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Abstract

Large Language Models (LLMs) can enhance001
the performance of Named Entity Recognition002
(NER) tasks by leveraging external knowledge003
through in-context learning. When it comes004
to entity-type-related external knowledge, ex-005
isting methods mainly provide LLMs with se-006
mantic information such as the definition and007
annotation guidelines of an entity type, leav-008
ing the effect of orthographic or morpholog-009
ical information on LLM-based NER unex-010
plored. Besides, it is non-trivial to obtain literal011
patterns written in natural language to serve012
LLMs. In this work, we propose LiP-NER,013
an LLM-based NER framework that utilizes014
Literal Patterns, the entity-type-related knowl-015
edge that directly describes the orthographic016
and morphological features of entities. We also017
propose an LLM-based method to automati-018
cally acquire literal patterns, which requires019
only several sample entities rather than any an-020
notation example, thus further reducing human021
labor. Our extensive experiments suggest that022
literal patterns can enhance the performance023
of LLMs in NER tasks. In further analysis,024
we found that entity types with relatively stan-025
dardized naming conventions but limited world026
knowledge in LLMs, as well as entity types027
with broad and ambiguous names or definitions028
yet low internal variation among entities, ben-029
efit most from our approach. We found that030
the most effective written literal patterns are (1)031
detailed in classification, (2) focused on major-032
ity cases rather than minorities, and (3) explicit033
about obvious literal features.034

1 Introduction035

Named Entity Recognition (NER) seeks to recog-036

nize and classify named entities in unstructured037

text, and is an essential component in numerous038

natural language processing (NLP) applications039

such as question-answering (Molla et al., 2006), in-040

formation retrieval (Weston et al., 2019) and so on.041

Figure 1: An illustration of the concept of LiP-NER.
Literal Patterns (LiP) provide direct description about
the appearance of the entities in a certain type, reducing
the dependence on world knowledge of LLMs.

Initially, NER systems were built with traditional 042

approaches like rule-based (Borkowski and Wat- 043

son, 1967) and feature-engineering-based (Zhou 044

and Su, 2002). With the release of transformer- 045

based (Vaswani et al., 2017) pre-trained language 046

models, a new paradigm of NER has been estab- 047

lished with BERT (Devlin et al., 2019) and models 048

alike (Wu et al., 2021), which eliminates the burden 049

of training a model from scratch. 050

Recently, generative large language models 051

(LLMs) such as ChatGPT (OpenAI, 2023) have 052

shown outstanding performance among various 053

fields of NLP (Min et al., 2023; Zhao et al., 2023). 054

Prompt engineering, including careful prompt de- 055

sign and extra information provision, has emerged 056

as an economical way to make further improve- 057

ment of LLMs over downstream tasks at test-time 058

(Peng et al., 2023). 059
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When it comes to NER, the initial capabilities060

of LLMs are not as promising (Jimenez Gutierrez061

et al., 2022). One reason is that LLMs rely on062

their world knowledge, which is learned during063

pre-training stage, to process tasks. Thus, in do-064

mains that have less textual resources about the065

entities and the types available for pre-training, the066

vanilla performance of LLMs will be less impres-067

sive. Injecting external knowledge related to the068

type of entities could help, as the models know069

more details about the type they are annotating070

(Seyler et al., 2018). Recent works mainly utilize071

the definition and the annotation guidelines of an072

entity type (Sainz et al., 2024; Zamai et al., 2024).073

As is depicted in Figure 1, A definition is a seman-074

tic description of an entity type, whereas annotation075

guidelines mainly contain edge case clarification,076

and are offered in a way that is reminiscent of hu-077

man annotators. Both types of information offer078

more semantic details about the concept of an entity079

type, but still rely on the world knowledge of the080

connection between the entity and these semantic081

information.082

Historically, literal feature information has083

played an essential role in NER task (McDonald,084

1993), for its direct description on orthographic085

and morphological patterns of an entity type, and086

does not depend on semantic knowledge. However,087

to utilize such information in LLM-based NER088

systems, it shall be described in natural language,089

which is not trivial as it involves expert labor. Be-090

sides, documents of literal features are scarce on091

Internet, making it difficult to utilize such infor-092

mation via retrieval-augmented generation (RAG)093

strategies(Lewis et al., 2020).094

In this paper, we introduce LiP-NER, a method095

of LLM-based NER utilizing Literal Patterns (LiP)096

written in natural language. literal patterns are ex-097

ternal knowledge that directly describe the literal098

features of an entity type, which can be expected099

that have less requirement on world knowledge100

than semantic external knowledge. We also pro-101

pose an LLM-based method to automatically ac-102

quire literal patterns of an entity type. Instead of the103

requirement of several annotation examples (Zamai104

et al., 2024), our method needs only a list of sam-105

ple entities. It gets rid of human annotation, thus106

further reducing labor requirements. Our experi-107

ments demonstrate the effectiveness of LiP-NER108

across different LLMs. Furthermore, our analysis109

provides preliminary insights into the entity types110

that benefit from our method and the key charac-111

teristics of suitable literal patterns for LLM-based 112

NER tasks. 113

In summary, our contributions are threefold: 114

1. We proposed LiP-NER, an LLM-based NER 115

framework that utilizes literal patterns as 116

entity-type-related external knowledge, with 117

less dependency on world knowledge within 118

LLMs. 119

2. We also proposed an LLM-based method to 120

automate the acquisition of the literal patterns 121

of an entity type. It requires only a list of sam- 122

ple entities rather than any annotation exam- 123

ple, thus further reducing labor requirement 124

without a sacrifice in performance. 125

3. Through extensive experiments, we demon- 126

strated the effectiveness of LiP-NER in LLM- 127

based NER. Our analysis provides preliminary 128

insights into the entity types that benefit from 129

our method and the key characteristics of suit- 130

able literal patterns for LLM-based NER. 131

2 Related Work 132

2.1 Named Entity Recognition 133

Initially, NER systems were built with rule-based 134

(Borkowski and Watson, 1967) approaches. Start- 135

ing from the era of feature-engineering-based 136

(Zhou and Su, 2002) approaches, NER is framed 137

as a sequence labeling task, which aims to assign 138

an entity label in BIO format to each token in a 139

given sentence (Tjong Kim Sang and De Meul- 140

der, 2003). Recent well-established approaches in- 141

clude BiLSTM-CRF methods (Lample et al., 2016) 142

and fine-tuning BERT-based models (Devlin et al., 143

2019). These supervised models have shown excel- 144

lent performance, but they are difficult to generalize 145

to other domains (Gururangan et al., 2020). In ad- 146

dition, in specific domains, the scarcity of labeled 147

data has been a long-lasting challenge, making it 148

difficult to train models on these domains (Hed- 149

derich et al., 2021). 150

2.2 LLM-Based NER 151

In recent years, generative LLMs have demon- 152

strated impressive generalization capabilities 153

across various challenging tasks (Hegselmann et al., 154

2023; Robinson and Wingate, 2023; Hendy et al., 155

2023), inspiring a series of studies that attempt 156

to reframe NER tasks into a generative format. 157

For instance, Wang et al. (2023) proposed GPT- 158

NER, which effectively transforms the NER task 159
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from sequence-labeling to text-generation with160

some special tokens involved. Li et al. (2023) pro-161

posed CodeIE, which utilizes code generator LLMs162

and formulates the NER task into a code genera-163

tion task. However, efforts of applying generative164

LLMs to NER have been less promising, lagging165

far behind supervised methods (Jimenez Gutierrez166

et al., 2022; Hu et al., 2024).167

2.3 External Knowledge for LLM-Based NER168

Seyler et al. (2018) have demonstrated that the pro-169

vision of external knowledge benefits in NER. Re-170

cent methods take full advantage of external knowl-171

edge via prompt-based augmentation of LLMs.172

When it comes to entity-type-related knowledge,173

an intuitive idea is the definition of a type. Prompt-174

NER (Ashok and Lipton, 2023) utilizes definitions175

and annotated examples as external knowledge,176

with a prompt that instruct LLM to perform self-177

correction via justifying the entries in its potential178

entity list. Zhou et al. (2024) proposed Universal-179

NER and tried to replace the type name with a short180

description of the type but with no gain. Mimic181

human annotators, GoLLIE (Sainz et al., 2024)182

and SLIMER (Zamai et al., 2024) applied anno-183

tation guidelines in code- and natural-language-184

LLM-based NER, respectively. Hu et al. (2024)185

applied annotation guidelines with additional in-186

structions based on error analysis in LLM-based187

clinical NER tasks and observed constant improve-188

ment over vanilla performance.189

Both definition and annotation guidelines pro-190

vide more semantic details about an entity type,191

but still rely on world knowledge of the connection192

between the entity and the knowledge, which is193

learned by LLMs during the pretraining stage.194

3 LiP-NER195

3.1 Literal Patterns196

In rule-based and feature-engineering–based NER197

systems, researchers often exploit characteristics198

inherent to the entity names—such as morphologi-199

cal characteristics, including affixes and key words,200

and orthographic characteristics, including initial201

capitalization or all-caps, alphanumeric sequence202

structures, the use of punctuations (e.g., hyphens203

and delimiters) and so on. These features are either204

hand-crafted by experts or automatically extracted205

from large-scale gazetteers, and the resulting pat-206

terns are employed in NER systems as decision207

rules, regular expressions, or dimensions of feature208

vectors. 209

For LLMs, external knowledge is injected by 210

writing it directly into prompts in natural language. 211

In this paper, we define Literal Patterns (LiP) as 212

a list of such literal features written in natural 213

language. As aforementioned, this list typically 214

covers the orthographic and morphological proper- 215

ties of a given entity type—common prefixes and 216

suffixes, keywords, capitalization conventions, al- 217

phanumeric patterns, punctuation usage, and so on. 218

In our method, these features are discovered from 219

a relatively small list of sample entities. Hence, we 220

refer to them as “patterns”. 221

Figure 2: The prompt template used to query LLMs
for the generation of literal patterns, which includes a
list of sample entities and a generation instruction. The
term "nomenclature" was used in experiments but is
deprecated in this paper, due to its inaccuracy-while
nomenclature refers to a system of naming, the resource
generated in this way is more like a set of patterns.

3.2 Acquire Literal Patterns via LLMs 222

Although literal patterns are useful resources, it is 223

not trivial to obtain them. To write literal patterns 224

in natural language, expert labor is required. Es- 225

pecially for the entity types with more diversity in 226

entity names, it’s nearly impossible to exhaust the 227

nuances. 228

To overcome this limitation, we exploited Chat- 229

GPT (OpenAI, 2023) to generate literal patterns. 230

Being different from the method of generating an- 231

notation guidelines (Zamai et al., 2024), which 232

utilizes manually labeled annotation examples, gen- 233

erating literal patterns requires only a small list of 234

sample entities. In particular, we designed a zero- 235

shot prompt template shown in Figure 2 to query 236

LLMs. In this template, we provide a small list 237

of sample entities to prompt the LLM to generate 238

literal patterns in a list. 239

3.3 Case Study 240

Figure 3 shows an case study example. This is 241

an example from GENIA dataset, labeling protein 242

entities, tested on LLAMA-3-8B-INSTRUCT with 243
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Figure 3: Case study example. The golden and green
entities are correct labels, while the red one is wrong.
The underline in the text labels a nested long entity,
which is missed in all configurations.

4 configurations: vanilla, with definition, with an-244

notation guidelines, and with literal patterns. The245

full texts of external knowledge are listed in Ap-246

pendix B.247

The vanilla model labels 2 correct entities, both248

are abbreviations. The model may have some world249

knowledge about these two mentions, or the model250

learned that proteins often appear in text as abbrevi-251

ations or code names, so it labels all abbreviations252

in this text, which are two correct labels.253

Providing a definition of protein, the perfor-254

mance stays still. Although the definition enriches255

the meaning of protein, offers more semantic in-256

formation to the context, it fails to provide more257

clue for the LLM to label. Providing annotation258

guidelines, the performance does not change. An-259

notation guidelines offer several regulations and260

notices, which may help refining the borders of la-261

bels or filtering out potential false labels, but in this262

case, there is no false label to be refined or filtered263

out.264

Providing literal patterns, two additional entities265

are correctly labeled, while one incorrect label is266

introduced. With literal patterns, The model learns267

what entities of a certain type may look like, and268

follows the provided patterns to label. In this case,269

the model learned that protein entities may appear270

as functional descriptions and abbreviations, so it271

labeled 3 more mentions that involve functional272

descriptions, which were 2 correct labels and 1 273

wrong label. 274

4 Experiments 275

In the experiments, we comprehensively investi- 276

gated the effect of literal patterns on low resource 277

LLM-based NER tasks. All experiments were con- 278

ducted on original models without any fine-tuning. 279

Our research questions include: 280

• RQ1: Can LiP-NER help LLMs to process NER? 281

• RQ2: What kinds of entity types are more likely 282

to benefit from LiP-NER? 283

• RQ3: What is a helpful set of literal patterns? 284

4.1 Datasets & Metrics 285

We conducted experiments on six publicly accessi- 286

ble datasets, including: 287

MIT dataset series (Liu et al., 2013) is a widely- 288

used benchmark for zero-shot NER, which consists 289

of three datasets: restaurant, movie, and movie- 290

trivia. MIT-restaurant contains queries about 291

restaurants with 8 entity types. MIT-movie are 292

those about movies and MIT-movie-trivia con- 293

tains more complex queries, each of them has 12 294

entity types. 295

CoNLL-2003 (Tjong Kim Sang and De Meulder, 296

2003) is a famous dataset in news domain, which 297

has 4 entity types including person, organization, 298

location and miscellaneous. 299

GENIA (Kim et al., 2003) is a dataset in biomed- 300

ical domain. We follow Collier et al. (2004) to 301

simplify GENIA into 5 entity types including DNA, 302

RNA, cell_line, cell_type and protein. 303

BC5CDR (Li et al., 2016) is another dataset in 304

biomedical domain, including 2 entity types: chem- 305

ical and disease. 306

We followed the official splits of training, devel- 307

opment and test sets of these datasets. We merged 308

training and development sets for the extraction 309

of annotation examples or sample entities for the 310

generation of the definitions, guidelines and literal 311

patterns, and test these knowledge on the test sets. 312

During evaluation, we processed deduplication 313

on both the model predictions and the ground truth. 314

We filtered out the pure hallucination predictions 315

(i.e. predicted entities that were not in the target 316

text) before evaluation, as these predictions would 317
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not introduce false annotation in the text. We per-318

formed strict matching in evaluation, where a pre-319

dicted entity was considered correct only if both its320

boundaries and type exactly matched those of the321

corresponding ground-truth entity.322

We report micro-precision (P), recall (R) and323

F1 scores in our results, where all entity types are324

treated equally.325

4.2 Models326

We conducted our experiments on two open-327

source LLMs, META-LLAMA-3-8B-INSTRUCT328

(Grattafiori et al., 2024) and QWEN2.5-7B-329

INSTRUCT (Yang et al., 2024). These instruct-330

tuned models could follow natural language in-331

structs and provide outputs in JSON format, which332

helped post-processing. We ran these models lo-333

cally without fine-tuning. Greedy decoding (i.e.,334

do_sample = false) was applied and the seeds were335

fixed for reproducible generation. Our inference336

template is listed in Appendix A.337

4.3 Baselines338

We compare our method with aforementioned com-339

monly used entity-type-related external knowledge,340

including definition and annotation guidelines.341

To generate definition and guidelines, following342

SLIMER (Zamai et al., 2024), for each entity type343

of each dataset, we extracted 3 annotation exam-344

ples from the train&dev set and utilized the 1-shot345

prompt template reported in the original paper to346

prompt OpenAI’s GPT-4O-MINI. To Briefly intro-347

duce the template, it contains a fixed demonstra-348

tion, including 3 annotation examples and a pair349

of manually written definition and guidelines of a350

type, an instruction saying Now do the same for the351

Named Entity: type_name. Examples:, and the 3352

annotation examples extracted from the train&dev353

set.354

We examined LLMs’ capabilities under the cir-355

cumstances of without any external knowledge356

(vanilla), with the definition (marked as w/ Defi-357

nition) and annotation guidelines (w/ Guidelines)358

respectively, and with the combination of these two359

kinds of information (w/ Def&Guide).360

4.4 LiP-NER361

We utilized the proposed zero-shot prompt template362

to acquire literal patterns. For each entity type, we363

extracted 10 sample entities from the train&dev364

set to prompt OpenAI’s GPT-4O-MINI to generate365

literal patterns. We added generated literal patterns366

into aforementioned four baseline circumstances 367

and compared the results (marked as + LiP) with 368

the baselines. 369

5 Results 370

5.1 Effectiveness of LiP-NER (RQ1) 371

From the results in Table 1, we have the following 372

observations: 373

(1) Comparison with vanilla abilities Compar- 374

ing the vanilla capability of each model (row 1 375

of each model) with the augmentation of literal 376

patterns (row 2), on both models, injecting literal 377

patterns yields better F1-scores. On LLAMA-3-8B- 378

INSTRUCT, precision rates consistently increase, 379

and recall rates improve on every dataset except 380

a small decrease on CoNLL-2003, as a trade-off 381

for precision rates. On QWEN-2.5-7B-INSTRUCT, 382

all precision scores rise, and recall improves on all 383

datasets except MIT-movie-trivia and GENIA, as a 384

trade-off for precision rates. 385

(2) Comparison with other knowledge Com- 386

paring literal patterns (row 2 of each model) with 387

definition (row 3) and annotation guidelines (row 388

5) under the circumstances where only one kind of 389

knowledge is injected, literal patterns reach more 390

top F1-scores than other knowledge, with a require- 391

ment of only a small list of sample entities to gener- 392

ate, rather than annotated examples. On LLAMA-3, 393

literal patterns reach 4 out of 6 top F1-scores, where 394

definition and annotation guidelines reach 1 respec- 395

tively. On QWEN-2.5, literal patterns reach 4 out 396

of 6 top F1-scores, where definition reaches 2 and 397

none for annotation guidelines. 398

(3) Literal patterns as add-on Considering lit- 399

eral patterns as an add-on over other knowledge 400

(row 4 to 3, 6 to 5, 8 to 7), for LLAMA-3, injecting 401

literal patterns often yields simultaneous improve- 402

ments in precision and recall over the baselines; 403

although trade-offs occasionally occur, higher F1- 404

scores are frequently attained. In 18 comparisons 405

on LLAMA-3, 10 demonstrate concurrent gains in 406

precision and recall, 8 exhibit trade-offs (of which 407

5 yield F1-score improvements and 3 declines). 408

For QWEN-2.5, trade-offs are more prevalent: 409

among 18 comparisons, 3 achieve simultaneous 410

precision and recall enhancements, 12 involve 411

trade-offs (with 10 F1-score increases and 2 de- 412

creases), and 3 result in reductions in both precision 413

and recall. 414
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Prompt

Dataset (Metrics: Micro-P, R, F1 percentages)

MIT CoNLL-2003 GENIA BC5CDRrestaurant movie movie-trivia

META-LLAMA-3-8B-INSTRUCT

Vanilla 26.1 55.4 35.5 24.6 68.9 36.2 18.5 56.0 27.8 23.6 84.3 36.9 25.6 56.0 35.1 60.0 66.8 63.2
+ LiP 28.0 59.3 38.0 26.2 72.4 38.4 23.9 56.8 33.7 36.8 82.8 51.0 28.1 57.7 37.8 73.5 68.1 70.7
(∆ F1) ↑ 2.5 ↑ 2.2 ↑ 5.9 ↑ 14.1 ↑ 2.7 ↑ 7.5

w/ Definition 25.7 59.9 36.0 26.2 71.9 38.4 19.5 58.1 29.2 26.3 85.2 40.2 32.6 54.4 40.8 64.2 71.5 67.6
+ LiP 29.6 60.1 39.6 26.6 72.1 38.9 22.7 59.1 32.8 33.6 85.3 48.3 32.1 58.1 41.3 70.2 70.5 70.4
(∆ F1) ↑ 3.6 ↑ 0.5 ↑ 3.6 ↑ 8.1 ↑ 0.5 ↑ 2.8

w/ Guidelines 29.5 51.7 37.5 30.2 67.1 41.7 22.7 59.4 32.9 31.5 87.6 46.3 31.5 51.1 39.0 67.9 65.4 66.6
+ LiP 31.1 53.1 39.2 30.5 70.6 42.6 25.3 59.9 35.6 34.0 85.9 48.7 29.1 55.8 38.3 72.7 62.6 67.3
(∆ F1) ↑ 1.7 ↑ 0.9 ↑ 2.7 ↑ 2.4 ↓ 0.7 ↑ 0.7

w/ Def&guide 29.6 55.6 38.7 28.1 68.5 39.9 20.5 58.9 30.4 30.0 87.2 44.6 38.3 52.0 44.1 69.1 66.5 67.8
+ LiP 30.5 58.3 40.0 28.7 70.5 40.7 21.7 60.0 31.9 30.8 87.1 45.5 34.2 58.2 43.1 69.2 66.0 67.6
(∆ F1) ↑ 1.3 ↑ 0.8 ↑ 1.5 ↑ 0.9 ↓ 1.0 ↓ 0.2

QWEN2.5-7B-INSTRUCT

Vanilla 33.0 37.2 35.0 36.9 58.6 45.3 24.2 53.4 33.3 41.7 66.4 51.2 46.2 30.7 36.9 77.6 52.1 62.4
+ LiP 38.6 44.0 41.1 44.1 62.9 51.8 29.0 52.3 37.3 42.0 72.1 53.1 52.8 29.3 37.7 77.8 52.9 63.0
(∆ F1) ↑ 6.1 ↑ 6.5 ↑ 4.0 ↑ 1.9 ↑ 0.8 ↑ 0.6

w/ Definition 33.4 46.4 38.8 43.0 63.9 51.4 23.0 53.6 32.2 47.9 66.9 55.9 45.9 24.7 32.1 81.7 53.5 64.7
+ LiP 37.7 46.3 41.5 48.1 60.9 53.7 34.1 54.7 42.0 45.3 71.9 55.6 53.2 23.6 32.7 81.6 46.7 59.4
(∆ F1) ↑ 2.7 ↑ 2.3 ↑ 9.8 ↓ 0.3 ↑ 0.6 ↓ 5.3

w/ Guidelines 36.2 43.1 39.4 37.8 62.5 47.1 23.0 50.7 31.7 43.8 71.4 54.3 47.5 29.2 36.2 81.1 48.8 61.0
+ LiP 41.0 39.5 40.2 43.5 59.2 50.1 30.1 48.6 37.2 46.4 69.6 55.6 51.0 27.4 35.7 77.6 44.8 56.8
(∆ F1) ↑ 0.8 ↑ 3.0 ↑ 5.5 ↑ 1.3 ↓ 0.5 ↓ 4.2

w/ Def&Guide 38.8 43.0 40.8 40.8 62.8 49.4 24.8 51.3 33.5 47.5 67.8 55.9 48.0 25.0 32.9 83.4 48.3 61.2
+ LiP 41.0 43.1 42.0 44.2 59.9 50.9 33.2 49.2 39.6 47.3 71.0 56.8 51.8 25.3 34.0 80.5 46.1 58.7
(∆ F1) ↑ 1.2 ↑ 1.5 ↑ 6.1 ↑ 0.9 ↑ 1.1 ↓ 2.5

Table 1: Main experiment results.

(4) Comparison between LLMs Generally,415

LLAMA-3 achieves higher recall, while QWEN-416

2.5 yields higher precision, which indicates that417

LLAMA-3 tends to include more potential entities418

in its prediction, leading to an increment in both419

true and false labels. Moreover, literal patterns that420

are effective on one model may fail to improve the421

performance on another (see BC5CDR). This indi-422

cates that model-specific characteristics are also es-423

sential in the efficiency of external knowledge injec-424

tion, highlighting the necessity of model-specific425

prompt engineering when applying LiP-NER.426

5.2 Type-wise Analysis (RQ2)427

By looking into the results, we have some obser-428

vations about the characteristics of the entity types429

that benefit from literal patterns and those does not.430

The first kind of entity types that may benefit431

from literal patterns is the entity types with rela-432

tively standardized naming conventions but lim-433

ited world knowledge in LLMs. For these entity434

types, LLMs may fail to gather sufficient world435

knowledge about entities and their types during436

the pre-training stage, leading to an underperfor- 437

mance of both their vanilla ability and the capacity 438

to leverage semantic knowledge that relies on such 439

knowledge. These entity types are often from spe- 440

cialized domains, where naming conventions are 441

commonly standardized, allowing LLMs to summa- 442

rize them coherently through few sample entities. 443

This kind of entity types highlight the motivation 444

of this work: provide literal features to alleviate the 445

requirement of world knowledge within the LLMs. 446

For instance, for the GENIA dataset on QWEN- 447

2.5, literal patterns have a significant impact on 448

both precision and recall of the DNA and RNA 449

types, leading to a leap on F1-scores (DNA: 19.1 450

to 26.8; RNA: 36.1 to 56.5). On LLAMA-3, the 451

same literal patterns lead to a drastic boost in recall 452

at the cost of precision. This is consistent with the 453

feature of LLAMA-3: it tends to include more po- 454

tential entities, and literal patterns further amplify 455

this tendency. This indicates that the capability of 456

utilizing literal patterns is model-specific. 457

Another kind of entity types that may benefit 458

from literal patterns is the entity types with broad 459
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Prompt

Dataset & Entity Type (Metrics: Micro-P, R, F1 percentages)

MIT-restaurant movie-trivia GENIA

Dish Price Relationship DNA RNA cell_line

META-LLAMA-3-8B-INSTRUCT

Vanilla 24.8 85.7 38.5 28.0 45.6 34.7 1.3 20.5 2.4 23.9 46.8 31.6 4.5 66.4 8.4 15.2 49.4 23.3
+ LiP 27.8 84.0 41.7 33.9 49.1 40.1 9.9 50.9 16.5 20.7 52.0 29.6 4.5 76.0 8.5 17.1 43.3 24.5

w/ Definition 26.0 85.4 39.9 21.3 43.3 28.5 1.6 32.8 3.1 32.2 42.4 36.6 9.1 50.0 15.4 18.5 49.9 27.0
+ LiP 28.9 83.6 43.0 32.2 48.5 38.7 4.9 48.0 9.0 24.8 49.5 33.0 8.4 74.0 15.1 18.6 45.1 26.4

w/ Guidelines 25.5 83.6 39.1 27.4 39.2 32.2 1.6 26.9 2.9 26.9 35.9 30.8 5.5 52.9 10.0 19.4 38.5 25.8
+ LiP 26.7 82.9 40.4 36.9 40.4 38.6 4.0 50.9 7.3 24.2 50.9 32.8 5.7 76.9 10.7 17.2 40.3 24.1

w/ Def&guide 25.8 84.7 39.5 27.9 33.3 30.4 1.2 20.5 2.2 36.1 36.5 36.3 11.4 53.9 18.8 23.5 45.1 30.9
+ LiP 27.8 83.6 41.7 37.7 43.9 40.5 3.1 44.4 5.8 29.8 51.3 37.7 9.6 77.9 17.1 24.5 42.8 31.1

QWEN2.5-7B-INSTRUCT

Text-first 57.0 67.9 62.0 39.6 40.9 40.2 0.6 5.9 1.0 36.3 13.0 19.1 31.4 42.3 36.1 29.8 23.9 26.6
+ LiP 62.3 62.7 62.5 49.7 54.4 52.0 8.2 33.9 13.2 57.0 17.5 26.8 62.1 51.9 56.5 27.0 21.2 23.8

w/ Definition 59.8 69.0 64.1 40.3 36.3 38.2 2.7 43.3 5.1 38.0 4.2 7.6 42.2 26.0 32.1 32.1 21.6 25.9
+ LiP 63.0 59.9 61.4 47.9 53.8 50.7 9.6 36.3 15.2 52.2 10.8 17.9 57.1 30.8 40.0 29.8 18.5 22.8

w/ Guidelines 47.9 74.6 58.3 12.5 4.1 6.2 2.0 28.7 3.7 34.3 5.8 9.9 39.3 31.7 35.1 30.1 26.2 28.0
+ LiP 59.3 59.9 59.6 44.8 42.7 43.7 6.7 37.4 11.4 49.3 8.7 14.7 56.1 35.6 43.5 29.7 21.4 24.9

w/ Def&Guide 57.9 69.0 63.0 20.4 6.4 9.8 2.1 32.2 4.0 37.6 4.1 7.3 51.4 36.5 42.7 30.9 23.2 26.5
+ LiP 61.4 63.1 62.2 38.1 40.4 39.2 12.6 39.2 19.0 50.2 8.5 14.5 57.1 30.8 40.0 26.9 19.8 22.8

Table 2: The results of the entity types mentioned in Section 5.2.

and ambiguous name or definition, while the actual460

entities within these types exhibit limited variation.461

For such types, the type names and definitions may462

fail to accurately describe the target type and could463

even mislead LLMs. However, the limited vari-464

ation in the entity names allows effective literal465

patterns to be formulated, which may mitigate the466

deficiencies in type names and definitions in rep-467

resenting entity distributions, thereby improving468

performance. This kind of entity types highlights469

the importance of precisely describing target entity470

types when applying LLMs to NER tasks.471

For instance, MIT-restaurant’s Price type in-472

cludes adjectives (e.g. cheap, high) and price473

ranges (e.g. below 10 dollars) beyond numeral474

prices, which are not likely to be covered by the475

type name and are not detailed in the generated476

definition and annotation guidelines. Hence, lit-477

eral patterns which address these nuances could478

improve both precision and recall scores on both479

models.480

Another example is MIT-movie-trivia’s Relation-481

ship type. This type focuses on the relationships482

between a movie and the series it belongs to, and483

between a role and the movie, etc., where the en-484

tities are often multi-word phrases like "third film485

in a series". The specialized annotation scope re-486

quires detailed information to enable proper model487

alignment. 488

On the contrary, for the types that is diverse 489

in names, applying literal patterns may lead to a 490

focus on a subset of the type. An example is MIT- 491

restaurant’s Dish type, which includes the main 492

ingredients and the forms of dishes, the methods to 493

prepare, etc., and literal patterns with high coverage 494

are hard to form. Thus, the results demonstrate an 495

increment in precision and a decrease in recall. 496

Another example is GENIA’s cell_line type. 497

This type is almost identical to another cell_type 498

type, the biggest difference is the "line" word at 499

the ending, which doesn’t always appear. The lit- 500

eral patterns may mislead the models to include 501

cell_type entities into predictions, while focusing 502

on the "line" word, leading to a decrease in both 503

precision and recall. 504

5.3 Quality Analysis of Literal Patterns (RQ3) 505

To investigate the effect of the amount of sample 506

entities, we generated literal patterns using various 507

amounts of sample entities (from 5 to 50) across six 508

datasets, with results presented in Figure 4. We ob- 509

serve that increasing the number of sample entities 510

does not necessarily yield performance gains, and 511

the trends of performance differ on different mod- 512

els. These findings suggest that the performance of 513

LiP-NER is more driven by the quality of the literal 514

7



Figure 4: Few-shot experiments on MIT-restaurant dataset. We tested the literal patterns generated with different
amount of sample entities from 5 to 50. The results show that the performance of LiP-NER does not necessarily
grow with the increment in the amount of sample entities.

patterns and the characteristics of the models than515

by the sheer quantity of sample entities.516

In MIT-movie’s RATINGS_AVERAGE type,517

MIT-restaurant’s Hours type, CoNLL-03’s MISC518

type, GENIA’s cell_line type, and BC5CDR’s Dis-519

ease type, we found the literal patterns that con-520

sistently perform well across different models and521

whether other knowledge are provided or not, as522

well as those that perform poorly in any condition.523

By comparing the well-performing literal patterns524

with those that underperform, we offer preliminary525

insights about the quality of literal patterns. We list526

these literal patterns in appendix C.527

For types with certain spelling patterns, it is528

necessary to explicitly indicate their main spelling529

features—such as keywords and prefixes or suffix530

roots—in a separate entry. Including several ex-531

ample entities that contain these keywords or roots532

in an implicit way does not substitute for directly533

specifying these key spelling features.534

For entity types with numerous branches, list-535

ing features of possible branches in detail could536

lead to a broader potential name coverage. The537

descriptions of the branches should reflect genuine538

regularities, rather than stiff explanations based on539

a single example.540

For miscellaneous types like MISC, which con-541

sist of a mix of different subtypes, the literal pat-542

terns should cover the subtype that constitutes the543

majority rather than the minorities. This way, the544

annotation pattern aligns more closely with the tar-545

get type, thereby improving performance.546

6 Conclusion 547

In this paper, we presented LiP-NER, an LLM- 548

based NER framework that leveraged literal pat- 549

terns written in natural language to inject ortho- 550

graphic and morphological knowledge of target en- 551

tity types into LLMs. In addition, we introduced a 552

method to acquire literal patterns via LLMs, which 553

required only a small list of sample entities rather 554

than any annotation example. Through extensive 555

experiments, we demonstrated the effectiveness of 556

our framework over baselines. We analyzed per- 557

formance across various entity types and observed 558

that types with relatively standardized naming con- 559

ventions but limited world knowledge in LLMs, as 560

well as those with broad or ambiguous names or 561

definitions yet low internal variation among entities, 562

benefited most from our approach. We conducted 563

few-shot experiments and found that it was the 564

quality of literal patterns and the intrinsic charac- 565

teristics of the models that affect the performance. 566

We conducted a quality analysis of literal patterns 567

and concluded that the most effective literal pat- 568

terns were (1) detailed in classification, (2) focused 569

on majority cases rather than minorities, and (3) 570

explicit about obvious literal features. Consider- 571

ing the feasibility of LiP-NER as a model-agnostic 572

approach and its demonstrated generalization capa- 573

bilities, we expect our work to enhance the perfor- 574

mance in LLM-based NER. 575

Limitations 576

Our prompt templates require a separate inference 577

for each entity type. While this allows the LLM 578

to focus on recognizing one entity type at a time, 579

8



it ties the computational cost for processing each580

input to the number of entity types. In addition,581

literal patterns are relatively lengthy form of exter-582

nal knowledge, which incurs a high inference cost.583

How to compress the literal patterns without sacri-584

ficing its effectiveness, or how to represent it in a585

more efficient form, is left for future work. Besides,586

providing several kinds of external knowledge in587

one-round conversation causes interplay between588

them in a black-box way. Offer these knowledge in589

a CoT way may have different result, which is left590

for future work. Finally, for most types, literal pat-591

terns can cover a large portion but not all entities.592

Even for domains and entity types with naming593

conventions approved by expert committees—for594

example, the human gene naming conventions rati-595

fied by the HUGO Gene Nomenclature Committee596

(HGNC)—it is impossible to retrospectively cover597

every gene name. Therefore, one should not expect598

to find a perfect set of literal patterns that encom-599

passes all potential entities.600

Ethnics Statement601

There are no ethics-related issues in this paper. The602

data and resources utilized in this work are open-603

source and widely used in many existing studies.604
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A Prompt Template for Inference804

Figure 5: The prompt template for inference of LiP-
NER. The term "nomenclature" was used in our ex-
periments but is deprecated in this paper, due to its
inaccuracy.

B External Knowledge of Case Study805

Definition. ’protein’ refers to any molecule com-806

posed of one or more chains of amino acids, which807

serve various biological functions including struc-808

tural support, catalysis, signaling, and immune809

response.810

Annotation Guidelines. Do not label general811

biological terms or unrelated uses of the word ’pro-812

tein.’ Be cautious of phrases that use ’protein’ as813

part of a larger name (e.g., ’protein kinase A’ refers814

to a specific protein, not a general reference to a815

protein). Avoid labeling entities such as ’protein’816

in non-scientific contexts or when referring to food,817

like in ’protein-rich diet,’ unless specifically refer-818

ring to the biological molecule.819

Literal Patterns. Protein names may include ab- 820

breviations (e.g., SAPK, ERP, NGF-R) that repre- 821

sent functional categories, molecular families, or 822

receptor types. Hyphenated forms (e.g., gp39-CD8 823

fusion protein, Gal4-Eed fusion protein) indicate 824

fusion proteins or chimeric molecules, where two 825

distinct proteins are combined. Functional descrip- 826

tions are often used to specify the activity or role 827

of the protein (e.g., active death effector proteases). 828

Acronyms or abbreviations derived from full names 829

(e.g., mitogen-activated kinase, CCACC/Sp1) may 830

be used to simplify naming. Some protein names re- 831

flect specific sequences or motifs (e.g., CCACC/Sp1, 832

which may indicate a DNA-binding motif for Sp1). 833

Use of “anti-” prefix (e.g., anti-Ig) suggests the 834

protein is an antibody or related to immune recog- 835

nition. Names often include detailed structural or 836

domain information (e.g., Gal4-Eed fusion protein), 837

highlighting the origin or interaction of specific do- 838

mains. 839

C Literal Patterns for Comparison 840

• (a) MIT-restaurant: Hours 841

Good: Use of specific time-related phrases 842

such as "open," "close," and "dinner," often com- 843

bined with times of day (e.g., "open until mid- 844

night," "dinner until 10 pm"). Occasional men- 845

tion of days of the week or specific dates (e.g., 846

"open on sunday," "friday at 6 pm"). Reference 847

to time intervals and specific periods like "all 848

night," "before noon," or "in the evening." Indi- 849

cation of time precision (e.g., "2 am," "around 850

6 pm," "until 11 pm"). Terms like "24/7," "open 851

late," "late hours," and "open at this hour" are 852

common. Informal phrases that refer to being 853

open for an extended time or continuously (e.g., 854

"still open," "stay open," "open all night"). Men- 855

tion of meal times or specific events (e.g., "for 856

lunch," "breakfast before 5 am," "dine in af- 857

ter 10"). Use of "right now" to indicate cur- 858

rent availability or operational status. Casual 859

time expressions like "soonest available," "in an 860

hour," or "this late at night." Usage of "open af- 861

ter" or "close after" in specific time references 862

(e.g., "open after 12," "close after 4 pm"). Refer- 863

ences to business operation, often using "open" 864

or "open hours" (e.g., "business hours," "opera- 865

tion," "clock"). Daypart terms like "afternoon," 866

"evening," and "midnight" to describe times of 867

day. Some references to specific time intervals 868

(e.g., "in 45 minutes," "two weeks"). 869
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Bad: The term "Hours" encompasses specific870

time indications, either precise (e.g., "5 pm") or871

approximate (e.g., "late"). Time references can872

include both exact and relative phrasing (e.g.,873

"open after 10 pm"). Phrasing may indicate fre-874

quency or availability (e.g., "open every day").875

Contextual indicators like "today" can specify876

the relevance of the time mentioned (e.g., "5 pm877

today").878

• (b) MIT-movie: RATINGS_AVERAGE879

Good: Use of adjectives to describe the quality880

of films (e.g., "good," "very good," "mediocre").881

Specific numeric ratings are commonly included882

(e.g., "five stars," "two stars," "eight stars and883

above"). Phrases indicating popularity or criti-884

cal acclaim (e.g., "critically acclaimed," "liked885

by many," "blockbuster film"). Terms related886

to viewer opinions (e.g., "viewers rating," "au-887

dience," "reviews"). Reference to awards and888

recognition (e.g., "oscar," "best picture," "high-889

est rated"). Descriptors that indicate comparison890

or ranking (e.g., "top 10," "lowest rated," "higest891

rated"). Use of superlative or comparative forms892

to emphasize quality (e.g., "best work," "higher893

viewers rating"). Informal or conversational lan-894

guage indicating recommendations (e.g., "must895

see," "should consider seeing"). Inclusion of cat-896

egorical terms related to the context (e.g., "newly897

released comedy," "sequelsprequels").898

Bad: The naming routine for type ’RAT-899

INGS_AVERAGE’ includes specific requests for900

film ratings and reviews. It often mentions901

awards or accolades associated with the films,902

such as "Oscar winning" or specific award cate-903

gories like "Best Picture." The requests typically904

specify a year or other criteria for the ratings,905

such as "four stars or higher." Language used906

in queries can include references to audiences,907

viewer ratings, and quality indicators (e.g., "best908

viewer rating").909

• (c) CoNLL2003: MISC910

Good: The examples include a variety of terms911

referring to specific countries, regions, or groups912

(e.g., "Zimbabwean," "Syrians," "Dutch"). There913

are several references to sporting events or com-914

petitions (e.g., "Davis Cup," "Ryder Cup," "Bel-915

gian Grand Prix"). Terms may reference politi-916

cal affiliations or ideologies (e.g., "Democrat,"917

"Communist-led"). Some examples point to orga-918

nizations or institutions (e.g., "CPI," "Australian919

Rules-AFL"). Names can refer to specific ethnic, 920

cultural, or national identifiers (e.g., "Zionists," 921

"Arab," "Turkish Kurd"). Some terms are related 922

to specific product names or models (e.g., "VW 923

Passat," "GT2 Konrad Porsche 911"). There are 924

references to time periods, holidays, or specific 925

events (e.g., "Labour Day," "Second Empire"). 926

The use of capital letters is prominent for place 927

names, events, and titles (e.g., "Windows NT," 928

"MOROCCAN"). There are occasional abbre- 929

viations or acronyms (e.g., "SBF-120," "C$"). 930

Some examples represent specific locations (e.g., 931

"Vancouver-based," "Palestinian-ruled"). Terms 932

may be linked to specific nationalities or identi- 933

ties (e.g., "New Zealander," "Belgian"). 934

Bad: Many entries are related to organizations, 935

tournaments, or events, often with geographic or 936

descriptive modifiers (e.g., "PGA Tour", "21st 937

African Cup of Nations"). Some entries refer to 938

specific currencies, regions, or historical terms 939

(e.g., "US$", "East Java", "Gulf War"). Abbre- 940

viations or acronyms are common, sometimes 941

indicating military, organizational, or political 942

groups (e.g., "NATO-led", "IMF-hosted"). Com- 943

mon use of hyphenated terms, often combining 944

locations or political entities (e.g., "Burundi- 945

Central Africa", "Serb-held"). Some entries refer 946

to awards, recognitions, or titles (e.g., "Bharat 947

Ratna", "Most Valuable Player"). Titles and 948

names of products or specific items also appear 949

(e.g., "AK-47", "F-14"). Entries may involve 950

sports and entertainment, referencing leagues, 951

players, or events (e.g., "Davis Cup", "All-Star"). 952

Geographic references may specify regions or 953

areas linked with political or historical signifi- 954

cance (e.g., "Nablus-based", "Gaza-based"). Oc- 955

casionally, cultural or historical references are 956

used without modification (e.g., "Nazism", "Civil 957

War"). 958

• (d) GENIA: cell_line 959

Good: The nomenclature often includes the 960

type of cell or organism followed by the descrip- 961

tor "cell line" or a specific cell line identifier. 962

Common terms include "cells" or "cell line" after 963

the name (e.g., "Daudi cells", "H9 T-cell line"). 964

Specific terms often refer to the function, ori- 965

gin, or stimulation type of the cells (e.g., "IL-5- 966

stimulated cells", "PHA-activated cells"). Ab- 967

breviations for specific cell lines or organisms 968

are frequently used (e.g., "CV-1 cells", "CHO 969
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cells"). Cell lines are sometimes referred to by970

their species of origin (e.g., "murine B-cell lym-971

phoma cell line"). The use of prefixes or mark-972

ers, such as "CD68+" or "Nef-expressing", pro-973

vides further classification or description. Some974

entries include the specific context or condi-975

tion under which the cells are used (e.g., "IL-976

2-dependent cell lines", "monoblast-like U937977

cells"). The cell line name may also include addi-978

tional specific features, such as mutations, expres-979

sion markers, or environmental conditions (e.g.,980

"BFU-E-derived cells", "promonocytic THP-1981

cells").982

Bad: Cell line names often reflect the species,983

cell type, or functional characteristics. Specific984

terminology like "T-cell line," "B-cell line," or985

"myeloid precursor" indicates the origin or dif-986

ferentiation pathway of the cells. Abbreviations987

and acronyms (e.g., "CTLL-2," "U937") are com-988

monly used for well-established cell lines. Mod-989

ifiers such as "estrogen-dependent," "peptide-990

specific," or "serum-activated" provide addi-991

tional functional or behavioral details about the992

cell lines. Numeric designations in names (e.g.,993

"CTLL-2") are typically unique identifiers for994

specific subtypes or variations of cell lines. Cell995

type description (e.g., "monocytoid," "myeloid,"996

"lymphoblastoid") is frequently used to clas-997

sify the cells based on their morphology or lin-998

eage. Species indicators may be included (e.g.,999

"murine," "human") to specify the origin of the1000

cell line. No uniform standard for combining1001

terms: cell lines may sometimes include hybrid1002

terms like "myeloid precursor" or "hemopoietic1003

cells."1004

• (e) BC5CDR: Disease1005

Good: - Many disease names consist of med-1006

ical terms combined with suffixes indicating a1007

condition (e.g., "hypoxaemia," "myocarditis"). -1008

A variety of diseases are named based on their1009

affected organs or body systems (e.g., "cardiac1010

disease," "renal damage"). - Conditions with1011

a genetic or clinical origin often feature terms1012

like "dysfunction," "disorder," or "syndrome"1013

(e.g., "attention-deficit/hyperactivity disorder,"1014

"nephrotic syndrome"). - Some diseases are1015

named after the type of abnormality they involve,1016

such as "dysphoric reaction" or "tremor" (e.g.,1017

"dyskinesia"). - Certain terms describe the cause1018

or mechanism of the disease (e.g., "poisoning,"1019

"viremia"). - Malignant and benign tumor types 1020

often include descriptors of tissue or cell type 1021

(e.g., "squamous cell carcinoma," "mesenchymal 1022

tumors"). - Diseases may be named after specific 1023

symptoms or affected features (e.g., "amnesia," 1024

"impaired renal function"). - Specific acronyms 1025

or shortened terms may be used for more complex 1026

or widely recognized conditions (e.g., "TDFS," 1027

"RPN"). - A few names use the combination of a 1028

region or function with a clinical suffix indicating 1029

the condition (e.g., "cerebral infarction," "putam- 1030

inal hemorrhage"). - Some diseases include the 1031

word “disorder” or “syndrome” to denote an 1032

abnormal condition or disease state (e.g., "gas- 1033

trointestinal disorder," "major depression"). 1034

Bad: - The naming of diseases often involves 1035

the use of specific medical terms that describe 1036

the condition or its effects. - Many names re- 1037

flect a combination of anatomical locations (e.g., 1038

"liver mass," "renal failure") and physiological 1039

processes or symptoms (e.g., "sepsis," "apnea"). - 1040

Conditions may also be named after specific char- 1041

acteristics or pathological features (e.g., "inter- 1042

mittent claudication," "Ehrlich ascites tumor"). - 1043

Some names may include a combination of organ 1044

systems or multiple conditions (e.g., "renal and 1045

hepatic dysfunction," "acute renal failure and 1046

hepatic failure"). - The nomenclature can also 1047

involve abbreviations or shorthand for more com- 1048

plex conditions (e.g., "TD," "TAA"). - Certain 1049

terms may refer to a specific disease entity or syn- 1050

drome (e.g., "Angiosarcoma," "L1210 leukemia," 1051

"Ebstein’s anomaly"). - Descriptions may involve 1052

a process or complication caused by a disease, 1053

such as "adverse effect," "disruptive behaviors," 1054

or "Q-T prolongation." - Several conditions are 1055

defined by their clinical manifestations or out- 1056

comes, such as "deaths" or "respiratory distress." 1057

13


	Introduction
	Related Work
	Named Entity Recognition
	LLM-Based NER
	External Knowledge for LLM-Based NER

	LiP-NER
	Literal Patterns
	Acquire Literal Patterns via LLMs
	Case Study

	Experiments
	Datasets & Metrics
	Models
	Baselines
	LiP-NER

	Results
	Effectiveness of LiP-NER (RQ1)
	Type-wise Analysis (RQ2)
	Quality Analysis of Literal Patterns (RQ3)

	Conclusion
	Prompt Template for Inference
	External Knowledge of Case Study
	Literal Patterns for Comparison

