We compare TAPTRv3 with previous methods on the DAVIS
subset of the TAP-Vid (Doersch et al., 2022)) benchmark. DAVIS contains relatively short videos, with
an average length of only 70 frames. As shown in Table[I3] on shorter videos TAPTRv3 performs
comparably to TAPTRv2. Although it is slightly behind in AJ, there is still an improvement in < g,
indicating better localization capability. The result is reasonable, as our design is mainly intended to
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Table 12: Comparison of TAPTRv3 with different backbone and training resolution.

Kinetics RGB-Stacking RoboTAP DAVIS
Method Al <7 OA | Al < 6F OA | Al < 6F OA | A <6% OA

avyg avg avg avg

TAPTRv3 (Resnet-50, 512 x 512) | 545  67.5  88.2 ‘ 73.0 862  90.0 ‘ 646 772  90.1 ‘ 632 767 910

TAPTRv3 (Resnet-18, 384 x 512) | 549  67.5 88.2 | 723 841 908 | 645 773 89.7 | 632 764  90.6

Table 13: Comparison of TAPTRv3 with prior methods. We use ' to indicate the introduction
of additional training data. Specifically, CoTracker3' additionally incorporates 15K real videos.
BootsTAPIR' and BootsTAPNext-B train on an additional 15M real videos. Anthro-LocoTrackR"
leverages an extra 1.4K human motion data. TAPTRv3 obtains state-of-the-art performance on most
datasets and remains competitive with methods trained on extra internal data. Training data: (Kub24),
(Kub48), and (Kub64) refer to Kubric (Greff et al., 2022) with 24, 48, and 64 frames per video,
respectively. (PO) PointOdyssey (Zheng et al., 2023)), (FT) FlyingThings++ (Mayer et al.|[2016). For
fair comparison, we do not utilize auto-triggered global matching here.

Training DAVIS

Method Data Al <dg,, OA
PIPs (Harley et al.|[2022) FT 422 648 717
PIPs++ (Zheng et al.|[2023) PO - 69.1 -

TAP-Net (Doersch et al.[[2022) Kub24 33.0 48.6 78.8
TAPIR (Doersch et al.[[2023) Kub24 56.2 70.0 86.5
CoTracker (Karaev et al.|[2024b) Kub24 61.8 76.1 88.3
TAPTR (Li et al.[[2024¢) Kub24 63.0 76.1 91.1
TAPTRv2 (Li et al.[[2024b) Kub24 63.5 75.9 91.4
LocoTrack (Cho et al.||2024) Kub24 63.0 75.3 87.2
CoTracker3 (online) (Karaev et al.||2024a) Kub64 64.5 76.7 89.7
Track-On (online) (Aydemir et al.|[2025) Kub24 65.0 78.0 90.8
TAPTRv3 (online) | Kub24 | 632 764 906

improve tracking performance on long videos, which has already been validated in Table[T] of the
main paper.

Comparisons on PointOdyssey Benchmark. PointOdyssey |[Zheng et al.| (2023)) is a benchmark
composed of synthetic data, and it is noticeably more realistic than TAP-Vid-Kubric. A key character-
istic of PointOdyssey is its extremely long video sequences: the average length in the test set reaches
2386 frames, and the longest video contains 4325 frames, which far exceeds the video lengths in the
TAP-Vid benchmark. Since our method is designed to address challenges in long videos, evaluation
on PointOdyssey is highly meaningful.

To this end, we directly evaluated TAPTRv3 trained only on the Kubric dataset on the PointOdyssey
test set (including 12 valid videos). This allows us to assess the model’s performance on longer and
more challenging sequences, while also providing insight into its generalization ability. We report
the metrics proposed in PointOdyssey, including dq.,, 6}1’259, and d¢7¢, which measure localization
accuracy. The metrics 6};3}59 and ;¢ are computed in the same way as 4,4 but consider only visible
and occluded points, respectively. In addition, we also report the Survival metric, which measures the
average number of frames before tracking failure, where failure is defined as an error exceeding 50

pixels. The results are shown in the Table[T4]

Even without being trained on PointOdyssey, TAPTRv3 achieves highly competitive performance.
More importantly, the improvement compared to TAPTRV2 is extremely obvious, especially a 9.0
point gain on the 5}1’3} metric, which measures tracking accuracy on visible points. The experimental
result validates that our insight into the limitations of TAPTRV2 in long videos is correct, and our

proposed modules are highly fruitful.
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Table 14: Comparison of TAPTRv3 with prior methods on PointOdyssey.

Training PointOdyssey
Method Data davg  Ogpg  Oang  Survival
TAP-Net (Doersch et al.|[2022) PointOdyssey | 28.4 - - 18.3
PIPs (Harley et al.|[2022) PointOdyssey | 27.3 - - 423
PIPs++ (Zheng et al.||2023) PointOdyssey | 29.0 324 18.8 47.0
CoTracker (Karaev et al.|[2024b) | PointOdyssey | 30.2 32.7 24.2 55.2
Track-On (Aydemir et al..[2025) Kubric 34.2 38.1 - 49.5
TAPTRv2 (Li et al.[[2024b) Kubric 26.1 284 215 50.0
TAPTRv3 | Kubric | 33.9 374 260 51.3

A.4 MORE INPLEMENTATION DETAILS

Backbone and Training Resolution.

As discussed in Sec. @]and Sec. @ compared to TAPTR and TAPTRv2, which use Resnet-50 as the
backbone to extract image features, TAPTRv3 adopts the more lightweight Resnet-18. Additionally,
TAPTRvV3 is trained on videos with a resolution of 384 x 512, which is lower than the 512 x 512
resolution used by TAPTR and TAPTRvV2. This is primarily because our experiments showed that a
lighter backbone and lower training resolution can achieve comparable performance, as indicated by
the results in Table[T2] These modifications improve the efficiency of our model and also demonstrate
the superiority of the decoder design.

Calculation of Similarity Map in Global Matching. In the global matching module of TAPTRV3,
we construct a similarity map H; € R *W between the target tracking point and the feature map
X, € REXWXD of the current frame. However, instead of solely relying on a point-level feature as
in previous methods, similar to CCA, we leverage the spatial context features C € R *xD (o help
improve the accuracy of the similarity map H,. As illustrated in Fig.[5 in our global matching, we
first utilize each feature of the target tracking point’s context feature to compute a group of similarity
maps H, € RHXWxN? However, since each feature in the context features is still point-level,
computing the similarity map using any single one of them independently still introduces noise.
Therefore, we further employ an MLP to comprehensively integrate these noisy similarity maps,
resulting in a more accurate one H;.

H,[:,:,0] € RFXW

YC/
LN /=»

“ i1 RO
Wg N

vaord
Hi[:,: N2 — 1] € RPW

L J

Figure 5: Detailed visual illustration of global matching.

Patch-level Similarity Calculation in CCA. Sec. [3.3|briefly introduces how to calculate patch-level
similarity in Context-aware Cross-Attention (CCA), and Sec. f.4] presents an ablation study on it.
In this section, we provide a more detailed description. For the “Every two points” method that
is adopted in TAPTRvV3 by default, as shown in Fig E] (a), each feature of the point query’s N2
context features is paired with every feature in the sampling point’s N2 context features K" to obtain
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Sm e RV’ *N* For the “Element-wise” method (See Sec. 4.4|and Table EI), as shown in Fig E| (b),
each feature of the point query’s N2 context features is only paired with its corresponding one in
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Figure 6: Detailed visual illustration of different methods for computing patch-level similarity.
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Figure 7: Detailed visual illustration of different methods for the updating of spatial context
features.

Spatial Context Updating. In TAPTRvV3, we consistently employ the initial spatial context features
C throughout all decoder layers. To validate its effectiveness, we add a spatial context feature update
module in the transformer decoder for comparison in our ablation study section (See Sec. [.4]and
Table [d). Here, we provide a detailed description of the two methods for updating spatial context
features proposed in this ablation. For the one that uses our VLTA, as shown in Fig. [7(a), for the
n-th spatial context feature C,,, we treat it as a query and attend VLTA to the refined content features
of the past frames to update it. For the one that uses an MLP, as shown in Fig.[/|(b), we concatenate
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the spatial context feature with the point query’s content feature in the current frame f/ and update
the spatial context features with the MLP.

Backbone and Number of Encoder Layers. We further conduct experiments on the TAP-Vid Doer{
sch et al.| (2022) benchmark to investigate the influence of the backbone and encoder layers on model
performance, reporting the Average Jaccard (AJ) metric. The results are presented in Table

First, we employ a larger-capacity backbone, ViT-Adapter |Chen et al.| (2022) with DINOv2, and
report the results in Row 3 of Table@ Compared with ResNet18 (Row 2) and ResNet50 (Row 1), the
performance decreases on all datasets, with a particularly notable drop on the synthetic RGB-Stacking
dataset. Unlike methods based on other architectures, we do not observe that using a more advanced
backbone in our DETR-like model yields further performance gains.

Table 15: The impact of different backbone and encoder layers on model performance

Kinetics | RGB-Stacking | DAVIS
Row | Method Backbone Enc. Layers Al Al Al
1 TAPTRv3 (Ours) ResNet18 2 54.9 723 63.2
2 TAPTRv3 (Ours) ResNet50 2 54.5 73.0 63.2
3 TAPTRV3 (Ours) | ViT-Adapter with DINOv2 2 54.2 67.8 62.2
4 TAPTRv3 (Ours) ResNet18 1 53.5 66.7 61.6
5 TAPTRv3 (Ours) ResNet18 3 51.9 62.6 58.7
6 TAPTRv2 ResNet18 2 45.6 46.7 60.0
7 TAPTRv2 ResNet50 2 49.7 53.4 63.5

Furthermore, since our model utilizes a DETR-like structure, it includes encoder layers in addition
to the backbone to further aggregate features. To better understand this behavior in our model, we
additionally conduct experiments examining the impact of encoder layers and summarize the results
in Rows 1, 4, and 5 of Table [I5] When using two encoder layers, our model achieves the best
performance, and the impact of encoder depth is substantially larger than that of the backbone. We
believe that using only a single encoder layer may lead to insufficient feature extraction, making
the model capacity too limited relative to the task difficulty. In contrast, using three encoder layers
noticeably slows convergence and increases training difficulty. It is worth noting that replacing
the backbone or adjusting encoder depth typically requires extensive hyperparameter tuning (e.g.,
learning rate and weight decay) to achieve optimal performance. We did not perform extensive
hyperparameter tuning here and leave it for future exploration.

Finally, we reduce the model size of TAPTRvV2 by replacing the ResNet50 backbone with ResNet18,
following the design choice in our TAPTRv3. As shown in Rows 6 and 7 in Table the model
exhibits a significant performance drop with the lighter backbone, which, to some extent, reflects the
effectiveness of our newly introduced components in the decoder.

A.5 LIMITATIONS

TAPTRV3 is an online tracker that can process streaming video input, meaning that the decoder
handles only one frame at a time. This design leads to very low computational cost (see Sec.[A.2) but
comes with a limitation in parallelism. Even with sufficient GPU memory, the model can not fully
utilize it. As a result, TAPTRv3 may appear slower than offline methods when evaluated in offline
settings, since those methods can process multiple frames simultaneously in a single forward pass,
while TAPTRv3 requires multiple passes. However, TAPTRvV3 can still be adapted for offline use by
simply applying a sliding window strategy with an increased window size to improve parallelism.
While this adjustment may incur a slight performance drop, it provides a flexible trade-off between
speed and accuracy depending on the application scenario.

A.6 MORE DISCUSSIONS

Discussion of Using Attention in VLTA. Recently, readily applicable RNN-like architectures such
as Mamba |Gu & Dao|(2024) and RWKYV |Peng et al.|(2023) have demonstrated strong potential and
efficiency. However, we choose to use attention rather than these more advanced RNN-like structures
in the VLTA module based on the following considerations.
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One of our core insights is that the information from the initial frame should serve as the most reliable
anchor and be preserved throughout tracking. Although Mamba and RWKYV improve long-range
information propagation through state compression and selective forgetting, they fundamentally rely
on a single evolving hidden state to carry information over time. Regardless of how efficient the
mechanism is, this hidden state represents a lossy compression of the entire history. In long videos,
a point may disappear for hundreds of frames, during which the fine-grained appearance details
stored in the hidden state may degrade or become contaminated. In contrast, our approach keeps the
initial-frame anchor intact and uses attention to directly retrieve information from historical frames to
accommodate appearance changes. Visibility prediction is further incorporated to ensure that more
reliable historical information is aggregated.

In summary, we believe that for the video point tracking task, hidden-state evolution is less suitable
for handling the complex challenges of long videos. While attention may incur higher computational
cost, by appropriately controlling the size of the historical buffer, our model achieves a good balance
between performance and efficiency. As described in Sec. TAPTRV3 can process arbitrarily long
videos in a streaming manner (tracking 100 points simultaneously with less than 2GB GPU memory),
making it deployment cost-efficient.

Discussion of the Effectiveness of Visibility-aware Attention. As described in the main text, we
apply the predicted visibility in a soft weighting manner, where frames predicted as more likely
to be invisible are down-weighted according to confidence rather than discarded. When visibility
predictions are accurate, this weighting is naturally beneficial. When predictions are incorrect, two
cases may occur. If a visible point is predicted as invisible, the attention weights for these frames
are reduced, leading the model to extract less historical information from them. As a result, the
model relies more on the earlier frames where the point is visible, and these frames provide reliable
information. If an invisible point is predicted as visible, the behavior degenerates to not using visibility
weighting, which may introduce unreliable historical information. In summary, the visibility-aware
attention mechanism provides an overall positive effect, as confirmed by the results in Table[2]

Discussion of Scene Cut Detector. Currently, our model relies on an external library as an inde-
pendent module to detect scene cuts. We find that this traditional detection method is sufficiently
accurate in most cases. As reported in Table [I0] on a Kinetics subset consisting of roughly 300
complex real-world videos, the auto-trigger global matching mechanism yields a clear performance
gain. More importantly, this setup allows us to validate our key intuition: compared with relying on
the model’s prediction from the previous frame, the position estimated by global matching is less
accurate, but its advantage lies in providing a fast, coarse global localization. The two components
should therefore be combined.

Nevertheless, the current approach remains imperfect. Using the scene cut detector as an independent,
untrained module may lead to potential generalization issues. However, this is primarily a temporary
compromise because we are currently constrained by available training datasets, making it difficult to
integrate it into the overall framework for joint training. The Kubric dataset commonly used for this
task contains synthetic data with a relatively singular domain. Training a model solely on this dataset
to explicitly or implicitly determine whether a frame contains a scene cut is highly challenging. We
believe that, with access to larger and more diverse training datasets in the future, it will become
feasible to integrate scene cut detection into the overall framework for joint training, leading to
improved performance and generalization.

A.7 THE USE OF LARGE LANGUAGE MODELS
In this paper, we only use Large Language Models (LLMs) for translation and text polishing. No

aspects related to model design, experimental design, or result analysis involve the use of LLMs. We
believe that the use of LLMs in this paper does not affect its scientific contributions.
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A.8 MORE VISUALIZATIONS

To further demonstrate the superiority of TAPTRv3 and the effectiveness of our designs, we provide
more visualizations of TAPTRv3’s predictions on some challenging real-world long videos. In these
visualizations, we label the frame ID at the upper left corner of each frame to indicate the timestamp
(except Fig.[8). To make the tracking results more visually distinct, we adjust the color of the tracking
points based on the overall color of the video.

More Visualizations for Motion Trajectories. We provide more visualizations on videos from
DAVIS dataset, which is a well-received benchmark. As illustrated in Fig. BL we visualize the
complete trajectories produced by TAPTRvV3 to demonstrate the consistency of the estimated motion.

More Visual Comparison with TAPTRv2. We provide more visualizations of the comparisons
between TAPTRv2 and TAPTRv3, demonstrating the superiority of TAPTRv3. For more details,
please refer to the image captions and the corresponding videos. The correspondences between
images and videos are:

Fig.[9 = CompareVideol _TAPTRv2.mp4 & CompareVideol _TAPTRv3.mp4.
Fig.|10]= CompareVideo2_TAPTRv2.mp4 & CompareVideo2_TAPTRv3.mp4.
Fig.[[T]= CompareVideo3_TAPTRv2.mp4 & CompareVideo3_TAPTRv3.mp4.
Visual Comparison w. and wo. Global Matching. We provide more visualizations of the com-
parisons between TAPTRv3 with and without the auto-triggered global matching, demonstrating its

effectiveness. For more details, please refer to the image captions and the corresponding videos. The
correspondences between images and videos are:

Fig.[I2] = CompareVideo4_TAPTRv3wGM.mp4 & CompareVideo4_TAPTRv3woGM.mp4.
Fig.[[3]= CompareVideo5_TAPTRv3wGM.mp4 & CompareVideo5_TAPTRv3woGM.mp4.
More Robust Prediction Visualizations. We additionally provide more visualizations to demon-

strate TAPTRvV3’s robustness in in-the-wild scenarios, showing its potential for various downstream
applications. The correspondences between images and videos are:

Fig.[I4] (a) = RobustVideol.mp4
Fig.[T4](b) = RobustVideo2.mp4.

Figure 8: More Visualizations for Motion Trajectories.
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TAPTRv2 TAPTRvV3 TAPTRv2

TAPTRv3

Figure 9: Visual comparison between TAPTRv2 and TAPTRv3. Best view in electronic version.
From the third image in the first row (36th frame), TAPTRV2 loses tracking of the turtle’s flippers,
and in the last few frames loses tracking of the turtle shell and the point on the fish below the turtle.
TAPTRv3, on the other hand, maintains stable and accurate tracking throughout the video. The
corresponding videos (CompareVideol _TAPTRv2.mp4 and CompareVideol _TAPTRv3.mp4) are
provided in the supplementary material.
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TAPTRv2 TAPTRv3 TAPTRv2

TAPTRvV3

Figure 10: Visual comparison between TAPTRv2 and TAPTRv3. When the goldfish is about to
swim out of the frame from right to left (119th frame), TAPTRV2 loses many target tracking points.
Afterward, the goldfish swims back from left to right, and starting from the 358th frame, the video
shows the other side of the goldfish, where the original target tracking points are occluded. However,
TAPTRV2 incorrectly estimates them as visible or on another fish. TAPTRv3, on the other hand,
maintains the correct estimation. Until the last dozens of frames, when the goldfish turns around
again, TAPTRv3 successfully detects the initial target tracking points, estimates them as visible,
and provides accurate positions. The corresponding videos (CompareVideo2_TAPTRv2.mp4 and
CompareVideo2 TAPTRv3.mp4) are provided in the supplementary material.
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TAPTRv2 TAPTRv3 TAPTRv2 TAPTRv3  TAPTRv2 TAPTRv3 TAPTRv2

TAPTRv3

Figure 11: Visual comparison between TAPTRv2 and TAPTRv3. Best view in electronic ver-
sion. Over time, TAPTRv2 incorrectly estimates the location and visibility of points on jellyfish,
and the error accumulates, while TAPTRv3’s results are more accurate. The corresponding videos
(CompareVideo3_TAPTRv2.mp4 and CompareVideo3_TAPTRv3.mp4) are provided in the supple-
mentary material.
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Figure 12: Visual comparison between TAPTRv3 with and without the auto-triggered global
matching. After the occluder appears and then disappears, TAPTRv3 without auto-triggered
global matching takes about 70 frames to successfully re-track the target tracking points. How-
ever, with the help of global matching, this process takes only two frames. The corresponding videos
(CompareVideo4_TAPTRv3wGM.mp4 and CompareVideo4_TAPTRv3woGM.mp4) are provided in
the supplementary material.

TAPTRv3 with
Global Matching TAPTRv3

TAPTRv3

TAPTRv3 with
Global Matching

matching. After the occluder appears and then disappears, TAPTRv3 without auto-triggered
global matching takes about 14 frames to successfully re-track the target tracking points. How-
ever, with the help of global matching, this process takes only two frames. The corresponding videos
(CompareVideoS_TAPTRv3wGM.mp4 and CompareVideo5S_TAPTRv3woGM.mp4) are provided in
the supplementary material.
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(b)

Figure 14: Additional visualizations of TAPTRv3’s robust predictions. The corresponding videos
(RobustVideol.mp4 and RobustVideo2.mp4) are provided in the supplementary material.
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