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Abstract

Efficient sampling of the Boltzmann distribution
of molecular systems is a long-standing challenge.
Recently, instead of generating long molecular
dynamics simulations, generative machine learn-
ing methods such as normalizing flows have been
used to learn the Boltzmann distribution directly,
without samples. However, this approach is sus-
ceptible to mode collapse and thus often does
not explore the full configurational space. In
this work, we address this challenge by separat-
ing the problem into two levels, the fine-grained
and coarse-grained degrees of freedom. A nor-
malizing flow conditioned on the coarse-grained
space yields a probabilistic connection between
the two levels. To explore the configurational
space, we employ coarse-grained simulations with
active learning which allows us to update the flow
and make all-atom potential energy evaluations
only when necessary. Using alanine dipeptide
as an example, we show that our methods ob-
tain a speedup to molecular dynamics simulations
of approximately 15.9 to 216.2 compared to the
speedup of 4.5 of the current state-of-the-art ma-
chine learning approach.

1. Introduction

Coarse-graining (CG) of molecular dynamics (MD) simu-
lations is a powerful technique to bridge time and length
scales that are often infeasible to study on an atomistic level.
Numerous processes, especially large-scale conformational
changes in biomolecules such as the folding of proteins, oc-
cur on the microseconds to seconds timescale (Spiriti et al.,
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Figure 1. (a) The conditional normalizing flow transforms the la-
tent variable z of the latent distribution to the target configuration
Zine conditioned on the CG configuration s. (b) Illustration of the
iterative three-step active learning cycle.

2012). Since a typical time step used in all-atom molecular
dynamics simulations is 1-2 fs, covering such time scales is
currently computationally very expensive and infeasible for
many systems of interest.

Bottom-up coarse-graining of all-atom simulations intro-
duces effective sites that describe the collective motion of
one or multiple atoms of the all-atom description. The po-
tential of mean force (PMF) allows simulation of the CG
system and averages out many of the fast degrees of free-
dom, making the PMF smoother than the all-atom potential
energy (Jin et al., 2022). This allows larger time steps to
be used than for typical all-atom simulations. The reduced
number of degrees of freedom, combined with a larger time
step, allows for studying larger systems with extended sim-
ulation times.

Next to classical CG force fields such as Martini (Mar-
rink et al., 2023) or UNICORN (Liwo et al., 2020), ma-
chine learning (ML) models have been successfully used to
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parametrize the PMF as a function of the CG coordinates
(Husic et al., 2020; Thaler et al., 2022; Zhang et al., 2018;
Majewski et al., 2023; Charron et al., 2023; Wang et al.,
2019). Typically, a long and thus very costly all-atom MD
trajectory is required to learn the PMF on the CG level. Al-
though the CG model enables the simulation of significantly
longer simulation times, it is unlikely to reveal novel statis-
tics not already present in the all-atom training data, such
as interesting transitions and new metastable states.

In this work, we demonstrate how active learning (AL) can
be used to iteratively refine the PMF while efficiently ex-
ploring the configurational space on the CG level. This
removes the need for long all-atom simulations to obtain the
PMF. Implementing an active learning workflow for coarse-
grained simulations yields a critical challenge: PMF values
in high-error regions of the CG space cannot be directly
evaluated and need to be obtained from conditionally sam-
pling the all-atom Boltzmann distribution in the high-error
CG configurations. Duschatko et al. (2024) showed that
this can be accomplished using constrained MD simulations.
However, this approach is limited to small systems since an
MD simulation needs to be performed for each high-error
configuration. In this work, we use a simulation-free alterna-
tive based on a conditional normalizing flow (Winkler et al.,
2023; Xiao et al., 2019; Ardizzone et al., 2019) to sample
the all-atom level given a high-error CG configuration.

Noé et al. (2019) showed that a normalizing flow can not
only be trained with samples from MD, but also by using the
Boltzmann distribution ~ exp(— %) directly in the loss
function without samples (training by energy). This allows
for simulation-free learning of the potential energy surface.
Recently, this idea has been extended in other studies (Mah-
moud et al., 2022; Midgley et al., 2023b). However, this
form of training a normalizing flow typically suffers from
mode collapse. While there are approaches that improve the
tendency of mode collapse when training without samples
(Midgley et al., 2023b; Felardos et al., 2023; Vaitl et al.,
2022), a universal solution is yet to be found, especially
for large systems or systems with very large energy barri-
ers. The preprint by Zhang et al. (2023) used a conditional
normalizing flow for a coarse-graining task without active
learning, however no benchmarks or implementation details
are available.

We solve the aforementioned challenges by developing a
normalizing flow trained by energy to generate the fine-
grained degrees of freedom conditioned on the CG space.
‘We further show how, based on the trained conditional nor-
malizing flow, an ensemble of PMF models can be trained in
the CG space. We iteratively sample new high-error points
from the PMF ensemble and subsequently refine the con-
ditional normalizing flow. Since the main modes of the
Boltzmann distribution are encapsulated in the CG space

and the normalizing flow only learns the conditional “soft”
fine-grained degrees of freedom, we avoid mode collapse.

Using alanine dipeptide with a two-dimensional CG space
consisting of the dihedral angles ¢ and i, we demonstrate
that our methodology produces PMF maps of higher accu-
racy while using approximately two orders of magnitude less
potential energy evaluations compared to running all-atom
MD simulations and one order of magnitude less compared
to the state-of-the-art ML approach of learning the Boltz-
mann distribution without samples (Midgley et al., 2023b).
Our methods obtain a speedup to molecular dynamics sim-
ulations of approximately 15.9 to 216.2 compared to the
speedup of 4.5 of the method by Midgley et al. (2023b).
To the best of our knowledge, this is the first time that ac-
tive learning on the CG side is demonstrated without the
use of costly constrained MD simulations to evaluate the
PMEF. We believe that extending this methodology to more
complicated CG spaces and molecular systems will yield
a powerful technique to efficiently generate coarse-grained
potentials and simulations. Furthermore, while we focus
on molecular systems in this work, our approach can be
applied to any general sampling problem of an unnormal-
ized probability density, where a meaningful CG space that
contains the main modes of the probability distribution can
be defined.

2. Background
2.1. Normalizing Flows

A normalizing flow transforms a latent probability distri-
bution gz(z), for example, a standard Gaussian A (2; 0, T),
using a transformation z = g(z; ) with parameters 6. The
transformed probability density gx (z; 6) can be expressed
using the change of variables formula (Dinh et al., 2015):

ax (x;0) = qz (f(x;0)) |det Jpsy. | 1)
with the Jacobian J,, ., = M )
0xT

This requires the inverse of g(z;0), f(z;0) = z =
g~ (z;0). A popular choice to parametrize such an in-
vertible function (invertible neural network, INN) is a stack
of coupling layers, where the dimensions of the input x1.p
are split into two parts, x1.q and x441.p. The first part
undergoes an invertible transformation conditioned on the
second part, which stays unchanged (see SI Section A.3 for
details).

The parameters of the flow can be trained in such a way
that the generated distribution ¢x (x; @) approximates the
Boltzmann distribution px (x). Normalizing flows have a
vital advantage over most other generative machine learning
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methods in that they can express the exact probability den-
sity efficiently. This allows training both with samples from
the target distribution using the forward Kullback-Leibler
divergence (KLD) and without samples using the reverse
KLD.!

To derive both modes of training, we first define the follow-
ing probability distributions:

* qz(z) is the latent distribution we sample from.

* gx(x;0) is the generated distribution of the flow (see
Equation 1).

e px(x) ~ exp(—E(z)/(kgT)) is the target Boltz-
mann distribution, where E(x) is the potential energy
of the molecular system, with temperature 7" and Boltz-
mann constant kg.

* pz(2;0) = px(g9(z;0)) |det J,. .| is the Boltzmann
probability transformed by the INN to the latent space.

Training by Example. Using the forward KLD as the loss
function, we can train a normalizing flow using samples
from the target distribution (Noé et al., 2019):

KLg [px lqx] = C — / px(@)loggx (@ 0)dz  (3)

=C —Eypyloggz (f(z;0)) 4+ log|det Joz|] (4

Training by Energy. We can also use the reverse KLD to
train the flow directly using the target energy function of the
system without samples from the target density (Noé et al.,
2019):

KLg [gz|pz] = C — /CIZ(Z) logpz(z;0)dz ©)
=C - Ezqu long (g(z; 9)) + log |det Jz»—>r|
——— ——

_m%E(Q(Z?G))+Cl

(6)

In this way, one samples from the flow and adjusts the
weights of the transformation to fit the Boltzmann distribu-
tion given by the energy function.

2.2. Coarse-Graining

Coarse-graining combines the atom coordinates 2 € R3Y
of a molecular system into m < 3N coordinates using a CG

Recently, diffusion models have also been used for training
with the reverse KLD (Jing et al., 2022).

mapping s = £(x), s € R™. Typically, the coordinates s
are obtained from a linear transformation R3Y — R™=3M
A popular choice is a “slicing” mapping (Yang et al., 2023)
that simply uses a selection M of the N all-atom coor-
dinates as CG coordinates, such as the coordinates of the
backbone atoms in a protein. Here, we will consider general,
potentially nonlinear CG mappings.’

Our goal is to construct a potential of mean force (PMF)
Upwmr(s) that can be used to sample from the CG space, e.g.,
through Langevin dynamics or Metropolis Monte Carlo
(MC). To ensure thermodynamic consistency in the CG
configurational space we need (Wang et al., 2019; Noid
et al., 2008)

S px(2)d(s — &(x)) dz
[ px(z)da ’

PG (s)

Upmr(s) = —kpT'In @)

Due to the form of Equation 7, the potential of mean force
is also called the (conditional) free energy.

Unfortunately, we cannot directly train a model to predict
the potential of mean force, since training labels are not
directly available. We can, however, use the all-atom forces
projected to the CG space, h(x). The expectation value of
these projected forces for a given CG configuration yields
the negative gradient of the PMF (CG mean force), which
can be derived directly from Equation 7 (Kalligiannaki et al.,
2015; Noid et al., 2008; Izvekov & Voth, 2005):

_VSUPMF(S) =Eznpx [h(a:) | f(x) = 5] 3

If one uses a “slicing” CG mapping, the projected all-atom
forces h(x) are simply the all-atom forces of the chosen
CG atoms. One can, however, also find an expression for
h(z) in other scenarios, even in the general nonlinear case
(Kalligiannaki et al., 2015).

Evaluating the conditional expectation value in Equation 8 is
not straightforward. Instead, one can show that minimizing
the surrogate loss (Noid et al., 2008; Izvekov & Voth, 2005)

(W) = (IIh(@) + VU@ W), L, ©)

also yields the correct Upyr model with parameters . This
is called multiscale force-matching.

Kohler et al. (2023) recently showed an alternative to the
force-matching method called “flow-matching” that uses
a normalizing flow trained directly on the distribution of

?Low-dimensional nonlinear CG mappings are often called
collective variables in the literature.
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all-atom MD samples transformed to the CG space. The
PMF of the CG representation is then given by Upmr(s) =
—kpT Inp“S(s), where p©(s) can be obtained directly
from the normalizing flow using Equation 1.

Both approaches, multiscale force-matching and flow-
matching, require a comprehensive all-atom dataset from
the Boltzmann distribution for the training of the PMF.

3. Methods

Now, we show how an iterative active learning workflow
for coarse-graining of molecular systems can be constructed
without the need to perform long and costly all-atom simu-
lations.

We define an internal coordinate representation iy (z) =
[zrg(x),&(x)] (with [] denoting concatenation), which
splits the all-atom cartesian coordinates « into fine-grained
coordinates zrg(z) and coarse-grained coordinates s =
&(x). xpg(x) are the remaining fine-grained coordinates
needed to reconstruct = given s, x = x([zrg, s]).> In the
case of “slicing” mappings, this can be a simple splitting of
the atom coordinates, but it can also be an actual internal co-
ordinate representation, which we use for our experiments.

A normalizing flow can now be used to parametrize the
probability distribution of the fine-grained coordinates con-
ditioned on the CG coordinates (see also Figure 1):

qXFG (xFG | S; 0) = QZ(f(xFG; 87 9)) ‘det JZL’}:(]'-)Z' (10)

Training by energy of this conditional flow can be performed
using the loss in Equation 6 in the space X = Xpg with
conditioning on s. Here, the target distribution is given by

Pxrg (TEG | 8) ~ (11)
1 —E(z([y(;5;0), 5]))
5 (s) €xp ( e T |det Jo—al »
~p i (Tin)

where p©9(s) is independent of flow parameters and can be
absorbed into the constant of the reverse KLD loss.

3.1. Active Learning Workflow

We start with an initial dataset obtained from a short all-atom
simulation. This is used to initially train the conditional
normalizing flow by example (Equation 4). The starting
dataset will typically only cover a small fraction of the full

3If the potential energy is rotation- and translation-invariant,
the orientation and translation do not have to be reconstructed.

configurational space of the system.* Furthermore, the CG
configurations s = £(z) of the starting dataset are used as
the initial dataset of the active learning workflow. Then,
each active learning iteration consists of the following steps
(see also Figure 1b):

1. We first train the conditional normalizing flow by en-
ergy (Equation 6). For the conditioning, we use the
N high-error CG configurations added at the end of
the previous AL iteration (or from the starting dataset
in the first iteration). Additionally, in each epoch, we
select v - NV with v = 0.3 random CG configurations
from older iterations. This stabilizes the flow in areas
of previous iterations and gives flexibility to still adapt
slightly if needed.

2. We then train an ensemble of 10 PMF models. The
training strategy to obtain the PMF models is described
in Section 3.3.

3. In the last step of each iteration, we sample points in
the CG space that exceed a defined threshold of the
ensemble standard deviation using Metropolis Monte
Carlo (MC). We uniformly broaden the obtained high-
error points by sampling uniformly in a hypersphere
around them in CG space. The broadened points are
added to the AL dataset, where 80 % are used for train-
ing, and 20 % as test samples.

After finishing each AL iteration, we stop the active learning
workflow if the forward KLD of the PMF using the test
dataset is smaller than a defined threshold or the trajectories
of the MC sampling reach a specified maximum length. The
normalizing flow is initialized only once at the beginning of
the AL workflow and is then progressively updated during
the AL iterations. The PMF ensemble is reinitialized every
iteration.

Training a normalizing flow by energy to match the Boltz-
mann distribution of a molecular system can be difficult,
since high-energy configurations, e.g., due to clashes be-
tween atoms, can yield very high loss values (Equation 6).
This is especially problematic in the beginning of training,
but also later, since the flow will never exactly resemble
the Boltzmann distribution without any clashes. Previous
works (Noé et al., 2019; Midgley et al., 2023b) mitigated
the problem by using a regularized potential energy function
that applies a logarithm above a threshold Ej;gn and cuts
off the energy above a threshold Fy,.x. We found empiri-
cally that in our case removing a few of the highest loss
values from each batch of samples yields more stable exper-
iments than energy regularization. Whether this procedure

4One can, of course, also use two starting datasets of distinct
minima to find transition paths in the CG space.
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also improves the training of non-conditional flows may be
explored in future work.

3.2. Grid Conditioning

If the chosen CG space is low-dimensional, it is also pos-
sible to simply uniformly cover the CG space instead of
running the proposed AL workflow (see discussion in Sec-
tion 5). Therefore, we further show the results of training a
conditional normalizing flow by energy on a grid in the CG
space. In these experiments, we again first train by example
on the starting dataset and then by energy using the CG
configurations of the grid as conditioning.

3.3. Obtaining the Potential of Mean Force

Obtaining the PMF for coarse-grained simulations is typ-
ically done using force-matching or flow-matching as de-
scribed in Section 2. Since the samples from the trained
flow approximately follow the Boltzmann distribution, we
could use force-matching to train our PMF models. In our
scenario, however, since we have access to the probabil-
ity distribution learned by the conditional normalizing flow
Ixpe (TFG | $;0), we can alternatively obtain the PMF val-
ues directly using its definition in Equation 7. We will
discuss the advantages of this approach in Section 5. As we
show in SI Section A.2, we can express the PMF using the
following expectation value:

Upmr(s) = —kpTInE, [ P ([9(2;5;0), ) } 7

9Xrc (g(z;s;a) ‘ 5;9)

(12)
B
(13)

This allows us to get the PMF Uppme(s) for a given CG con-
figuration s by sampling from the conditional normalizing
flow and evaluating the potential E(z) to obtain px,, (Zint)-
In order to obtain accurate PMF values, we only need suffi-
cient overlap between the distribution of the conditional nor-
malizing flow and the Boltzmann distribution, since Equa-
tion 12 includes a form of reweighting.

While training the flow by energy, we hold & = 30 copies
of each CG configuration in the AL dataset. Each time one
of the copies is selected in a batch when training the flow by
energy, we store the evaluated potential energy and the prob-
ability ¢x, (zrg | s;6) for that copy. This means that we
always store the latest £ = 30 samples for each CG configu-
ration. This allows us to train an ensemble of PMF models
at the end of each active learning iteration without making
additional potential energy evaluations. Subsequently, this
PMF ensemble can then be used to sample new high-error

configurations for the next iteration.

We want to emphasize that it is also possible to train a
PMF model without evaluating the expectation value in
Equation 12 explicitly. This approach uses a surrogate loss
function to match the free energies and can be derived using
a generalization of the multiscale force-matching proof. It
is discussed in more detail in SI Section A.2.2. In SI Sec-
tion A.2.1 we further present an alternative to Equation 12
that has been previously used by Zhang et al. (2023). While
we obtained the most accurate results with our approach, a
systematic comparison of the two approaches is needed in
future work.

4. Experiments
4.1. Miiller-Brown Potential

We first test the AL workflow on the 2D Miiller-Brown
potential (Miiller & Brown, 1979) (Figure 2 (top, contour
lines)), starting the exploration in the global minimum. As
a CG mapping, we use the 45° rotated coordinate axis
s = &(z) = x1 — x5 (blue axis in Figure 2 (top)). The
normalizing flow describes the conditional probability dis-
tribution ¢g, (s | s;6), where s = x; + x4 is the “fine-
grained” coordinate orthogonal to s. This relatively simple
setup serves as a first proof-of-concept of our methodology.

Since most coupling layers cannot directly be used to trans-
form 1D probability densities, we do not use a conventional
normalizing flow, but simply transform the latent distribu-
tion z ~ AN(0, 1) using the following conditional transfor-
mation:

§1 =z NNscale(s) + NNmean(S) (14)

Here, NNcae and NNjea are fully connected neural net-
works. This simple transformation suffices to obtain an accu-
rate potential of mean force since our approach of obtaining
it (Section 3.3) merely requires overlap of the distribution
of the flow with the target distribution.

Figure 2 shows two exemplary iterations of an AL experi-
ment in the Miiller-Brown system. One can see that after
the final iteration 8, the learned PMF (bottom, red) is almost
identical to the ground-truth PMF (bottom, black).

Our AL experiments required (1.13 +0.04) x 10° potential
energy evaluations with (4.01 £ 0.95) x 10° MC steps in the
CG potential and obtained a forward KLD of the PMF of
(2.04 +£0.23) x 10~ (16 experiments were performed). We
further compare the AL workflow with the conventional
CG approach, where one first samples from the potential
(here, using MC) and subsequently extracts a PMF. Since
the CG space of the Miiller-Brown system is only 1D, this
is done using a histogram of the CG configurations in the
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MC simulation’. We performed an MC simulation with

1 x 10° steps which yields a significantly larger KLD of the
PMF of 1.02 x 1072 compared to our AL experiments. This
comes from poor convergence of the MC simulation since
this simulation length only yields zero to a few transitions
(more details in SI). The AL workflow learns the PMF more
accurately using 10 times less potential energy evaluations
compared to the “all-atom” MC simulation of 1 x 10° steps.

Potential energy
/ kT
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(a) Iteration 3 (b) Iteration 8 (final)

Figure 2. Visualization of two exemplary iterations of the AL work-
flow applied to the Miiller-Brown system. Bottom: PMF and its
standard deviation. Training points from previous AL iterations
are marked as black “x” at the top of the PMF, and new high-error
points added in the current AL iteration are marked as red “x”.
Top: Backmapped potential energy In gs, (s | s;0)p °(s) from
cascaded sampling of the PMF and sampling of the flow. The
blue axis represents the 1D CG coordinate s. The fine-grained
coordinate s is orthogonal to the CG coordinate. See Figure 6 in
SI for a visualization of all iterations of this experiment.

4.2. Alanine Dipeptide

Now, we consider a more complex scenario where we ex-
plore the configurational space of the 22-atom molecule
alanine dipeptide using the CG space s = (¢),9) " (see Fig-
ure 1 for a visualization of the molecule and definition of
the dihedral angles ¢ and ). We use the same fully internal
coordinate representation as Midgley et al. (2023b), where
the molecule is described using 3-22 — 6 = 60 internal coor-
dinates (bond distances, angles, and dihedral angles). This
representation obeys the symmetries of the potential energy
function since it is invariant to translations and rotations of

>In higher-dimensional CG spaces one typically uses force-
matching or flow-matching to obtain the PMF, as discussed in
Section 2.

the molecule.

The conditional normalizing flow parametrizes the probabil-
ity distribution ¢, (zrG | $;6), where xpg are the remain-
ing 58 internal fine-grained degrees of freedom. Similarly
to Midgley et al. (2023b) we use a normalizing flow built
from 12 monotonic rational-quadratic spline coupling layers
(Durkan et al., 2019) with residual networks as parameter
networks (details in SI Section A.6.5). Dihedral angles
of freely rotating bonds are treated as circular coordinates
(Rezende et al., 2020; Midgley et al., 2023b). Furthermore,
the circular coordinates in the input of the parameter net-
work and the periodic conditioning variables ¢ and 1) of the
parameter network are treated using the periodic represen-
tation (cos7,sinn) " for each periodic variable 5. During
training, we further filter the chirality of each batch and only
train on structures in the L-form (Midgley et al., 2023b).

Figure 3c-e shows the PMF for different iterations of an
active learning experiment applied to alanine dipeptide. Fig-
ure 3b shows the PMF obtained using a grid conditioning
experiment on a 100x100 grid in the CG space. As one can
see visually, the resulting PMF after the last iteration of AL
and the PMF from the grid conditioning experiment are not
only identical to the ground truth PMF (Figure 3a), but in
addition cover regions that were not sampled at all in the
reference MD simulation. Especially in transition regions of
high energy, e.g., at ¢ ~ 120°, our obtained PMF is much
more detailed and complete than the PMF from the ground
truth MD dataset, where even after 2.3 x 100 steps, large
parts of the high-energy regions are completely missing.

We now consider a quantitative comparison of our approach
with previous methods. Table 1 includes the results of Midg-
ley et al. (2023b), where annealed importance sampling
with a-divergence with o = 2 (Flow AIS Bootstrap) was
used to directly train a normalizing flow by energy to sample
from the configurational space of alanine dipeptide. This is
currently the only publication that succeeds in learning the
full Boltzmann distribution of alanine dipeptide with a gen-
erative model without samples and without mode collapse.
Furthermore, we include the results of training a normal-
izing flow with the reverse KLD (Midgley et al., 2023b),
where mode collapse can be observed. Besides these ML
approaches, we also include a comparison with a separate
MD simulation for two MD simulation lengths. As the main
metric to judge the accuracy of the PMF, we use the forward
KLD of the PMF calculated on the test dataset.

In addition to the forward KLD of the PMF, we also provide
metrics for the generated all-atom distribution: The all-atom
log-likelihood E,, , () log gx (2; @) and the reverse effective
sample size (ESS) (see Section A.6.2 for details). We find
the all-atom log-likelihood is similar across all methods
(except for the flow with reverse KLD training, where mode
collapse is observed), while Flow AIS Bootstrap (Midgley
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et al., 2023b) achieves better reverse ESS compared to our
results. However, the main goal of this study is to obtain an
accurate PMF model that can be used to run coarse-grained
simulations. Therefore, we now focus on the forward KLD
of the PMF.

Next to Table 1, the forward KLD of the PMF as a function
of the number of potential energy evaluations is further visu-
alized in Figure 4. We find that the forward KLD of the PMF
as a function of the number of potential energy evaluations
of our methods decreases substantially faster than Flow AIS
Bootstrap and MD. Compared to the Flow AIS Bootstrap
(Midgley et al., 2023b) results, our AL workflow uses ap-
proximately one order of magnitude less potential energy
evaluations while obtaining a substantially smaller KLD.
The experiments with grid conditioning show similar results
while reaching the final Flow AIS Bootstrap KLD almost
two orders of magnitude faster. When running MD simu-
lations, the KLD is significantly higher, even when using
2 — 3 orders of magnitude more potential energy evalua-
tions (1 x 10°) (see also Figure 4). As discussed before, our
method yields (accurate) PMF maps also in regions where
no ground truth data is available. This makes the quan-
tification of the increase in accuracy difficult. Therefore,
we quantify the speedup of our method at a fixed accuracy
(KLD value): A KLD of 2.5 x 107 (Flow AIS Bootstrap)
is reached after approximately 9.1 x 108 MD steps (refer-
ence), 2 x 108 steps in Flow AIS Bootstrap (speedup of 4.5),
2.9 x 107 potential energy evaluations + 2.8 x 107 CG MC
steps (speedup of 15.9), and 4.2 x 10° grid conditioning
steps (speedup of 216.2). Here, for the AL workflow, we
generously counted the cost of one CG step to be equal
to one all-atom potential energy evaluation. We discuss
the sampling efficiency in the CG space in more detail in
Section 5. We assume that the accuracy reached by our
methods is higher than that of the available ground truth
data, making the aforementioned numbers lower bounds of
the actual speedup values.

‘We note that at the accuracies we are achieving here, the re-
ported KLD is not anymore a representative measure of the
increasing accuracy of the PMF, because (a) it is logarithmic
so the accuracy of the PMF in high-energy regions is influ-
encing the KLD in a negative exponential way, and (b) we
do not have any good ground truth data as reference in the
KLD, specifically in those high energy regions. That means
we cannot quantitatively measure if our PMF becomes more
accurate than the PMF shown in Figure 3a, while visual
inspection of Figure 3e and 3b clearly indicates that we
achieve substantially improved PMF maps compared to the
MD-derived ground truth, at a fraction of the cost.

5. Discussion

Methods such as all-atom MD or normalizing flows trained
by energy struggle with correctly describing rare transition
regions of molecular systems, since they are not sampled
frequently in the Boltzmann distribution. Our approach of
using a normalizing flow conditioned on CG coordinates
circumvents this problem due to the conditional sampling
of the Boltzmann distribution. This allows the correct de-
scription of the PMF even in very high-energy regions. Fur-
thermore, using the proposed AL workflow, the configura-
tional space can be explored more efficiently in the lower-
dimensional smoother PMF of the CG space compared to
all-atom simulations.

We need to emphasize that in the low-dimensional CG
spaces of the two systems that our work covers, one can
simply sample the CG coordinates on a grid, as shown in
Table 1 for alanine dipeptide. In higher-dimensional CG
spaces, other means of sampling the CG space instead of
using a grid become strictly necessary, e.g., using Langevin
dynamics or Metropolis Monte Carlo-based exploration. As
discussed in detail in SI Section A.6.8, already for our exam-
ple alanine dipeptide - where implicit solvation energy and
force evaluations are very fast - the surrogate PMF model
can be sampled faster and thus more efficiently than the
all-atom level.

In the future, we envision our approach to be used for more
complex systems and CG mappings. This includes con-
ventional CG mappings, such as using only the backbone
atoms of a molecule as CG coordinates, where Langevin
dynamics can be used to sample in the CG space and find
new high-error configurations. While the transition barriers
of alanine dipeptide are relatively low and it is possible to
sample sufficiently with all-atom MD, applying the active
learning methodology to systems with large energy barriers
will allow efficient exploration of the configurational space
in a relatively low-dimensional space. When using density
functional theory or an active-learned ML surrogate thereof
on the all-atom level, sampling the lower-dimensional PMF
will be much faster than sampling the all-atom level.

Scaling to higher-dimensional problems, such as using C,,
CG mappings of proteins, will yield new challenges. Since
the reverse KLD is mode-seeking, it can only be used to
learn distributions that are approximately unimodal. It needs
to be seen if the conditional side-chain distribution of pro-
teins and other systems of interest fulfills this constraint.
Potentially, other optimization objectives that are not mode-
seeking, such as the a-divergence with oo = 2 used by Midg-
ley et al. (2023b), need to be used instead of the reverse
KLD.

Also non-conventional, nonlinear CG mappings such as
folding coordinates for proteins or known reaction coordi-
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Figure 3. (a) Ground truth PMF of dihedral angles ¢ and v of alanine dipeptide from MD test dataset with 2.3 x 10'° steps. (b) PMF from
grid conditioning experiment after 2.4 x 107 steps. (c-¢) Three exemplary AL steps for the alanine dipeptide system. Top: PMF of ¢ and
9 at the end of the AL iteration. Bottom: Standard deviation of the PMF. The contour line of the threshold in the standard deviation when
sampling new points (0.2 kgT’) is drawn using a black line. Newly added points after sampling using the PMF of this iteration are shown
as red dots.

Table 1. Results of the experiments with alanine dipeptide. We compare the performance of different approaches: A normalizing flow
trained with the reverse KLD (Midgley et al., 2023b), Flow AIS Bootstrap with buffer (Midgley et al., 2023b), MD simulations of two
different lengths, our active learning workflow, and our grid conditioning experiments - once fully converged and once with fewer number
of evaluations. As the main metric to estimate the accuracy of the PMF we use the forward KLD of the PMF calculated on the test dataset.
Additionally, we provide metrics for the generated all-atom distribution: The all-atom log-likelihood E,, () log gx («; §) and the reverse
effective sample size (ESS). For the given metrics, 1 indicates higher is better, | indicates lower is better. For our experiments, we provide
the mean and standard error over 8 experiments. Note that the AL experiments required, additionally to the all-atom potential energy
evaluations, (3.01 £ 0.83) x 10’ MC steps.

METHOD POT. ENERGY FORWARD ALL-ATOM METRICS 1
EVALUATIONS | KLD PMF | Ep(2)logqx(x;0) REVERSE ESS/ %

FLOW WITH REVERSE KLD 2.5x% 10 3.15+0.19 100 £ 32 54+12

FLOW AIS BOOTSTRAP 2x 108 (2.51£0.39)x 107 211.54 +0.00 92.8+0.1

MD (LONG) 1% 10° 2.32x107 - -

MD (SHORT) 1x108 1.87 x 107 - -

AL (OURS) (3.35+0.10)x 107 (9.29+0.24)x 10  211.18+0.04 43.83 +3.81

GRID COND. (OURS, CONVERGED)  2.40 x 10’ (6.32+£0.28) x 10™*  211.49 +0.01 83.92+1.15

GRID COND. (OURS, SHORT) 4.85 x 10° (1.68 £0.13)x 10> 210.93 +0.02 25.58+1.02

nates in chemical reactions might be interesting for efficient ~ make sure that £(z) of the generated configurations is equal
sampling of the configurational space using our proposed to the conditioning s (see (Zhang et al., 2023)).

methodology - either with active learning or using the grid
conditioning strategy. This can yield accurate PMF profiles
along collective variables of interest. Zhang et al. (2023)
already showed first results in this direction, though perfor-
mance comparisons and implementation details are missing.
If the all-atom coordinates cannot be directly reconstructed
in such a way that it obeys the conditioning (which is the
case for most nontrivial nonlinear reaction coordinates), one
needs to introduce an additional consistency loss term to

To scale the shown methodology to larger systems in the
future, some recent advances in the architecture of normal-
izing flows can be used (Midgley et al., 2023a; Kohler et al.,
2020; Garcia Satorras et al., 2021; Draxler et al., 2023),
which includes continuous normalizing flows with equivari-
ant graph neural networks. Moving away from the here-used
internal coordinate representation further allows the usage
of one conditional normalizing flow across multiple molec-
ular systems. This would allow the transfer of a pre-trained
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Figure 4. Forward KLD of the PMF of alanine dipeptide as a func-
tion of the number of potential energy evaluations. For grid condi-
tioning and Flow AIS Bootstrap we additionally show the standard
erTor.

normalizing flow and CG potential to novel systems, where
the active learning workflow can be used to further refine
the CG potential when necessary.

Besides the application in the active learning workflow, the
approach of learning the conditional probability px., (zrg |
s) and then extracting the PMF (see Section 3.3) might have
advantages in data efficiency over both multiscale force-
matching and flow-matching even in the non-active-learning
scenario (which requires a comprehensive all-atom MD
dataset). Further details can be found in the SI in Sec-
tion A.4.

6. Conclusion

In this work, we showed how conditional normalizing flows
can be used to build an active learning workflow for coarse-
grained simulations. When testing our method with the
22-atom molecule alanine dipeptide, we demonstrated a
speedup to molecular dynamics simulations of approxi-
mately 15.9 to 216.2 compared to the speedup of 4.5 of
the current state-of-the-art ML approach by Midgley et al.
(2023b). We obtain a higher accuracy using approximately
an order of magnitude less potential energy evaluations com-
pared to Midgley et al. (2023b). Compared to performing
all-atom MD simulations to extract the PMF we achieve
higher accuracy with two orders of magnitude less potential
energy evaluations. Since all current ML coarse-graining
approaches require such an extensive MD simulation to train
the PMF, our active learning approach outperforms them in
terms of data efficiency.

We see our work as a first demonstration of the potential that
lies in performing active learning in the coarse-grained space
of molecular systems. For the first time, this is possible with-
out first needing a long all-atom trajectory or constrained

MD simulations. Our results show that if one can construct
a (potentially nonlinear) lower-dimensional CG space that
includes the main modes of a molecular system, a condi-
tional normalizing flow can efficiently learn this conditional
probability distribution - either with uniform coverage of
the CG space if it is low-dimensional, or with an explorative
active learning approach for higher-dimensional CG spaces.
We are confident that this will boost the utility and applica-
tion of machine-learned coarse-grained potentials and hope
to see further developments in this direction.

Data and Code Availability

Our reference implementation of the described active learn-
ing workflow can be found on https://github.com/
aimat-lab/coarse—graining-AL (v1.0). Code to
reproduce all experiments is provided.
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A. Appendix
A.1. Application to New Problems

In this manuscript, we focused on the application of our coarse-graining approach to the sampling of molecular tasks.
However, the described workflow (both the active learning and the grid conditioning approach) can be applied to any
sampling problem of an unnormalized probability density, where a meaningful CG space that includes the main modes of
the distribution can be defined. For example, our method could also be applied to sampling problems of lattice field theories,
such as the ¢* theory (Nicoli et al., 2021).

The main steps to apply our workflow to a new system are the following:

* Implement the target log probability (energy) function and the CG mapping function (see System class in our source
code)

* Decide upon a normalizing flow architecture, such as RNVP or rational-quadratic splines

* Implement a PMF model architecture that incorporates potential symmetries of the CG space

» Generate a small starting dataset using Metropolis Monte Carlo or other sampling techniques

* If needed, update the active learning sampler that is used to obtain new high-error configurations. For example, when
applying our method to higher-dimensional molecular systems with backbone CG mappings, one might consider
Langevin dynamics to sample the CG space.

» Update config options to match the system details

A.2. Obtaining the Potential of Mean Force

Here, we derive Equation 12 of the main text which we use to train the PMF models.

We start with the definition of the potential of mean force:

Un(s) = —ksTln | [ exp (~5E() 5 (5 — &(0) dx} et as)
Co:=o —kgT In [/L Z - px(x)d (s —&(x)) dx} (16)
— kT | [ DI LS, (0)5 (s - ) as] + € a7
1
o=yt | [zt — e (o(eisi0). ) ] as)
_ Px ([9(2:5:0),5])
— —k‘BTlnEZNqZ {qzm (g(z;s;@) | 3;9)] (19)

=G1(s,2)

Here, px,, (Tin) ~ €xp (—%) |det Jp -] -

If the distribution of the conditional normalizing flow sufficiently overlaps with the target Boltzmann distribution, this
expectation value can be used to obtain accurate PMF values for training of the PMF ensemble.

A.2.1. ALTERNATIVE FORMULATION

Here, we describe an alternative to Equation 12 to obtain the PMF from the conditional normalizing flow. Again, we start
with the definition of the PMF:
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Unat(s) = —kpTn / exp (—AE(2))8 (s — €(x)) dz| +C = —kpTInZ(s) (20)

xT

=Z(s)

= S — x M X X S — T n x
=[50 — e S By do+ kT [ (s g SRS | SR

p(z|s) p(z|s) p(z|s)
2n
= /p(:z: | $)E(x)dx + kBT/p(x | s)lnp(z | s)dx (22)
= / P(Tine | 8)E(2(@int)) dine + kT / P(Zint | 8) Inp(@(Ting) | 5) dTine (23)
~ [ a2 BGa((g(z5:0),50)) s+ kT [ a2(2) g (o(z550) | 5:0) - [det Ty ] 2 %)
z H_/ z
=E.vq, | E(z([g(2;5:0),5])) + kT In (qx:(9(2;5:0) | 5;0) - |det Josa, |) (25)
—
=G2(s,2)

This formula is the same as used by Zhang et al. (2023). In the same way as Equation 12, it allows us to estimate the PMF
Upmr(s) of a CG configuration s using the conditional normalizing flow gx ., (xrg | s;6). In practice, we found that this
alternative formula does not work as well as using Equation 12 directly. However, further comparisons of the different
approaches need to be done in the future.

A.2.2. SURROGATE LOSS

Here, we show that it is also possible to obtain the PMF without explicitly evaluating the expectation value in Equation 12
or Equation 25. When using a mean squared error loss, we can show that we will obtain the correct PMF even without the
contraction along z. This is analogous to how we can estimate the expectation value of the projected all-atom forces in
multiscale force-matching using a mean squared error surrogate loss. This approach can be applied to both the expectation
value in Equation 12 and the alternative version in Equation 25.

In general, we want to obtain the following expectation value:

Hi(s) =E.vq,Gi(s,2) (26)

Then, Upmp(s) = —kpT In Hy (s) for version 1 and Upmr(s) = Ha(s) for the alternative version 2.

We can formulate a surrogate loss to train a model H (s; W) with parameters W to match the expectation value:

X(W) = ([Gi(s,2) — H(s; W)]*)s.. 27)
= ([Gi(s,2) = (Gi(5,2)): + (Gi(s,2)). — H(s;W)]*)s.2 (28)
= ([Gi(5,2) = (Gi(5,2)):]")s.2 + ([(Gi(5,2)). — H(s; W)]*)s. (29)
+2((Gi(s,2) = (Gi(s,2))2)((Gi(s,2)). — H(s;W)))s,2 (30)
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As one can see, the surrogate loss x can be decomposed into three parts: First, there is a noise term Xnoise, Which is
independent of the free energy model parameters W. This is equivalent to the noise term that we find in the multiscale
force-matching objective (Wang et al., 2019). Furthermore, there is our main objective Xgxpectation- 1his is the loss term that
we actually need, as it matches H (s; W) onto the expectation value (G;(s, 2)).

We now have to show that the mixed term X mixeq 1S Z€ro, which is possible because the distribution of z is independent of s:

A — ((Gilis, 2){Gils, 2))2))s = ((Gils,2))2(Guls, 2))-)). 1)
— ((Gils, 2) H(s; W))2)s + (((Gils, 2)) - H (5 W))2). (32)
0 (33)

As one can see, we can obtain the PMF even when not explicitly contracting along z. In practice, we found that contraction
should still be done if possible, as it lowers the noise significantly and makes training much easier. However, in scenarios
in which one does not want to evaluate the same CG configuration in the flow multiple times, one can still use the mean
squared error to obtain the correct PMF.

A.3. Invertible Neural Networks: Coupling Layers

As discussed in the main text, a normalizing flow requires an invertible function approximator (invertible neural network,
INN), which can be constructed using a stack of coupling layers. Here, the dimensions of the input x;.p are split into two
parts, x1.q and z441.p (usually, this splitting is done using a random mask). The first part is transformed elementwise
conditioned on the second part, while the second part is unchanged (Midgley et al., 2023a):

96/1;(1 = B(®1:4; Zd+1:D) (34)

x;Hl:D = Ld+1:D- (35)

If B is invertible (monotonic) and since x41.p is unchanged and thus given when transforming forward and backward, this
yields an invertible architecture. The Jacobian matrix of such a coupling transform is lower triangular and thus the Jacobian
determinant can be efficiently computed using the diagonal elements of the Jacobian matrix (Durkan et al., 2019).

A .4. Comparison with Multiscale Force-Matching and Flow-Matching

Besides the active learning workflow, we want to shortly discuss a possible application of the here-described approach
to train PMF models in the non-active-learning scenario, where training data from MD trajectories is present. Here, our
approach of learning px,,(zrc | $) and then extracting the PMF (see Section 3.3) has potential advantages over both
multiscale force-matching and flow-matching.

Multiscale force-matching requires large amounts of training data since transition regions need to be sufficiently covered
to get a good gradient estimate. If this is not the case, distinct minima on the PMF surface appear biased in energy. Flow
matching mitigates this problem by not working with solely gradient information. p©(s) is directly (or indirectly in the
case of student-teacher training (Kohler et al., 2023)) learned from the distribution of the training data in the CG space.
However, this requires a well-converged MD trajectory where different minima are correctly occupied. Otherwise, the flow
will learn this wrong occupation.

In our here-described approach, both the shortcomings of multiscale force-matching and flow-matching are addressed. By
learning px,,(xrc | s) from the training data, one does not depend on gradient information alone. Furthermore, since
p®Y(s) is not directly obtained from the occupation of the different minima in the dataset, the occupations do not have to be
fully converged in the trajectory. We only need enough training data in the regions of interest (where the PMF should be
estimated) to learn px,, (zrG | s). In this way, one can use our approach in the non-active-learning scenario, where training
data in the form of an MD trajectory is present. Closer investigation and comparison of the data efficiencies and accuracies
between the different approaches is not the focus of this work and should be investigated in future work.
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A.5. Miiller-Brown Potential
A.5.1. POTENTIAL ENERGY

The Miiller-Brown potential is defined through the following formula (Miiller & Brown, 1979) (see Figure 5 for a
visualization):

4
Emp(x1,22) = ZAi exp [ai (21 —3)° + (36)
i=1
bi (x1 — @) (x2 — ¥i) + ¢ (w2 — 371')2]
with A = (—200,-100,-170,15); a=(—1,—1,—6.5,0.7) 37)
b=(0,0,11,0.6); ¢=(—10,—-10,-6.5,0.7) (38)
7=(1,0,-0.5,-1); §=(0,0.5,15,1). (39)

We use § = kBLT = 0.1 to evaluate the PMF and run the MC sampling of the AL workflow.

Since the Miiller-Brown potential is only 2D, the ground-truth PMF of our CG coordinate s; = x; — x5 can be simply
obtained using numerical integration of Equation 7. Using this ground-truth PMF, the forward KLD values reported in
Section 4.1 have been calculated in the range s € [—2.5, 1.1] using a grid of 100 points.

Potential energy / kT

Figure 5. Miiller-Brown potential. The blue axis represents the 1D CG coordinate s. The fine-grained coordinate s is orthogonal to the
CG coordinate.

A.5.2. STARTING DATASET

To form the initial starting dataset for the Miiller-Brown system we use a short MC simulation starting in the lower minimum
of the potential (1 = —0.25, zo = 1.5). We perform 500 MC steps with a Gaussian proposal distribution of scale 0.2. We
use 100 randomly chosen unique positions from this MC dataset as the starting dataset of the AL workflow.

A.5.3. ARCHITECTURE

Normalizing Flow. As described in the main text, we use the following 1D transformation with the latent distribution
z ~ N (0, 1) for the Miiller-Brown system:

S1 =Z- NNscale(S) + NNmean(s) (40)
The subnets NNjc,e and NNyeqq are fully connected neural networks with layer dimensions [1, 64, 64, 1] and sigmoid hidden

layer activation functions. We use a standard scaler s’ = 50;5 based on the starting dataset of the AL workflow for the input
of the two neural networks.
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PMEF. To predict the PMF and its standard deviation, we use an ensemble of 10 fully connected neural networks with layer
dimensions [1, 64, 64, 1] and sigmoid hidden layer activation functions. We use a standard scaler s’ = 50;5 calculated from
the current dataset of the respective AL iteration. '

To improve ensemble diversity, we initialize the weights and biases of each model in the ensemble using a Gaussian of mean

0 and standard deviation v. v is sampled uniformly in the range [0.1, 3.0] for each model in the ensemble.

A.5.4. HYPERPARAMETERS
Normalizing Flow. We use the Adam optimizer (Kingma & Ba, 2017) to train the normalizing flow.
When training by example on the starting dataset, we use a batch size of 16 and a learning rate of 5 x 107,

When training the flow by energy, we use a batch size of 8 and a learning rate of 5 x 10>, We further clip gradients above a
gradient norm of 20. The first AL iteration trains by energy for 12 epochs, all subsequent iterations use 7 epochs.

PMF. To train the PMF ensemble, we use the Adam optimizer with a learning rate of 0.001 and a batch size of 5. Training
is performed for 1000 epochs.

We use the bagging strategy to select the training data of each model in the ensemble.

Monte Carlo Sampling. We perform Monte Carlo Sampling in the CG space to find new high-error configurations. We
use a Gaussian proposal distribution of scale 0.1 and an error threshold of 0.4 kgT'.

In each AL iteration, we search for 1 high-error point using 50 MC trajectories in parallel. The trajectories have a minimum
length of 10 steps, before which we do not accept high-error configurations. The trajectories of the first AL iteration start in
the global minimum of the potential. All trajectories of subsequent iterations start at the high-error configuration of the
previous iteration. Each high-error point sampled using MC is subsequently broadened with a uniform distribution of width
1.0.

In this way, we sample 65 points for each high-error configuration, resulting in 1 - 65 = 65 added CG configurations in each
AL iteration. Since each CG configuration has 30 copies in the dataset (see Section 3.3), this yields 1950 new points. 80 %
are subsequently used for training by energy in the next iteration, and 20 % for calculation of a test loss.

If any of the trajectories reaches a length of 30 000 steps, we stop the active learning workflow. The reported total number of
MC steps do not include the steps of this final fixed-length MC exploration that terminates the workflow due to reaching the
maximum specified length.

A.6. Alanine Dipeptide
A.6.1. FORCE-FIELD AND GROUND TRUTH SIMULATIONS

We used the force-field AMBER {f96 with OBC GB/SA for implicit solvation (D.A. Case et al., 2023) for the ground truth
simulations and potential energy evaluations during the training of the normalizing flow. Energy evaluations and simulations
were performed using OpenMM 8.0.0 with the reference platform (Eastman et al., 2017). All simulations were performed at
the temperature 300 K and included an iterative energy minimization (gradient descent) before starting the simulations from
the obtained minimum energy configuration.

As a ground-truth test dataset, we used the dataset provided by Stimper et al. (2022) and Midgley et al. (2023b), which was
generated using replica exchange MD simulations with a total of 2.3 x 10'” potential energy and force evaluations.

Additionally to this test dataset, we created an additional MD trajectory of length 5 us with time step 1 fs (5 x 10 potential
energy and force evaluations) to create the MD entries in Table 1 and the visualization in Figure 4.

A.6.2. EVALUATION METRICS

Forward KLD. The ground truth test dataset mentioned in the previous section was used to calculate the forward KLD of
the PMF on a 100x100 grid (see KLD values in Table 1).
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All-Atom Log-Likelihood. The all-atom log-likelihoods in Table 1 have been calculated using the ground truth test dataset
as

Ep\(2)logax(x;0) = E, (2 10g (¢xre (Tra | 550) - p(s) - [det Joay,|) - 41

Here, p(s) ~ exp (— ,C]%TUPMF(S)) was obtained from the PMF and normalized on a 500x500 grid in the CG space.

ESS. The reverse effective sample size (ESS) in Table 1 has been calculated in the following way (Midgley et al., 2023a;
Martino et al., 2017):

1

Neawv = =577 — 3 with  z; ~ qx (z4;0) , (42)
i1 W ()
. w(x;) px (i)
w(r;) = =———— and w(x;) = ——= 43)
() > iy w(z) (es) ax (i3 0)
Analogous to the all-atom log-likelihood calculation, we used ¢x (2;0) = ¢xp (Trc | $;0) - p(s) - |det Jp—s 4, |, Where

p(s) ~ exp (—h%UpMF(s)> was again obtained from the PMF and normalized on a 500x500 grid in the CG space. To

sample from ¢x (x; @), we employed rejection sampling in the CG space and subsequently used the conditional normalizing
flow to obtain all-atom samples. We used 1 x 107 samples drawn from gx (; ) to estimate the reverse ESS. Analogous to
Midgley et al. (2023b), due to outliers in the importance weights, we clipped the 1 x 10° highest importance weights to the
lowest value among them.

A.6.3. COORDINATE TRANSFORMATION

We use a fully internal coordinate representation with 3 - 22 — 6 = 60 internal coordinates (bond distances, angles, and
dihedral angles). The internal coordinates are shifted using the minimum energy reference structure obtained using gradient
descent. Furthermore, we normalize the scale of the internal coordinates with the fixed parameters 0.005 nm for bond
lengths, 0.15 rad for bond angles, and 0.2 rad for dihedral angles. The circular periodic coordinates (those with freely
rotating dihedral angles) were not scaled. This internal coordinate representation is identical to the representation used by
Midgley et al. (2023b).

A.6.4. STARTING DATASET

To form the starting dataset we use a short MD trajectory of 50 ps (50 000 potential energy evaluations). Every 10th frame
of this trajectory is used in the starting dataset.

A.6.5. ARCHITECTURE

Normalizing Flow. Our architecture is very similar to the one by Midgley et al. (2023b), which builds upon the normflows
python package (Stimper et al., 2023). We use a normalizing flow built from 12 monotonic rational-quadratic spline coupling
layers (Durkan et al., 2019). A monotonic rational-quadratic spline coupling layer maps the interval [— B, B] to [ B, B
using monotonically increasing rational-quadratic functions in K bins.

We use K = 8 bins and treat the freely rotating dihedral angles with periodic boundaries in the range [—, 77| (Rezende
et al., 2020). For these, a uniform latent distribution in [—, 7] is used. The non-periodic coordinates use B = 5, an identity
mapping outside of the range [— B, B], and a standard Gaussian latent distribution.

We group two consecutive coupling layers to use opposite random masks to define the identity and transform features.
After such a pair of coupling layers, we apply a random shift of 7 - U (0.5, 1.5) with subsequent wrapping in [—, 7] to the
coordinates with periodic boundaries.

Each coupling layer uses a residual network as the parameter network of the spline transformation. The detailed architecture
can be found in Figure 8. The circular coordinates (which include the CG variables ¢ and 1)) use the periodic representation
(cos(n),sin(n)) T for each periodic variable 7.

We found that training of the grid conditioning experiments is more stable and yields better results when not modeling the
topology of ¢ and 1 explicitly in the flow, which is why we removed the periodic conditioning representation and simply
condition the flow on ¢ and 1 for the grid conditioning experiments.
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PMEF. To predict the PMF and its standard deviation, we use an ensemble of 10 fully connected neural networks with layer
dimensions [4, 256, 128, 32, 1] and sigmoid hidden layer activation functions. Since ¢ and v are 27-periodic, we use the
input representation (cos ¢, sin ¢, cos 1, sin ) ".

A.6.6. HYPERPARAMETERS

Normalizing Flow.

* Training by example: The initial training by example is performed using the Adam optimizer with a learning rate of
1 x 107 and a batch size of 256 for 50 epochs.

* Training by energy:

— As discussed in Section 3, we found that removing a few of the highest loss values from each batch significantly
improves training stability. Therefore, we removed the highest 5 loss values.
— Active learning experiments
* Adam optimizer with batch size 64
* Training for 50 epochs in each iteration
* Learning rate is linearly warmed up from 0 to 1 x 107 in the first 15 epochs of the initial iteration (directly
after training by example) and in the first 11 epochs for all subsequent AL iterations.
* Gradient norm clipping with value 100 for the first 15 epochs of the initial iteration (directly after training
by example) and in the first 11 epochs for all subsequent iterations. Then, gradient norm clipping with value
1000 is used.
— Grid conditioning experiments
80% of the CG grid points (100x100) are used for training, 20% for testing.
Adam optimizer with batch size 64
Training for 100 epochs in total
Learning rate is linearly warmed up from 0 to 1 x 107 in the first 30 epochs .
Gradient norm clipping with a value of 100 for the first 30 epochs, then with a value of 1000

* % ¥ ¥ ¥

PMF. To train the PMF ensemble, we use the Adam optimizer with a learning rate of 5 x 10~* and batch size 256. Training
is performed for 1500 epochs. Due to possible atom clashes and numerical instabilities (Koblents & Miguez, 2015; Dibak
et al., 2022) when sampling from the flow, when evaluating Equation 12 for each CG configuration s, we clip the highest 3
of the 30 values in the expectation value to the lowest value among them. We find empirically that this approach yields very
accurate PMF values.

Each model in the ensemble receives a random fraction of 80 % of the current training data in the AL dataset for training
and the remaining 20 % for testing.

Monte Carlo Sampling. We perform Monte Carlo Sampling in the CG space to find new high-error configurations. We
use a Gaussian proposal distribution of scale 0.1 and an error threshold of 0.2 kgT'.

In each AL iteration, we search for 30 high-error points using 200 MC trajectories in parallel. We use the high-error points
found in the previous AL iteration as the starting configurations of these trajectories (the trajectories of the first AL iteration
start in the global minimum). To obtain a more uniform coverage of the CG space, we first pick one random sample from
these 30 configurations and then iteratively choose the point with the largest Euclidean distance to all already chosen points -
until we have sampled a total of 15 points.

Each of these points is subsequently broadened with a uniform distribution in a circle with a radius of 0.6 rad. In this way,
we sample 200 points for each high-error configuration, yielding 200 - 15 = 3000 added points in each iteration. Since each
CG configuration has 30 copies in the dataset (see Section 3.3), this yields 90 000 new points. 80 % are subsequently used
for training by energy in the next iteration, 20 % for calculation of a test loss.

If any of the trajectories reaches a length of 500 000 steps, we stop the active learning workflow. The reported total number
of MC steps do not include the steps of this final fixed-length MC exploration that terminates the workflow due to reaching
the maximum specified length.
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Furthermore, if the forward KLD from the test dataset to the learned PMF in a given iteration is smaller than 1 x 1073, we
stop the active learning workflow. When applying the presented methodology to systems without a ground-truth dataset in
the future, one will have to solely rely on the maximum length or other more sophisticated stopping criteria.

A.6.7. TRAINING STABILITY

As discussed in Section 3, we found that for alanine dipeptide removing the 5 highest loss values from each batch of 64
samples yields more stable experiments than energy regularization. While this yields stable AL workflows most of the time,
we observe small artifacts in approximately one out of eight AL experiments (see Figure 9). These artifacts are in the form
of vertical lines, mostly but not always at ¢ ~ 40°. We found that optimizing training hyperparameters to get more stable
experiments helps the problem, but does not completely remove it when repeating experiments many times. Therefore,
we performed a total of 8 AL experiments with different random seeds in the alanine dipeptide system to obtain reliable
performance metrics in Table 1.

For the grid conditioning experiments, we observed similar artifacts for some choices of hyperparameters, but the artifacts
do not occur with the presented hyperparameters.

Since the number of sampled molecules of R-chirality (which are filtered) spikes at the same time as such an artifact
typically occurs, we suspect that the artifact appears due to the hard cutoff of the chirality filtering. This is an effect of the
chosen CG mapping, which has ambiguous chirality for a given ¢-1)-configuration. If one constructs the internal coordinate
representation in such a way that only structures of L-chirality can be sampled (in combination with constraining the
sampling range of the respective degree of freedom in the flow (Rezende et al., 2020)), the described effects should be
avoidable in the future.

A.6.8. PERFORMANCE ANALYSIS

Here, we compare the performance of the MC simulations in our AL experiments with running all-atom MD using OpenMM.
For this, we compare the time over the number of evaluations in Figure 10. As one can see, it takes more than 500 CPU
cores to match the sampling speed of the PMF on the GPU - considering one performs enough trajectories in parallel.

As already discussed in the main text, running AL is not strictly necessary in this low-dimensional 2D CG space, since one
can simply cover it uniformly as done in the grid conditioning experiments. Furthermore, the implicit solvent simulation of
alanine dipeptide in OpenMM is already quite fast, resulting in a similar execution time when evaluating the PMF only once.
While the nature of parallelization of the GPU still allows faster sampling of the PMF compared to MD in practice, one can
expect an even larger difference when going to all-atom systems that take longer to evaluate.

In the extreme case of using a more expensive method such as density functional theory (DFT) calculations on the all-atom
side, sampling the CG surrogate will be many orders of magnitude faster. One can, of course, also replace the DFT with an
all-atom ML surrogate and apply active learning also on the all-atom side. However, also in this case, the CG PMF will be
lower-dimensional, require less memory, and have shorter execution times. Furthermore, the CG PMF is typically smoother
than the all-atom energy surface, making larger time steps possible (Jin et al., 2022) when running, for example, Langevin
dynamics.

A.7. Hardware Resources

All experiments have been performed on a NVIDIA A100 40 GB GPU. For the experiments on alanine dipeptide, we
calculated the energy and gradients of the ground-truth OpenMM system using 18 workers in parallel.

Training times of the different experiments were approximately the following:

e Miiller-Brown AL: 35 min
* Alanine dipeptide AL: 36 h

 Alanine dipeptide grid conditioning: 18 h
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Figure 6. Visualization of all iterations of the AL workflow applied to the Miiller-Brown system. Bottom: PMF and its standard deviation.
Training points from previous AL iterations are marked as black “x” at the top of the PMF, and new high-error points added in the current

AL iteration are marked as red “x”. Top: Backmapped potential energy In ¢s, (s | s;0)p“°(s) from cascaded sampling of the PMF and
sampling of the flow.
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Figure 7. PMF as obtained using the AL experiment from Figure 6 (red), by numerical integration (ground truth, black), and from an
“all-atom” MC simulation with 1 x 10° steps (blue). The PMF from the “all-atom” MC simulation is visibly biased, while the AL workflow

yields an almost perfect PMF estimate.

Neural spline coupling layer

29 Unconditional spline 29
i transform
Identity
features ¢
§= (¢a ¢)T |
3| Residual transform network
Input

(58)
Transform
features (725)
Spline transform
(29)

=

Output

Periodic representation

Input <cos(w)

sin(z)

)

Output
>

Residual transform network

¢ Input

Periodic rep.
(only freely-rotating
dihedrals)

s=(6,9)"
—) Periodic rep.

Figure 8. The architecture of the neural spline coupling layers used for alanine dipeptide. The input of each coupling layer is split into two
parts, where the identity part is used to calculate the spline transform parameters of the transform part using a residual network (orange).

The shown architecture is very similar to the one in (Midgley et al., 2023b).
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Figure 9. Small artifact (vertical line at ¢ ~ 40°) that appears in the PMF during the active learning workflow applied to alanine dipeptide.
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Figure 10. Benchmark that compares the time to evaluate the PMF ensemble on the GPU and the target potential energy and force using
OpenMM on CPU cores. The OpenMM time was evaluated using the performance-optimized OpenMM CPU platform on a single core of
an Intel Xeon Platinum 8368. Based on this time, we calculated the time for higher core numbers, assuming perfect scaling. The PMF
ensemble was evaluated on a single NVIDIA A100 40 GB GPU.
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Figure 11. (a-g) AL steps for the alanine dipeptide system. Top: PMF of ¢ and 1) at the end of the iteration. Bottom: Standard deviation
of the PMF. The contour line of the threshold in the standard deviation when sampling new points (0.2 kgT’) is drawn using a black line.
Newly added points after sampling using the PMF of this iteration are shown as red dots.
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