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ABSTRACT

Amortized Bayesian inference (ABI) has emerged as a powerful simulation-based
approach for estimating complex mechanistic models, offering fast posterior sam-
pling via generative neural networks. However, extending ABI to hierarchical
models, a cornerstone of modern Bayesian analysis, remains a major challenge due
to the need to simulate massive data sets and estimate thousands of parameters. In
this work, we build on compositional score matching (CSM), a divide-and-conquer
strategy for Bayesian updating using diffusion models. To address existing stability
issues of CSM in dealing with large data sets, we couple adaptive solvers with a
novel, error-damping compositional estimator. Our estimator remains stable even
with hundreds of thousands of data points and parameters. We validate our ap-
proach on a controlled toy example, a high-dimensional autoregressive model, and
a real-world advanced microscopy application involving over 750,000 parameters.

1 INTRODUCTION

Simulation-based inference (SBI; Diggle and Gratton, 1984; Cranmer et al., 2020) is entering a new
era, leveraging deep learning advances to deliver markedly more efficient computational statistics.
Within this framework, amortized Bayesian inference (ABI; Bürkner et al., 2023) now scales Bayesian
analysis to high-dimensional, mechanistic models, driving state-of-the-art discoveries in fields as
diverse as astrophysics (Dax et al., 2025) and neuroscience (Tolley et al., 2024).

In retrospect, the core idea of ABI appears simple: train a conditional generative model on simulations
from a parametric Bayesian model p(θ,Y) over parameters θ and (potentially high-dimensional)
observables Y. The network can then obtain independent samples from the posterior p(θ | Y) in a
fraction of the time required by gold-standard Markov chain Monte Carlo (MCMC) methods. And
as simple benchmarking suites have already received extensive attention (Lueckmann et al., 2021),
recent research increasingly turns to a more pressing challenge in Bayesian inference: affording
amortized inference for hierarchical, mixed-effects, or multilevel models (Rodrigues et al., 2021;
Heinrich et al., 2023; Arruda et al., 2024; Habermann et al., 2024).

In many application domains, Hierarchical models (HMs) are the default choice in Bayesian data
analysis (Gelman et al., 2013; McElreath, 2018). Their nested structure, however, strains inference
algorithms: standard MCMC rarely scales to large data sets (Blei et al., 2017; Margossian and Saul,
2023), and amortized Bayesian inference (ABI) faces both network-design and simulation-efficiency
hurdles. Crucially, direct ABI approaches for estimating HMs require exhaustive simulations for
each training sample (cf. Figure 1, left). This renders existing ABI approaches impractical for many
real-world hierarchical models, particularly those involving large datasets or expensive simulators.

To overcome this bottleneck, we build on compositional score matching (CSM), a divide-and-conquer
strategy originally introduced for Bayesian updating across exchangeable data points (Geffner et al.,
2023), and recently adapted to complete pooling (Linhart et al., 2024) and time series models
(Gloeckler et al., 2024b). By partitioning hierarchical estimation into multiple non-hierarchical
problems, our approach enables efficient training for amortizing HMs (cf. Figure 1, right). Moreover,
it affords modern score-based diffusion models (Song and Ermon, 2019; Song et al., 2020) that have
already shown considerable potential in SBI (Sharrock et al., 2024) and ABI (Gloeckler et al., 2024a).

Despite the conceptual appeal of CSM, we observe that current aggregation methods fail even
for simple, non-hierarchical models as the number of observations grows. Here, we show that
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Figure 1: Compositional inference for hierarchical Bayesian models. Overview of our training
procedure (left) and inference stages (right) for amortized hierarchical Bayesian modeling. Amortized
posterior sampling uses our error-damping compositional score estimator to achieve rapid inference
on very high-dimensional hierarchical problems.

these instabilities are due to compounding approximation errors and introduce a new compositional
estimator that remains stable even in hierarchical models with more than 250,000 groups and 750,000
parameters. Concretely, we develop and showcase

1. A new divide-and-conquer method for estimating large hierarchical Bayesian models with
score-based diffusion samplers;

2. A stable reformulation of compositional score matching with stochastic differential equations
(SDEs) using adaptive solvers;

3. An error-damping mini-batch estimator that enables efficient scaling as the number of groups J
becomes very large (e.g., hundreds of thousands of individual time series).

2 BACKGROUND AND RELATED WORK

Hierarchical Bayesian models Hierarchical Bayesian models are the default choice to model
dependencies in nested data, where observations are organized into clusters, levels, or groups (Gelman
et al., 2013). From a Bayesian perspective, any parametric data model p(Y | θ) can incorporate
multilevel structure via a hierarchical prior. For instance, a two-level model defines two stages

Yj ∼ p(Yj | θj ,η), θj ∼ p(θ | η), η ∼ p(η), (1)
via a hyperprior p(η) encoding global variation between groups and a conditional prior p(θ | η)
encoding local variation within groups. The task of Bayesian estimation is to estimate the full joint
posterior over local and global parameters:

p(η,θ1, . . . ,θJ | Y1, . . . ,YJ) ∝ p(η)

J∏
j=1

p(Yj | θj)p(θj | η), (2)

where J denotes the number of groups and the data model generally factorizes over Nj observations
within group j as p(Yj | θj) =

∏Nj

n=1 p(yj,n | θj ,yj,1:n−1).

The gold-standard approach for estimating hierarchical models are Markov chain Monte Carlo
(MCMC) methods (Gelman et al., 2020). While MCMC methods offer strong theoretical guarantees,
they are typically too slow for real-time or big data applications. Moreover, MCMC cannot be trivially
applied to simulation-based models (Sisson and Fan, 2011), hence the appeal of amortized inference.
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Amortized Bayesian inference (ABI) In amortized Bayesian inference (ABI), a generative network
seeks to learn a global posterior functional, Y 7→ q(θ | Y). Typically, the network minimizes a
strictly proper scoring rule S (Gneiting et al., 2007) in expectation over the joint model p(θ,Y):

min
q

{
Ep(θ,Y)

[
S(q(· | Y),θ)

]
≈ 1

B

B∑
b=1

S(q(· | Y(b)),θ(b))

}
. (3)

Using a universal density estimator for q, such as coupling flows (Draxler et al., 2024), ensures that
Eq. 3 can, in principle, converge to the correct target for large simulation budgets B → ∞. Since Y is
typically high-dimensional, a summary network h(Y) can be jointly trained to learn data embeddings
on the fly (Radev et al., 2020) or implicitly incorporated into the architecture of q (Gloeckler et al.,
2024a). Crucially, q repays users with zero-shot sampling for any new observation Y(new) compatible
with p(θ,Y), making ABI an attractive avenue for efficiently fitting complex hierarchical models.

ABI for hierarchical models Previous work has already ported the basic idea of ABI to hierarchical
settings (Habermann et al., 2024; Arruda et al., 2024; Heinrich et al., 2023; Rodrigues et al., 2021).
These works leverage the inverse factorization of Eq. 1 in different ways to design hierarchical neural
networks with inductive biases that capture the probabilistic symmetries (e.g., permutation invariance
for exchangeable groups) of HMs. However, these approaches either approximate only parts of the
joint posterior (Eq. 1) or scale poorly even when the number of groups J becomes moderately large.

Scalability issues arise since the expectation in Eq. 3 now runs over p(η,θ1, . . . ,θJ ,Y1, . . . ,YJ),
necessitating the simulation of a data set of data sets {Y1, . . . ,YJ} for each batch instance (cf. Fig-
ure 1, left): even for J ≈ 1000, a single training batch requires tens of thousands of simulations,
exceeding typical simulation budgets for non-trivial models quickly. Similar-sized problems can also
become practically infeasible for established MCMC samplers (e.g., NUTS, Hoffman et al., 2014),
even for models with closed-form likelihoods (see Experiment 2).

Building on prior work by Geffner et al. (2023); Linhart et al. (2024); Gloeckler et al. (2024b), we
address these efficiency issues in a “divide-and-conquer” manner via compositional score matching
(CSM; cf. Figure 1, right). Along the way, we introduce several key improvements to CSM in terms
of stability and scalability. To the best of our knowledge, we provide the first simulation-based method
capable of handling large-scale hierarchical Bayesian models with or without explicit likelihoods.

Score matching Score-based modeling (Song and Ermon, 2019) and diffusion models (Ho et al.,
2020) provide a powerful framework for generative modeling by learning to reverse a noise-adding
process. Diffusion models build on a forward process that gradually corrupts a sample θ into pure
noise at each time step t ∈ [0, 1], typically taking the form θt = αtθ + σtϵ with ϵ ∼ N (0, I). The
factors αt and σt are time-dependent functions that satisfy α2

t + σ2
t = 1 for variance-preserving

processes. These functions are often parameterized in terms of the log signal-to-noise ratio λt =
log(α2

t /σ
2
t ), known as the noise schedule (Kingma and Gao, 2023).

The conditional denoising score matching loss can be expressed in terms of an unconditional score
(Li et al., 2024), and further reformulated as an ϵ-prediction objective (Kingma and Gao, 2023):

min
ψ

Ep(θ,Y)Et∼U(0,1),ϵ∼N (0,I)

[
wt∥ϵ− ϵ̂ψ(θt,Y, λt)∥22

]
, (4)

which assumes the equivalent score parameterization ϵ̂ = −sψ(θt,Y, λt)σt. The weighting function
wt > 0, often chosen to match the noise schedule λt (see Kingma and Gao (2023) for a detailed review
of different weighting functions and noise schedules), is instantiated here as the likelihood weighting
proposed by Song et al. (2021). The forward and backward diffusion process can be specified as a
stochastic differential equation (SDE; Song et al., 2020), which enables posterior sampling using
state-of-the-art SDE solvers (more details in Appendix A.1). Moreover, this formulation has neither
been used for hierarchical modeling nor explored for compositional score matching in most prior
work (Geffner et al., 2023; Linhart et al., 2024), as discussed next.

3 METHOD

3.1 COMPOSITIONAL SCORE MATCHING

A major challenge in Bayesian inference arises when dealing with varying and potentially large
numbers of observations, especially in hierarchical models. To address this for non-hierarchical
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Table 1: Convergence of sampling methods for Gaussian toy example (Experiment 1) with a
maximum budget of 10,000 compositional sampling steps and maximal 30min of runtime for a
single dataset (✓– converges, ✗– fails).

Method N=10 N=100 N=10k N=100k

Annealed Langevin sampler (Geffner et al., 2023) ✓ ✗ ✗ ✗
Euler-Maruyama sampler ✓ ✗ ✗ ✗
Probability ODE sampler ✓ ✓ ✗ ✗
Adaptive second-order sampler ✓ ✓ ✗ ✗
GAUSS (Linhart et al., 2024) ✓ ✓ ✗ ✗

Any sampler with damping (ours) ✓ ✓ ✓ ✓
Any sampler with schedule adjustment (ours) ✓ ✓ ✓ ✓

models, Geffner et al. (2023) introduced compositional score matching (CSM) that enables the
aggregation of multiple conditionally independent score estimates into a global posterior estimate. In
the following, we first introduce a naive extension of CSM for estimating the global parameters η of
hierarchical models. We then propose a solution to the stability problems of the naive approach that
allows us to estimate the full joint posterior (Eq. 1) of large hierarchical models.

Compositional score and bridging density Suppose we have J exchangeable groups of data points,
{Yj}Jj=1. Then, the compositional posterior can be written as

p(η | {Yj}Jj=1) ∝ p(η)1−J
J∏

j=1

p(η | Yj), (5)

using Bayes’ rule twice. Let pt(ηt | Yj) be the time-varying density of the noise-corrupted
parameter ηt for t ∈ [0, 1], as defined by the forward diffusion process. Then, we can define the
bridging densities pt(ηt | {Yj}Jj=1) ∝ p(ηt)

(1−J)(1−t)
∏J

j=1 pt(ηt | Yj). This results in a linear
composition of the prior score and individual posterior scores:

∇ηt
log pt(ηt | {Yj}Jj=1) = (1− J)(1− t)∇ηt

log p(ηt) +

J∑
j=1

∇ηt
log pt(ηt | Yj). (6)

After training, we can sample from the base distribution pt=1(ηt) = N
(
0, 1

J I
)

and use the composi-
tional score to sample from the posterior distribution of η. The score model can also be conditioned
on m groups jointly, rather than a single group. This results in a compositional update that involves
only k = ⌊J/m⌋ scores per posterior evaluation, which can improve the robustness of the score
estimation. However, this comes at an increased computational cost because each training iteration
requires a batch simulation of m full groups of data points, rather than just one group.

Sampling with compositional scores Geffner et al. (2023) employ annealed Langevin sampling
to invert the diffusion process for posterior inference, which needs many score evaluations for
accurate inference (Jolicoeur-Martineau et al., 2021) and is sensitive to the choice of step-size at each
sampling iteration. In contrast, Linhart et al. (2024) use a second-order Gaussian approximation of
the backward diffusion kernels to bypass Langevin sampling, introducing the need to approximate
potentially large covariance matrices and limiting their experiments to only 100 observations.

In the remainder, we demonstrate that it is possible to instead leverage the SDE formulation by
aggregating the compositional scores in the reverse SDE (see Appendix A.1) to sample from the
posterior. This allows us to use more efficient numerical solvers. However, regardless of the number
of conditioning groups k, increasing the number of score terms leads to error compounding due
to a potential mismatch of marginal densities pt and the corresponding forward diffusion process,
resulting in unstable dynamics and divergent samples (see Figure 5 in Appendix). Even higher-order
solvers require extremely small step sizes, constraining their practicality (cf. Table 1). The next
section introduces three new modifications to the naive CSM approach that stabilize the bridging
density (Eq. 6) and unlock unprecedented scalability to large data sets.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 STABILIZING AND SCALING COMPOSITIONAL SCORE MATCHING

In contrast to most previous work, we adopt the SDE formulation to perform compositional inference
with adaptive solvers that automatically adjusts the step size during integration. This modification
is essential for larger numbers of groups J , where the need for finer granularity (i.e., smaller step
sizes) increases and manual tuning becomes infeasible (Jolicoeur-Martineau et al., 2021). Moreover,
it avoids the need for annealed Langevin sampling, which requires many steps per noise level and
becomes prohibitively expensive when error correction is needed. However, simply using an adaptive
solver does not address the two major challenges for scaling the compositional approach to very large
datasets: 1) the bridging densities (Eq. 6) become unstable as J increases (see Table 1) and 2) the
memory requirements grow substantially when accumulating scores over the full data set.

Flexible error-damping bridging densities We propose to stabilize the bridging density by in-
troducing a damping factor of the accumulated score. Yet, naively applying a damping factor to
the compositional score to prevent it from diverging would bias the posterior samples. Instead, to
mitigate instability at large J , we introduce a more flexible class of error-damping bridging densities:

pt(ηt | {Yj}Jj=1) ∝
(
p(ηt)

1−J
)(1−t)d(t)

J∏
j=1

pt(ηt | Yj)
d(t), (7)

where d(0) = d0 = 1 and d(1) = d1 ≤ 1, and the latent diffusion prior is pt=1(η1) = N (0, 1
Jd1

I).

The key idea is to define a monotonic function d(t) that modulates the accumulation of score
contributions throughout the diffusion trajectory during inference. In high-noise regimes, we reduce
the influence of the individual terms to prevent the score from diverging, while for t → 0, we allow
their contributions to accumulate, recovering the true posterior. This construction is motivated by
the observation that adaptive solvers require smaller steps in high-noise regimes to avoid numerical
instability (see Appendix Figure 5). As a damping schedule, we use an exponential decay d(t) =
d0 · exp(− ln(d0/d1) · t) with d0 = 1 and a hyperparameter d1 that can be tuned during inference.

Mini-batch estimation for memory efficiency To address memory constraints in large-data scenar-
ios, we introduce a mini-batch estimator for the compositional score:

ŝψ(ηt, {Yj}Jj=1, λt) = (1− J)(1− t)∇ηt
log p(ηt) +

J

M

M∑
i=1

sψ(ηt,Yji , λt), (8)

where ji ∼ U{1, . . . , J} and M is the mini-batch size.
Proposition 1. The mini-batch estimator in (8) is an unbiased estimator of the compositional score.

For a short proof, see Appendix A.2. Combining this estimator with the damping function yields our
final compositional form:

ŝdψ(ηt, {Yj}Jj=1, λt) = d(t) ·
(
(1− J)(1− t)∇ηt

log p(ηt) +
J

M

M∑
i=1

sψ(ηt,Yji , λt)

)
. (9)

This error-damping mini-batch estimator scales well with increasing numbers of groups J and
maintains stability across the reverse-time diffusion process, as shown in our experiments.

Noise schedule adjustment for sampling Finally, we propose to use different noise schedules for
training and inference. During inference, spending less time in the high-noise regime of the reverse
process improves stability and allows for larger step sizes, which is particularly important in the
large-J setting. In the case of the cosine schedule λ(t) = −2 · log(tan(πt/2)) + 2s proposed by
Nichol and Dhariwal (2021), this can be easily achieved by increasing the shift parameter s, which
effectively compresses the high-noise portion of the schedule. As discussed by Karras et al. (2022)
and Kingma and Gao (2023), the combination of the noise schedule and the weighting function in the
denoising score matching objective plays a beneficial role akin to importance sampling.

3.3 COMPOSITIONAL SCORE MATCHING FOR HIERARCHICAL MODELING

To employ our stable compositional formulation for simulation-efficient hierarchical Bayesian model-
ing, we represent the posterior at each hierarchical level with its own score estimator. The outputs of
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Figure 2: Evaluation of the error-damping estimator for the Gaussian toy example. Different
evaluation metrics are shown for different data set sizes and damping factors d1 or cosine shifts s.
The mini-batch size was set to 10% of the data set size and for each step 10 runs were performed.
The median and median absolute deviation is reported, besides for those runs where none converged.

these score estimators are then connected via the inverse factorization (see Figure 1). This design is
similar to the frameworks introduced by Habermann et al. (2024) and Heinrich et al. (2023) but avoids
the need for hierarchical embeddings and exhaustive simulation. At higher levels of the hierarchy,
we use our stable compositional formulation (Eq. 9), enabling training of the global score model on
single groups. For example, in a two level model, we have

slocal
ψ (θt,j ,η,Yj , λt) ≈ ∇θt log pt(θt,j | η,Yj), s

global
ψ (ηt,Yj , λt) ≈ ∇ηt

log pt(ηt | Yj). (10)

For each group, we may learn a shared summary representation hj = h(Yj) via a summary network
h. Either the raw data Yj or its summary hj is then used as input to both the global and local
score-based models. The design of the summary h should be adapted to the specific data modality
(e.g., recurrent networks or transformers for time series, etc.). When conditioning on multiple groups,
we encode exchangeability via a second summary network (e.g., a DeepSet, Zaheer et al., 2017),
which aggregates the individual summaries into a permutation-invariant global summary.

The global and local score networks can be trained jointly via denoising score matching objectives,

min
ψ

Ep(θ,η,Y)Et∼U(0,1)wt

[
∥ϵ+ slocal

ψ (θt,η,Y, λt)σt∥22 + ∥ϵ+ sglobal
ψ (ηt,Y, λt)σt∥22

]
, (11)

with ηt = αtη+ σtϵ and θt = αtθ+ σtϵ, where ϵ ∼ N (0, I). Having trained the score models, we
can sample from the joint posterior via ancestral sampling:

η ∼ qglobal
ψ (η | {Yj}Jj=1), θj ∼ qlocal

ψ (θ | η,Yj), (12)
where we use the compositional score (Eq. 10) to sample the global parameters and then sample the
local parameters conditioned on the global sample using standard score-based diffusion.

4 EXPERIMENTS

To systematically evaluate the proposed methods, we consider three case studies.

• Gaussian toy example: An analytically tractable Gaussian model with up to 100,000 synthetic
data points, used to assess the accuracy and breakdown point of compositional score estimation.

• Hierarchical time series model: A grid of AR(1) processes with shared global and local
parameters, used to evaluate hierarchical estimation against gold-standard MCMC.

• Real-world application: Time-resolved Bayesian decay analysis in Fluorescence Lifetime
Imaging (FLI), used to demonstrate scalability to high-dimensional real data.

For the two synthetic examples, we assess convergence across varying data sizes by recording the
number of sampling iterations of the adaptive sampler. In the Gaussian toy example, we can cal-
culate the KL divergence between the compositional and the true posteriors, relative mean squared
error (RMSE) normalized by the known variance, posterior contraction, and calibration error (Ap-
pendix A.3). For the hierarchical models, we compute these metrics separately at both the global and
the local level. Appendix A.4 provides further details about the architecture.
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Table 2: Benchmarking against NUTS (gold-standard MCMC) for the hierarchical AR(1) model. We
show mean and standard deviation over parameters.

Method RMSE global Contraction global RMSE local Contraction local

NUTS (4x4) 0.08 (0.05) 0.95 (0.04) 0.1 (0.01) 0.98 (0.00)
Ours (4x4) 0.09 (0.05) 0.97 (0.0) 0.14 (0.01) 0.95 (0.01)

NUTS (32x32) 0.02 (0.01) 1.0 (0.0) 0.09 (0.01) 0.99 (0.0)
Ours (32x32) 0.08 (0.03) 1.0 (0.0) 0.15 (0.01) 0.97 (0.01)

NUTS (128x128) 0.01 (0.01) 1.0 (0.00) 0.09 (0.03) 0.99 (0.00)
Ours (128x128) 0.09 (0.05) 1.0 (0.01) 0.13 (0.01) 0.97 (0.01)

4.1 EXPERIMENT 1: SCALING AND STABILIZING CSM WITH ERROR-DAMPING ESTIMATION

Setup and baseline This first experiment serves both as a sanity check and as a demonstration of
the stabilizing effects of our error-damping estimator, highlighting the accuracy and scalability of
compositional score matching in a controlled setting. We consider a Gaussian model of dimension
D=10 with conditionally independent groups and a global latent variable (see Appendix A.5). Since
the posterior is analytically tractable, it enables exact measurement of accuracy and convergence. We
scale the number of observations up to 100,000 to test the effect of dataset size on error accumulation
of the individual scores. Below, we summarize our results and provide practical recommendations.

Damping factor We find that the optimal damping factor d1 depends on the number of composed
groups: larger datasets require smaller damping factors for convergence (Figure 2). However, overly
small factors can prevent posterior contraction, worsen calibration, and even hinder convergence.
With an initial factor of 0.1, we can successfully compose 100,000 scores. At this scale, the analytical
posterior becomes nearly a point estimate, so even slight deviations in our estimate can significantly
increase the KL-divergence, but the RMSE remain negligible. The damping factor is a tunable
hyperparameter, and a value on the order of 1/

√
n often serves as a good starting point.

Mini-batching Our mini-batch estimator reduces computational cost per sampling step but does not
resolve instability due to score error accumulation, which prevents convergence beyond 1000 data
points (see Appendix Figure 6). Using smaller batches instead of the full dataset lowers both the
KL-divergence and posterior calibration error, albeit with a slight increase in RMSE. We attribute this
to a smoothing effect on accumulated score errors. In practice, we recommend using mini-batches of
about 10% of the data to balance accuracy and computational demands.

Noise schedule shifting Adjusting the noise schedule improves stability and mitigates error accumu-
lation (Appendix Figure 6). A large shift of s=10 enables scaling to 100,000 groups and improves
KL-divergence, RMSE, and calibration error. As expected, both KL-divergence and calibration
degrade with larger datasets due to increased error accumulation, but the shifted schedule helps to mit-
igate this effect. Moreover, linear or EDM sampling schedules appear suboptimal for compositional
score matching, failing to converge even on smaller datasets (see Appendix Figure 7).

Number of conditions Scaling to 100,000 groups becomes also feasible by conditioning the diffusion
model on subsets of 100 groups (Appendix Figure 6). However, increasing the number of conditioning
groups does not necessarily lead to better posterior contraction or lower RMSE. Notably, the number
of conditions has to be chosen before training, and conditioning on more groups requires additional
simulations, since each training sample incorporates multiple groups. The choice of the number of
groups per subset introduces a trade-off between scalability, accuracy, and the required expressivity
of the summary network. While larger subsets can reduce the variance in the compositional score
estimation, they require more expressive networks to compose group-level information into accurate
score estimates. In practice, using a small number of conditions can yield performance gains without
incurring major training costs.

In summary, our experiments with the analytically tractable Gaussian toy example demonstrates that
the error-damping mini-batch estimator affords scalable compositional inference for up to 100,000
units of information. While mini-batching alone is insufficient to ensure convergence, combining it
with damping and noise schedule shifting reduces score accumulation errors and computational cost.
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A B

Figure 3: Assessing inference for high-resolution grids (128×128). A Global parameter recovery
across 100 datasets, showing the posterior median and median absolute deviation. B Posterior
calibration plot for the global parameters, using simulation-based calibration (Säilynoja et al., 2022).

4.2 EXPERIMENT 2: SCALING HIERARCHICAL BAYESIAN INFERENCE

Setup and baseline Our second experiment evaluates whether our approach can accurately infer
the joint posterior for a non-trivial hierarchical Bayesian model. We simulate a grid of local AR(1)
processes with a shared global drift and local variation parameters (see Appendix A.6). We increase
the grid size up to 128×128 to test the scalability of the method, resulting in up to 16,384 local
parameter vectors. For this grid of AR(1) processes, direct comparison to NUTS (as implemented in
Stan, Carpenter et al., 2017) is possible, which is widely regarded as a gold standard for Bayesian
inference and provides the most reliable benchmark for evaluating how well our method captures the
correct shrinkage in the local parameters. Importantly, our total simulation budget amounts to 610
grids of size 128 × 128, rendering previous amortized methods that train on full grids completely
infeasible with this low number of training samples.

Results Our results support the earlier findings regarding the role of the damping factor: tuning
the damping function is essential to balance posterior contraction and estimation error (Appendix
Figure 8), however a too large cosine shift might hinder calibration. Moreover, we find that neither
the damping factor nor the cosine shift alone is sufficient to ensure convergence on high-resolution
grids (e.g., 128×128), but their combination stabilizes inference (Figure 3). However, for these
large-scale settings, achieving well-calibrated posteriors often comes at the cost of reduced accuracy
in parameter recovery. This difficulty arises due to the strong contraction of the global posterior and
compounding errors while solving the reverse SDE. As a result, calibration becomes challenging in
the high-resolution regime.

In terms of precision, we observed that our method yields results comparable to NUTS at both
the global and local parameter levels (Table 2), with a slightly higher local RMSE. Crucially, our
method scales effortlessly to significantly larger grid sizes, such as 128×128 (Figure 3). In contrast,
NUTS requires approximately 9 hours on a high-performance cluster with 64 CPU cores, whereas
our likelihood-free approach completes inference within a few minutes on a single GPU. Moreover,
already at a resolution of 32×32, posterior sampling with NUTS for 100 datasets takes a similar
amount of time as training one score-based model and performing amortized inference.

Inference-time hyperparameter optimization Importantly, because inference with our method is
amortized, we can perform grid-based or even Bayesian hyperparameter optimization. We tuned the
damping factor and noise shift by selecting the best configuration based on the sum of the RMSE and
calibration error. To generalize beyond our proposed decay damping, we introduce a flexible decay
function: d(t) = d0 + (d1 − d0) ·

(
1− (1− tα)β

)
, which adds two hyperparameters (α and β) that

enable smooth interpolation between linear, exponential-like, and cosine-like behaviors. We perform
Bayesian optimization over α, β ∈ [0.3, 2], d1 ∈ [10−5, 10−1], and d0 ∈ [10−3, 1]. This increases
the runtime on a 32×32 grid from 3 to 7 minutes, primarily due to a reduction in early failures during
sampling. The best configuration yielded d1 = 0.005, d0 = 0.94, s = 3.53, α = 0.39, and β = 1.97,
suggesting that the learned schedule strongly favors a sharp, exponential-like decay (Figure 3).

In summary, our experiment with the hierarchical AR(1) model revealed that compositional score
matching, when combined with damping and noise schedule shifting, enables accurate and scalable
inference in hierarchical models with thousands of groups. Even though NUTS is competitive on
small grids, its cost and requirement for a tractable likelihood can make it impractical for estimating
complex models from large data sets, whereas our compositional approach remains viable.
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Figure 4: Inference for fluorescence lifetime imaging. A Mean intensity across time for each pixel,
representing the fluorescence data. B Time series data and fitted posterior median for representative
pixels. C Spatial map of the fitted local posteriors (medians) per pixel. D Spatial map of the coefficient
of determination for each pixel, comparing our results with a popular baseline (MLE).

4.3 EXPERIMENT 3: APPLICATION TO FLUORESCENCE LIFETIME IMAGING (FLI)

Practical relevance Our final experiment demonstrates the practical utility of our approach for
real-world data, enabling scalable posterior estimation in fluorescence lifetime imaging (FLI), where
existing methods struggle with noise and high dimensionality. FLI is an important tool in pre-clinical
cancer imaging, particularly for in vivo drug-target analysis (Verma et al., 2025). However, FLI
remains challenging because it requires sub-nanosecond time-resolved acquisition, computationally
heavy pixel-wise curve fitting, and must deal with noisy decay profiles from low-quantum-yield
dyes, leading to high uncertainty (Yuan et al., 2024; Trinh and Esposito, 2021). Bayesian approaches
have been explored in prior work (Wang et al., 2019; Rowley et al., 2016), but, to the best of our
knowledge, we present the first application of a fully hierarchical Bayesian model to FLI data.

Setup and baseline We analyze time-resolved fluorescence decay data (Figure 4A-B), where each
pixel in a measured series of 512×512 images is modeled using a bi-exponential decay with local
decay rates τL1 and τL2 and mixture weights AL. Each local parameter has a global mean and a
global standard deviation, resulting in a hierarchical inference problem with over 250,000 groups
(see Appendix A.7). Unlike amortized methods that train on full-image simulations to generalize
across spatial structures, our approach trains on single pixels, requiring only the equivalent of 350
full images for training. We compare our approach with the field’s gold standard method based on
maximum likelihood estimation (MLE).

Results To assess the performance of the baseline non-hierarchical approach and our proposed
method, we first consider 100 held-out synthetic images. We found that per-pixel MLE fails to
recover the ground truth due to photon-limited noise. In contrast, our hierarchical approach accurately
captures both global and local structures (Appendix Figure 9-10). Nevertheless, estimating global
variances remains challenging under very high noise conditions. Finally, we applied our method
to real FLI data (Appendix A.7). Using the trained score-based hierarchical model, we fitted over
750, 000 local parameters efficiently (Figure 4C). Qualitatively, the inferred mean lifetime closely
matches a standard MLE fit (Appendix Figure 11). Our approach achieves excellent image-wide fits,
with mean R2 = 0.961 (s.d., 0.017) for posterior predictive medians, versus 0.871 (s.d., 0.110) for
MLE (Figure 4D), as illustrated in Figure 4B. Across pixels, the mean posterior predictive p-value is
0.20 (s.d., 0.337), indicating slight underdispersion; masking the final third of the decay tail increases
the mean p-value to 0.40 (s.d., 0.38), confirming that our model captures the core dynamics.

5 CONCLUSION

Hierarchical Bayesian models (HBMs) are of utmost importance in statistics, but their estimation
remains challenging. Here, we demonstrated that compositional score matching (CSM) provides
a scalable and flexible framework for estimating large HBMs. Moreover, we introduced an error-
damping mini-batch estimator that resolves the inherent instability of CSM up to hundreds of
thousands of data points. As a notable limitation, we observed that posterior calibration becomes
difficult at scale, particularly under extreme contraction. Future work could further explore temporal
aggregation (Gloeckler et al., 2024b), systematically test the trade-off introduced by different damping
schedules, refine mini-batch selection using informativeness criteria (Peng et al., 2019), and generalize
our experiments to more than two levels.
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REPRODUCIBILITY STATEMENT

The code and data to reproduce the experiments are available in a public GitHub repository: https:
//anonymous.4open.science/r/hierarchical-abi-submission-7409/.
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A APPENDIX

A.1 STOCHASTIC DIFFERENTIAL EQUATION FORMULATION OF THE DIFFUSION PROCESS

The forward diffusion process for t ∈ [0, 1] can be specified as a stochastic differential equation Song
et al. (2020):

dθt = f(θt, t) dt+ g(t) dWt.

For a known variance-preserving process, the drift and diffusion coefficients are given by

f(θ, t) = − 1
2

(
d
dt log(1 + e−λt)

)
θ, g(t)2 = d

dt log(1 + e−λt),

with α2
t = sigmoid(λt) and σ2

t = sigmoid(−λt) as discussed in (Kingma and Gao, 2023). Time can
be reversed via the reverse-time SDE

dθt =
[
f(θt, t)− g(t)2∇θt

log pt(θt | Y)
]
dt+ g(t) dWt,

which enables posterior sampling using state-of-the-art SDE solvers. The corresponding probability
ODE is

dθt =

[
f(θt, t)−

1

2
g(t)2∇θt

log pt(θt | Y)

]
dt.

A.2 MINI-BATCH ESTIMATOR IS UNBIASED

Proposition 2. The mini-batch estimator

ŝψ(ηt,Y, λt) = (1− J)(1− t)∇ηtb log p(ηt) +
J

M

M∑
j=1

sψ(ηt,Yj , λt)

with M samples, where each sample Yj is sampled uniformly from the set {Y1, . . . ,YJ}, is an
unbiased estimator of the full compositional score.

Proof. By linearity of expectation, we have

E

 J

M

M∑
j=1

sψ(ηt,Yj , λt)

 =
J

M

M∑
j=1

EYj
[sψ(ηt,Yj , λt)] .

Since each Yj is sampled uniformly from {Y1, . . . ,YJ},

EYj
[sψ(ηt,Yj , λt)] =

1

J

J∑
j=1

sψ(ηt,Yj , λt),

so

E

 J

M

M∑
j=1

sψ(ηt,Yj , λt)

 =
J

M
·M · 1

J

J∑
j=1

sψ(ηt,Yj , λt) =

J∑
j=1

sψ(ηt,Yj , λt).

Adding the constant prior term (1−J)(1−t)∇η log p(ηt) yields the full compositional score. Hence,
the estimator is unbiased.

A.3 EVALUATION METRICS

All experiments are repeated 10 times and the median and median absolute deviation from the
following standard metrics are reported:

Root mean squared error (RMSE). RMSE measures the deviation between posterior samples and

the ground-truth parameters. Given posterior samples θ̂
(s)

ij (local or global) for parameters j in the
dataset i, and true parameters θij , the RMSE is defined as:

RMSEj =

√√√√ 1

S

S∑
s=1

(
θ̂
(s)

ij − θij

)2

,

aggregated over datasets via median and over the parameters j via the mean. We normalize RMSE
by dividing by the empirical range of the ground-truth parameters.
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Calibration error. Calibration Error measures how well the empirical coverage of posterior credible
intervals matches their nominal level. For a level α ∈ [0.005, 0.995], we compute the α-credible
interval for each parameter and check whether the ground-truth value falls within it. Let Iαij denote
the indicator that the true value lies within the interval:

CalibrationErrorj = medianα

∣∣∣∣∣ 1N
N∑
i=1

Iαij −α

∣∣∣∣∣ ,
where aggregation is across a grid of α values. We calculate the mean calibration error over the
parameters j. This metric is sensitive to both over- and under-confidence in the posteriors.

Posterior contraction. We define posterior contraction as the relative reduction in variance from
prior to posterior:

Contractionj = 1−
Varposterior(θj)

Varprior(θj)
,

where values are clipped to [0, 1]. This reflects how much uncertainty has been reduced due to
conditioning on the data, with values near 1 indicating strong learning.

KL divergence (Gaussian case). In the Gaussian toy example, where the true posterior is analyti-
cally tractable and Gaussian, we compute the KL divergence between the empirical posterior q(θ)
(estimated from samples) and the true Gaussian posterior p(θ):

KL(q ∥ p) = 1

2

[
log

|Σp|
|Σq|

− d+Tr(Σ−1
p Σq) + (µq − µp)

⊤Σ−1
p (µq − µp)

]
,

where µq, Σq are the empirical mean and covariance of posterior samples, and µp, Σp are the
parameters of the analytical posterior.

Posterior predictive p-value. The posterior predictive p-value evaluates how well the observed data
are covered by the posterior predictive distribution. In a well-specified model, these p-values are
approximately uniform on [0, 1]; thus, their expectation should be approximately 0.5. For S posterior
samples, let

ft(θ) = median
(
{yrep,(s)

t ∼ p(Y | θ)}Ss=1

)
, V̂art(θ) =

1

S − 1

S∑
s=1

(
y

rep,(s)
t − ft(θ)

)2

.

For each posterior draw θ(s), define the discrepancy as

D (y,θ) =

T∑
t=1

(yt − ft(θ))
2

V̂art(θ)
,

and then posterior predictive p-value is

pPPC =
1

S

S∑
s=1

1
(
D(yrep,(s),θ) ≥ D(yobs,θ)

)
.

RMSE, calibration error, posterior contraction and empirical CDFs plots are computed using the
diagnostics provided in the BayesFlow toolbox (Radev et al., 2023).

A.4 SCORE MODEL ARCHITECTURES & TRAINING

• MLPs: Fully connected networks with 5 hidden layers and 256 units per layer, using Mish
activations.

• Residual local conditioning: Local networks receive a projection of the global latent variables
and learn a residual update. Otherwise, global and local network are simple MLPs.

• Permutation-invariant aggregation: To handle multiple condition sets or observations per
group, we use a shallow permutation-invariant encoder architecture based on the Deep Set
framework Zaheer et al. (2017):

– An encoder MLP (enc) with 4 layers of 128 hidden units and ReLU activations,
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– Mean pooling over the set dimension to ensure permutation invariance,
– A decoder MLP (dec) with 3 hidden layers (each of size 128) and ReLU activations,

projecting to the final output dimension.
• Time series summary network: For structured input data such as time series (as in the FLI

application), we use a hybrid convolutional–recurrent architecture. The model begins with a
stack of 1D convolutional layers followed by a skipping recurrent path as implemented in (Zhang
and Mikelsons, 2023):

– A standard recurrent path (bidirectional GRU with hidden size 256),
– A skip-convolution path, which downsamples the sequence via strided convolution and

feeds the result into a parallel recurrent layer,
– Final representations from both paths are concatenated to produce a summary embedding,

which are then projected by a linear layer to a fixed summary dimension of size 18.

We parameterize our score models to predict the more stable v̂t := αtϵ− σtθt, and then transform
the output to ϵ̂t, as it has been shown that this parameterization is more stable for all t, whereas
noise-prediction becomes harder for t close to 0 where the signal increases and noise decreases
Salimans and Ho (2022). Furthermore, we condition the score network on the signal-to-noise ratio
(SNR), normalized to the interval [−1, 1] similar to the preconditioning introduced in (Karras et al.,
2022). The data and parameters are always standardized, and the prior scores are adjusted accordingly
by multiplying them by the standard deviation of the parameters.

Noise schedules We employed the following schedules:

• Cosine schedule by Nichol and Dhariwal (2021) (with s=0 during training)

λ(t) = −2 log(tan(πt/2)) + 2s,

• Linear schedule by Ho et al. (2020)

λ(t) = − log(et
2

− 1),

• and EDM schedule by Karras et al. (2022) for training

λ(t) = F−1
N (t; 2.4, 2.42)

and sampling

λ(t) = −2ρ log(σ1/ρ
max + (1− t)(σ

1/ρ
min − σ1/ρ

max))

with ρ = 7, σmin = 0.002, σmax = 80, and σdata = 1.

All our noise schedules are truncated such that the log signal-to-noise ratio is λt ∈ [−15, 15] to avoid
instabilities in sampling as detailed in (Kingma and Gao, 2023). For the EDM schedule, we set
λt ∈ [− log σ2

max,− log σ2
min] as in the original paper.

As the weighting function for the loss, we employed the likelihood weighting wt = g(t)2/σ2

proposed by Song et al. (2021) for the linear and cosine schedules and the original EDM weighting
wt = exp(−λt) + 1 for the EDM schedule (Karras et al., 2022).

Training We trained all models using AdamW with a cosine annealing learning rate schedule. The
initial learning rate is set to 5×10−4. Models are trained for 1000 epochs on the Gaussian toy example
and 3000 epochs on all other settings. In each epoch, we generate 10,000 new training samples on
the fly, as simulations are cheap. Only for the FLI application we used 30,000 samples per epoch as
we found that more training data was needed. However, we found similar performance of our score
models when trained with a fixed simulation budget without generating new samples in each epoch.
For reference, training a single score estimator for the FLI task completes in 7.6 hours on a single
GPU, while for the AR(1) model it takes 0.83 hours.

All models were trained on a high-performance computing cluster using an AMD EPYC "Milan"
CPU (2.00 GHz), 100 GB DDR4 3200 MHz RAM, and an NVIDIA A40 GPU with 48 GB of
memory. Each experiment required 1–2 days for all repeated runs on a high-performance computing
infrastructure with up to 50 parallel jobs.
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Sampling For our experiments, we used the adaptive second-order sampler with maximal 10,000
iterations and the default settings proposed by Jolicoeur-Martineau et al. (2021). Specifically, we set
the absolute error tolerance to eabs = 0.01× the number of parameters and the relative tolerance to
erel = 0.5. To solve the probability ODE, we used an Euler scheme. For annealed Langevin dynamics,
we followed the setup from Geffner et al. (2023), using 5 Langevin steps per iteration, a maximum of
2000 iterations, and a step size factor of 0.1. For GAUSS, we used the implementation provided by
the sbi toolbox (Boelts et al., 2025) with the same diffusion model and training settings as in our
own implementation.

To find the optimal damping factor d1 and shift s for a certain task, we ran Bayesian optimization
with optuna (Akiba et al., 2019) using the sum of the average RMSE and expected calibration error
as an optimization criterion. We used search grids s ∈ [0, 4] and d1 ∈ [1× 10−5, 0.1]. We chose this
simple criterion because the hierarchical structure and shrinkage effects in our experiments encourage
unimodal behavior by borrowing strength across observations. More expressive criteria can be used
in cases where the posteriors exhibit multiple modes. We also considered d0 < 1, and found that this
can sometimes improve RMSE and calibration.

A.5 EXPERIMENT 1: GAUSSIAN TOY MODEL

We define the Gaussian toy model as follows:

Yi ∼ N (η | σ2I)

with σ = 0.1 and η ∈ R10. We observe {Yj}Jj=1 with varying J and compute the posterior
p(η | {Yi}Jj=1). Given a normal prior for η, η ∼ N (0 | σ2I), the posterior is also Gaussian, and we
can calculate it analytically:

p(η | {Yj}Jj=1) ∝ exp
(
− 1

2 (η − µJ)
⊤Σ−1

J (η − µJ)
)
,

where µJ = 1
J+1

∑J
j=1 Yj and Σ−1

J = J+1
σ2 I. Here, we do not employ a summary network.
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(a) Number of sampling steps. (b) Adaptive step size for 100 groups.

Figure 5: Assessing the adaptive sampling scheme for compositional inference in the toy model. (a)
Increasing numbers of sampling steps are needed for increasing number of subsets of groups. (b) The
adaptive step size is adaptively increased towards the end of the sampling (low noise region).
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(a) Varying mini-batch sizes.
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(b) Varying number of subsets of groups during training (score model trained with a DeepSet as a second
summary network).

Figure 6: Evaluation of the error-damping estimator for the toy model. Different evaluation metrics
are shown for different mini-batch sizes or varying numbers of subsets of groups. For each experiment,
10 runs were performed. The median and median absolute deviation is reported, besides for those
runs where none converged.
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(a) Linear Noise Schedule
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(b) EDM Noise Schedule

Figure 7: Evaluation of the different noise schedules for the toy model. For each experiment, 10 runs
were performed. The median and median absolute deviation is reported, besides for those runs where
none converged. Both methods fail for already 1,000 groups, where the standard cosine schedule still
converges.
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A.6 EXPERIMENT 2: HIERARCHICAL AR(1) MODEL

Our hyper-priors are defined as follows:

α ∼ N (0, 1), β ∼ N (0, 1), log σ ∼ N (0, 1).

The local parameters are different for each grid point:

θ̃j ∼ N (0, σI), θj = 2 sigmoid(β + θ̃j)− 1.

In each grid point j, we have a time series of T = 5 observations,

Yj,0 ∼ N (0, 0.1I)

Yj,t ∼ N (α+ θjYj,t−1, 0.1I), t = 1, . . . T − 1.

On the local level, we perform inference on θ̃ and afterward transform θ̃ to θ as NUTS (as imple-
mented in Stan Carpenter et al., 2017) performs better on non-centered parameterizations (Betancourt
and Girolami, 2015). Here, we do not employ a summary network.
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(b) Varying mini-batch sizes. Convergence is achieved only for the smallest data set.
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(c) Varying cosine shifts s.
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(d) Varying number of subsets of groups during training (score trained with a Deep Set).

Figure 8: Evaluation of the error-damping estimator for the hierarchical AR(1) model. For each
experiment, 10 runs were performed. The median and median absolute deviation is reported, besides
for those runs where none converged. A mini-batch size of 10% of the data is employed, and score
models are trained on a single group.
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A.7 EXPERIMENT 3: FLUORESCENCE LIFETIME IMAGING (FLI) MODEL

Model The observed time-resolved fluorescence signal at each pixel is modeled using a bi-
exponential function, following the work of Pandey et al. (2024) and Smith et al. (2019). This
approach captures the fluorescence decay dynamics of individual fluorophores, accounting for both
fast and slow decay components associated with different molecular states. By fitting a decay model,
we can extract information about the characteristic lifetimes of the fluorophores, which is essential for
studying molecular interactions and dynamics. The time-dependent fluorescence signal is given as:

y(t) = I ·
[
AL e−t/τL

1 + (1−AL) e−t/τL
2

]
∗ IRF(t) + η(t), (13)

where τL1 , τL2 are the fluorescence lifetimes and AL is a mixture parameter. Here, I ∈ [0, 1024]
denotes the pixel intensity for 10-bit images, IRF(t) is the instrument response function, and η(t)
represents additive noise. The symbol ∗ denotes convolution. For each simulation, we independently
sample a time series from the recorded IRF and system generated noise. The maximal photon count
in each time series is then normalized to 1. The real data is also normalized to 1 on a pixel-wise level.

Instrument response function (IRF) The emitted signals are recorded using multiple instruments
(detectors, electronics, etc.) which have a characteristic response E(t) to an instantaneous signal δ(t)
(e.g., a single photon). The recorded signals from the T -periodic emitted signal can be written as a
convolution of periodic δ0,T and non-periodic E(t):

y0(t) = E(t) ∗ δ0,T (t)
= E(t) ∗ (x0,T ∗ F0,T )

= (E(t) ∗ x0,T ) ∗ F0,T

= IRF0,T ∗F0,T .

(14)

Equation 14 introduces the T -periodic instrument response function IRF0,T . The IRF can be mea-
sured using excitation signal from diffused white paper. The FLI experimental details in microscopy,
mesoscopy and macroscopy can be found in Pandey et al. (2025).

The traditional ways of fitting these kinds of models are reviewed in Torrado et al. (2024).

Priors The prior distributions were designed with domain knowledge:

τG1,mean ∼ N (log(0.2), 0.72), τG1,std ∼ N (−1, 0.12),

∆τGmean ∼ N (log(1), 0.52), ∆τGstd ∼ N (−2, 0.12),

aGmean ∼ N (0.4, 12), aGstd ∼ N (−1, 0.52).

Local parameters are then sampled from the corresponding global means and standard deviations:

τL1,j ∼ N (τG1,mean, (τ
G
1,std)

2), ∆τLj ∼ N (∆τGmean, (∆τGstd)
2), aLj ∼ N (aGmean, (a

G
std)

2).

The local parameters can then be converted to linear scale for simulation:

τL1 = exp(log τ1), τL2 = τ + exp(log∆τ), AL =
1

1 + exp(−a)
.

This ensures that τ2 > τ1 on both global and local levels and that the mixture fulfills A ∈ [0, 1].
Additionally, we can compute the average lifetime τmean = Aτ1 + (1−A)τ2.

Here, we employ the time series summary network.

Data AU565 (HER2+ human breast carcinoma) cells, incubated for 24h with 20 µg/mL TZM-Alexa
Fluor 700 (Donor, D) and 40 µg/mL TZM-Alexa Fluor 750 (Acceptor, A), were imaged using Förster
resonance energy transfer (FRET) microscopy to quantify trastuzumab (TZM) binding. AU565 cells
exhibit relative low level of HER2 heterodimerization that correlate with reduced TZM uptake and
sensitivity, which is also influenced by culture conditions (2D vs. 3D). FLI-FRET analysis allows for
the quantification of these dimerization-dependent variations in live cells by assessing the proximity
of donor and acceptor-labeled TZM.
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(a) Recovery of global parameters with hierarchical score based approach (medians and median absolute
deviation of the posterior samples).

(b) Global posterior calibration assessed with simulation-based calibration diagnostics.

Figure 9: Assessing inference of global parameters for the FLI model. Synthetic data on a 32×32
grid was generated.
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(a) Recovery of transformed local parameters for one 32×32 grid with hierarchical score based approach
(medians and median absolute deviation of the posterior samples). Deviations from the ground truth can be due
to the expected shrinkage of the local posteriors.
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Figure 10: Assessing inference of local parameters for the FLI model. Synthetic data on a 32×32
grid was generated. We compared our hierarchical approach against the standard non-hierarchical
pixel-wise MLE.
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(a) Hierarchical τmean estimates.
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(b) MLE τmean estimates. (c) Correlation of τmean estimates.
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(d) Local simulations from the hierarchical posterior.
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(e) Quality of posterior prediction measured by Bayesian p-value.

Figure 11: Assessing inference of local parameters for the FLI model on real data. We compared
our hierarchical approach with the standard non-hierarchical pixel-wise MLE. Owing to the low
photon count, the average lifetime τmean is the most reliable quantity for this non-hierarchical method.
Furthermore, we show additional random simulations from the hierarchical posterior (median and
95% confidence region out of 100 simulations) and a quantitative evaluation of the posterior predictive
quality.
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Figure 12: Global posteriors for the real FLI data.
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