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ABSTRACT
The Detection Transformer (DETR), by incorporating the Hungar-
ian algorithm, has significantly simplified the matching process in
object detection tasks. This algorithm facilitates optimal one-to-one
matching of predicted bounding boxes to ground-truth annotations
during training. While effective, this strict matching process does
not inherently account for the varying densities and distributions
of objects, leading to suboptimal correspondences such as failing
to handle multiple detections of the same object or missing small
objects. To address this, we propose the Regularized Transport
Plan (RTP). RTP introduces a flexible matching strategy that cap-
tures the cost of aligning predictions with ground truths to find the
most accurate correspondences between these sets. By utilizing the
differentiable Sinkhorn algorithm, RTP allows for soft, fractional
matching rather than strict one-to-one assignments. This approach
enhances the model’s capability to manage varying object densi-
ties and distributions effectively. Our extensive evaluations on the
MS-COCO and VOC benchmarks demonstrate the effectiveness
of our approach. RTP-DETR, surpassing the performance of the
Deform-DETR and the recently introduced DINO-DETR, achieving
absolute gains in mAP of +3.8% and +1.7%, respectively.
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1 INTRODUCTION
Object detection aims to identify and localize objects within images
across various categories. The advent of deep learning has signifi-
cantly enhanced object detection, enabling models to achieve high
accuracy and robustness across complex settings [41]. Central to
the efficacy of these models is the matching process- how predic-
tions are accurately aligned with ground-truth objects. Accurately
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Figure 1: Learning curves (AP50) for DETR and RTP-DETR
using a ResNet-50 Backbone, across different training du-
rations on the VOC dataset. Results are shown for training
durations of 150 (short) and 300 (long) epochs, with adjust-
ments to the learning rate at the epochs of 100 and 200.

pairing each predicted object with its ground-truth is a crucial and
challenging task [2]. Conventional matching strategies in object
detection, such as those used by two-stage detectors (e.g., Faster
R-CNN) [27] and one-stage detectors (e.g., YOLO, SSD) [20, 26], rely
on predefined anchor boxes and intricate overlap metrics (e.g., IoU)
for aligning predictions with ground-truths [8, 41]. Despite their
widespread use, these heuristic-based methods limit the model’s
ability to learn optimal matching from data directly [2, 13, 18], and
add complexity due to manual anchor and threshold adjustments.

The Detection Transformer (DETR) [2] emerges as a promising
solution, introducing an end-to-end framework that simplifies the
object detection pipeline by using the Hungarian matching algo-
rithm [15]. This algorithm provides unique one-to-one correspon-
dences between predicted and ground-truth objects, optimizing the
matching cost under the assumption of equal set sizes. In cases,
where the two sets do not have the same size, significant preprocess-
ing is required to construct a square cost matrix [13, 16, 40]. DETR
addresses this challenge by generating a fixed number of bounding
box predictions for each image, with the model learning to classify
excess predictions as "no object". However, this way can not fully
handle densely packed objects or significantly small objects, as the
algorithm’s cost function primarily guides these matches without
directly considering the overall spatial and class distribution of
objects [1, 7, 19, 25, 40]. It also requires a long training schedule to
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converge, as illustrated in [7, 42], and Figure 1. Several approaches
are proposed to address the prediction-ground truthmatching in the
DETR, each aiming to navigate the complexities of diverse scenes
with greater efficacy. Zhao et al. [40] showed that one-to-one match-
ing does not provide direct supervision for generating predicted
objects. They introduced MS-DETR which combines one-to-one
and one-to-many strategies, enriching training by considering both
individual predicted objects and their context. [39] also argues that
the one-to-one assignment often falls short due to the variable
distributions and densities of the objects.

Instead of relying on a fixed threshold to discard unlikely pairs,
this work computes a marginal probability for each object pair,
and provides a more stable basis for object pairing across diverse
conditions. Hou et al. [13] improves the matching technique by
introducing a salience score to evaluate the relationship between
detected and actual objects. This score is designed to ensure an ac-
curate matching, addressing the Hungarian algorithm’s limitations
in discriminating between closely situated or similar objects. Rank-
DETR [25] addresses the mismatch between confidence scores and
localization accuracy of predicted bounding boxes. By prioritizing
predictions that have more accurate localization, it seeks to im-
prove the quality of matches between detection and actual objects.
DETR-like detectors, despite their remarkable performance, rely on
the Hungarian algorithm for one-to-one correspondences between
detected objects and ground truths, and they integrate additional
strategies to handle one-to-many matching scenarios.

Our work goes beyond this traditional method by looking for a
reliable way to match sets of predictions with ground-truths of po-
tentially diverse sizes. We preserve the core property of the Hungar-
ian algorithm—minimizing the assignment cost— while extending
its capabilities to address fractional assignments and distribution
discrepancies efficiently. Our matching technique is based on op-
timal transport (OT) theory [24], optimizing the transport plan to
minimize the cost across the entire distribution rather than focusing
on individual matches. Central to our model is the computation of
a transport plan, Γ, where each element Γ𝑖 𝑗 represents the weight
(degrees of matching) between predicted object 𝑖 and ground-truth
𝑗 . This plan derives from an optimization process aimed at reducing
the overall cost𝐶 between prediction-ground truth pairs. Unlike the
Hungarian algorithm, which treats matching as a binary decision,
the transport plan assigns weights to each pair of prediction-ground
truth, capturing the degree of match. Then, through these weighted
assessments, our model finds the best correspondence between
prediction and actual objects. OT, by considering the distribution
of all predictions and ground-truths, allowing for a more nuanced,
probabilistic matching that accurately detects small objects that
can be overlooked under a strict one-to-one matching scheme.

In summary: 1 We verify that DETR with the Hungarian
algorithm suffers from slow convergence and accurate matching for
complex senses. 2 We propose a regularized transport plan to find
the best alignment between predictions and ground-truths, showing
how regularization can improve the convergence (see Figure 3).
3 Our experimental results show that our model outperforms
existing DETR-based methods, including Deform-DETR [42], DN-
DETR [16], Rank-DETR [25], and other training-efficient variants
DINO-DETR [38] and Stable-DETR [19].

2 MATCHING FLEXIBILITY
In any matching process, it is essential to establish a matching cost
that quantifies the degree of alignment between two sets. Figure 2
compares various matching strategies on an image from the VOC
training dataset. The matching cost for each pair of prediction and
ground-truth bounding boxes is calculated using the Generalized
Intersection over Union (GIoU). In the input image-(a) ground-
truth objects are color-coded and the prediction boxes are in black.
(b) displays a cost matrix that measures the matching between
predictions and ground-truths, where rows (1-5) represent predicted
bounding boxes and columns (A, B) denote ground-truth boxes.
Column C is the background cost used in the DETR models for
cases of excess predictions over ground-truth objects, guiding the
model on which predictions to discard or classify as background.
The color intensity is the magnitude of the cost, where a dense
color denotes a higher cost (poor matching), and a lighter color
indicates a lower cost (better matches). With a background cost set
at 0.75, any prediction-ground truth pair exceeding this threshold
is considered a match with the background and it is a false positive.

(c) shows the RTP with regularization 𝜖 = 0 and 𝜅2 = 0. This al-
lows some ground-truths to receive multiple matches, while others
get none. This is effective when the goal is to reduce false pos-
itives, ensuring predictions closely align with actual objects. (d)
illustrates the one-to-one matching by the Hungarian algorithm,
ensuring each ground-truth pairs with a single prediction. This is
ideal for cases requiring strict correspondence between predictions
and ground-truths without duplicates. However, it may not capture
the full complexity of object interactions or the presence of multiple
objects in close proximity [7, 13, 25, 40]. It only enforces a match
based on the lowest cost function but misses complex details due to
the constraints of choosing a single best match for each prediction
or ground-truth. Moreover, the Hungarian algorithm does not ac-
count for the gradual improvement of predictions during training,
slowing the model convergence [1, 13, 19, 42]. (e) RTP with 𝜖 = 0
and 𝜅1 = 0 demonstrates that each ground-truth is matched with
the best prediction, ensuring all actual objects are detected. As a
result, a single prediction can match with multiple ground-truths,
which is ideal for cases where missing any object is a greater con-
cern than duplicate detections. (f-h) present different settings of
RTP by adjusting the regularization parameters: (f) sets 𝜖 = 0.05,
𝜅1 = 100, and 𝜅2 = 0.01; (g) uses 𝜖 = 0.05 with both 𝜅1 and 𝜅2 set
to zero; (h) uses 𝜖 = 0.05, 𝜅1 = 0.01, and 𝜅2 = 100. We can consider
these results optimal when there is a need for a balance between
precision and recall. This analysis can highlight the advantages of
regularized OT over the Hungarian algorithm, especially to man-
age discrepancies in the number of predictions and ground-truths,
and to provide a nuanced matching technique for complex object
detection tasks. Our insights align with the findings in [1, 7, 38, 42].

3 RELATEDWORK
3.1 DETR with different matching frameworks
DETR [2] revolutionized object detection by presenting it as a set
prediction problem, using one-to-one matching supervised by the
Hungarian algorithm for end-to-end training. Several subsequent
works have proposed to address the slow convergence of DETR
from different perspectives. [33] stated that the cross-attention
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Figure 2: Matching analysis using the Hungarian algorithm and our model between ground-truth objects (A, B) and prediction
boxes (1-5). We selected an input image with highly overlapped objects. Subfigures (c-h) illustrate the matching through color
density, with black indicating a higher match and lighter colors (approaching white) signifying lower or no matches. This
visualization helps in understanding the effectiveness of the matching process. See Section 2 for a detailed explanation.

mechanism in the decoder is the bottleneck to training efficacy, and
suggested an encoder-only architecture as a solution. Gao et al.[10]
aimed to streamline the cross-attention process by integrating a
Gaussian before regulating attention within the model. Another
direction to enhance DETR is to refine its matching strategy, which
is more relevant to our work. This focus stems from the critical
role of matching in object detection [8, 13], where accurately pair-
ing each predicted object with its ground-truth during training (as
illustrated in Figure 2). Deform-DETR [42] enhances the DETR’s
efficiency and performance, particularly when dealing with small
objects or objects that require finer spatial resolution. This model
uses Hungarian matching via a new optimization technique to
find the best one-to-one correspondence between predicted and
ground-truth objects during training. [13] proposed Salient-DETR,
a salient score between detected and actual objects to ensure that
only the most relevant objects are matched. Stable-DETR [8] reveals
that DETR’s slow convergence and performance issues stem from
an unstable matching problem. It addresses this by introducing a
stable matching technique that adjusts matching costs to priori-
tize positional metrics over semantic scores. DN-DETR [16] uses
parallel decoders with shared weights to process multiple sets of
noisy queries. These queries are crafted by introducing noise to
the ground-truth object, aiming to improve the model’s accuracy.
GroupDETR [4] enhances DETR by addingmultiple decoder groups,
each designed to handle specific subsets of object queries. Both DN-
DETR and Group DETR use one-to-one matching strategy for every
group of object queries to ensure accurate alignments. DINO [38]
advances this by incorporating dynamic anchors and denoising
training, achieving the first state-of-the-art performance on the
COCO benchmark among DETR variants. Meanwhile, DETA [23]
explores one-to-many assignment strategies by adopting additional
decoders, which significantly increase computational demands, as

noted by [40]. MS-DERT [40] refines the Hungarian algorithm by
implementing mixed supervision, combining one-to-one and one-
to-many matching to boost the training efficiency without raising
the cost during inference. Different from these approaches, our
model seeks optimal alignment by computing transport plans be-
tween prediction and ground-truth sets via Sinkhorn’s algorithm
[6], to find the best correspondence.

3.2 Optimal Transport Alignment
Originally, optimal transport (OT) [24] tackles the problem of find-
ing the most cost-effective way to align two sets of points (or dis-
tributions). It looks for an optimal coupling (transport plan) be-
tween distributions 𝜇 and 𝜈 , representing it as a joint probability
distribution. In other words, if we define 𝑈 (𝜇, 𝜈) as the space of
probability distributions over 𝑅𝑑 with marginals 𝜇 and 𝜈 , the op-
timal transport is the coupling Γ ∈ 𝑈 (𝜇, 𝜈), which minimizes the
following quantity: min⟨Γ,𝐶𝑖 𝑗 ⟩, where 𝐶𝑖 𝑗 is the cost of moving
𝑖 (from 𝜇) to 𝑗 (from 𝜈), respectively. The use of OT has gained
popularity in generative modeling [30], adversarial training [35],
and domain adaptation [3], and many other disciplines [5, 32, 34],
since the introduction of Sinkhorn’s algorithm [6]. Recent efforts
in computer vision include matching predicted classes through
Wasserstein distance [11], developing a specialized loss function
for handling rotated bounding boxes [36], and introducing new
metrics to evaluate model performance [22]. OT and the Hungarian
algorithm, while both aimed at solving the assignment problem
by finding the best matches between elements of two sets, differ
significantly in their methodological execution. The Hungarian
algorithm is designed for one-to-one matching, while, OT uses a
probabilistic coupling, allowing the mass of a predicted object to be
distributed across multiple ground-truths and vice versa, which is
more flexible in capturing challenges in the assignments [3, 5, 7, 31].
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4 METHOD
We first revisit important details on the Hungarian algorithm and
OT, which will be useful to describe our proposed model.

4.1 Notations
For each image, we have a set of ground-truth objects O∗ = {𝑜∗1, 𝑜

∗
2,

. . . , 𝑜∗
𝑁
}, and a set of predicted objects Ô = {𝑜1, 𝑜2, . . . , 𝑜𝑀 }, where

𝑁 is the number of ground-truth objects and 𝑀 is the number of
predicted objects (𝑀 ≥ 𝑁 ). Each ground-truth 𝑜∗

𝑖
and predictions

𝑜 𝑗 is represented by a combination of class label and bounding box
coordinates, denoted as 𝑜∗

𝑖
= [𝑐∗

𝑖
, 𝑏∗
𝑖
] and 𝑜 𝑗 = [𝑐 𝑗 , 𝑏 𝑗 ], respectively.

Throughout the paper, vectors are denoted by lowercase letters,
and matrices by uppercase. 1𝑁 is 𝑁 -dimensional vectors of ones,
and 1𝑀×𝑁 denotes an 𝑀 × 𝑁 matrix, each element of which is 1.
The probability simplices Δ𝑁 and Δ𝑀 , defined as Δ𝑁 := {𝑢 ∈ R𝑁 :∑
𝑖 𝑢𝑖 = 1} and Δ𝑀 := {𝑣 ∈ R𝑀 :

∑
𝑗 𝑣 𝑗 = 1}, represent the sets of

all possible weights for discrete measures across 𝑁 and𝑀 .

4.2 Hungarian matching algorithm
DETR uses the Hungarian algorithm [15] to establish an one-to-
one pairing between predicted and actual objects by minimizing
matching costs. The objective is to find an optimal permutation 𝜎
of the𝑀 predictions that minimizes the total matching cost:

𝜎∗ = argmin
𝜎

𝑁∑︁
𝑖=1

𝐶

(
O∗𝑖 , Ô𝜎 (𝑖 )

)
, (1)

where𝐶 (O∗, Ô) is the cost of matching the 𝑖-th ground-truth object
to a prediction indexed by 𝜎 (𝑖). 𝐶 is a weighted sum of a classifica-
tion loss and a localization loss (bounding boxes), defined as

𝐶𝑖 𝑗 = − log(𝑝 𝑗 (𝑐𝑖 ))+𝜆𝑏𝑏𝑜𝑥𝐿𝑏𝑏𝑜𝑥 (𝑏∗𝑖 , 𝑏 𝑗 )+𝜆𝐺𝐼𝑜𝑈 (1−GIoU(𝑏
∗
𝑖 , 𝑏 𝑗 )),

(2)
in which 𝑝 𝑗 (𝑐𝑖 ) represents the probability that the 𝑗-th prediction
correctly classifies the 𝑖-th ground-truth. 𝐿𝑏𝑏𝑜𝑥 and GIoU measure
the localization error between predicted and actual bounding boxes,
with 𝜆 parameters tuning the importance of each component. While
the Hungarian algorithm ensures unique pairings to minimize the
matching cost, it cannot always align with the complex realties of
object detection, where multiple predictions correspond to a single
object due to overlaps or visual ambiguities [4, 13, 40]. Moreover,
this matching approach does not consider the overall distribution
of predictions or ground-truths, which means it evaluates matches
individually, ignoring the broader context of how all predictions
and ground-truths should ideally be distributed or matched [13, 25].

4.3 Optimal Transport (OT)
In the quest to enhance DETR performance, we use OT [24], a
mathematical formulation that has been widely applied in various
alignment problems. OT aims to minimize the cost of transporting
‘mass’ from one distribution to another. In the context of object
detection, OT can align a set of predicted objects to a set of ground-
truth objects. Each ‘mass’ corresponds to an object, whether a
prediction or a ground-truth. Consider the ground-truth objects
{𝑜∗
𝑖
}𝑁
𝑖=1 and the predicted objects {𝑜 𝑗 }𝑀𝑗=1, with their respective

distribution weights 𝜇 ∈ Δ𝑁 and 𝜈 ∈ Δ𝑀 . Here, 𝜇 and 𝜈 denote

Regularized 
optimal transport  

Hungarian 
matching

 Γ C - Γ  H(   )Γ  H(   )𝜖

Γ C

Figure 3: Effect of using regularization 𝐻 (Γ). The x-axis rep-
resents the matches Γ (transport plan), which pairs predicted
objects with ground-truth objects. The y-axis is the matching
cost, with lower values denoting more cost-effective pairings.
Each model’s optimal match is highlighted with a star. The
regularized transport plan (RTP) (blue line, with 𝜖 ≠ 0) shows
reduced matching costs, indicating the benefits of the regu-
larization term 𝐻 (Γ) in achieving a smooth distribution of
matches. Interestingly, when 𝜖 = 0, themodelmore closely re-
semble the one-to-one matches by the Hungarian algorithm.

the importance or confidence of each ground-truth and prediction,
located at 𝑜∗

𝑖
and 𝑜 𝑗 , respectively. We then use a transportation cost

𝐶 ∈ R𝑀×𝑁 to compute a plan Γ that minimizes the total cost of
matching each prediction 𝑗 to a ground-truth 𝑖

min
Γ∈𝑈 (𝜇,𝜈 )

⟨Γ,C⟩𝐹 ,

where 𝑈 (𝜇, 𝜈) = {Γ ∈ R𝑀×𝑁+ : Γ1𝑁 = 𝜇, Γ𝑇 1𝑀 = 𝜈},
(3)

⟨Γ,C⟩𝐹 is the Frobenius dot product between the transport plan
and cost matrix. The cost C ≥ 0 represents how well (or poorly) a
predicted object matches with a ground-truth. The polytope𝑈 (𝜇, 𝜈)
is a set of transportation plans of dimension𝑀 × 𝑁 to match pre-
dictions with ground truths, ensuring an optimal alignment under
specified constraints. The cost matrix C, with its elements C𝑖 𝑗 is
computed based on the Wasserstein distance (details are provided
in the Suppl. file). Unlike OT, the Hungarian algorithm does not ac-
count for the distributions 𝜇 and 𝜈 of ground truths and predictions,
treating all matches with equal importance [1, 7, 25, 40]. It enforces
a strict one-to-one matching, leading to situations where some pre-
dictions may not match any ground-truth, thus deemed to match
the background. OT, on the other hand, allows the distribution of
each ground-truth object to be shared among several predictions.
Similarly, a single prediction can correspond to multiple ground
truths, providing a flexible matching process.

4.4 Regularized Transport Plan (RTP)
It is well-known that OT generates fully-dense transportation plans,
meaning that every prediction is (fractionally) matched with all
ground-truths [3, 5, 7]. This matching flexibility, however, intro-
duces the problem of over-splitting. This occurs when the mass
is spread too thinly across multiple predictions or ground truths,
hence reducing the accuracy and reliability of the matching pro-
cess. Indeed, OT alone cannot provide an effective alignment [29].
We incorporate a Kullback-Leibler (KL) divergence to relax the
strict conservation of marginal constraints in OT by implementing
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soft penalties [3]. This adjustment helps to control the distribution
of probabilities, preventing over-splitting and ensuring that the
matching process remains both accurate and fair. Given distribu-
tions 𝜇 ∈ R𝑁 for ground-truths and 𝜈 ∈ R𝑀 for predictions, along
with a cost matrix𝐶 where𝐶𝑖 𝑗 reflects the cost of matching predic-
tion 𝑗 to ground-truth 𝑖 , our goal is to find a transportation plan
Γ ∈ R𝑀×𝑁 that minimizes the total transportation cost while ensur-
ing that the resulting distribution of predictions and ground-truths
(after transportation) closely aligns with their original distributions:

min
Γ≥0
⟨𝐶, Γ⟩ + 𝜅1𝐷𝐾𝐿 (Γ1𝑁 ∥𝜈) + 𝜅2𝐷𝐾𝐿 (Γ𝑇 1𝑀 ∥𝜇), (4)

where 𝐷KL is KL divergence. ⟨𝐶, Γ⟩ = ∑𝑁
𝑖=1

∑𝑀
𝑗=1𝐶𝑖 𝑗 Γ𝑖 𝑗 is the total

transport cost, and𝜅1,𝜅2 are regularization parameters that balance
the KL divergence terms. These terms align the transported mass
distributions (Γ𝑇 1𝑀 and Γ1𝑁 ) with the original distributions (𝜈
and 𝜇), allowing the model to address discrepancies in the total
distribution between predictions and ground-truths efficiently. The
KL divergence measures the difference between the transported
distribution (1𝑇

𝑀
, 1𝑁 ) and the original distribution (𝜇, 𝜈), as follow

KL(Γ𝑇 1𝑀 ∥𝜇) =
𝑀∑︁
𝑖=1
(Γ𝑇 1𝑀 )𝑖 log(

(Γ1𝑀 )𝑖
𝜇𝑖
), (5)

for predictions, ensuring alignment with 𝜈 , and

KL(Γ1𝑁 ∥𝜈) =
𝑁∑︁
𝑗=1
(Γ1𝑁 ) 𝑗 log(

(Γ𝑇 1𝑁 ) 𝑗
𝜈 𝑗

), (6)

for ground truths, ensuring alignment with 𝜇. By embedding KL di-
vergence, the finalized transport plan adheres closely to the original
distributions of both predictions and ground-truths. This ensures
that the matching process respects the inherent probabilistic na-
ture of detections, accommodating scenarios where the number of
predictions exceeds or falls short of the number of ground-truth.

4.4.1 Mass Constraints with Entropy Regularization. We now con-
sider an entropic regularization of transport plan Γ that controls the
smoothness of the coupling and is particularly useful for reducing
the computational complexity [3, 6, 29]. Computation of regular-
ized OT relies on Sinkhorn’s algorithm [6] which is notable for its
efficiency and the ability to differentiate with respect to inputs. The
resulting transport plan is easier to interpret because it provides a
probabilistic view of the relationships between predicted and actual
objects (Figure 2(f-h)). The regularized version of Eq. (4) is

min
Γ

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝐶𝑖 𝑗 Γ𝑖 𝑗 + 𝜅1 · KL (𝑇1𝑁 , 𝜈)

+ 𝜅2 · KL
(
𝑇𝑇 1𝑀 , 𝜇

)
− 𝜖𝐻 (Γ),

(7)

where 𝐻 (Γ) = −∑𝑖 𝑗 Γ𝑖 𝑗 log(Γ𝑖 𝑗 ) is the entropy of the plan Γ with 𝜖
as the regularization parameter. Sinkhorn’s algorithm is well-suited
for solving the regularized OT because it iteratively adjusts Γ to
satisfy the mass constraints while maximizing entropy, leading to
a more balanced and flexible assignment [5] and this smoothing
effect shown in Figure 3. However, reducing it to (𝜖 → 0) and
KL = 0, leads to numerical instability because the benefits of the
sinkhorn algorithm and parallelization are no longer applicable.

Algorithm 1 Regularized Transport Plan (RTP) Matching
Require: 𝐶 : cost matrix (𝑀 × 𝑁 ), 𝜇: distribution of ground-truths

(𝑁 -vector), 𝜈 : distribution of predictions (𝑀-vector), 𝜅: regular-
ization parameter for KL divergence, 𝜖 : regularization parame-
ter for entropy

Ensure: Γ: Optimal Assignment (𝑀 × 𝑁 matrix)
1: 𝐾 [𝑖, 𝑗] ← exp(−𝐶 [𝑖, 𝑗]/𝜖) ⊲ Initialize Gram matrix
2: 𝑢 ← 1𝑁 , 𝑣 ← 1𝑀 ⊲ Initialize scaling vectors
3: while not converged do ⊲ Sinkhorn algorithm
4: 𝑢 [𝑖] ← 𝜇 [𝑖]/(𝐾𝑣) [𝑖] ⊲ Update scaling vector 𝑢 ∈ 𝜇
5: 𝑣 [ 𝑗] ← 𝜈 [ 𝑗]/(𝐾⊤𝑢) [ 𝑗] ⊲ Update scaling vector 𝑣 ∈ 𝜈
6: end while
7: Γ [𝑖, 𝑗] ← 𝑢 [𝑖] · 𝐾 [𝑖, 𝑗] · 𝑣 [ 𝑗] ⊲ Compute transport plan
8: for 𝑖 ← 1 to 𝑁 do ⊲ Adjust Γ for KL divergence w.r.t. 𝜇
9: rowSum← ∑

𝑗 Γ [𝑖, 𝑗]
10: if rowSum ≠ 𝜇 [𝑖] then
11: Γ [𝑖, :] to make the row sums align with 𝜇 [𝑖].
12: end if
13: end for
14: for 𝑗 ← 1 to𝑀 do ⊲ Adjust Γ for KL divergence w.r.t. 𝜈
15: colSum← ∑

𝑖 Γ [𝑖, 𝑗]
16: if colSum ≠ 𝜈 [ 𝑗] then
17: Γ [:, 𝑗] to make the column sums align with 𝜈 [ 𝑗].
18: end if
19: end for
20: return Γ

In this case, we recover the exact OT (Eq. (3)) which has shown
one-to-one mapping as discussed in [5] and shown in Figure 3.

4.5 Training
In classical DETR, predictions are matched to ground-truth bound-
ing boxes using the Hungarian algorithm, through a cost func-
tion𝐶match (𝑜 𝑗 , 𝑜∗𝑖 ) = 𝜆prob (1 − ⟨𝑐 𝑗 , 𝑐

∗
𝑖
⟩) + 𝜆𝑙 ∥𝑏 𝑗 − 𝑏∗𝑖 ∥ + 𝜆𝐺𝐼𝑜𝑈 (1 −

𝐺𝐼𝑜𝑈 (𝑏 𝑗 , 𝑏∗𝑖 )) in Eq. (2). This approach requires an equal num-
ber of predictions and ground-truth boxes for effective match-
ing. However, our procedure is as follows: for each image, gen-
erate predictions (𝑐 𝑗 , 𝑏 𝑗 ) and compare these to the ground-truths
(𝑐∗
𝑖
, 𝑏∗
𝑖
) using the cost function 𝐶 . The cost matrix integrates both

classification and localization losses and defined as: 𝐶 (𝑜 𝑗 , 𝑜∗𝑖 ) =
𝐿cls (𝑐 𝑗 , 𝑐∗𝑖 ) + 𝐿loc (𝑏 𝑗 , 𝑏

∗
𝑖
). The first component ensures that similar

object classes are matched together by evaluating the probability
that the 𝑗-th prediction correctly classifies the 𝑖-th ground-truth.
The second component addresses the spatial alignment by mea-
suring the discrepancy between the predicted bounding box and
the ground-truth bounding box. To further enhance the match-
ing process, we incorporate entropic regularization into the cost
function (Eq. (7)) and employ Sinkhorn’s algorithm to compute the
optimal transport plan Γ. The proposed matching strategy is given
in Algorithm 1. We also train the model by cross-entropy (CE) loss,∑𝑁
𝑖=1

∑𝑀
𝑗=1 Γ𝑖 𝑗 ·𝐿train (𝑜 𝑗 , 𝑜∗𝑖 ), where 𝐿train (𝑜 𝑗 , 𝑜

∗
𝑖
) = 𝜆CrossE (𝑐 𝑗 , 𝑐∗𝑖 )+

𝜆𝑙 ∥𝑏 𝑗 − 𝑏∗𝑖 ∥ + 𝜆𝐺𝐼𝑜𝑈 (1 −𝐺𝐼𝑜𝑈 (𝑏 𝑗 , 𝑏
∗
𝑖
). Sinkhorn’s algorithm effec-

tively guides each prediction 𝑜 𝑗 towards its best-matching ground
truth 𝑜∗

𝑗
based on the calculated weights Γ𝑖 𝑗 . This can provide an

accurate matching between predictions and ground-truth objects.
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Method Backbone #epochs AP ↑ AP50 ↑ AP75 ↑ AP𝑆 ↑ AP𝑀 ↑ AP𝐿 ↑
Deform-DETR [42] ResN50 50 46.9 65.6 51.0 29.6 50.1 61.6
Sparse-DETR [28] ResN50 50 46.3 66.0 50.1 29.0 49.5 60.8
Effcient-DETR [37] ResN50 36 45.1 63.1 49.1 28.3 48.4 59.0
H-DETR [14] ResN50 36 50.0 68.3 54.4 32.9 52.7 65.3
DN-DETR [16] ResN50 12 43.4 61.9 47.2 24.8 46.8 59.4
Rank-DRT [25] ResN50 12 50.2 67.7 55.0 34.1 53.6 64.0
DINO-DETR [38] ResN50 12 49.0 66.6 53.5 32.0 52.3 63.0
Salience-DETR [13] ResN50 12 49.4 67.1 53.8 32.7 53.0 63.1
H-DETR [14] ResN50 12 48.7 66.4 52.9 31.2 51.5 63.5

RTP-DETR ResN50 12 50.7 67.9 55.2 34.7 53.8 64.2
Table 1: Comparison of our approach (RTP-DETR) with top-performing DETR-based models using the ResNet50 backbone on
the COCO dataset. Our model consistently surpasses or performs competitively with respect to the state-of-the-art baselines.

Method Matching Backbone #epochs AP ↑ AP50 ↑ AP75 ↑ AP𝑆 ↑ AP𝑀 ↑ AP𝐿 ↑
DINO-DETR [38] ResN50 36 50.9 69.0 55.3 34.6 54.1 64.6

DINO-DETR [38]
Baseline ResN50 12 49.0 66.6 53.5 32.0 52.3 63.0
Rank [25] ResN50 12 50.4 67.9 55.2 33.6 53.8 64.2
Stable-DINO [19] ResN50 12 50.4 67.4 55.0 32.9 54.0 65.5
RTP ResN50 12 50.6 68.2 55.2 33.5 54.0 65.5

DINO-DETR [38] Swin-L 36 58.0 77.1 66.3 41.3 62.1 73.6

DINO-DETR [38]
Baseline Swin-L 12 56.8 75.4 62.3 40.0 60.5 73.2
Rank [25] Swin-L 12 57.5 76.0 63.4 41.6 61.4 73.8
Stable-DINO [19] Swin-L 12 57.7 75.7 63.4 39.8 62.0 74.7
RTP Swin-L 12 57.9 76.1 63.6 41.5 62.3 74.9

Table 2: Enhancing object detection performance with DINO-DETR on the COCO val2017 dataset, using ResNet50 [12] and
Swin-Large [21] backbones. RTP-DETR is presented as a complementary model to existing methods and achieves consistent
enhancements in performance. We also include the result of DINO-DETR trained for 36 epochs as a reference for comparison.

5 EXPERIMENTAL RESULTS
5.1 Training settings
Our evaluation was conducted on two widely recognized datasets
to validate the effectiveness of our matching strategy, which has
a time complexity of 𝑂 (𝑁𝑀 log(𝑁𝑀)), where 𝑁 is the number of
ground truth objects and𝑀 is the number of predicted objects. The
first dataset, COCO object detection [17], includes 118,287 training
images and a validation set of 5,000 images. The second dataset,
PASCAL-VOC object detection [9], is fine-tuned on VOC train-
val07+12 with approximately 16.5k images and evaluated on the
test2007 set. We use mean Average Precision (AP) and mean Aver-
age Recall (AR) as primary metrics for evaluation. We compare the
performance of our model (RTP-DETR) against several DETR vari-
ants, including DN-DETR [16], Salience-DETR [13], Rank-DETR
[25], DINO [38], and Group-DETR [4]. All models are trained using
the same set of hyperparameters: 𝜆𝑝𝑟𝑜𝑏 = 𝜆𝐶𝑟𝑜𝑠𝑠𝐸 = 2, 𝜆𝐺𝐼𝑜𝑈 = 2
and 𝜆𝑙 = 5. Regarding our model-specific parameters, the entropic
regularization is set to 𝜖 = 𝜖0/(log(2𝑀) + 1) with 𝜖0 = 0.17. This
adjusts the entropic regularization based on the number of predic-
tions, enhancing the stability and convergence of the model. We
used multiple values of 𝜅2 but 𝜅1 is fixed to a large value 𝜅1 = 100.

5.2 Comparison with DETR-based methods
Table 1 shows the performance of RTP-DETR compared with other
high-performing DETR-based methods on the COCO object detec-
tion val2017 set using ResNet-20 [12]. With only 12 training epochs,
RTP-DETR achieves an impressive AP of 50.7%, which suppresses
H-DETR by +2.0% and exceeds the most recent state-of-the-art
Salience-DETR and Rank-DETR, by +1.3% and +0.5%. Interestingly,
we observe notable improvements in AP75, demonstrating the ad-
vantage of our approach at higher thresholds. Additionally, Table 2
illustrates the effectiveness of our model in enhancing DINO-DETR,
a training-efficient DETR variant that has received significant atten-
tion in the object detection task. The results are obtained using two
different backbones, ResNet-50 [12] and Swin-Large [21]. We also
compare our model with other integrations such as Rank-DINO and
Stable-DINO. The improvements with ourmodel are notable: there’s
an increase of 1.6% in AP performance when using the ResNet-50
backbone (49% vs. 50.6%) and 1.1% with Swin-L (56.8% vs. 59.7%).
At a higher IoU threshold (AP75), the enhancements become even
more pronounced, achieving +1.7% improvement with ResNet-50
and +1.3% with Swin-L. These results indicate our model’s robust-
ness and generalizability across various DETR-based models.
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DINO-DETR DN-DETR 

Figure 4: Convergence curves. RTP accelerates the training
process for different variants of DETR. The baseline models
and our RTP counterparts are shown by dotted and solid
lines, respectively. The horizontal axis denotes the number
of epochs, the vertical axis is the AP evaluated on COCO.

5.3 Combination with DETR variants
Table 3 summarizes the integration of our RTP with several DETR
variations. As can be seen, when combined with Deform-DETR,
the AP has increased by +1.8, from 46.9% to 48.7%. Similarly, the
performance of Group-DETR has improved by +0.7, moving from
48% to 48.7%, while using only 12 epochs schedule. Additionally, our
RTP has enhanced DINO-DETR’s performance, boosting its AP by
+1.4 over a 24-epoch and by an additional +1.6 AP when the training
is extended to 36 epochs. It’s important to note that many of these
methods rely on a one-to-one matching strategy, with modifications
mainly focused on optimizing the Hungarian algorithm to better
accommodate one-to-many relationships between predictions and
ground truths during training. Unlike these advances, RTP utilizes
a different matching strategy, providing additional advantages of
regularization that contribute to the performance gains observed.

5.4 Convergence
Adding entropy regularization into the transport plan (Eq. (7)),
yields an efficient and seamless matching process. Figure 3 provides
a clear illustration of this improvement by showing the effective-
ness and speed of the RTP matching process. Furthermore, Figure 1
details the convergence behavior of our model, demonstrating that
RTP enables significantly faster convergence compared to standard
DETR. The slower convergence rates of conventional DETR can be
attributed to the discrete and unstable nature of the Hungarian al-
gorithm, particularly during the early stages of training [19, 25, 42].
We also conducted a comparative analysis of our model alongside
two prominent DETR variants, DINO [38] and DN [16], known for
their effective one-to-many matching capabilities. The models use
a ResNet-50 backbone and are trained over 12 epochs, as shown in
Figure 4. This comparison demonstrates that RTP not only refines
the matching process but also significantly accelerates model con-
vergence during training, thereby providing a robust solution to
the inherent limitations of the Hungarian matching algorithm.

Method Matching # epochs AP AR

Deform-DETR - 50 46.9 57.3
Deform-DETR RTP 50 48.7 (+1.8) 58.6 (+1.3)

DINO-DETR - 24 50.4 65.4
DINO-DETR RTP 24 51.8 (+1.4) 66.3 (+0.9)

Group-DERTR - 12 48.0 67.2
Group-DERTR RTP 12 48.7 (+0.7) 67.9 (+0.7)

Salience-DETR - 12 49.2 63.5
Salience-DETR RTP 12 49.8 (+0.6) 64.0 (+0.5)

Rank-DETR - 12 50.2 67.9
Rank-DETR RTP 12 50.6 (+0.4) 68.2 (+0.3)

Table 3: Combination with other methods. RTP is a comple-
mentary approach that consistently improves performance.

Method # epochs AP AR

Align-DETR [1] 12 50.2 61.7
+ RTP 12 50.6 (+0.4) 62.3 (+0.6)

Align-DETR [1] 24 51.3 62.4
+ RTP 24 51.9 (+0.7) 62.9 (+0.5)

Table 4: The effect of combining RTP with Align-DETR
demonstrates a significant improvement in performance.

5.5 Ablation
5.5.1 Computation Time. Figure 5 compares the time complexity
of different matching models, focusing on the Hungarian algorithm,
RTP without KL divergence (𝜅 = 0), and the full implementation of
RTP. We observe that both RTP variants are relatively stable, even
with increasing numbers of predictions. This consistency is due to
the use of entropy regularization (𝐻 (Γ)) within the OT framework,
which effectively controls computational complexity and ensures
only minimal increases in processing time as predictions scale. On
the other hand, the Hungarian algorithm shows a noticeable in-
crease in computation time as the number of predictions grows
(beyond 900 predictions). This behavior points to a limitation of the
Hungarian algorithm when dealing with high-volume predictions
[1, 19]. The performance of our models is particularly notable when
handling large numbers of predictions. Through GPU paralleliza-
tion of the Sinkhorn algorithm, we achieve more than 30× speedup.
These computations were performed on an Nvidia TITAN X GPU.
We also used SSD300 which makes 8, 732 predictions, as a reference
point. The implementation of SSD is provided in the Suppl. file.

5.5.2 Adoption of IoU-Optimized Loss. We explore the combination
of RTP with recent DETR variants, particularly those leveraging
IoU-optimized loss to enhance DETR performance significantly
[1, 19, 25]. By integrating RTP with Align-DETR [1], we achieve
complementary effects between RTP and IoU-aware loss. As illus-
trated in Table 4, this combination results in an increase of +0.4 AP
for a 12-epoch training schedule and +0.7 for a 24-epoch schedule.
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DETR Deform-DETR Align-DETR SSD

Figure 5: Computation time and its standard deviation on the
COCO using various matching techniques with a batch of
size 16. RTP (𝜅 = 0): represents our model implemented with
entropic regularization but without KL divergence terms,
highlighting the direct influence of entropic regularization
on the training process. RTPfull: integrates both entropic
regularization and KL divergence providing a comprehensive
view of the regularization effect on on training efficiency.

5.5.3 Influence of Hyperparameters. We illustrate the influence of
two hyperparameters, 𝜖0 and 𝜅2, in our matching technique. As de-
fined in (5.1), the regularization parameter 𝜖 is set to 𝜖0/(log(2𝑀) +
1), which scales based on the number of predictions 𝑀 . As 𝑀 in-
creases, log(2𝑀) enlarges, causing 𝜖 to decrease. Figure 7 details
the impact of the regularization 𝜖0 on the matching process. When
𝜖0 is a very small value, the effect of 𝜖 becomes minimal, and at
𝜖0 = 0, entropy regularization no longer plays a role in the matching
process. Conversely, larger 𝜖0 values increase the corresponding 𝜖 ,
potentially risking overfitting or loss of essential details in detec-
tion. Empirical results indicate that our model performs best when
𝜖0 is within the range [0.15 − 0.25]. Additionally, our analysis on
the hyperparameter 𝜅2 is presented in Figure 7. Our model achieves
optimal results when 𝜅2 = 0.01. We maintain 𝜅1 = 100, as changing
this value leads to an object imbalance problem, emphasizing its
importance in preserving the accuracy of ground-truth alignment.
Indeed, 𝜅1 ensures accurate alignment of ground-truths to predic-
tions, while 𝜅2 allows flexibility through probabilistic matching.

5.5.4 Visualization. Two different configurations of our proposed
model are visualized in Figure 6. The corresponding attention maps
for each image are presented on the left, with areas of intense red
indicating the predicted object locations. The top row presents the
result of the model without regularization term (RTP-DETR w/
𝜖 = 0), representing a simpler version of the model. The bottom
row displays our full implementation of the model. The distinct dif-
ference in attention map concentration between the rows is evident,
particularly in the last image where the soccer field is populated
with multiple small objects. The basic model struggles to handle
multiple objects, resulting in scattered and unclear attention maps.
In contrast, the optimized model (bottom row) exhibits well-defined
and focused attention, accurately capturing the shape and position
of each object, even in densely packed scenes. This demonstrates

Figure 6: Visualization on sample images from COCO test set.
The left side of each image displays the respective attention
maps generated. The top row shows results from RTP-DETR
without the regularization term, whereas the bottom row
shows our full implementation. The attention maps in the
second (bottom) row demonstrate that the regularized model
more accurately identifies and delineates object shapes and
positions, particularly in complex and densely packed scenes.
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Figure 7: Influence of the hyperparameters 𝜖 and 𝜅2. The
x-axis displays 𝜖0 on the left and 𝜅2 on the right, while the
y-axis shows AP evaluated on COCO. The best-performing
values for each hyperparameter are highlighted in red.

that regularization helps themodel to better concentrate on relevant
parts of the image, thereby improving object detection accuracy.

6 CONCLUSION
In this paper, we have examined the comparative effectiveness of
the Hungarian algorithm and transportation plan in object detec-
tion, focusing on reducing the matching costs between predicted
and actual data. The Hungarian algorithm, with its strict one-to-one
matching, is effective when the number of predictions matches the
number of ground truths exactly. However, this rigid strategy limits
its application and fails to capture the complexities and variations
present in real-world data. In contrast, regularized optimal trans-
port, through a probabilistic coupling, offers a flexible solution that
accounts for the entire distribution of matches. This strategy not
only facilitates a more comprehensive understanding of the rela-
tionships between predictions and ground-truths objects but also
handles the discrepancies in set sizes. Our findings demonstrate that
the transportation plan with entropic regularization consistently
outperforms the Hungarian method by providing a more accurate
and flexible alignment without relying on predefined thresholds. In
future, we extend the regularized OT framework to zero-shot detec-
tion scenarios, where the model must detect objects not seen during
training. This requires developing transferable transport plans that
can generalize across different object categories and domains.
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