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Abstract

Developing robust vision-guided controllers for quadrupedal robots in complex
environments, with various obstacles, dynamical surroundings and uneven terrains,
is very challenging. While Reinforcement Learning (RL) provides a promising
paradigm for agile locomotion skills with vision inputs in simulation, it is still
very challenging to deploy the RL policy in the real world. Our key insight is that
aside from the discrepancy in the domain gap, in visual appearance between the
simulation and the real world, the latency from the control pipeline is also a major
cause of difficulty. In this paper, we propose Multi-Modal Delay Randomization
(MMDR) to address this issue when training RL agents. Specifically, we simulate
the latency of real hardware by using past observations, sampled with randomized
periods, for both proprioception and vision. We train the RL policy for end-to-
end control in a physical simulator without any predefined controller or reference
motion, and directly deploy it on the real A1 quadruped robot running in the wild.
We evaluate our method in different outdoor environments with complex terrains
and obstacles. We demonstrate the robot can smoothly maneuver at a high speed,
avoid the obstacles, and show significant improvement over the baselines. Our
project page with videos is at https://mehooz.github.io/mmdr-wild/.

1 Introduction

Developing a robust controller for the quadrupedal robot to traverse complex, wild environ-
ments (Carlo et al., 2018; Di Carlo et al., 2018) is a challenging and important problem in robotics.
Recent approaches show its wide range of applications such as delivery in the rugged terrains (Arena
et al., 2006). With the advancement in robot learning for navigation and manipulation (Mirowski
et al., 2017; Levine et al., 2016), Reinforcement Learning (RL) and Imitation Learning have also
brought crucial improvements in legged locomotion (Peng et al., 2020; Hwangbo et al., 2019; Luo
et al., 2020; Da et al., 2020) with proprioceptive state only. Specifically, we have witnessed impressive
performance in the wild using RL incorporating robustness and adaptive ability (Lee et al., 2020;
Kumar et al., 2021).

However, only given proprioceptive information, the blind RL controller addresses challenging
scenarios by training with large-scale randomized environment parameters (Lee et al., 2020; Xie et al.,
2020c). While this technique delivers promising results for maneuvering on uneven and unknown-
material ground, it’s insufficient for more complicated tasks like avoiding obstacles that are hard to
step over, or estimating accurate foot placement positions for safety. To overcome these challenges,
the robot needs to perceive surroundings and plan the path to move. Thus recent works (Escontrela
et al., 2020; Jain et al., 2020; Yang et al., 2021) introduce visual perception to the robot by using a
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depth camera or LiDAR. Moreover, proprioceptive states only provide information about current or
prior terrain, while vision provides information about near-future topography for developing better
stepping skills. By combining the information from both the proprioceptive states and visual inputs,
the robot can maneuver in intricate, wild scenarios as Figure 1 demonstrates.

Nevertheless, learning with visual inputs introduces new challenges in Sim2Real transfer for RL.
While previous methods focus on narrowing the domain gap in observations using domain randomiza-
tion and augmentation techniques (Tobin et al., 2017; Laskin et al., 2020b; Hansen & Wang, 2021),
the latency in hardware has not been well studied. Latency exists in all parts of the real robot control
system. The sensors’ transmission, the control algorithm’s computation, and the robot’s response
all introduce latency for perception and control. This problem is further magnified when the control
policy requires both high-dimensional vision and proprioceptive state inputs. First, the deficiency of
on-board computing resources in a quadrupedal robot causes severe latency in processing the visual
inputs; by the time the action is computed from the visual policy, the robot could have already walked
a few steps ahead. Thus the policy will need to be robust to the visual delay and still perform correct
decision making. Second, the proprioceptive state inputs are still provided to the network at a high
frequency, which causes misalignment between the proprioceptive state and the visual observation.
Solving the two problems above is the key to transfer vision-based RL policy trained in simulation to
the real robot.

In this paper, we propose Multi-Modal Delay Randomization (MMDR), an asynchronous delay
randomization technique for improving the robustness of RL policies in real robots. Our RL policy
takes both proprioceptive states and observed depth images as inputs, and outputs the target angle for
each robot joint in an end-to-end manner. During training, instead of forwarding both observations
with fixed temporal intervals, we provide randomized asynchronous multi-modal inputs to the network.
Specifically, we maintain two buffers online for two types of inputs (one for visual observation,
another one for proprioceptive states). Each buffer will store a stream from one type of recent
observations. We independently sample a sub-sequence of observations from each buffer, and forward
both types of inputs to the policy network. In this way, we can simulate the time discrepancy between
proprioceptive and visual signals in the real robot. MMDR simulates the accumulated latency of
the whole system across all parts at once. The quadrupedal robot trained with RL using MMDR is
more robust to the delayed visual inputs and the misalignment between two types of observations for
locomotion control.

We experiment with our proposed method on arduous, in-the-wild maneuvering tasks with a Unitree
A1 quadruped robot (Unitree, 2018) as shown in Figure 1. These environments include static or
moving obstacles of different sizes and shapes, uneven terrains, and changing lighting conditions.
Results show that applying MMDR during training significantly improves the performance and
robustness for real-world deployment of the learned RL policy. Our policy can even generalize to
environments with unseen or moving obstacles, where the A1 robot plans and maneuvers smoothly
through the obstacles at a high moving speed.

We highlight our main contributions as follows:

• We present Multi-Modal Delay Randomization (MMDR), which models the latency of multi-
modal inputs for Sim2Real RL policy transferred for vision-guided quadrupedal locomotion
control.

• To the best of our knowledge, this is the first work that allows an end-to-end RL trained
quadrupedal robot to maneuver in the wild under visual guidance.

2 Related Work

Sim-to-real with Domain Randomization. To address the sim2real gap for policy deployment in the
real-world, domain randomization introduces variability to different components of the simulated
environments during training, including variant physical parameters (Mordatch et al., 2015; Peng
et al., 2018b; Tan et al., 2018; Li et al., 2021), visual attributes (Tobin et al., 2017; Pinto et al., 2018;
Andrychowicz et al., 2020), and perturbations (Andrychowicz et al., 2020). Thanks to its simplicity
and effectiveness, domain randomization has been widely used in learning legged robot control to
complete real-world tasks with diverse locomotion skills (Xie et al., 2020b,a; Peng et al., 2020;
Kumar et al., 2021; Lee et al., 2020). However, how to better apply domain randomization to address
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Figure 1: Our method enables quadruped robots to traverse complex environments with obstacles of
different shapes in the wild. The learned locomotion policy obtains different agile locomotion skills
like flexibly turning before barriers and stably walking on steep lawn, using reinforcement learning.
The policy is trained in simulation with our multi-modal delay randomization and deployed in the
real-world, unseen scenarios without any adaptation or fine-tuning.

the sim2real gap for learning vision-guided legged locomotion in the real world (like the multi-modal
latency) has not been well-explored yet. In this work, we propose multi-modal delay randomization
to model the sim2real gap beyond the observation discrepancies.

Learning-based Legged Locomotion. Controlling a legged robot has been studied by the robotics
community for a long time. Control theory and trajectory optimization approaches have shown
great results on legged locomotion control (Gehring et al., 2013; Carlo et al., 2018; Di Carlo et al.,
2018; Carius et al., 2019; Ding et al., 2019; Bledt & Kim, 2020). However, these methods require
in-depth knowledge about the environment and substantial manual efforts for parameter tuning. As an
alternative, reinforcement learning provides an autonomous learning paradigm for legged locomotion
skills from self-exploration in complex environments (Kohl & Stone, 2004; Luo et al., 2020; Peng
et al., 2018a, 2020; Tan et al., 2018; Hwangbo et al., 2019; Lee et al., 2020; Xie et al., 2020c; Iscen
et al., 2018). Despite the successful application of RL on legged robots, most RL approaches depend
only on proprioceptive input. To utilize the rich visual information, recent works introduce visual
observation to legged locomotion learning in end-to-end (Escontrela et al., 2020; Yang et al., 2021)
or hierarchical manners (Jain et al., 2020). But visual-guided locomotion policies learned by these
methods are still limited to simple and indoor environments. With our method, we can successfully
apply the learned policies in the wild directly.

Reinforcement Learning with Vision. To enrich the perception of the agent, many works have
studied RL with visual input in navigation (Sax et al., 2018; Faust et al., 2018; Wijmans et al.,
2020), locomotion control (Laskin et al., 2020a; Hansen & Wang, 2021; Yarats et al., 2021; Hansen
et al., 2021), and manipulation (Jain et al., 2019; Levine et al., 2016, 2018). To generalize visual
perception in variant tasks, Hansen et al. (2021) extend representation learning for out-of-distribution
environments. Our work is most related to previous work leveraging multi-modal input for locomotion
control (Heess et al., 2017; Merel et al., 2020; Jain et al., 2020; Escontrela et al., 2020; Yang et al.,
2021). Instead of running the robot in simulators or labs, we show the vision-guided quadruped robot
can run smoothly and safely in the wild.

Learning with Delay. The latency of sensing and control recently draws attention from robotic
learning community. Li et al. (2020) introduces the concept of streaming perception into computer
vision, unlike previous work focusing on offline efficient (fast) inference (Redmon et al., 2016; Liu
et al., 2016). In RL area, continuous-time RL (Doya, 2000) and MDP with delay (Ramstedt & Pal,
2019; Katsikopoulos & Engelbrecht, 2003) has been proposed to address constant system latency
in simulation. Beyond simulation, the continuous-time algorithms are developed for concurrent
control (Andersen et al., 2015; Xiao et al., 2020; Lutter et al., 2021) in real-world control tasks.
For modeling delay, previous works (Tan et al., 2018; Yang et al., 2020) randomize the observation
latency for proprioceptive state-only quadrupedal locomotion policies. When using information from
different sources, multi-modal synchronization also brings new difficulties on stable control (Olson,
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2010; Liu et al., 2021). In this work, we address the delay problem in learning-based vision-guided
control with a simple yet effective randomization technique.

3 Delay Randomization in a Multi-Modal Control System

The Markov property is fundamental to most RL algorithms rely on (Puterman, 1994). However, the
latency in real robot hardware jeopardizes the Markov property. This makes it difficult to train policies
deployed in the real world. Worse still, in a multi-modal robot system that perceives information from
multiple modalities, e.g. vision and proprioception, the latency of different sensors varies greatly.
Thus, multiple sensor data fusion will become a non-trivial task in the real world, compared to the
synchronized settings that are commonly used in RL literature (Ibarz et al., 2021), which do not face
these difficulties. To tackle this challenge, we propose Multi-Modal Delay Randomization (MMDR),
which explicitly models the latency from different sources in a real robot system, as shown in Figure
2. In this following section, we will first introduce the latency of a real robot in Section3.1, then
discuss how we mitigate the latency issue via our MMDR.

3.1 Latency in Real Robot RL

Vision-Guided 

Policy

Control Box

Robot with 

Sensors

Depth Camera
Computation Delay 

Actuation Delay 

Processing Delay 

Processing Delay 

Asynchronous

Figure 2: Multiple sources of latency for a multi-
modal control policy. We take into account delays
in perception processing, policy computation, and
control execution.

In common RL settings, an agent perceives ob-
servations from the environment, computes the
next step action based on the policy, then for-
wards this action to the environment. Most phys-
ical simulators (Coumans, 2015; Todorov et al.,
2012; Koenig & Howard, 2004; Makoviychuk
et al., 2021) assume a synchronized observation-
action loop. In this synchronized setting, the
environment will wait for the next action and
stay unchanged before that. However, the real
world is asynchronous and never waits for the
policy. Any latency in the observation-action
loop will influence the execution of the action,
which in turn lowers the task performance. Figure 2 illustrates delays in multiple stages: (i) Trans-
mission delay to receive sensory readings; (ii) Processing delay to compute the action from an
observation, commonly the time required by the neural network; (iii) Actuation delay to execute the
action via the motors. Among all three types of delays, the processing delay is the most significant.
With a battery-based power supply and limited memory, the computational resources on-board often
can not afford instant network inference, especially for high-dimensional visual input. By the time
the control signals are applied, the robot’s surroundings have already changed.

3.2 Multi-Modal Delay Randomization

t … t-4k+1

t … t-k+1

t-k … t-2k+1

t-2k … t-3k+1

t-3k … t-4k+1

Random
Selection

Random
Selection

Random
Selection

Random
Selection

Selected 
Input

Figure 3: Visual delay randomization. We maintain
a depth map buffer with a length of 4k, where k
is a hyper-parameter. From each consecutive k
frames, we randomly select one frame and stack
them as visual input in training.

To simulate the same control flow as in the real
world, MMDR provides randomized latency and
asynchronous multi-modal observation in the
simulation. We randomize the sampling of the
proprioceptive state and visual observation sep-
arately. This allows us to utilize the domain-
specific characteristics and simulate indepen-
dent latency for different modalities.

We represent the proprioceptive state as an 84D
vector, where each digit of the vector has spe-
cific physical meaning. To maintain the fidelity
of the simulation for RL, the simulation fre-
quency is generally several times higher than
the control frequency of the robot. Our method
reads the proprioceptive state at every simula-
tion step and uses a queue with a fixed length
to store historical observations from the near
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(a) Simulated Environments. For each example,
the environment is shown in the left, and the
corresponding observation in the right. Aside
from the randomized obstacles and terrain, we
add randomly placed white spots in the visual
observation to simulate the real observation from
the depth camera.

(b) Real Environments. We evaluate the general-
ization ability of policies in real-world scenarios
with obstacles of different shapes and sizes on
a complex terrain. Due to the noisy reading of
the depth camera, some depth values are missing
in the depth map, which breaks the shape of an
object in the visual observation.

Figure 4: Samples from the simulator and the real world.

past. We also assume the proprioceptive state is
changing smoothly in the real world. Therefore, we sample a proprioceptive delay for each episode.
Then we use linear interpolation to calculate the delayed observation from two adjacent states in the
entire buffer, with the sampled delay.

We represent the visual observation as a four-stacked depth image, in order to maintain temporal
information. A straightforward way to simulate latency for visual observations is to use the same
randomized delay as for the proprioceptive state during training. However, in the real world, depth
cameras can provide much fewer observations (around 30 Hz) compared to proprioceptive sensors
(around 1K Hz). In this case, the transition from one frame to the next is no longer smooth. To
simulate the perception latency for visual observation at a lower frequency, we obtain the simulated
visual observation at every control step and store the near past frames into a queue. As illustrated in
Figure 3, we store the most recent 4k depth maps as our visual observation buffer, split the whole
visual observation buffer into four sub-buffers, then sample one depth map from each sub-buffer to
create the visual input with randomized latency. Though there are multiple kinds of latency as we
discussed in 3.1, what really influences the real-world deployment is the accumulated latency across
the different stages. Therefore, the separated randomized latency for proprioceptive state and visual
observation is enough for the policy training.

4 Reinforcement Learning in Simulation

With our MMDR, we are able to simulate the real-world latency in simulators. We train locomotion
polices in the simulation using RL, under different settings for real-world deployment and comparison.

4.1 Simulation Environment

We perform our simulation using PyBullet (Coumans & Bai, 2016–2021). We train agents to control
a Unitree A1(Unitree, 2018) robot to maneuver in an environment with obstacles and a complex
terrain. The simulated obstacles are cuboid rigid bodies with random positions and shapes, which
remain static throughout the episode. To force the robot to learn how to walk on natural, uneven
grounds, we create complex terrain with random height fields, as shown in Figure 4a.

In all of the experiments, we use the same observation space, action space and reward function across
all environments.

Observation Space. The observation of the robot is made up of proprioceptive state and visual
observation. The proprioceptive state consists of (i) 12D robot joint rotation, (ii) 4D IMU sensor
reading (angle and angular velocity of roll and pitch), (iii) 12D last action executed by the policy.
The proprioceptive input is an 84D vector containing three proprioceptive states. The visual input
consists of four stacked depth images of shape 64×64. All the depth images come from the depth
camera mounted on the head of the robot. To constrain the scale of the visual observation, depth
values in visual observation are clipped to [0.3, 10]m.

Action Space. The action space for the policy is the target joint angle for each joint of the robot.
Target angles are converted to motor torques using a default PD controller.

5



Rewards. In general, our reward function encourages the robot to safely move forward (along the
x-axis in simulation) with a target speed (0.35m/s) while minimizing the energy cost. Specifically,
the reward function is given by: R = αmovingRmoving + αsafeRsafe + αenergyRenergy where αmoving =
1, αsafe = 0.005, αenergy = 0.1. The moving reward contains two terms. One encourages the robot
to move forward at target speed and the other penalizes the speed along the z-axis to keep the robot
walking smoothly. The safe reward is 1.0 for each step until the robot falls, in which case the episode
terminates. The energy reward penalizes the energy consumption represented by the square of motor
torques.

4.2 Network Architecture and Training Details.

We train all methods with 10M samples. We use PPOp Schulman et al. (2017) for policy training and
utilize the generalized advantage estimator (GAE) (Schulman et al., 2016) to stabilize the training pro-
cess (Peng et al., 2018a, 2020). We use a batch-size of 16384 and split it into 16 mini-batches. We use
Adam optimizer (Kingma & Ba, 2015) with learning rate of 1e-4 for both policy and value networks.

Action 

Distribution

Depth Maps

MLP

MLP

CNN

Concat

Visual

Features

Proprioceptive 

Features

Joint Angles

IMU States

Last Actions

or

Value

Figure 5: Network Architecture. We use separate encoders for
multi-modal inputs to get domain-specific features and use a
MLP to get the value or action distribution from concatenated
features.

In our experiment, the policy network
and value network share the same
architecture as Figure 5. We use
a 2-Layer MLP encoder for propri-
oceptive input and a 3-Layer CNN
for visual input to get encoded fea-
tures from both modalities. The en-
coded features from both modalities
are 256D vectors. We then concate-
nate the encoded features to get a uni-
fied feature and feed it into the ad-
ditional 2-Layer MLP to get the ac-
tion distribution or value prediction.
For better sample efficiency and sta-
ble training, the CNN for visual input
is shared by the policy and the value
function to capture a consistent visual
representation.

4.3 Domain Randomization

Parameters Range

Mass (× default value) [0.8, 1.2]
Motor Friction (Nms / rad) [0.0, 0.05]

Motor Strength (× default value) [0.8, 1.2]
Lateral Friction (Ns / m) [0.5, 1.25]
Inertia (× default value) [0.5, 1.5]

Proprioception Latency (s) [0, 0.04]
Kp [40, 90]
Kd [0.4, 0.8]

Table 1: Variation of Environment and Robot Pa-
rameters.

Besides the multi-modal latency, we leverage
domain randomization on various physical pa-
rameters to narrow the sim2real gap in the ob-
servation space. We sample a group of values
within specific ranges at the beginning of each
episode. The randomized parameters and the
corresponding ranges are listed in Table 1.

Ambient light in the real world and the stereo
nature of a depth camera result in occlusion in
the depth image. Therefore, the original depth
estimation from the camera is not available in
certain visual regions of the depth map. We
fill in all the missing values with the maximum
depth (10m). As shown in Figure 4b, the shape of obstacles breaks because of these missing values,
which makes the deployment of the visual-guided locomotion policy even more challenging. To
simulate this phenomenon, we randomly sample 3-30 pixels in each depth map, and set the value of
these pixels to the maximum depth. The modified depth map are visualized in Figure 4a.

4.4 Baselines

We compare MMDR with two baselines both in simulation and the real world. The No-Delay
baseline is trained without delay randomization, and stacks the most recent 4 depth maps as visual
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input. The Frame-Extract baseline stores the most recent 4k frames and stacks the first frames
from every consecutive k frames as visual input to provide input with more temporal information.

t t-1 t-2 t-3

No-Delay

Frame-Extract

MMDR (Ours)

t t-k t-2k t-3k …

t t-k t-2k t-3k …

Randomly sample 1 frame of k

Input frame Eliminated frame

…

Figure 6: Illustration of all methods.

As shown in Figure 6, our method uses the same
amount of temporal information as the Frame-
Extract baseline, but models the real-world la-
tency by performing random selection.

5 Experimental
Results and Analysis

In our experiments, we evaluate the performance
of policies using two metrics: (i) Moving Dis-
tance: the distance in the forward direction covered by the robot; (ii) Collision Steps: the number of
robot steps during which the robot is in contact with an obstacle. The moving distance represents
stability of the gait while the collision steps reflects safety. Please refer to our project page and
supplementary video for visualizations.

5.1 Results in Simulation

No-Delay Frame-Extract

MMDR

State-Only

Interpolation

Moving
Distance ↑

State-Only 2.9±0.5

No-Delay 26.5±5.0

Frame-Extract 24.9±3.1

Interpolation 21.4±2.7

Ours 28.7±7.7

Figure 7: Training curves and evaluation results of all set-
tings. All methods show similar sample efficiency in the
environment that it’s trained on, even if MMDR learns in
a noisy environment. When evaluated in environment with
random delay, our MMDR outperform all other baselines.

We evaluate all methods in an envi-
ronment with random delays varying
from [0.04, 0.12]s. Aside from the
static obstacles, we also compare the
policies in environment with moving
obstacles to evaluate the generaliza-
tion ability in simulation.

Though MMDR introduces more un-
certainty into the observation, the
robot maintains comparable learning
efficiency as shown in Figure 7. When
tested in the same scenario with ran-
dom delays, the policy learned with
MMDR moves further with less colli-
sions. This demonstrates the potential
to better adapt to the real world.

To test the generalization ability further, we include a modified scenario in which the obstacles will
continuously move at a random speed and direction. Such a dynamic environment requires more
accurate perception, so a slight delay may bring a very large impact like crashing. Table 2 shows
our superiority on both traversing skill and safety, tested against an unseen dynamic environment.
MMDR significantly increases the forward distance by nearly 100%, and reduces the Collision Steps
by 475% to No-Delay and 340% to Frame-Extract. We conjecture it is because asynchronously
randomizing multi-modal delays provides data-augmentation for relative position and speed changes
of surroundings. This allows the policy to be more adaptable to a dynamic environment during
testing.

Ablation. We add two ablation studies to show the substance of vision and random selection. First,
we train the blind policy in the same environment without visual input. We use a 4-Layer MLP for
training, corresponding to State-Only in Figure 7. The State-Only agent learns almost nothing for
such a complex task. Second, like how we model the proprioceptive state delay, we sample a delay
td for each episode and use linear interpolation to calculate visual observation from two adjacent
observations around t− td at each step t (Interpolation in Figure 7). We compare MMDR with this
smooth interpolation to show discrete sampling is more appropriate for vision. MMDR consistently
outperforms them during training stages. We also find that though Interpolation does not perform well
compared to both baselines during training, when evaluated on environment with moving obstacles,
it generalizes better. It shows that when temporal information is crucial for decision-making, it’s
essential to take latency into consideration. We stop the two methods in simulator rather than
real-world deployment due to the disadvantage in training phase.
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(a) Box (b) Dense Box (c) Moving Box (d) Forest
Figure 8: Four Real world environments in our experiments.

Moving Distance ↑ Collision Steps ↓
State-Only 3.5±1.3 475.1±261.3

No-Delay 6.0±1.7 401.5±118.0

Frame-Extract 6.6±2.5 287.9±264.5

Interpolation 7.1±0.7 94.8±12.3

Ours 11.4±1.9 84.4±22.9

Table 2: Generalization evaluation in simulation with moving obstacles. When evaluated in much
more challenging environment with moving obstacles, MMDR not only performs significantly better
than baselines in both metrics, but also is much more stable across different seeds.

5.2 Results in Real World

Given the performance of different methods in simulation, we conduct real-world experiments with
these three methods: Ours, No-Delay, and Frame-Extract.

Robot Setup. In the real world, we perform evaluations using the Unitree A1 Robot (Unitree, 2018),
a low-cost quadruped robot with 18 links and 12 degree of freedoms (3 for each leg). Our policy
computes the target joint angles at 25 Hz, while the underlying PD controller computes the motor
torques at 400 Hz. Kp and Kd are 40 and 0.6 respectively.

We first evaluate all the methods in scenarios similar to the training environments. We launch 9
trials on 3 seeds for each setting. The evaluation metric used in deployment is Collision Count, i.e.
number of times robot hits the obstacle. This differs from Collision Steps used in simulation because
in outdoors environments it is dangerous to let the robot continuously collide with objects. We place
differently-sized boxes on a sloped lawn with different density. We refer to these environments as
Sparse box placement (Box.) (as in Figure 8(a)) and Dense box placement (Dense Box.) (as in
Figure 8(b)).

In these two environments, as demonstrated in Table 3, MMDR excels baselines by a large margin.
MMDR moves twice as far as the other baselines do without colliding into any boxes in Sparse
box placement, and maintains a similar performance when the obstacles become much denser. In
contrast, Frame-Extract performs poorly in Sparse box placement (Box.) and the performance
becomes worse as the density of boxes increases. We speculate that using visual observation covering
longer time span makes the policy become more sensitive to the latency in the real world. This
phenomenon suggests that modeling the real world latency is essential.

Beyond static boxes on a sloped lawn, we deploy policies in two more challenging scenarios:
(i) Moving box (Moving Box.): the box is moving slowly in the same sloped lawn as previous
environments as Figure 8(c) shows; (ii) Forest covered with branches and fallen leaves (Forest.)
as Figure 8(d) shows. These two tasks are more challenging than the static box environments, for the
diverse lighting condition, complex terrains, and dynamic obstacles. We find that in the Moving Box
environment, the improvement our method obtained over the baselines becomes larger. We conjecture
that this happens because when the environment is dynamical, the latency in the multi-modal control
system becomes more influential. So it gets harder to predict the movement of the obstacles and
act accordingly with latency. This result also indicate that it’s necessary to simulate latency for
vision-guided locomotion policy.

For the Forest environment, the challenges mostly come from the unseen obstacles (trees), the
branches, and leaves on the ground. In Forest environment, the policy trained with MMDR still
obtains large improvement over the baselines in the moving distance, while having similar collision
results. Stepping on branches or fallen leafs can cause unexpected state transition that don’t happen
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Box. Dense Box. Moving Box. Forest.
Moving Distance ↑

No-Delay 444.7±115.0 447.6±147.6 505.7±120.5 733.8±118.0

Frame-Extract 358.4±155.3 280.0±79.8 380.4±261.6 572.4±256.7

Ours 859.9±271.4 641.2±49.9 973.0±148.4 992.5±335.0

Collision Count ↓
No-Delay 0.0±0.0 1.0±0.27 0.33±0.27 0.22±0.16

Frame-Extract 0.56±0.42 1.21±0.47 0.44±0.62 0.22±0.32

Ours 0.0±0.0 0.9±0.6 0.33±0.0 0.22±0.16

Table 3: Real world deployment performance. MMDR significantly improve the maneuvering skills
in complex wild environments for forward efficiency and safety.

...

RL

RR

FL

FR

Time (s)(a) Turn right (b) Rush by

16.5 16.6 16.7 16.8 16.9 17.0 18.0 18.1 18.2 18.3 18.4 18.5

Figure 9: Gait pattern analysis during key frames. We plot the gait pattern according to contact forces
to analyze the detailed locomotion. Lines denote stepping to the ground. During turning right, the
front left leg continuously steps to support the twisting while two right legs move in higher frequency
for reorienting. After adjusting the direction, robot turns to run faster in bouncing gait.

in the simulation. Thanks to our asynchronous randomization for multi-modal input, our method can
learn policies that are more robust to unseen transitions.

To study the learned locomotion skills in more details, we visualize the positive (down) torque pattern
during testing in Forest environment as shown in Figure 9. We selected two essential frames when
the robot is turning around a tree. In Figure 9(a), the front left leg pushes the ground longer for power
and the two right legs take small steps to change the body orientation. Once the robot faces to correct
direction, it uses the bouncing gait for acceleration to pass the tree (Figure 9(b)). Such a complex
locomotion sequence demonstrates that robot combines multi-modal information well to adapt to the
complex environments.

6 Conclusion

Latency, as a crucial reality gap, exists in many parts of the robot control pipeline. We propose the
Multi-modal Delay Randomization technique to address the latency issues in real-world deployment
for vision-guided quadruped locomotion control. Our approach shows great advantages on two
realistic metrics in both the simulator and real world. It also improves generalization and adaptation
ability in unseen scenarios so as to help the robot pass through arbitrary barriers in real world. These
results suggest MMDR can be universally applied not only to legged locomotion, but potentially also
to many other visual robotic control tasks.
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