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ABSTRACT

Bayesian Experimental Design (BED) is a robust model-based framework for op-
timising experiments but faces significant computational barriers, especially in the
setting of inverse problems for partial differential equations (PDEs). In this pa-
per, we propose a novel approach, modelling the joint posterior distribution with
an energy-based model, trained on simulation data. Unlike existing simulation-
based inference approaches, we leverage implicit neural representations to learn
a functional representation of parameters and data. This is used as a resolution-
independent plug-and-play surrogate for the posterior, which can be conditioned
over any set of design-points, permitting an efficient approach to BED.

1 INTRODUCTION

Mathematical models based on partial differential equations (PDEs) play a crucial role in quan-
titative analysis of complex systems arising in science, engineering and socio-economics (Burger
et al., 2014). These often involve large numbers of parameters which must be calibrated. In many
settings, the unknown parameters are functions, e.g. spatially-varying coefficient fields. Identify-
ing parameters based on measurement data involves solving an inverse problem: Given a possibly
stochastic forward operator G : A → U between a parameter space A and a solution space U , and
empirical observations of the solution y ∈ Rn at locations x = (x1, . . . ,xn),xi ∈ Ω ⊂ Rd, we
aim to infer the parameter a ∈ A such that y = G(a)(x) + η, where η denotes mean-zero obser-
vational noise. The Bayesian approach to inverse problems (Stuart, 2010) is a systematic method
for uncertainty quantification of parametric estimates, where a and y are viewed as coupled random
variables. Equipping a ∈ A with a prior distribution, Bayes’ rule yields a posterior distribution for
a given y.

A significant challenge is determining which measurement positions x yield the most information
about an unknown parameter. This question can be tackled using Bayesian Experimental Design
(BED) (Chaloner & Verdinelli, 1995), a versatile framework that guides the process of data col-
lection. Typical approaches to BED involve a nested Monte Carlo approach, with Markov Chain
Monte Carlo (MCMC) methods used to estimate a utility for any given candidate design, which is
subsequently optimised over admissible designs (Rainforth et al., 2023). In the setting of a PDE-
governed inverse problem, each MCMC step necessitates at least one computation of the underlying
PDE solution, meaning that the process quickly becomes computationally demanding (Alexande-
rian, 2021). Traditional surrogate model approaches (Gramacy, 2020) are not readily applicable if
the parameters are functional, or if the forward map exhibits non-Gaussian noise. In the latter case,
the likelihood becomes intractable due to the introduction of auxiliary variables, and one must re-
sort to expensive pseudo-marginal MCMC methods (Andrieu & Roberts, 2009), simulation based
inference approaches (Glaser et al., 2022) or synthetic likelihoods (Price et al., 2018).

Our work offers a computationally efficient alternative to these methods by learning a generative
model for the joint posterior distribution over (a,G(a)), i.e., a joint distribution over the parameters
of interest and the value of the (possibly stochastic) solution map. This extends the scope of classical
surrogate methods, since no deterministic relationship between the parameters and solutions of the
model is assumed. Crucially for BED, the proposed method models the association between the
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parameter a and the functional-form of the solution G(a), and thus is not dependent on a fixed set
of evaluation points x or a particular discretisation of the domain. To achieve this, we embed the
functions in a finite-dimensions using implicit neural representations (Sitzmann et al., 2020) and use
an energy-based model (Lecun et al., 2006) to model the distribution of latent representations.

2 ENERGY-BASED COUPLING ON FUNCTION SPACES

We propose to approximate the solution operator G using a probabilistic model pθ over the joint
distribution of (a,G(a)) such that high likelihood regions of pθ correspond to solutions u = G(a).
To do so, we proceed in two steps: Using training data consisting of pairs {(ai(xji ), ui(x

j
i ))

Ni
j=1}Mi=1

with ui(x
j
i ) = G(ai)(xji ), x

j
i ∈ Ω, we encode the functions a and u into finite-dimensional latent

codes za, zu. On the finite-dimensional representation space, we learn the joint distribution of the
latent codes using a so-called energy-based model, where pθ(za, zu) ∝ exp(−Eθ(za, zu)) . Our
workflow is visualised in Figure 4. Through the learnt latent representations, the model is indepen-
dent of any pre-specified evaluation grid. This not only allows inference of solutions from observa-
tions at arbitrary points, but it also enables Bayesian experimental design of sensor placement as a
downstream task.

Learning the Implicit Neural Representations (INR) Following COIN++ (Dupont et al.,
2022), we compress the functional data points (ai)

M
i=1 and (ui)

M
i=1 into implicit neural represen-

tations defined by ai(·) = gψ(·, zai) and ui(·) = fϕ(·, zui
). We generate training data by sampling

parameters a ∈ A from a pre-specified prior distribution and simulating the forward dynamics G(a).
We then train the neural representations by minimising the mean square error between the function
value and the neural network prediction at random evaluation points. Each layer of gψ and fϕ takes
the form of a SIREN layer sin(ω0(Wh + b + β)) (Sitzmann et al., 2020). While the weights and
biases W,b of each layer are shared among all data points, the shifts β depend on the data point spe-
cific latent code z and are trained individually for each functional data point. This produces highly
compressed latent representations (zai , zui

)Mi=1, which can be decoded efficiently by applying the
maps gψ and fϕ , respectively.

Energy-Based Neural Coupling Energy-based models (EBMs) (Lecun et al., 2006) are un-
normalised statistical models of the form exp(−Eθ)), where the energy-function Eθ is typically
modelled with a scalar-valued neural network. We assume lossless compression in the INR and
learn the joint distribution of a and u = G(a) as an energy-based model over tuples (zai , zui

). The
architecture of the energy function first embeds the latent codes into an embedding space of shared
dimension and processes the embedded vectors using MLPs. The suggested architecture is resilient
to vanishing signals, ensuring that information flows in a stable manner (for details, see Appendix
B.2). Since unnormalised models are not amenable to optimisation with maximum likelihood esti-
mation, we explore training the model with contrastive divergence (Hinton et al., 2006) and energy
discrepancy (Schröder et al., 2023), achieving the best results with the latter approach.

Inference from sparse observations At inference time, we are given noisy observations of
the system at finitely many evaluation points D = {(xi,yi)}ni=1 with yi = u(xi) + ηi, where
ηi ∼ N (0, σ2). The posterior distribution of the latent representations (za, zu) conditioned on the
observed data is given by

p(za, zu|D) ∝ p(D|za, zu)pθ(za, zu) =
n∏
i=1

p(xi, yi|za, zu)pθ(za, zu) (1)

The noise assumption, together with the PDE model, results in p(xi,yi|za, zu) ≈
N (yi; fϕ(xi, zu), σ

2). The desired parameter solution pair (a, u = G(a)) can now be sampled
from the posterior using stochastic gradient Langevin dynamics (Welling & Teh, 2011).

Application to Bayesian experimental design One of the main motivations of our approach
lies in Bayesian experimental design. Specifically, we seek to determine optimal sparse sen-
sor placement positions d = {d1,d2, . . . ,dD} for the inference of (a, u = G(a)) based on
y = u(d) + η. We measure the utility of a sensor placement position by calculating the expected
information gain over the prior as measured by relative entropy, i.e. we use the utility function
U(d) := Ep(y|d)DKL(p(za, zu|y,d) ∥ p(za, zu)). Using Bayes theorem and Monte Carlo estima-
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tion we obtain the following biased utility estimator

Ũ(d) =
1

K

K∑
i=1

log p(yi|zai , zui ,d)−
1

K

K∑
i=1

log

(
1

M

M∑
j=1

p(yi|zaj , zuj ,d)

)
, (2)

where (zai , zui), (zaj , zuj ) ∼ p(za, zu) and yi ∼ N (fϕ(d, zui), σ
2). The utility is sequentially

optimised using Bayesian optimisation. For details, see Appendix C.

3 NUMERICAL EXPERIMENTS

Our training data consists of M pairs of parameters and their corresponding solutions, {(ai, ui)}Mi=1
for ai ∈ A and ui ∈ U . We assume access to only Ni point observations of them, where the set of
Ni locations varies across the M function realizations and need not be the same for a and u. While
the method can handle functional parameters through the INR encoding, we assume for simplicity
in the first presented example that a is parameterised by a real-valued vector of finite dimension. We
emphasise that PDE solutions are only required to train the INR and EBM models. Once trained,
these models are reused for inference leading to high savings in terms of computational cost.

3.1 BOUNDARY VALUE PROBLEMS IN 1D

Consider the boundary value problem (BVP) on the interval [−1, 1] given by the non-linear PDE

u′′(x)− u2(x)u′(x) = f(x), u(−1) = Xa, u(1) = Xb,

f(x) = −π2 sin(πx)− π cos(πx) sin2(πx),

Xa ∼ N (a, 0.32), Xb ∼ Unif(b− 0.3, b+ 0.4), a, b ∼ Unif(−3, 3).

Figure 1: Numerical sim-
ulations (top) and samples
from the learnt coupling (bot-
tom) conditional on parame-
ters (a, b) = (1,−1).

The training data consists of pairs (a, b) and their corresponding
solution for a realisation of Xa and Xb. Figure 1 compares the
numerical solutions of the BVP and samples from the learnt energy-
based coupling. One can see that the sampled solutions resemble
the numerical solutions and respect the boundary conditions. As
a quantitative test we perform dimensionality reduction via t-SNE
(van der Maaten & Hinton, 2008) which demonstrates that training
data and generated data do not form clusters, i.e. the t-SNE test
cannot distinguish between training and generated data.

We perform inference on the parameters a and b when true values
are set at random to a = 2.9 and b = −0.11, based on sparse
observations of the PDE solution D = {(xi, yi)}i=1,...,10, where
yi = u(xi)+ηi, and ηi are iid N (0, 0.12). Inference results for 103
posterior samples from pθ(za, zu|D) are summarised in Figure 2.
The left and right panels display histograms for sampled a and b,
respectively, while the central plot shows the generated solutions
fϕ(·, zu), together with the true solution and the observations D.
We observe a strong agreement between posterior samples and the
ground truth. The relative L2 error norm of the true solution and
the posterior mean is ∥u−utruth∥2/∥utruth∥2 = 0.065 and the MSEs
for a and b are 0.37 and 0.25, respectively. It is important to mention that we observe comparable
values in all performance metrics regardless of the randomly chosen PDE parameters (a, b) and the
set of noisy observations D.

3.2 STEADY-STATE DIFFUSION IN 2D

Next we consider learning the diffusion coefficient κ of the 2D Darcy flow equation defined by the
PDE −∇ ·

(
κ(x)∇u(x)

)
= f(x) with domain x ∈ Ω = [0, 1]2 and Dirichlet boundary conditions

u|∂Ω = 0. We assume that κ and f take the form

κ((x1, x2)) = exp[(1.5 + a · cos(πx1)(−1.5 + b · cos(πx2)], f = 0.5 + ε where ε ∼ N (0, σ2).
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Figure 2: Inference results based on 10 noisy observations of a solution with a = 2.9 and b = −0.11.
The central plot illustrates the solutions corresponding to 103 samples from the posterior (blue),
alongside the true solution (red). Left and right panels present histograms for a and b, respectively.

Although the diffusion coefficient is characterised by just two parameters, we treat it as a function
and learn an INR as outlined before. Using the learnt energy-based coupling, we perform an ex-
perimental design task in which, based on three initial observations (intentionally chosen in non
informative places) of a solution with parameters a = 1 and b = 1, we maximise the estimated
utility function to find optimal locations for ten additional measurement sites. To benchmark the
efficacy of the new design locations, we generate the same number of points from a Sobol sequence
(Sobol’, 1967) within our domain and compare the posterior means along with the ground truth.
We observe that results inferred from optimally chosen points closely match the ground truth unlike
those inferred from Sobol points, see Figure 3. Corresponding plots for the diffusion coefficient can
be found in the Appendix, Figure 6. In particular, the relative L2 error norms between the ground
truth and the posterior mean for the solution and the diffusion coefficient have lower values when
performing inference based on optimal location measurements (see Table 1), with performance re-
maining constant over the entire domain of a and b. It should be noted that the inference for Sobol
points is also conducted using the learnt energy-based coupling.

Design points ∥û− utr∥2/∥utr∥2 ∥ log κ̂− log κtr∥2/∥ log κtr∥2

BED with Energy-Based Coupling (Ours) 0.021 0.013
Sobol 0.098 0.054

Table 1: Mean relative L2 error norm for the solution and diffusion coefficient for BED experiment.
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Figure 3: Left: Observed solution with initial observations (green crosses) and optimal design points
(red crosses). Middle and right: posterior mean solutions based on optimal design points and Sobol
points, respectively.

4 DISCUSSION AND RELATED WORK

The proposed approach is strongly related to the problem of Neural Operator Learning, a class of
models that learn mappings between function spaces and solve partial differential equations. Ex-
amples include Fourier Neural Operators (Li et al., 2021) and Deep O-Nets (Lu et al., 2019). A
common thread across these methods is their resolution invariance, i.e. their ability to generate
predictions at any resolution. Existing work has largely focused on learning the deterministic rela-
tionship between the input and output, although recent work has sought to extend these approaches
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to developing generative models on function space (Rahman et al., 2022; Lim et al., 2023). See
also (Salvi et al., 2022). Our approach leverages similar resolution-invariant paradigms, integrating
them into an EBM architecture to provide a generative associative map between function spaces.
The results above already demonstrate the effectiveness of the proposed methodology, but a detailed
exploration of the impact of different neural operator architectures is left for future work. These ap-
proaches holds promise for accelerating scientific discovery (Azizzadenesheli et al., 2024), such as
enhancing the pathway to sustainable nuclear energy (Gopakumar et al., 2023; Kobayashi & Alam,
2024).
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A DATASET DETAILS

Boundary value problem The dataset consists of 20000 pairs of boundary conditions (a, b) and
associated solutions. Each solution is evaluated at Ni points, where Ni is a randomly chosen integer
between 30 and 40.

2D Darcy flow equation The dataset consists of 20000 pairs of diffusion coefficients and solutions
of the PDE. Each solution and diffusion coefficient is evaluated at 784 points.

B IMPLEMENTATION DETAILS

We have implemented all experiments with PyTorch (Paszke et al., 2019).

B.1 TRAINING

The training is done in two steps (as shown in Figure 4). First, we train the modulated INRs to
represent the data. Once, the INRs have been fitted, we obtain the latent representations of the
functions of interest. The latent modulations of the INRs are concatenated, in the cases where we
seek for a prior over different functional parameters. Furthermore, as the data is encoded using
only a few steps of gradient descent (for details, see Dupont et al. (2022)), the resulting standard
deviation of the codes is very small, falling within the range of [10−3, 10−1]. Therefore, these raw
latent representations are not appropriate for subsequent processing. To address this, we standardise
the codes by subtracting the mean and dividing by the standard deviation. The normalised latent
embeddings are then used to train the EBM model. The means and standard deviations are stored
to unnormalised the samples generated by the EBM before using them as modulations for the INR
to recover the functions in real space. It is important to remark that, unlike the INR representation,
the use of the truncated coefficient expansion for a basis, such as the Fourier basis, to represent the
function of interest does not scale well with dimension.

Figure 4: Workflow for the training of the joint INR and EBM model. Layout based on Serrano
et al. (2023).

The final dimensions of the latent representations in the experiments outlined above are as follows

• Boundary value problem. Latent dimension for the solution function is 11.

• 2D Darcy flow equation. Latent dimensions for the solution function and diffusion coeffi-
cient are 16 and 2, respectively.
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The criterion to determine the value of the latent dimension is that the mean relative L2 error norm
between the true function (either solution or parameter) and the one reconstructed from the latent
embedding across all data points remains below a certain threshold. At the same time, we want
the dimension to be low to ensure that the resulting distribution of the latent representations has a
positive probability density that can be easily modelled by the EBM. For the diffusion coefficient,
the relative L2 error norm is of the order of 10−8 for a latent dimension of 2 and the error grows
as the dimension increases or decreases. In particular, for a dimension greater than 2 the additional
dimensions are redundant, with values repeating across dimensions. For the solutions the mean
relative L2 error norms for different latent dimensions computed on a validation set not seen during
training for the BVP and the Darcy flow equation are shown in Tables 2 and 3, respectively.

Table 2: Mean relative L2 error norm for the INR reconstructed solution of the BVP on a validation
set.

Dimension Relative L2 error norm

15 6.1× 10−7

13 9.3× 10−7

11 1.1× 10−6

9 9.8× 10−6

7 8.7× 10−5

Table 3: Mean relative L2 error norm for the INR reconstructed solution of the Darcy flow equation
on a validation set.

Dimension Relative L2 error norm

64 7.7× 10−8

32 6.3× 10−5

16 5.5× 10−4

8 5.8× 10−3

B.2 ARCHITECTURE DETAILS

B.2.1 IMPLICIT NEURAL REPRESENTATION

We have only made minor changes to the SIREN architecture proposed by Sitzmann et al. (2020),
so that it can take arbitrary point evaluations of the functions of interest and not just random points
of a fixed grid. We have also followed their initialisation scheme.

B.2.2 ENERGY-BASED MODEL

In all our experiments, each training point for the EBM consists of two parts, the PDE solution and
a functional or vector-valued coefficient, and our goal is to understand the connection between the
two by learning their joint probability density. To do this, we first uplift each part of the input vector
into a latent space (using an encoder) so that they have the same dimension (equal to 128) and then
propagate and merge them, with shared connections between the two branches. The architecture of
the network is illustrated in Figure 5.

The specific structure of each element of the architecture is the following

• Encoder block

Encoder(x) = Linear(σ ◦ Linear(y) + y), y = σ ◦ Linear(x),

where σ is a GELU (Hendrycks & Gimpel, 2016) activation function.
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Figure 5: Energy-based model neural network architecture, where za and zu represent the finite
dimensional latent embeddings of two functions, such as, the solution and a coefficient of the PDE.

• Block 1
Block 1k(x) = σ ◦ Linear(x),

where σ is a RELU activation and k denotes the output dimension.
• ∆ operation

∆(x,y|z) = (1− z) · x+ z · y,
where · denotes point-wise multiplication. Note that the vectors x,y and z need to have
the same dimension and the operation is just an interpolation.

• + operation is a point-wise addition.

The dimension remains constant at 128 in the 2 branches of the architecture. Therefore, when both
vectors are concatenated, it becomes 256. The last two Block 1’s reduce the dimension from 256 to
128 and from 128 to 64, respectively.

C BED EXPERIMENT

As presented above, the experimental design task consists in optimally selecting d to maximise the
information gain about the solution. In our proposed framework, this PDE solution is approximated
by fϕ(·, zu), where zu is the associated latent embedding. Mathematically, the utility function for d
needs to maximise the expected information gain over the prior p(za, zu), as measured by relative
entropy. This is equivalent to maximising the expected KL-divergence

U(d) = Ep(y|d)
[
DKL

(
p(z|d,y) ∥ p(z)

)]
=

∫
dz

∫
dy

(
log p(z|d,y)− log p(z)

)
p(z,y|d),

where the expectation is computed over the predictive distribution of the new (yet unobserved) data
p(y|d) and for the sake of notation simplicity, we denote z = (za, zu). Applying Bayes theorem,
we rewrite the above expression in a form amenable to estimation

U(d) =

∫
dz

∫
dy

(
log

p(y|z,d)p(z)
p(y|d)

− log p(z)

)
p(z,y|d)

=

∫
dz

∫
dy

(
log p(y|z,d)− log p(y|d)

)
p(z,y|d)

= Ep(z,y|d) log p(y|z,d)− Ep(y|d) log p(y|d).

(3)

Notice that gradient-based optimisation of Eq. (3) with respect to d may suffer from high variance
of the gradients arising from the need to differentiate through the probability density p(z,y|d). This
issue can be avoided by using Bayesian optimisation, wherein a differentiable surrogate function,
such as a Gaussian process, is fitted to U(d). Employing Monte Carlo estimation to compute the
predictive distribution p(y|d), we derive the following estimator for the utility function

Û(d) =
1

K

K∑
i=1

log p(yi|zi,d)−
1

K

K∑
i=1

log

(
1

M

M∑
j=1

p(yi|zi,j ,d)
)
,

9
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where zi, zi,j ∼ p(z), zi = (zai , zui
) and yi ∼ N (fϕ(d, zui

), σ2). Assuming that the MCMC
chains used for sampling from the posterior are ergodic, we can use the following estimator to
reduce the computational cost

Ũ(d) =
1

K

K∑
i=1

log p(yi|zi,d)−
1

K

K∑
i=1

log

(
1

M

M∑
j=1

p(yi|zj ,d)
)
,

where the second term is evaluated using the numerically stabilised logsumexp function.
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Figure 6: Left: normalised true diffusion coefficient, log κ. Middle and right: posterior mean nor-
malised diffusion coefficients, log κ, based on optimal design points and Sobol points, respectively.

In the BED task, presented in Section 3.2, we have selected 10 optimal design points through
Bayesian optimisation (Nogueira, 2014). This selection process was conducted sequentially, in the
sense, that we choose new optimal measurement points one by one. This means that the prior of
the next iteration is the posterior of the current iteration updated with the new observation of the
function at the selected optimal point. Thus, the utility function we are trying to optimise is also
updated at each iteration. We run the Bayesian optimisation algorithm for 50 steps in each iteration.
At each step a Gaussian process is fitted to the known samples (points of the utility function previ-
ously explored), and the Gaussian process posterior, combined with a exploration strategy is used to
determine the next point that should be explored.

The inference results of the experiment for the diffusion coefficient are shown in Figure 6. Similar to
the results for the PDE solution, we observe that the posterior mean based on optimal design points
is closer to the ground truth compared to that inferred from Sobol points.
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