
Leveraging Classical Algorithms for Graph Neural Networks

Jason Wu∗

University of Cambridge
jw2313@cantab.ac.uk

Petar Veličković
Google DeepMind / University of Cambridge

petarv@google.com

Abstract
Neural networks excel at processing unstructured data but often fail to generalise
out-of-distribution, whereas classical algorithms guarantee correctness but lack
flexibility. We explore whether pretraining Graph Neural Networks (GNNs)
on classical algorithms can improve their performance on molecular property
prediction tasks from the Open Graph Benchmark: ogbg-molhiv (HIV inhibition)
and ogbg-molclintox (clinical toxicity). GNNs trained on 24 classical algorithms
from the CLRS Algorithmic Reasoning Benchmark are used to initialise and
freeze selected layers of a second GNN for molecular prediction. Compared to a
randomly initialised baseline, the pretrained models achieve consistent wins or
ties, with the Segments Intersect algorithm pretraining yielding a 6% absolute
gain on ogbg-molhiv and Dijkstra pretraining achieving a 3% gain on ogbg-
molclintox. These results demonstrate embedding classical algorithmic priors
into GNNs provides useful inductive biases, boosting performance on complex,
real-world graph data.

1 Introduction
Neural networks and classical algorithms are often seen as distinct paradigms for problem-solving.
Neural networks are highly effective at processing unstructured data, enabling a single model to
handle diverse tasks without explicit programming [1]. However, they often struggle to generalise
beyond the distribution of their training data, leading to unreliable behaviour on larger or unseen
inputs [2]. Classical algorithms, on the other hand, follow precise logical rules that guarantee
correctness regardless of input size [3], but their dependence on well-defined input structures makes
them less adaptable to new tasks.

This dichotomy raises an interesting question: can we leverage classical algorithms to improve the
performance of a Graph Neural Network (GNN) on real-world tasks?

We address this by studying two molecular property prediction benchmarks from the Open Graph
Benchmark (OGB) [4]: ogbg-molhiv, which predicts whether a molecule inhibits HIV replication,
and ogbg-molclintox, which predicts a molecule’s clinical toxicity. In both cases, molecules are
represented as graphs, with atoms as nodes and chemical bonds as edges.

Our hypothesis is that learning to execute classical algorithms can endow a GNN with inductive biases
that improve property prediction. For example, by learning to identify shortest paths, the model can
learn to identify nodes that frequently lie along shortest paths. Such nodes can correspond to critical
chemical substructures, such as functional groups, that strongly influence molecular behaviour.

To test this, we first train GNNs—the CLRS models—on a variety of algorithms from the CLRS
Algorithmic Reasoning Benchmark [5]. Their learnt weights are then transferred to selected layers
of a second GNN (OGB model) trained on ogbg-molhiv and ogbg-molclintox. Compared to a
randomly initialised baseline with the same architecture, pretraining yields up to a 6% absolute
improvement—equivalent to discovering roughly 60 additional active compounds per 1,000 screened,
potentially saving substantial experimental effort.

∗Now at Google.

Wu and Veličković, Leveraging Classical Algorithms for Graph Neural Networks (Extended Abstract). Presented
at the Fourth Learning on Graphs Conference (LoG 2025), Hybrid Event, December 10–12, 2025.



Leveraging Classical Algorithms for Graph Neural Networks

Recent work on graph foundation models [6] pretrains GNNs on large-scale datasets before adapting
them to downstream tasks [7]. Our approach is complementary: rather than relying primarily on scale,
we pretrain on well-specified algorithmic tasks to inject inductive biases that transfer to molecular
property prediction. It is also more efficient—training a model on an algorithm for 10,000 steps
takes just 2 hours on a single L4 GPU, compared to 6.4 days on eight A40 GPUs for GraphFM [8].
Similarly, while GraphMAE requires 24 GB GPUs [9], our method fits comfortably within 8 GB of
memory. Even the generalist variant that trains on all 24 algorithms concurrently completes within
1.4 days on an A100 GPU.

Our result sits nicely within the realm of prior deployments of CLRS training within more specialised
architectures—from reinforcement learning agents [10, 11] to self-supervised feature extractors [12]
and primal-dual solvers [13]. To the best of our knowledge, we present the first result of this kind over
a generic GNN pipeline deployed over a standard supervised learning dataset such as ogbg-molhiv.

2 CLRS Model
Our CLRS model follows an encode–process–decode framework. In this framework, the input data
is first transformed into a latent representation, then processed through iterative computation, and
finally decoded to generate predictions.

2.1 Encode

Let xi denote the raw features of node i, eij the raw features of the edge from node i to node j,
and g the raw features representing the entire graph. In the encoding stage, these raw features are
transformed into high-dimensional embeddings using learnable encoder functions specific to each
algorithm:

hi = fn(xi), hij = fe(eij), hg = fg(g).

Here, fn, fe, and fg are typically implemented as linear layers that map the raw inputs into a unified
latent space. This unified representation allows the model to work with heterogeneous inputs in a
consistent manner.

2.2 Process

During the processing stage, the encoded features are refined by a processor network that simulates
the operations of a classical algorithm. A common approach is to split this process up to Message
Computation, Message Aggregation and Feature Update.

Message Computation: Messages are computed along each edge using a message function fm. For
each edge (i, j), a message is computed as:

mij = fm
(
hi,hj ,hij ,hg

)
.

Message Aggregation: These messages are then aggregated for each node i using a permutation-
invariant operator, denoted as

⊕
:

mi =
⊕
j∈Ni

mji,

where Ni represents the set of neighbours of node i. Permutation invariance ensures that the order of
messages does not affect the result.

Feature Update: Finally, the aggregated message mi is combined with the original node embedding
hi using a readout function fr to produce the updated node representation:

h′
i = fr

(
hi,mi

)
.

This iterative processing step can be repeated multiple times to allow the network to capture both
local and global dependencies.

2.3 Decode

Once the node embeddings have been updated, they are converted into task-specific predictions
through a decoding stage. A decoder function g· maps the processed embeddings to the desired
output space:

ŷi = g(h′
i).

2



Leveraging Classical Algorithms for Graph Neural Networks

3 OGB Model
Our OGB model adopts a similar encode–process–decode framework as the CLRS model, illustrated
in Figure 1. We fix our processor as the Triplet-GMPNN, since Ibarz et al. [14] have demonstrated
that this GNN yields strong average test performance on executing CLRS algorithms.

Atom & Bond
Encoders

Encode

Triplet-
GMPNN
Layer 1 

Process

Aggregate
across nodes MLP

Decode

Triplet-
GMPNN
Layer 2

Triplet-
GMPNN
Layer 3

Triplet-
GMPNN
Layer 4

Triplet-
GMPNN
Layer 5

Figure 1: OGB Model Architecture.

The process stage comprises five stacked Triplet-GMPNN layers, where each layer’s output feeds
into the next. To assess the effect of algorithmic priors, we compare the pretrained model with the
baseline of identical architecture. In the baseline, all layers are randomly initialised and trainable; in
the pretrained model, layers 2 and 4 are initialised with CLRS weights and kept frozen.

Layer 1 

Layer 2
(frozen with
algorithmic

weights)

Layer 3

Layer 4 
(frozen with
algorithmic

weights)

Layer 5

Figure 2: Pretrained OGB model, with blue denoting trainable layers and red denoting frozen layers
initialised from algorithmic weights.

We chose this alternating freezing strategy to balance retaining algorithmic priors with flexibility for
adaptation, as done previously in graph representation learning approaches such as [10]. Alterna-
tive strategies—freezing early layers (1–2) or fully fine-tuning all pretrained layers—yielded less
pronounced results for ogbg-molhiv, achieving top accuracies of 75.05% and 76.52%, respectively,
compared to 77.16% with the alternating strategy (see appendix for full results). We hypothesise that
freezing early layers may limit how well the pretrained knowledge integrates, while fine-tuning all
layers could overwrite it. We therefore focus on the alternating strategy in our main evaluation.

4 Evaluation
In this section, we evaluate the impact of pretraining on different algorithms. We focus on the 24
algorithms for which the Triplet-GMPNN achieves test accuracies exceeding 50% [14]—presuming
that, in those cases, the model has learnt meaningful algorithmic representations. The corresponding
validation results in Table 2 (Appendix) confirm that most algorithms were learned effectively.

To compare the performance of the pretrained models against the baseline model, we employ a
win/tie/loss metric. This metric is defined as follows:

Let µ(M) and σ(M) denote the mean and standard deviation of model M ’s test performance,
respectively. Model X is said to win over model Y if

µ(X)− σ(X) > µ(Y ).

If this inequality does not hold, the result is considered a tie (T).

For the ogbg-molhiv task, the Segments Intersect algorithm yields the largest gain—an absolute
improvement of approximately 6% over the baseline—achieving a test accuracy of 77.16%2. A
Welch’s t-test across five runs confirms the improvement is statistically significant: the pretrained
model achieved 76.63 ± 1.01% versus the baseline’s 70.94 ± 0.80% (t = 9.40, p = 2.9 × 10−4).
Results from the early-layer freezing strategy in Table 3 further support our takeaways.

2For context: a state-of-the-art GNN architecture, GSAT [15], reports 80.67± 0.09% on this dataset.

3



Leveraging Classical Algorithms for Graph Neural Networks

Table 1: Test performance on ogbg-molhiv and ogbg-molclintox, reported as mean accuracy ±
standard deviation over three runs. “W” denotes µmodel − σmodel > µbaseline, “L” denotes µbaseline −
σbaseline > µmodel, and “T” a tie otherwise.

Algorithm MolHIV Acc. (%) MolClinTox Acc. (%)
Baseline (No algorithms) 71.20± 0.68 86.85± 2.53
Articulation Points 73.00± 1.09 (W) 86.27± 0.88 (T)
Activity Selector 72.26± 1.34 (T) 84.46± 3.56 (T)
Bellman–Ford 73.80± 2.85 (T) 87.58± 3.98 (T)
BFS 73.47± 0.78 (W) 84.54± 1.01 (T)
Binary Search 74.09± 1.59 (W) 87.21± 0.65 (T)
Bridges 71.18± 4.53 (T) 86.99± 2.64 (T)
Bubble Sort 73.14± 0.80 (W) 88.23± 1.78 (T)
DAG Shortest Paths 73.14± 1.50 (W) 84.05± 1.75 (L)
Dijkstra 72.71± 2.51 (T) 90.06± 2.76 (W)
Find Maximum Subarray (Kadane) 73.58± 1.18 (W) 88.11± 1.20 (W)
Graham Scan 73.28± 0.95 (W) 88.49± 1.69 (T)
Insertion Sort 75.61± 3.38 (W) 84.12± 2.08 (L)
Jarvis’ March 73.01± 2.62 (T) 88.41± 1.21 (W)
LCS Length 73.59± 3.87 (T) 88.02± 1.33 (T)
Matrix Chain Order 72.22± 2.32 (T) 89.20± 0.44 (W)
Minimum 70.87± 2.06 (T) 86.51± 3.41 (T)
MST Kruskal 76.92± 1.28 (W) 90.26± 4.38 (T)
MST Prim 74.12± 1.59 (W) 85.97± 1.88 (T)
Naive String Matcher 75.03± 3.05 (W) 86.76± 1.75 (T)
Optimal BST 74.86± 0.65 (W) 87.35± 2.40 (T)
Quicksort 72.74± 2.75 (T) 89.68± 0.73 (W)
Segments Intersect 77.16± 0.80 (W) 86.57± 1.25 (T)
Task Scheduling 72.97± 2.59 (T) 89.00± 4.69 (T)
Topological Sort 72.36± 1.32 (T) 85.03± 2.17 (T)
All Algorithms Concurrently 74.70± 1.84 (W) 86.54± 2.89 (T)

Segments Intersect is a classical computational geometry algorithm [3] that determines whether two
line segments intersect by evaluating the orientations of point triplets. In molecular graphs, the three-
dimensional arrangement of atoms and bonds is crucial for determining HIV inhibition, as interactions
such as hydrophobic effects and steric clashes depend heavily on spatial structure. Pretraining on
Segments Intersect may therefore provide inductive biases for spatial reasoning, enhancing recognition
of relevant structural motifs. The corresponding t-SNE embeddings show building on top of this
learned algorithm improves the clustering of active compounds (see Appendix A, Figure 3).

For the ogbg-molclintox task, the largest gain comes from Dijkstra, which outperforms the baseline
by over 3%. This improvement is likely because the shortest-path computation encourages the
model to identify atoms that frequently occur along key molecular pathways—features that may
correlate with clinical toxicity. In contrast, DAG Shortest Paths and Insertion Sort perform below
the baseline. The former assumes acyclic graph structure, which does not hold for many molecular
graphs, and could lead to misaligned inductive biases. The latter focuses on ordering comparisons
rather than more generic relational reasoning, providing less relevance to molecular connectivity and
potentially introducing noisy representations. Consistent with this, the t-SNE visualisations show
that embeddings pretrained on Dijkstra exhibit clearer clustering than those from the baseline, while
DAG Shortest Paths and Insertion Sort yield more diffuse distributions (see Appendix A, Figure 4).

Training on all algorithms concurrently still yields a gain over the baseline on ogbg-molhiv, though
to a lesser extent than Segments Intersect alone—likely due to interference from less relevant tasks.
Overall, the results support our hypothesis that pretrained algorithmic weights can improve real-world
performance, pointing to promising avenues for further research, such as extending to additional
graph domains and refining multi-algorithm pretraining strategies.

4



Leveraging Classical Algorithms for Graph Neural Networks

Acknowledgements
We thank Federico Barbero, Simon Osindero, and Ndidi Elue from Google DeepMind for their
helpful feedback and internal reviews during the development of this work.

References
[1] Amir R. Zamir, Alex Sax, William Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio Savarese.

Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3712–3722, 2018. 1

[2] Petar Veličković and Charles Blundell. Neural Algorithmic Reasoning. Patterns, 2021. 1
[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms, Third Edition. The MIT Press, 2009. 1, 4
[4] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hong Ren, Zhitao Liu, Michele

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020. 1

[5] Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The CLRS Algorithmic Reasoning
Benchmark, 2022. 1

[6] Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=Edz0QXKKAo. 2

[7] Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai,
Yuan Fang, Lichao Sun, Philip S. Yu, and Chuan Shi. Graph foundation models: Concepts,
opportunities and challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence,
47(6):5023–5044, June 2025. ISSN 1939-3539. doi: 10.1109/tpami.2025.3548729. URL
http://dx.doi.org/10.1109/TPAMI.2025.3548729. 2

[8] Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. Graphfm: A scalable framework
for multi-graph pretraining, 2024. URL https://arxiv.org/abs/2407.11907. 2

[9] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders, 2022. URL https://arxiv.org/
abs/2205.10803. 2

[10] Andreea-Ioana Deac, Petar Veličković, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang, and
Mladen Nikolic. Neural algorithmic reasoners are implicit planners. Advances in Neural
Information Processing Systems, 34:15529–15542, 2021. 2, 3

[11] Yu He, Petar Veličković, Pietro Liò, and Andreea Deac. Continuous neural algorithmic planners.
In Learning on Graphs Conference, pages 54–1. PMLR, 2022. 2

[12] Petar Veličković, Matko Bošnjak, Thomas Kipf, Alexander Lerchner, Raia Hadsell, Razvan
Pascanu, and Charles Blundell. Reasoning-modulated representations. In Learning on Graphs
Conference, pages 50–1. PMLR, 2022. 2

[13] Danilo Numeroso, Davide Bacciu, and Petar Veličković. Dual algorithmic reasoning. arXiv
preprint arXiv:2302.04496, 2023. 2

[14] Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac,
Beatrice Bevilacqua, Yaroslav Ganin, Charles Blundell, and Petar Veličković. A generalist
neural algorithmic learner, 2022. URL https://arxiv.org/abs/2209.11142. 3, 8

[15] Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
attention mechanism. In International conference on machine learning, pages 15524–15543.
PMLR, 2022. 3

5

https://openreview.net/forum?id=Edz0QXKKAo
https://openreview.net/forum?id=Edz0QXKKAo
http://dx.doi.org/10.1109/TPAMI.2025.3548729
https://arxiv.org/abs/2407.11907
https://arxiv.org/abs/2205.10803
https://arxiv.org/abs/2205.10803
https://arxiv.org/abs/2209.11142


Leveraging Classical Algorithms for Graph Neural Networks

A t-SNE Visualisations of Graph Embeddings
Additional t-SNE visualisations of final graph embeddings are provided here for reference. Figure 3
shows the ogbg-molhiv embeddings, and Figure 4 shows the ogbg-molclintox embeddings.

In Figure 3, the model pretrained on Segments Intersect exhibits more distinct clustering of active
compounds, particularly in the lower region, compared to the baseline. This supports our analysis
that pretraining on Segments Intersect does provide useful inductive biases.

(a) Baseline model (b) Pretrained on Segments Intersect

Figure 3: t-SNE visualisation of graph embeddings for the baseline and pretrained models on
ogbg-molhiv.

6



Leveraging Classical Algorithms for Graph Neural Networks

In Figure 4, the model pretrained on Dijkstra exhibits more distinct clustering of negative compounds
in the top-left region, compared to the baseline and other algorithms like DAG Shortest Paths and
Insertion Sort. This supports our analysis that pretraining on Dijkstra does provide useful inductive
biases.

(a) Baseline model (b) Pretrained on Dijkstra

(c) Pretrained on DAG Shortest Paths (d) Pretrained on Insertion Sort

Figure 4: t-SNE visualisation of graph embeddings for the baseline and pretrained models on
ogbg-molclintox.

7



Leveraging Classical Algorithms for Graph Neural Networks

B CLRS Pretraining Validation Accuracy
Here we present the in-distribution validation data of CLRS pretraining, as out-of-distribution test
graphs caused GPU memory overflows for some of the algorithms. Most algorithms achieve high
validation accuracy, indicating that the CLRS models have learnt them effectively. The exception is
Naive String Matcher, which performs poorly without teacher forcing. This behaviour is consistent
with previous observations [14], where teacher forcing improves sorting and Kruskal tasks but
degrades performance on string matching.

Table 2: Validation accuracies of the Triplet–GMPNN on CLRS algorithms used for pretraining,
reported as mean accuracy ± standard deviation over three runs.

Algorithm Mean Acc. (%)
Activity Selector 90.85± 1.06
Articulation Points 99.79± 0.21
Bellman–Ford 99.84± 0.05
BFS 100.00± 0.00
Binary Search 96.55± 0.25
Bridges 100.00± 0.00
Bubble Sort 98.70± 0.26
DAG Shortest Paths 99.97± 0.05
Dijkstra 99.93± 0.05
Find Maximum Subarray (Kadane) 97.24± 0.17
Graham Scan 97.12± 0.58
Insertion Sort 99.02± 0.60
Jarvis’ March 92.09± 0.71
LCS Length 95.46± 0.48
Matrix Chain Order 99.50± 0.06
Minimum 99.60± 0.14
MST Kruskal 99.21± 1.11
MST Prim 99.61± 0.16
Naive String Matcher 38.57± 0.77
Optimal BST 96.59± 0.12
Quicksort 98.86± 0.39
Segments Intersect 89.41± 7.49
Task Scheduling 98.33± 0.28
Topological Sort 99.61± 0.14

8



Leveraging Classical Algorithms for Graph Neural Networks

C Freeze Early Layers Performance
Table 3 reports the test performance with early-layer freezing. Segments Intersect achieves the best
results on both ogbg-molhiv and ogbg-molclintox, reinforcing our earlier finding that it provides
useful inductive biases for molecular property prediction.

Table 3: Test performance on ogbg-molhiv and ogbg-molclintox with early-layer freezing, reported
as mean accuracy ± standard deviation over three runs. “W” denotes µmodel − σmodel > µbaseline, “L”
denotes µbaseline − σbaseline > µmodel, and “T” a tie otherwise.

Algorithm MolHIV Acc. (%) MolClinTox Acc. (%)
Baseline (No algorithms) 71.20± 0.68 86.85± 2.53
Activity Selector 70.76± 2.46 (T) 85.91± 0.74 (T)
Articulation Points 71.52± 2.02 (T) 82.25± 1.84 (L)
Bellman–Ford 74.77± 0.75 (W) 85.25± 3.45 (T)
BFS 72.39± 1.46 (T) 82.47± 0.21 (L)
Binary Search 70.65± 1.39 (T) 87.05± 4.00 (T)
Bridges 69.95± 2.40 (L) 83.54± 1.50 (L)
Bubble Sort 71.70± 0.30 (W) 86.32± 2.18 (T)
DAG Shortest Paths 70.77± 1.68 (T) 87.70± 0.41 (W)
Dijkstra 73.38± 0.95 (W) 84.14± 4.34 (L)
Find Maximum Subarray (Kadane) 70.84± 1.62 (T) 87.48± 2.57 (T)
Graham Scan 72.44± 0.39 (W) 83.17± 3.25 (L)
Insertion Sort 74.26± 0.88 (W) 88.68± 3.01 (T)
Jarvis’ March 70.40± 2.27 (L) 85.00± 0.46 (T)
LCS Length 72.00± 1.41 (T) 87.08± 1.69 (T)
Matrix Chain Order 72.47± 0.45 (W) 84.44± 2.85 (T)
Minimum 71.36± 3.08 (T) 85.98± 3.56 (T)
MST Kruskal 71.99± 0.48 (W) 87.90± 3.41 (T)
MST Prim 73.90± 1.07 (W) 85.23± 1.89 (T)
Naive String Matcher 72.22± 2.70 (T) 85.23± 2.15 (T)
Optimal BST 72.03± 1.61 (T) 84.30± 3.23 (L)
Quicksort 71.85± 0.66 (T) 85.21± 2.07 (T)
Segments Intersect 75.05± 1.45 (W) 89.15± 1.37 (W)
Task Scheduling 73.46± 0.82 (W) 87.82± 1.42 (T)
Topological Sort 70.91± 3.42 (T) 88.20± 2.82 (T)
All Algorithms Concurrently 72.93± 1.62 (W) 88.69± 2.89 (T)

9



Leveraging Classical Algorithms for Graph Neural Networks

D Full Fine-tuning Performance
Table 4 presents the test performance under full fine-tuning. Interestingly, in this full fine-tuning
setup, training on all algorithms jointly produced the best performance on ogbg-molclintox. This may
indicate that when all layers are trainable, the model benefits from greater flexibility to overwrite
biases introduced by less relevant pretraining tasks.

Table 4: Test performance on ogbg-molhiv and ogbg-molclintox with all layers trainable, reported as
mean accuracy ± standard deviation over three runs. “W” denotes µmodel − σmodel > µbaseline, “L”
denotes µbaseline − σbaseline > µmodel, and “T” a tie otherwise.

Algorithm MolHIV Acc. (%) MolClinTox Acc. (%)
Baseline (No algorithms) 71.20± 0.68 86.85± 2.53
Activity Selector 71.55± 1.83 (T) 86.36± 6.04 (T)
Articulation Points 74.79± 1.08 (W) 89.95± 2.21 (W)
Bellman–Ford 73.52± 2.51 (T) 85.73± 1.19 (T)
BFS 76.52± 0.99 (W) 85.91± 0.94 (T)
Binary Search 73.49± 3.46 (T) 86.64± 1.74 (T)
Bridges 72.80± 0.52 (W) 85.16± 4.34 (T)
Bubble Sort 73.56± 1.05 (W) 87.38± 0.96 (T)
DAG Shortest Paths 73.71± 0.84 (W) 88.74± 1.89 (W)
Dijkstra 74.04± 2.21 (W) 87.07± 2.81 (T)
Find Maximum Subarray (Kadane) 72.12± 1.97 (T) 86.40± 2.90 (T)
Graham Scan 70.59± 3.30 (T) 87.69± 1.32 (T)
Insertion Sort 74.93± 0.94 (W) 87.48± 5.06 (T)
Jarvis’ March 71.58± 2.57 (T) 89.10± 2.62 (T)
LCS Length 75.67± 1.60 (W) 87.82± 1.30 (T)
Matrix Chain Order 71.34± 1.69 (T) 89.55± 1.38 (W)
Minimum 71.91± 2.86 (T) 86.34± 1.29 (T)
MST Kruskal 72.36± 1.93 (T) 87.09± 1.33 (T)
MST Prim 75.05± 1.00 (W) 87.40± 3.19 (T)
Naive String Matcher 71.57± 0.39 (T) 87.38± 2.69 (T)
Optimal BST 72.29± 2.84 (T) 86.03± 0.55 (T)
Quicksort 72.15± 1.10 (T) 88.91± 1.24 (W)
Segments Intersect 69.18± 3.44 (L) 87.10± 1.46 (T)
Task Scheduling 73.91± 0.60 (W) 86.57± 4.46 (T)
Topological Sort 74.02± 0.12 (W) 85.88± 1.20 (T)
All Algorithms Concurrently 71.93± 1.59 (T) 91.05± 2.07 (W)

10


	1 Introduction
	2 CLRS Model
	2.1 Encode
	2.2 Process
	2.3 Decode

	3 OGB Model
	4 Evaluation
	A t-SNE Visualisations of Graph Embeddings
	B CLRS Pretraining Validation Accuracy
	C Freeze Early Layers Performance
	D Full Fine-tuning Performance

