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ABSTRACT

Having consumed huge amounts of training data and computational resource,
large-scale pre-trained models are often considered key assets of AI service
providers. This raises an important problem: how to prevent these models from
being maliciously copied when they are running on customers’ computing device?
We answer this question by adding a set of confusion neurons into the pre-trained
model, where the position of these neurons is encoded into a few integers that are
easy to be encrypted. We find that most often, a small portion of confusion neu-
rons are able to effectively contaminate the pre-trained model. Thereafter, we
extend our study to a bigger picture that the customers may develop algorithms
to eliminate the effect of confusion neurons and recover the original network, and
we show that our simple approach is somewhat capable of defending itself against
the fine-tuning attack.

1 INTRODUCTION

In the deep learning era (LeCun et al., 2015), neural networks have become the standard (and pow-
erful) tool of learning representations. The past decade has witnessed the application on a wide
range of applications including computer vision (Krizhevsky et al., 2012), speech recognition (Hin-
ton et al., 2012), natural language processing (Vaswani et al., 2017), etc. Recently, it is verified
that pre-trained models (Senior et al., 2020; Brown et al., 2020; Dosovitskiy et al., 2020) built upon
a large number of data can be transferred into specific scenarios by fine-tuning its parameters in a
relatively smaller dataset and a shorter training procedure. This has laid the foundation of a novel
paradigm of AI development that the service provider makes use of abundant data and computa-
tional resource to offer pre-trained models, so that the customers can build their work on top of the
pre-trained models to save their costs.

A new topic emerges in the above paradigm. The pre-trained models are of great value to the
service provider, but when the customers have access to the models (e.g., the models are ran on
the devices controlled by the customer), they can copy the models from the memory which may
violate the intellectual properties of the service provider. Therefore, it is important to design an
encryption framework to protect the models from being plagiarized. We point out that the essence
of this problem is to convert the protection of a large number of numbers (i.e., network weights) to
the protection of a small set of codes, while the network itself shall not encrypted so that it can be
executed on the computing device. However, the conventional encryption methods are converting
the network weights into the unrecognizable 0/1 codes using traditional encryption algorithms such
as Secure Hash Algorithms, which is not applicable in this scenario since the models are expected
to be running on the device continuously, i.e., the ‘plaintext’ version must be present at any time.
Recently, some watermark-based methods have been applied to protect deep neural networks (Zhang
et al., 2018; Fan et al., 2019; Zhang et al., 2020), however, most of these methods focus on computer
vision tasks and are not universal for other kinds of network architectures.

In this paper, we propose a simple method to the above encryption problem. The idea is shown in
Figure 1. We add a number of confusion neurons to each layer of the network, where the position
of these neurons are encoded into a short vector and can be well encrypted. The added neurons
can gradually change the response of the network, layer by layer, so that the final output is largely
contaminated, i.e., the network loses the original ability of, say, recognizing the input image or
understanding the input texts. With the authorized key, however, the algorithm can easily decipher
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Figure 1: Overview of the proposed encryption framework. A set of confusion neurons are added
into the original network to obtain a larger network, which is referred to as the encrypted network.
A secret key that records the position of the confusion neurons. During the inference process, the
algorithm is easy to eliminate the confusion connections using the secret key, without which the
prediction of encrypted network is totally different from that of the original network. Generally we
do a secondary encryption of the location information.

the code and the network is equivalent to the original one as if no confusion neurons were added.
Intuitively, the damage to the network is stronger with more confusion neurons added, so that the
objective is to use fewer extra costs to gain a stronger ability of protection. Typically, we find
that the location and weights of confusion neurons are crucial to achieve a good tradeoff – when the
parameters are well set, we can often achieve heavy damage with a very small portion of redundancy.
We name our method deep encryption of neural networks.

We thereafter consider a bigger picture: what happens if the customers know that the models have
been encrypted and try to recover the original models? A straightforward idea is to detect the con-
fusion neurons, but this is rather difficult because we assign the weights of confusion neurons using
the sampled weights from the original neurons. Due to the large number of possible combinations,
using trial-and-error to locate all confusion neurons is computationally intractable. Hence, we con-
sider another strategy that the customers accept the extra costs of the contaminated model, i.e., using
it without knowing the exact position of confusion neurons but fine-tuning it on their own data. To
keep the paradigm reasonable, we stick on the scenario that the fine-tuning datasets are relatively
small and the number of epochs relatively smaller. Our experiments show that the encrypted mod-
els are somewhat capable of defending against the fine-tuning attack, and, intuitively, the defensive
power increases as more confusion neurons are added.

The conclusion of this work is two-fold. First, we advocate for the importance of encrypting neu-
ral networks and formulate the evaluation criterion, including the tradeoff between extra costs and
protection power, as well as the attack-defense framework. Second, we offer a simple yet effective
baseline that achieves satisfying tradeoff and shows preliminary defensive power. We believe that
much more research efforts shall be made in the future along this new direction.

2 OUR APPROACH

2.1 PROBLEM SETTING AND EVALUATION CRITERION

Denote the original network as f(x;θ) where the function of f(·) stands for the network architec-
ture (e.g., for image recognition, it can be AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan
& Zisserman, 2014), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), ViT (Dosovitskiy
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et al., 2020), etc.), x is the input (e.g., an image for vision applications), and θ is the parameters.
Throughout this paper, we assume that the computational model has been pre-trained, i.e., θ has
been optimized using a reasonable amount of training data on sufficient computational resource.
Our goal is to protect the network from being maliciously copied, namely, used for commercial
purposes without being authorized by the service provider.

Please note that this problem is different from the classical ones that encrypt a few texts. Once the
service provider offers the pre-trained model to a customer, the model needs to be executed on the
customer’s device in the status being completely decrypted. The customer may visit the memory
of the device to obtain the parameters. The analysis shows the essence of our research, that is,
using a very small amount of information to cipher a large neural network which often contains
million-scale or even trillion-scale parameters.

From a general viewpoint, when the pre-trained model is made ‘plaintext’ in the customer’s device,
a straightforward way to protect it is to add confusion information to destroy the output of the
model. In this paper, we consider a simple baseline that inserts a controllable number of neurons
to every layer of the network and counterfeits the connections related to these neurons as if they
were members of the original model. The details are to be elaborated in the next part, but we hope
to deliver a key message here: the introduction of the so-called confusion neurons can increase
the cost of storage and therefore the difficulty of the pre-trained model being deployed. Hence, we
argue that a tradeoff between fewer costs (in terms of memory usage) and stronger protection (in
terms of the reduced recognition accuracy) is the goal to pursue. The experimental part will follow
this protocol to evaluate the effectiveness of the proposed algorithm.

Before entering the technical part, we point out that the customers are also aware of the encryption
strategy and may develop algorithms to recover the original model. A straightforward idea is to
detect the position of confusion neurons, but, according to the design of our approach, it is relatively
difficult to achieve the goal merely using the statistics. Another possibility is to accept the existence
of confusion neurons and fine-tune the network to maximally weaken their perturbation. In Sec-
tion 3.3, we perform some preliminary experiments, showing that our vanilla solution of encryption
is somewhat resistant against this kind of attack. However, we leave a remark that the attack and
defense of pre-trained models, similar to adding adversarial perturbations to images (Goodfellow
et al., 2014; Tramèr et al., 2017), will be a long-lasting battle and more research efforts are needed.

2.2 DEEP ENCRYPTION WITH CONFUSION NEURONS

We start with motivating the mechanism of adding confusion neurons. Let the network f(x;θ)
have L layers, where the output of each layer is denoted by zl and we use z0 ≡ x for convenience.
Provided the architecture of f(·), we further define the configuration of the network to be the number
of channels on each layer, denoted by an array of [C1, C2, . . . , CL] where we exclude C0 from the
array since the input dimension is often unchangeable.

Intuitively, for a pre-trained model, if we add a few extra channels to the first layer and counterfeit
the connections between these neurons and other originally-existing neurons, the output of z1 will
be changed. Since the network is hierarchical and the subsequent outputs are often relying on z1,
the final output can be largely altered from that of the original network. If the service provider
performs such an action and stores the position of the confusion neurons, the customer will be
difficult to derive the original output for every single input. Generalizing this idea to inserting
confusion neurons into multiple layers yields the formulation below.

We define the ‘confusion configuration’ to be the number of channels added to each layer of the
network. It is denoted by [∆C1,∆C2, . . . ,∆CL] all of which are non-negative integers. In addi-
tion, for each 1 6 l 6 L, there is a Cl-dimensional vector recording the actual location (i.e., the
ID of channels) that the confusion neurons have been inserted. We will show later that when the
configuration and initial weights of these neurons are carefully set up, we achieve satisfying pro-
tection power with very few extra costs. Figure 2 shows some representative examples where the
encrypted network produces significantly different outputs from the original network. Mind that
how confusion neurons contaminate the attention to important regions.

In what follows, we delve into the details of the algorithm, including the objective function that as-
signs confusion neurons over the network and the initialization of the weights of confusion neurons.
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Figure 2: Visualization of the attention maps (plotted by the CAM algorithm (Zhou et al., 2016))
of ResNet50 after different amounts of confusion neurons are inserted. The original ResNet50 was
trained on ImageNet. One can see that adding confusion neurons destroys the pre-trained model’s
ability to focus on the discriminative region of the image – with the amount of confusion neurons
increase, the attention maps become diverged and thus the classification accuracy drops dramatically.

The objective: towards stronger protection with fewer costs. We design an objective function
that considers both factors. The ability of protection is measured by the average amount of changed
response, namely, ED[‖f̂(x; θ̂)−f(x;θ)‖2] where ED[·] denotes the expectation on a given training
set, D, and f̂(·; θ̂) stands for the encrypted model with correspondingly perturbed parameters. Note
that most entries of θ̂ are identical to θ. Regarding the cost of encryption, we directly compute
the extra memory usage at deployment since it is almost the only extra overhead in the regular
routine, i.e., the encrypted model is executed with the secret key. We denote the extra memory
in the unit of bits using ∆Mem, and we care about the ratio of ∆Mem over Mem, the original
memory cost. Here, we notice the readers that both ∆Mem and Mem are directly related to the
network design (e.g., the convolutional kernel size at each layer) and the values of [C1, C2, . . . , CL]
and [∆C1,∆C2, . . . ,∆CL]. Hence, the overall objective function is to maximize the following
quantity:

Gencryption = ED[‖f̂(x; θ̂)− f(x;θ)‖2]− λ · (∆Mem/Mem), (1)

where the letter of G is short for ‘gain’ and λ is the balancing coefficient. Directly optimizing Equa-
tion 1 is computationally intractable, so we adopt the following approximated solution. Intuitively,
adding confusion neurons to the early stage of the network seems more ‘economic’ since it affects
more layers (adding confusion neurons to a specific layer will affect the current layer and all consec-
utive layers). In addition, due to the marginal effect, it will be better, for most network architectures,
to distribute the confusion neurons over different layers. We will use these two principles to develop
an empirical scheme, and the experimental data is offered in Section 3.1.

Determining the weights of confusion neurons. The goal here is two-fold. First, these weights
should be capable of perturbing the network’s output. Second, the weights are difficult to be either
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detected or attacked (e.g., by fine-tuning the network on small datasets). This directly excludes the
possibility that the weights are too small (so that adding them affects little to the network) or too
large (so that they are clearly outliers and easily detected) compared to the original weights.

Here, we propose two strategies of assigning weights to confusion neurons. The first one is to ini-
tialize the added confusion neurons with random noise, e.g., the Gaussian noise or other by-default
initialization methods that come with the specified networks. The second one is to randomly sam-
ple some numbers from the original neurons. Though both strategies work very well in perturbing
the network, their behaviors of defending the recovering attack are different. Specifically, random
noises are easier to be detected but are more resistant to fine-tuning, while the sampled weights
are hard to detect but risk being tuned efficiently. In Section 3.3, we show that the mixed strategy
(i.e., randomly choosing a strategy for each confusion neuron) is a good choice. As a side note, we
also refer the readers to the community of adversarial attack and defense, where various kinds of
defending methods are often fused towards stronger protection.

The scheme to use the encrypted models regularly. Last but not least, we briefly discuss the
regular scheme to decrypt the model. When a customer is authorized to make use of the pre-trained
model, the service provider offers the secret keys using a section of ciphered codes. When the deep
learning toolkit receives the secret keys, the encrypted network is literally equivalent to the original
one, making it straightforward to perform either inference or fine-tuning beyond it. It is worth noting
that after each fine-tuning procedure, the weights of confusion neurons also need to be updated so as
to remain sheltered – this is easily done by calling the weight initialization module one more time,
which is cheap in computation.

3 EXPERIMENTS

3.1 TOWARDS A BETTER TRADEOFF BETWEEN COSTS AND PROTECTION

This part actually continues the previous part by establishing an empirical way of optimizing Equa-
tion 1. Before delving into details, we first note that for effective encryption, three important factors
need to be considered, namely, the amount of confusion neurons, and the location of confusion neu-
rons, and the strategy of assigning weights to the confusion neurons. For the sake of simplicity, we
by default adopt two assignment strategies, namely, the ‘samp’ strategy where we sample weights
from originally existing weights, and the ‘init’ strategy where we follow the initialization method
described in (He et al., 2015). All the experiments in this part are performed on the ResNet (He
et al., 2016) series. For detailed settings, please refer to the next subsection.

3.1.1 THE LOCATION OF INSERTING CONFUSION NEURONS

We first investigate the amount of confusion neurons inserted to the pre-trained models. Due to the
objective, Equation 1, the goal is to reduce the ratio of the number of confusion neurons over the
original network size. We therefore consider different locations of inserting confusion neurons. The
ResNet18 and ResNet50 models are used, and we try two schemes of assigning confusion neurons,
one is to keep the confusion proportion (i.e., ∆Cl/Cl at the l-the layer) identical at all layers, and
the other is to assign all confusion neurons to one single layer. Both the ‘samp’ and ‘init’ weight
assignment strategies are evaluated.

Experimental results are summarized in Figure 3. One can take away an important message that
the destroy of confusion neurons is highly correlated to the proportion compared to the original
model; in addition, since the shallow layers (i.e., those closer to input) often have fewer parameters,
assigning the same number of neurons to these layers often causes heavier damages. This seems to
motivate us to inserting more confusion neurons to the shallow layers, however, we point out that an
imbalanced assignment may cause encrypted network easier to be attacked. As an example, although
adding almost all neurons to the first block can easily cause dramatic failure, it is also possible
that the attacker simply discards the first layer and replace it with a module trained independently.
Therefore, in practice, we adopt a compromised scheme that inserts the same (absolute) number of
confusion neurons to each layer/block so that the shallow layers are assigned with larger proportions
and hence the entire model is better protected.
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3.1.2 THE AMOUNT OF CONFUSION NEURONS

Next, we study the impact of confusion proportion. We inherit the conclusion from the previous
part which assigns the same number of confusion neurons to each layer, and test the relationship be-
tween reduced recognition accuracy (in terms of image classification, object detection, and instance
segmentation) and the confusion proportion.

Experimental results are shown in Figures 4 and 5, respectively. From the image classification part,
we are satisfied with the fact that adding a small portion of confusion neurons is sufficient to protect
the entire model – for quantitative numbers, please refer to the next subsection. In addition, we find
that the extra computational overhead, in terms of either GPU memory or inference time, is approx-
imately proportional to the confusion proportion. In particular, when the confusion proportion is
merely 5%, the recognition accuracy on all tasks drops by more than half, meanwhile the increased
cost is negligible, implying that the proposed method is of practical value in real-world applications.
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Figure 3: The impact of adding confusion neurons to different blocks of ResNet18/50. The top row
shows the setting that the same (relative) proportion of neurons are added to in each block, while
the bottom row shows that the same (absolute) number of neurons are added. Please mind the slight
difference between the ‘samp’ and ‘init’ strategies. All tests are made on ImageNet.
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Figure 4: The impact of adding different amounts of confusion neurons to the ResNet series. All
tests are made on ImageNet. The left two plots show the difference between the ‘samp’ and ‘init’
strategies where the latter is more effective, and the right two plots show the additional overheads
required, which is linear to the confusion proportion.
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Figure 5: The impact of adding different amounts of confusion neurons to the ResNet series. The
tests are made on MS-COCO object detection and instance segmentation tasks.
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Table 1: Top-1 and top-5 accuracy and parameters of the original and encrypted models on ImageNet
validation dataset. Plain convolution model like VGG and skip-connection based model like ResNet
and transformer based model like ViT are tested. With a small amount of extra computation (less
than 5%), the pre-trained models are encrypted to protect themselves.

Backbone Original Encrypted
∆Top-1 (%) ↑ ∆Top-5 (%) ↑ ∆Params ↓

Top-1 (%) Top-5 (%) Params (M) Top-1 (%) Top-5 (%) Params (M)

ResNet18 67.27 87.74 11.69 22.44 38.72 11.87 49.02 51.34 1.54%
ResNet34 71.33 90.06 21.80 30.43 48.63 22.12 40.90 41.43 1.47%
ResNet50 74.55 92.01 25.56 57.83 80.08 26.04 16.72 11.13 1.88%

ResNet101 75.99 92.89 44.55 6.85 12.53 45.82 69.14 80.37 2.85%
ResNet152 77.01 93.48 60.19 0.17 0.79 61.75 76.84 92.69 2.59%

VGG16 70.02 89.41 138.36 0.10 0.52 139.58 69.92 88.88 0.88%
VGG19 70.61 89.92 143.67 0.10 0.46 145.32 70.51 89.46 1.15%

DenseNet121 71.96 90.70 7.98 0.27 1.08 8.75 71.69 89.62 9.65%
DenseNet169 73.75 91.54 14.15 0.15 0.70 16.28 73.60 90.84 15.05%
DenseNet201 74.55 92.16 20.01 0.12 0.58 23.92 74.43 91.58 19.54%
DenseNet161 75.27 92.52 28.68 0.14 0.66 33.00 75.13 91.86 15.06%

ViT tiny 43.11 66.40 5.72 2.33 6.97 5.89 40.78 59.43 2.97%
ViT small 72.47 91.20 22.05 12.82 26.66 22.75 59.65 69.54 3.17%
ViT base 76.08 92.98 86.57 21.67 39.97 89.39 54.41 53.01 3.26%
ViT large 83.43 96.95 304.33 73.23 91.51 314.36 10.20 5.44 3.30%

Table 2: The AP and FPS of object detection on the original and encrypted ResNet50/101 models,
evaluated on the MS-COCO validation set.

Backbone Original Encrypted
AP AP50 AP75 APS APM APL FPS AP AP50 AP75 APS APM APL FPS

ResNet50 37.40 58.10 40.40 21.20 41.00 48.10 21.40 17.60 28.40 18.70 9.30 19.30 23.60 19.10
ResNet101 39.40 60.10 43.10 22.40 43.70 51.10 15.60 13.50 22.00 14.30 7.50 15.40 17.50 13.30

3.2 PROTECTION ABILITY OVER DIFFERENT TASKS

To verify the effectiveness of deep encryption, we evaluate the proposed method on several main
tasks of deep learning, including image classification, object detection, instance segmentation and
text classification. For all experiments in this part, the confusion proportion is fixed at 5%. Due
to the differences in implementation details as well as that the number of added channels must be
integer, the actual proportion at each layer and the entire network can be slightly different. The
experimental results on each task are shown below.

Image Classification. We present the image classification results on the ILSVRC2012 classifica-
tion dataset (Russakovsky et al., 2015), which consists of 1,000 classes. We conduct experiments
on a variety of network architectures, and the results are shown in Table 1. We can see that the
performance of the encrypted networks decrease sharply, which demonstrates the effectiveness of
deep encryption. The sensitivity of different network architectures to confusion neurons is different,
because of different implementation details. For instance, the encryption of ResNet (He et al., 2016)
is conducted by adding convolutional kernels into each block, while the confusion convlutional ker-
nels of VGG (Simonyan & Zisserman, 2014) is added layer by layer. Therefore, the VGG network
is obviously more sensitive to the addition of confusion neurons. More implementation details can
be found in the source code, which we will release soon.

Object Detection and Instance Segmentation. We present the results of object detection and
instance segmentation on the challenging MS COCO dataset (Lin et al., 2014). We adopt Faster-
RCNN (Ren et al., 2015) and Mask-RCNN (He et al., 2017) as the basic model for object detection
and instance segmentation, respectively. Due to the results in Tables 2 and 3, deep encryption also
gains good performance on object detection and instance segmentation tasks. The performance of
the original model has decreased sharply with only an additional 5% of confusion neurons, which
shows the superiority of our method.

Chinese Text Classification. In addition to computer vision tasks, deep encryption can also be used
on natural language processing tasks. Here, we evaluate the deep encryption on the BERT (Devlin
et al., 2019) model pretrained with Chinese text. We present the results on a Chinese news text
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Table 3: The AP and FPS of instance segmentation on the original and encrypted ResNet50/101
models, evaluated on the MS-COCO validation set.

Backbone Original Encrypted
AP AP50 AP75 APS APM APL FPS AP AP50 AP75 APS APM APL FPS

ResNet50 34.70 55.70 37.20 15.80 36.90 51.10 16.10 7.20 12.10 7.40 3.30 8.10 10.40 15.00
ResNet101 36.10 57.50 38.60 16.60 39.20 52.80 13.50 2.80 5.40 2.70 3.00 4.00 1.50 11.90

Table 4: Chinese text classification results for ten categories on the THUCNews test set. Three
metrics are reported for the original and encrypted BERT models, which are precision, recall, and
F1-score, respectively. Only 4.21% additional parameters is sufficient for encryption.

Metrics(%) finance realty stocks education science society politics sports game entertainment Params(M)

Original
precision 93.43 96.81 91.27 97.28 91.07 91.50 91.83 99.09 97.16 94.43

102.28recall 92.50 94.20 88.90 96.70 91.80 95.80 93.30 98.00 95.70 96.70
F1-score 92.96 95.49 90.07 96.99 91.43 93.60 92.56 98.54 96.42 95.55

Encrpted
precision 0.00 9.86 10.53 0.00 0.00 9.74 0.00 18.06 0.00 5.44

107.20recall 0.00 0.70 1.20 0.00 0.00 52.30 0.00 68.30 0.00 3.50
F1-score 0.00 1.31 2.15 0.00 0.00 16.43 0.00 28.57 0.00 4.26

classification dataset THUCNews (Li & Sun, 2007). This dataset consists of 10 different categories,
each of which has 1000 pieces of data. The confusion addition strategy for BERT is to expand the
fully connected hidden layer and the width of each attention head in each Transformer cell. As
shown in Table 4, effective encryption can be achieved with only a few addition model parameters.

Through the above experimental verification, we validate the effectiveness of deep encryption on
multiple datasets. One can observe that for different architectures or different tasks, the performance
of protection is different. Thus, the confusion proportion can be set basing on specific task and
model, which will help the algorithm to achieve better tradeoff between and protection.

3.3 DEFENDING DECRYPTION BASED ON FINE-TUNING

We evaluate the behavior of the encrypted models when they are attacked via being fine-tuned on
a small dataset and with fewer computations. We inherit the ResNet152 model pre-trained on Ima-
geNet, and test its performance on two fine-grained visual categorization tasks, where the datasets
are CUB-200-2011 (Wah et al., 2011) and FGVC-Aircraft (Maji et al., 2013), both of which are
widely used in the community. For the sake of simplicity, we only adopt image-level labels during
training and testing. The network is fine-tuned for 15 epochs with a cosine annealing schedule,
where the initial learning rate starts with 0.1 and decays till 0.0001. The optimizer is SGD with a
momentum of 0.9 and a weight decay of 0.0001.

Experimental results using different confusion proportions are shown in Table 5. Both the ‘samp’
and ‘init’ weight assignment strategies are tested. Interestingly, with the ‘samp’ strategy, the con-
fusion neurons share the same distribution with the original neurons and thus are much easier to
be fine-tuned, while the ‘init’ strategy is much more challenging for the relatively short fine-tuning
procedure. However, recall that the ‘init’ strategy makes the confusion neurons easier to be detected
– this raises another tradeoff between perturbation and camouflage. To compromise both factors, we
develop the ‘mixed’ strategy that each neuron has 50% probability to choose either ‘samp’ or ’init’.

We emphasize that in real-world applications, the pre-trained models are even more difficult to be
attacked by fine-tuning due to two reasons. First, the pre-trained models of value to the service
provider are often very large, e.g., GPT-3 (Brown et al., 2020) that contains 175B parameters, mean-
while the fine-tuning procedure of these huge models is very tricky and time-consuming. Second,
once the customer adopts the fine-tuning attack, it implies that the efficiency of the pre-trained mod-
els is permanently downgraded due to the extra computational overheads. Therefore, we do not
expect the fine-tuning attack to be a major threaten to the proposed encryption approach, neverthe-
less, we believe that stronger decryption methods may be developed in the future.
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Table 5: The finetuning results on CUB-100-2011 and FGVC-Aircraft test datasets. Here, ‘samp’,
‘init’, and ‘mixed’ represent different strategies of weight assignment. With the increase of confu-
sion proportion, the performance of fine-tuned encrypted model decreases to a certain extent. The
resistance of different kinds of confusion weight to fine-tuning is significantly different.

Dataset Strategy Accuracy Confusion proportion
0 1% 2% 3% 4% 5%

CUB-200-2011

samp Top-1 (%) 75.48 74.82 74.61 74.51 74.39 73.49
Top-5 (%) 93.79 93.74 93.42 93.39 93.38 92.65

init Top-1 (%) 75.48 13.17 19.69 19.12 13.57 19.33
Top-5 (%) 93.79 36.71 49.85 47.34 36.68 46.05

mixed Top-1 (%) 75.48 72.94 64.55 44.63 27.11 30.17
Top-5 (%) 93.79 92.82 89.80 74.89 57.78 69.12

FGVC-Aircraft

samp Top-1 (%) 74.44 73.49 73.40 73.33 73.10 72.89
Top-5 (%) 95.11 93.70 93.65 93.60 93.44 93.21

init Top-1 (%) 74.44 27.57 16.62 24.00 26.88 24.09
Top-5 (%) 95.11 63.94 47.11 60.88 63.34 61.96

mixed Top-1 (%) 74.44 51.79 34.56 37.14 37.71 15.26
Top-5 (%) 95.11 85.69 71.65 75.01 74.77 39.78

4 CONCLUSION AND FUTURE WORK

In this paper, we formulate the problem of protecting pre-trained models from being maliciously
copied and presents a simple baseline that involves adding confusion neurons to the deep networks.
Our approach works on a set of popular networks across vision and language applications. To
the best of our knowledge, this is the first work on the protection of pre-trained models, and our
research set a baseline for the community. We hope to draw the attention of the community to this
new, important where very few foundations have been established yet. Below, we list a few topics
that remain uncovered.

First, we wonder if there exist more effective methods of encrypting the pre-trained models. In
this paper, the architecture (e.g., the number of layers, the convolutional kernel size, etc.) are not
allowed to change, but in practice, these factors can be modified to facilitate better tradeoff. As we
shall see in the next part, this can also increase the difficulty of decrypting the model. In addition,
we are interested in the possibility of directly optimizing Equation 1 or other objectives, so that the
encryption procedure can be executed systematically, e.g., using end-to-end optimization.

Second, a formal setting of attack and defense is to be built. Specifically, we refer to the community
of generating adversarial examples for images, where there exist settings of white-box attacks (i.e.,
the attacker knows the design details of the network and even the parameters) and black-box attacks
(i.e., the attacker only has access to the output of the network). These settings can transplant to
the model encryption problem where, say, the white-box attacks assume the attacker to know the
detailed configuration (e.g., the number of layers as well as the number of channels in each layer)
while the black-box attacks do not. Obviously, the black-box setting is more challenging.

Third, it is possible that some day, there emerges a new algorithm that can detect the confusion
neurons effectively. The key lies in the efficiency of the trial-and-error scheme. If we assume that
the probability of making a perfect prediction of confusion neurons, p, is independent for each layer,
then the probability for the entire network to be correctly decrypted is P = pL where L is the
number of layers. When L is large, the quantity of P is quite small even if p is sufficiently large,
say. Though this seems to make the decryption intractable, we worry that the customers may store
the encrypted pre-trained models on their own device and wait for powerful decryption algorithms
to appear. To compensate the perfect scenario, there are a few important and interesting questions to
answer, such as, how will the pre-trained models behave if it is nearly decrypted, i.e., most but not
all confusion neurons are correctly detected? In addition, on top of the nearest perfect decryption
results, will the fine-tuning attack become easier?
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REPRODUCIBILITY STATEMENT

The reproducibility of this paper is guaranteed by two factors. First, the proposed method is sim-
ple. According to the results in Section 3.1, the entire process of encryption involve three steps,
namely, (1) computing the extra computational costs added to the network, (2) distributing the extra
parameters to all network layers in a uniform manner and hence determining the number of confu-
sion channels in each layer, and (3) performing either the ‘samp’ or ‘init’ strategy to assign weights
to the confusion neurons. Second, we will release the source code and provide several examples
beyond the publically available pre-trained models.

ETHICS STATEMENT

The approach presented in this paper is used to prevent the pre-trained models from being ma-
liciously copied. This helps to protect the intellectual properties of the service provider that spent
large amounts of computational resource to deploy the pre-trained models as well as the surrounding
services. We expect the protection to build a better environment for the AI community.

To the best of our knowledge, our research does not raise any concerns in ethics, though the models
to be encrypted may come from other research projects that have unknown risks on ethics.
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