
Introducing Common Null Space of Gradients for Gradient
Projection Methods in Continual Learning

Chengyi Yang
Shanghai Institute of AI for

Education, School of Computer
Science and Technology

East China Normal University
Shanghai, China

52265901027@stu.ecnu.edu.cn

Mingda Dong
Shanghai Institute of AI for

Education, School of Computer
Science and Technology

East China Normal University
Shanghai, China

52215901032@stu.ecnu.edu.cn

Xiaoyue Zhang
School of Statistics and Information

Science
Shanghai University of International

Business and Economics
Shanghai, China

22350014@suibe.edu.cn

Jiayin Qi
Cyberspace Institute of Advanced

Technology
Guangzhou University
Guangzhou, China
qijiayin@139.com

Aimin Zhou∗
Shanghai Institute of AI for

Education, School of Computer
Science and Technology

East China Normal University
Shanghai, China

amzhou@cs.ecnu.edu.cn

Abstract
Continual learning aims to learn new knowledge from a sequence
of tasks without forgetting. Recent studies have found that project-
ing gradients onto the orthogonal direction of task-specific features
is effective. However, these methods mainly focus on mitigating
catastrophic forgetting by adopting old features to construct pro-
jection spaces, neglecting the potential to enhance plasticity and
the valuable information contained in previous gradients. To en-
hance plasticity and effectively utilize the gradients from old tasks,
we propose Gradient Projection in Common Null Space (GPCNS),
which projects current gradients into the common null space of
final gradients under all preceding tasks. Moreover, to integrate
both feature and gradient information, we propose a collaborative
framework that allows GPCNS to be utilized in conjunction with
existing gradient projection methods as a plug-and-play extension
that provides gradient information and better plasticity. Experimen-
tal evaluations conducted on three benchmarks demonstrate that
GPCNS exhibits superior plasticity compared to conventional gra-
dient projection methods. More importantly, GPCNS can effectively
improve the backward transfer and average accuracy for existing
gradient projection methods when applied as a plugin, which out-
performs all the gradient projection methods without increasing
learnable parameters and customized objective functions. The code
is available at https://github.com/Hifipsysta/GPCNS.
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1 Introduction
Machine learning algorithms lack the ability to continually learn
new knowledge like humans. Specifically, a neural network will
perform less well on old tasks after learning a new task, and this
phenomenon is known as catastrophic forgetting (CF) [10, 24]. To
address this issue, continual learning (CL) [30] has been proposed
and applied to computer vision, natural language processing and
multi-modal scenarios, including object detection [8, 22, 36, 44],
semantic segmentation [9, 25, 35, 46], relation extraction [4, 13, 34],
neural machine translation [21, 29, 43], cross-modal retrieval [38,
41] and visual question answering [16, 26, 42].

Continual learning considers the scenario of learning a stream of
task-specific data sequentially, expecting to retain the knowledge
related to old tasks when learning current task. Recently, gradient
projection methods [3, 20, 27, 28, 33] have found that catastrophic
forgetting can be effectively alleviated if the gradients under current
task are orthogonal to the subspaces spanned by features from old
tasks. These methods all project gradients onto the orthogonal
direction of previous features, which have been demonstrated to
be equivalent and hold a unified training paradigm called feature
space continual learning paradigm (FSCLP) [45].
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Figure 1: FSCLP: Constructing a projection space through
representation matrix, which is originated from collecting
a sufficient number of (e.g. 100) samples from the dataset.
GPCNS: Constructing a projection space throgh common gra-
dient matrix, which is obtained after stacking final gradients
from all previous task. We believe that feature and gradient
information are equally important, and utilizing them simul-
taneously can construct better projection spaces.

However, FSCLP methods primarily rely on features from previ-
ous tasks for constructing projection spaces, neglecting the valuable
information contained in previous gradients. In addition, we note
that the design idea of FSCLP approaches lies in alleviating cata-
strophic forgetting through minimizing parameter shifting, which
is closely related to stability. Although these methods have proven
effective in enhancing stability, they lack sufficient consideration
in improving plasticity.

To improve plasticity and effectively utilize the gradients from
old tasks, we attempt to demonstrate that gradients from previous
tasks are equally powerful and important as previous features when
applied to construct projection spaces.We cannot simply replace the
features under FSCLP with gradients, because we have found that
existing algorithms designed for features cannot fully mine gradient
data (see Table 4). Therefore, we propose a novel approach called
Gradient Projection in Common Null Space (GPCNS), which adopts
a novel training paradigm as shown in the lower half of Figure 1.
More importantly, since the design concept and information source
of GPCNS are different from FSCLP, these two types of methods can
be applied simultaneously to construct a better projection space.
Motivated by this insight, we propose a dual information fusion
framework to utilize both features and gradients from previous
tasks. The contributions of this paper can be summarized as follows:

(1) We analyze that the effectiveness of existing methods under
FSCLP lies in minimizing parameter shifting, which only focuses on
stability. To improve plasticity, we suggests that gradients under dif-
ferent tasks should be projected in mutually orthogonal subspaces.

(2) We present a novel concept for projection space called com-
mon null space, which has rigorous mathematical proofs and geo-
metric interpretation. In common null space, the mutual interfer-
ence between gradients under different tasks can be minimized.

(3) We propose GPCNS which projects gradients into the com-
mon null space of final gradients under all previous tasks. GPCNS
effectively utilizes the gradient information of old tasks and posses

higher plasticity (see Section 4.4), which are exactly what existing
FSCLP methods lack.

(4) We propose a collaborative framework for FSCLP and GPCNS,
which integrates feature and gradient information to construct a
better projection space. GPCNS effectively compensates for the
shortcomings of FSCLP methods in utilizing gradient information
and plasticity.

2 Related Work
2.1 Gradient Projection Methods in CL
We focus on the gradient projection methods in continual learning,
which project gradients onto the orthogonal direction of the feature
space related to previous tasks. Orthogonal Weight Modification
(OWM) [40] constructs projection operators through recursive least
squares algorithm. However, OWM exhibits unstable performance
due to its low backward transfer. Adam-NSCL [33] projects gra-
dients into the null space of uncentered covariances of features,
but the higher computational cost limits its application. Gradient
Projection Memory (GPM) [27] stores the bases of features for each
task in a memory buffer, and then projects the gradients onto the
orthogonal direction of old features. Subsequent gradient projection
methods can be seen as the improvements based on GPM. Class
Gradient Projection (CGP) [3] computes projection subspaces from
classes instead of from tasks. Trust Region Gradient Projection
(TRGP) [20] and Scaled Gradient Projection (SGP) [28] enhance
GPM by scaling the bases of feature spaces according to task simi-
larity and importances respectively. In addition, Data Augmented
Flatness-aware Gradient Projection (DFGP) [37] and Connector [18]
redesign the objective function in GPM and Adam-NSCL respec-
tively, which are essentially regularization based methods.

2.2 Gradient Information in CL
Gradient Episodic Memory (GEM) [23] and Averaged GEM (A-
GEM) [1] adjust the current gradients based on the gradients com-
puted with data in the memory. OGD [7] projects the new gra-
dients orthogonally to the memorized gradients through Gram-
Schmidt process, but it does not consider features and fail to achieve
high performance. TRGP [20] and Adaptive Plasticity Improvement
(API) [17] utilize the length of gradient projection to measure the
correlation between tasks and determine whether to expand the
network respectively. CUBER [19] and DFGP [37] utilize gradient
information to design objective functions that encourage feedback
knowledge transfer and flatter loss landscapes respectively. How-
ever, they all consider the gradients of old tasks as auxiliary in-
formation. Moreover, FS-DGPM [5] and CGP [3] have mentioned
gradient subspaces, but they refer to the projection space for current
gradient, rather than constructing the projection space through
previous gradients. To our knowledge, this is the first work that
gradient and feature information are considered equally important
for constructing projection spaces in continual learning.

3 Methods
In this section, we analyze the causes of catastrophic forgetting
and the effectiveness of FSCLP. Then we propose GPCNS and a
collaborative framework for GPCNS and FSCLP respectively.
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3.1 Training Paradigm of Existing Methods
Continual Learning.We consider the setting of supervised contin-
ual learning. A neural network 𝑓𝑾 with𝑾 as its parameter tensor
will sequentially learn a stream of data D = {D1,D2, · · · ,D𝑇 },
where 𝑡 ∈ {1, 2, · · · ,𝑇 } is the task descriptor.D𝑡 = {(𝑿𝑡,𝑖 , 𝑦𝑡,𝑖 )}𝑁𝑡

𝑖=1
represents the training data under task 𝑡 , and𝑁𝑡 is the data size.𝑿𝑡,𝑖

and 𝑦𝑡,𝑖 are the 𝑖-th input data and label under task 𝑡 , respectively.
The method described below is for a certain layer in a network,
which can be generalized to all the layers, thus we omit the layer
notation 𝑙 .

Forgetting Issue. When learning a new task, the parameter
tensor will deviate from its optimal value for former tasks due to
the increased knowledge related to current task. This process can
be formally described as

𝑾∗𝑡𝑿𝑡−1,𝑖 =

(
𝑾∗𝑡−1 +

𝑍∑︁
𝑧=1

Δ𝑾𝑡,𝑧

)
𝑿𝑡−1,𝑖

=𝑾∗𝑡−1𝑿𝑡−1,𝑖 +
𝑍∑︁
𝑧=1

Δ𝑾𝑡,𝑧𝑿𝑡−1,𝑖 ,

(1)

where
∑𝑍
𝑧=1 Δ𝑾𝑡,𝑧𝑿𝑡−1,𝑖 is the value of parameter shifting. 𝑾∗𝑡

is the optimal parameter under task 𝑡 and 𝑍 is the total training
epochs. Δ𝑾𝑡,𝑧 = −𝜂𝑡,𝑧∇L𝑡,𝑧 represents the parameter variation at
epoch 𝑧 when learning task 𝑡 . ∇L𝑡,𝑧 is the gradient and 𝜂𝑡,𝑧 is the
learning rate.

Existing Solution in FSCLP. Eq.(1) implies that the condition∑𝑍
𝑧=1 𝜂𝑡,𝑧∇L𝑡,𝑧𝑿𝑡−1,𝑖 → 0 is required for a neural network to

preserve the knowledge learned from previous tasks. Therefore,
FSCLP methods [3, 20, 27, 28, 33, 37] project the gradients onto the
orthogonal direction of task-specific feature space to ensure

𝑃𝑟𝑜 𝑗X⊥ (∇L𝑡,𝑧)𝑿𝑡−1,𝑖 → 0, 𝑧 = 1, 2, · · · , 𝑍, (2)

where X denotes the feature space and X⊥ is its orthogonal di-
rection. From Eq.(2), we observe that: (1) FSCLP aims to minimize
the parameter shifting to maintain the performances on old tasks.
This idea is closely related to stability, while it lacks consideration
for plasticity. (2) Only previous features (𝑿𝑡−1,𝑖 ) are applied to
construct the projection space for current gradients.

3.2 Gradient Projection in Common Null Space
GPCNS is different from existing FSCLP methods, because it

is designed from the perspective of plasticity. Moreover, it utilize
previous gradients rather than features to construct projection
spaces. This idea stems from the observation of the parameter
updating formula under gradient projection:

𝑾∗𝑡 =𝑾∗1 +
𝑇∑︁
𝑡=2

𝜂𝑡𝑃𝑟𝑜 𝑗 (∇L𝑡 ) , 𝑇 ≥ 2. (3)

We find that if the projected gradients under different tasks always
appear in mutually orthogonal subspaces, then current gradients
can be updated with confidence rather than considering mutual
interference.

This idea can also be equivalently expressed as establishing an
orthogonal set composed of the projected gradients under different
tasks:

{∇L1, 𝑃𝑟𝑜 𝑗 (∇L2), · · · , 𝑃𝑟𝑜 𝑗 (∇L𝑡+1)}. (4)

Figure 2: Illustration of the common null space for the third
task. For simplicity, we assume that there are only two bases
in each subspace. The range space of the projected gradi-
ents in task 2 (red area) is orthogonal to the gradients in
task 1 (green area), i.e. R(𝑃𝑟𝑜 𝑗 (∇L2)) ⊥ R(∇L1). The gradi-
ent generated in each epoch under task 3 will be projected
into the common null space (see dashed area) for all previ-
ous tasks, namely tasks 1 and 2. This proposition can also
be equivalently stated as the range space of 𝑃𝑟𝑜 𝑗 (∇L3) is
the common null space of ∇L1 and 𝑃𝑟𝑜 𝑗 (∇L2) according to
Lemma 1 (see supplementary materials), i.e. R(𝑃𝑟𝑜 𝑗 (∇L3)) =
N(∇L1) ∩ N (𝑃𝑟𝑜 𝑗 (∇L2)).

Here 𝑃𝑟𝑜 𝑗 (∇L𝑡 ) ∈ R𝑚×𝑛 denotes the projected gradient under
task 𝑡 , and Eq.(4) can be further simplified as

𝑮𝑡 · 𝑃𝑟𝑜 𝑗 (∇L𝑡+1)⊤ = 0, (5)

where 𝑮𝑡 ∈ R𝑡𝑚×𝑛 is the common gradient matrix, formed by the
vertical concatenation of the projected gradients from all previous
tasks, namely:

𝑮𝑡 =


∇L∗1

𝑃𝑟𝑜 𝑗 (∇L∗2)
.
.
.

𝑃𝑟𝑜 𝑗 (∇L∗𝑡 )


=


𝑮𝑡−1

𝑃𝑟𝑜 𝑗 (∇L∗𝑡 )

 . (6)

Here ∇L∗𝑡 ∈ R𝑚×𝑛 is the gradient under task 𝑡 at the end of
training. We only take the final gradient because the projected
gradients under the same task are in the same subspace, namely
N(𝑃𝑟𝑜 𝑗 (∇L𝑡 )) = N(𝑃𝑟𝑜 𝑗 (∇L∗𝑡 )). We denote N(·) and R(·) as
the null space and range space respectively, their definitions are
presented in supplementary materials.

If Eq.(5) holds, the gradients under GPCNS will be projected
into the common null space of 𝑃𝑟𝑜 𝑗 (∇L𝑡 ) under all previous
tasks, namely 𝑃𝑟𝑜 𝑗 (∇L𝑡+1) ∈ N (∇L1) ∩ N (𝑃𝑟𝑜 𝑗 (∇L2)) ∩ · · · ∩
N (𝑃𝑟𝑜 𝑗 (∇L𝑡 )). To illustrate this idea, we demonstrate the projec-
tion space for the third task as an example in Figure 2, which is
also the common null space for ∇L1 and 𝑃𝑟𝑜 𝑗 (∇L2).

To obtain the common null space, we perform SVD on 𝑮𝑡 :

𝑮𝑡 =
[
˜𝑼 𝑡 , 𝑼 𝑡

] [
𝚺𝑡 0
0 0

] [
˜𝑽 𝑡 , 𝑽 𝑡

]⊤
. (7)

Here 𝑼 𝑡 =
[
˜𝑼 𝑡 , 𝑼 𝑡

]
∈ R𝑡𝑚×𝑡𝑚 , 𝑽 𝑡 =

[
˜𝑽 𝑡 , 𝑽 𝑡

]
∈ R𝑛×𝑛 and 𝚺𝑡 ∈

Rmin{𝑡𝑚,𝑛}×min{𝑡𝑚,𝑛} . Then we have 𝑮𝑡 · 𝑽 𝑡 = ˜𝑼 𝑡𝚺𝑡 (˜𝑽 𝑡 )⊤𝑽 𝑡 =
˜𝑼 𝑡𝚺𝑡 ·0 = 0, since 𝑽 𝑡 is an orthogonalmatrix. Thus, 𝑽 𝑡 ∈ R𝑛×(𝑛−𝑡𝑚)
is the null space of 𝑮𝑡 (see Definition 3 in supplementary materials).
However, we do not adopt 𝑽 𝑡 because it will not exist if 𝑡𝑚 ≥ 𝑛.
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Figure 3: The collaborative framework for FSCLP and GPCNS integrates gradient information and feature information from
old tasks to determine the projection space. (a) Gradient Information: When learning task 𝑡 , the training data 𝑫𝑡 is inputed into
the model for training, and the gradient baseŝ𝑽 𝑡 are obtained through step 10-14 in algorithm 1. (b) Feature Information: A
sufficient number of samples are sampled from datasets for obtaining representation matrix, and feature bases 𝑴𝑡 are obtained
through FSCLP methods. (c) Fusion and Projection: The bases of gradients and features are combined and filtered to form a
matrix 𝑺𝑡 containing better bases. Finally, the gradients under next task will be projected into the null space of 𝑺𝑡 .

Algorithm 1 Algorithm for GPCNS

Input: Datasets {D1,D2, · · · ,D𝑇 } for each tasks; A neural net-
work 𝑓𝑾 parameterized by 𝑾 with 𝐿 layers, learning rate 𝜂,
threshold 𝜖 and scale coefficient 𝛼 .

Output: 𝑓𝑾 , 𝑺𝑇 , 𝚲𝑇 ;
1: initialization 𝑓𝑾
2: for 𝑡 = 1, 2, · · · ,𝑇 do
3: while not converged do
4: 𝑩𝑡 ∼ D𝑡

5: ∇L𝑡 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (𝑩𝑡 , 𝑓𝑾 );
6: ∇ ˜L𝑡 ← 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 (∇L𝑡 , 𝑺𝑡−1,𝚲𝑡−1) ⊲ Eq.(11)
7: 𝑾𝑡 ←𝑾𝑡 − 𝜂∇ ˜L𝑡

8: end while
9: for 𝑙 = 1, 2, · · · , 𝐿 do
10: 𝑮𝑙

𝑡 ← 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑆𝑡𝑎𝑐𝑘

(
𝑮𝑙
𝑡−1,∇ ˜L

𝑙

𝑡

)
⊲ Eq.(6)

11: 𝚺
𝑙
𝑡 , (˜𝑽

𝑙
𝑡 )⊤ ← SVD

(
𝑮𝑙
𝑡

)
⊲ Eq.(7)

12: ˜𝑽
𝑙
𝑡 ← 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ((˜𝑽 𝑙𝑡 )⊤)

13: 𝑘𝑙𝑡 ← 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝚺𝑙𝑡 , 𝜖𝑡 ) ⊲ Eq.(8)
14: ̂𝑽

𝑙
𝑡 ← ˜𝑽

𝑙
𝑡 [:, 0 : 𝑘𝑙𝑡 ]

15: 𝑯 𝑙
𝑡 ← 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑆𝑡𝑎𝑐𝑘

(
𝑯 𝑙
𝑡−1,̂𝑽

𝑙
𝑡

)
⊲ Eq.(9)

16: ˜𝑼
𝑙
𝑡,𝐻𝑡

, 𝚺𝑙
𝑡,𝐻𝑡
← SVD(𝑯 𝑙

𝑡 )
17: 𝑘𝑙

𝑡,𝐻𝑡
← 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝚺𝑙

𝑡,𝐻𝑡
, 𝜖𝑡 )

18: 𝑺𝑙𝑡 ← ˜𝑼
𝑙
𝑡,𝐻𝑡

[
:, 0 : 𝑘𝑙

𝑡,𝐻𝑡

]
19: 𝚲

𝑙
𝑡 ← 𝑆𝑐𝑎𝑙𝑖𝑛𝑔

(
𝚺
𝑙
𝑡,𝐻𝑡

, 𝛼

)
⊲ Eq.(10)

20: end for
21: end for

Instead, 𝑰 −˜𝑽 𝑡˜𝑽
⊤
𝑡 ∈ R𝑛×𝑛 is also the null space of 𝑮𝑡 (see proof

in supplementary materials), where 𝑰 ∈ R𝑛×𝑛 is the identity matrix.

Before constructing the projection operator, we select 𝑘𝑡 vectors in
˜𝑽 𝑡 through the criteria:

∥(𝑮𝑡 )𝑘𝑡 ∥∗ ≥ 𝜖𝑡 · ∥𝑮𝑡 ∥∗ . (8)

Here ∥ · ∥∗ denotes the nuclear norm (sum of the singular values)
and 𝜖𝑡 ∈ [0, 1] is the threshold. (𝑮𝑡 )𝑘𝑡 ∈ R𝑘𝑡×𝑘𝑡 contains 𝑘𝑡 vectors
with top-𝑘𝑡 largest singular values. The bases contained in˜𝑽 𝑡 will
be selected aŝ𝑽 𝑡 = ˜𝑽 𝑡 [: , 0 : 𝑘𝑡 ] ∈ R𝑛×𝑘𝑡 .

To provide GPCNS with more bases to choose from, we define
the matrix 𝑯 1 =̂𝑽 1 ∈ R𝑛×𝑘1 in task 1. When 𝑡 ≥ 2, we update the
matrix 𝑯 𝑡 by stacking 𝑯 𝑡−1 ∈ R𝑛×ℎ𝑡−1 and̂𝑽 𝑡 horizontally:

𝑯 𝑡 =
[
𝑯 𝑡−1,̂𝑽 𝑡

]
∈ R𝑛×(ℎ𝑡−1+𝑘𝑡 ) , 𝑡 ≥ 2. (9)

Next, SVD is performed on 𝑯 𝑡 = 𝑼 𝑡,𝐻𝑡
𝚺𝑡,𝐻𝑡

𝑽⊤
𝑡,𝐻𝑡

, where 𝑼 𝑡,𝐻𝑡
=[

˜𝑼 𝑡,𝐻𝑡
, 𝑼 𝑡,𝐻𝑡

]
∈ R𝑛×𝑛 . The norm-based criteria ∥(𝑼 𝑡,𝐻𝑡

)𝑘𝑡,𝐻𝑡
∥∗ ≥

𝜖𝑡 ∥𝑼 𝑡,𝐻𝑡
∥∗ is applied to select top-𝑘𝑡,𝐻𝑡

bases. The bases contained
in ˜𝑼 𝑡,𝐻𝑡

will be reduced as 𝑺 = ˜𝑼 𝑡,𝐻𝑡

[
: , 0 : 𝑘𝑡,𝐻𝑡

]
∈ R𝑛×𝑘𝑡,𝐻𝑡 . Here

we adopt ˜𝑼 𝑡,𝐻𝑡
because it is the range space of 𝑯 𝑡 (see proof in

supplementary materials), which is also the range space of the
common null space.

We scale the gradients in GPCNS through the following for-
mula [28]:

𝜆𝑡,𝑖 =
(𝛼 + 1)𝜎𝑡,𝑖

𝛼𝜎𝑡,𝑖 +𝑚𝑎𝑥 (𝝈𝑡 )
. (10)

Here 𝜎𝑡,𝑖 is the 𝑖-th singular value of 𝑯 𝑡 under task 𝑡 , namely
𝚺𝑡,𝐻𝑡

= diag( [𝜎𝑡,1, · · · , 𝜎𝑡,min{𝑚,𝑛} ]). The value of 𝜆𝑡,𝑖 are range
from 0 to 1 with the above construction. 𝝀𝑡 =

[
𝜆𝑡,1, 𝜆𝑡,2, · · · , 𝜆𝑡,𝑛

]⊤
is the importance vector under task 𝑡 . We perform scaled gradient
projection on gradient ∇L𝑡+1 as follow:

𝑃𝑟𝑜 𝑗 (∇L𝑡+1) =
(
𝑰 − 𝑺𝑡𝚲𝑡 (𝑺𝑡 )⊤

)
∇L𝑡+1 . (11)

Here 𝚲𝑡 ∈ R𝑛×𝑛 is a diagonal matrix containing 𝝀𝑡 in its diagonal.
The main steps of our GPCNS are summarized in Algorithm 1.
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3.3 Collaborative Framework between FSCLP
and GPCNS

To construct projection spaces through both gradient and feature
information, we propose a collaborative framework between FSCLP
and GPCNS, which has two additional stages as following.

1) Obtaining Bases Related to Features. After obtaininĝ𝑽 𝑡 ∈
R𝑛×𝑘𝑡 through step 10-14 inAlgorithm 1, we further utilize GPM [27],
TRGP [20] or SGP [28] as an algorithm under FSCLP to compute
a memory matrix 𝑴𝑡 ∈ R𝑛×𝛽𝑡 which stores the bases related to
features. Here 𝛽𝑡 is a positive integer, its value depends on how
many bases are selected to represent the feature space.

The first dimension of 𝑴𝑡 is equal to 𝑛 because the gradient
projection formula∇L𝑡 = ∇L𝑡−∇L𝑡𝑴𝑡𝑴⊤𝑡 in FSCLPmethods [3,
20, 27, 28] require that the rows of𝑴𝑡 equals the columns of ∇L𝑡 ∈
R𝑚×𝑛 .

2) Integrating Gradient and Feature Information. To inte-
grate two types of information, we stack̂𝑽 𝑡 and 𝑴𝑡 horizontally:

𝑪𝑡 =
[
̂𝑽 𝑡 ,𝑴𝑡

]
∈ R𝑛×(𝑘𝑡+𝛽𝑡 ) . (12)

To filter the redundant bases, we perform SVD on 𝑪𝑡 and obtain
𝑼 𝑡,𝐶𝑡

, 𝚺𝑡,𝐶𝑡
, 𝑽 𝑡,𝐶𝑡

= SVD(𝑪𝑡 ), where 𝑼 𝑡,𝐶𝑡
=

[
˜𝑼 𝑡,𝐶𝑡

, 𝑼 𝑡,𝐶𝑡

]
∈

R𝑛×𝑛 is the left singularmatrix of 𝑪𝑡 , and˜𝑼 𝑡,𝐶𝑡
∈ R𝑛×min{𝑛,(𝑘𝑡+𝛽𝑡 ) }

is the range space of 𝑪𝑡 (see proof in supplementary materials).
We select the vectors with top-𝑟𝑡 largest singular values in ˜𝑽 𝑡,𝐶𝑡

through the criteria ∥(𝑪𝑡 )𝑟𝑡 ∥∗ ≥ 𝜖𝑡 · ∥𝑪𝑡 ∥∗ with the given threshold
𝜖𝑡 . We only retain the first 𝑟𝑡 columns in ˜𝑼 𝑡,𝐶𝑡

, and the bases con-
tained in ˜𝑼 𝑡,𝐶𝑡

will be further reduced as 𝑺𝑡,𝐶𝑡
= ˜𝑼 𝑡,𝐶𝑡

[: , 0 : 𝑟𝑡 ].
Then, we also utilize the scaling matrix to adjust the projected
gradient (see Eq.(10)), and the final gradient projection formula is

𝑃𝑟𝑜 𝑗 (∇L𝑡+1) =
(
𝑰 − 𝑺𝑡,𝐶𝑡

𝚲𝑡,𝐶𝑡
𝑺𝑡,𝐶𝑡

)
∇L𝑡+1 . (13)

The pipeline of our collaborative framework is demonstrated in
Figure 3 and the main steps are summarized in Algorithm 2 (see
supplementary materials).

4 Experiments
4.1 Experimental Setting
Datasets.We evaluate our methods on Split CIFAR-100 [14], CIFAR-
100 Superclass [39] and Split MiniImageNet [31]. Split CIFAR-100
contains 60,000 RGB images over 100 classes splitted into 20 tasks
with 10 distinct classes per task. Each class contains 500 training
images and 100 testing images, and the size of each image is 32
× 32. CIFAR-100 Superclass is divided into 20 tasks where each
task contains 5 semantically related classes from CIFAR-100. Split
MiniImageNet is a 100-class subset of the original ImageNet [6],
which is splitted into 20 tasks. Each class contains 500 training
images and 100 testing images. These images are in RGB format
with 84 × 84 as their sizes.

Implementation Details. For the convenience of comparison,
we adopt the same backbone with GPM, TRGP, and SGP on each
dataset. Specifically, we apply a 5-layer AlexNet [15] on Split CIFAR-
100, a LeNet on CIFAR-100 Superclass and a reduced ResNet-18 [11]
on Split MiniImageNet to conduct experiments. All the methods
are trained and tested under task-incremental learning setup that
each task has a separate classifier head [12]. All the experiments are

conducted under the optimization of Stochastic Gradient Descent
(SGD), and the batch sizes are set as 64. Each task in Split CIFAR-100
and Split MiniImageNet are trained for 200 epochs, and in CIFAR-
100 Superclass are trained for 50 epochs. Other details are presented
in supplementary materials.

Baselines. To follow the consistent experimental standards of
GPM, TRGP, CGP and SGP, we require that the baselines not have
the following situations: (1) Increasing parameters during the train-
ing process (e.g. API [17]). (2) Replacing cross entropy loss with
customized objective functions (e.g. Connector [18] and DFGP [37]).
(3) In addition, methods without open source code cannot be con-
sidered as baselines. (e.g. SD [45]). The reasons are as follows: (i) In-
creasing the number of parameters and replacing the loss func-
tion are essentially network expansion methods and regularization
methods respectively. (ii) Our motivation is to improve gradient pro-
jection, rather than stacking different types of techniques. (iii) It is
difficult to accurately reproduce methods without publicly available
code.

Referring to the baseline selection in SGP [28], we select the
following methods: OWM [40], A-GEM [1], Experience Replay with
Reservoir sampling (ER_Res) [2], Adam-NSCL [33], GPM [27], FS-
DGPM [5], CGP [3], TRGP [20] and SGP [28]. In addition, Multitask
refers to learning all the tasks simultaneously, which can be seen
as the upper bound of CL.

Evaluation Metrics.We employ average accuracy (ACC) and
backward transfer (BWT) [23] as evaluation metrics. ACC repre-
sents average test accuracy across all tasks, and BWT measures
the average decline in the test accuracy for previous tasks after
learning the current task. Their definitions are as follow:

𝐴𝐶𝐶 =
1
𝑇

𝑇∑︁
𝑡=1

𝐴𝑇,𝑡 ; 𝐵𝑊𝑇 =
1

𝑇 − 1

𝑇−1∑︁
𝑡=1

𝐴𝑇,𝑡 −𝐴𝑡,𝑡 .

Here𝑇 is the total number of tasks, and𝐴𝑇,𝑡 is the accuracy on 𝑡-th
task after learning the 𝑇 -th task sequentially.

4.2 Main Results
As shown in Table 1, introducing GPCNS can effectively improve
the performances of FSCLP methods on all the benchmarks. Specif-
ically, TRGP + GPCNS improves ACC by 1.12%, 1.26% and 4.28%
compared with TRGP on CIFAR-100, Superclass and MiniImageNet
respectively. GPM + GPCNS achieves the accuracy gains of 1.35%,
0.46% and 0.85% compared with GPM on these three datasets. Al-
though GPCNS does not significantly improve the ACC of SGP, the
improvements of FSCLP + GPCNS on BWT are more significant.
TRGP + GPCNS improves BWT by 0.84%, 1.16% and 0.53% on three
datasets. SGP + GPCNS achieves the BWT gains of 1.1%, 0.66% and
0.31% respectively. In addition, we find that even when GPCNS has
higher accuracy than GPM or TRGP, its BWT is still lower. The
reason might be that gradient matrices have much smaller size than
representation matrices (see Table 1 in supplementary materials),
which leads to less bases to be selected for balancing plasticity
and stability when constructing projection spaces. From the above
results, we can confirm that utilizing gradient and feature informa-
tion simultaneously can indeed construct a better projection space,
which improves ACC and further alleviates catastrophic forgetting
compared to pure FSCLP methods.
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Table 1: Comparison results on several datasets. We report ACC and BWT over five runs with random seeds. The asterisk ∗
indicates a positive BWT on average.

Method Split CIFAR-100 CIFAR-100 Superclass Split MiniImageNet

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Multitask 79.58 ± 0.54 − 61.00 ± 0.20 − 69.46 ± 0.62 −
OWM [40] 50.94 ± 0.60 -30 ± 1 − − 47.48 ± 1.28 -12 ± 3
A-GEM [1] 63.98 ± 1.22 -15 ± 2 50.35 ± 0.80 -9.5 ± 0.9 57.24 ± 0.72 -12 ± 1
ER_Res [2] 71.73 ± 0.63 -6 ± 1 53.30 ± 0.70 -3.4 ± 0.8 58.94 ± 0.85 -7 ± 1
Adam-NSCL [33] 73.77 ± 0.50 -1.6 ± 0.51 56.32 ± 0.88 -2.42 ± 0.93 59.07 ± 1.10 -4.9 ± 1.32
GPM [27] 72.48 ± 0.40 -0.9 ± 0 57.72 ± 0.70 -1.2 ± 0.4 60.41 ± 0.61 -0.7 ± 0.4
FS-DGPM [32] 74.33 ± 0.31 -2.71 ± 0.17 58.81 ± 0.34 -2.97 ± 0.35 61.03 ± 1.08 -1.96 ± 0.78
CGP [3] 74.26 ± 0.38 -1.48 ± 0.78 57.53 ± 0.52 -1.63 ± 0.49 60.82 ± 0.55 -0.33 ± 0.21
TRGP [20] 74.46 ± 0.32 -0.9 ± 0.01 58.25 ± 0.21 -1.71 ± 0.52 61.78 ± 0.60 -0.5 ± 0.6
SGP [28] 76.05 ± 0.43 -1.23 ± 0.75 59.05 ± 0.21 -1.4 ± 0.51 62.83 ± 0.33 -1.12 ± 0.98

GPCNS 74.40 ± 0.42 -2.16 ± 0.92 58.50 ± 0.43 -1.86 ± 0.83 63.78 ± 0.62 -2.84 ± 1.15
GPM + GPCNS 73.84 ± 0.29 -0.26 ± 0.09 58.19 ± 0.38 -0.47 ± 0.34 61.26 ± 0.44 -1.25 ± 0.36
TRGP + GPCNS 75.58 ± 0.36 -0.06 ± 0.33 59.51 ± 0.32 -0.55 ± 0.27 66.07 ± 0.47 ∗0.03 ± 0.29
SGP + GPCNS 76.25 ± 0.38 -0.13 ± 0.05 59.14 ± 0.40 -0.74 ± 0.36 63.98 ± 0.53 -0.81 ± 0.31

Table 2: Ablation on gradient scaling (see Eq.(10)) in FSCLP + GPCNS and GPCNS. Here Feat and Grad are the abbreviation of
Feature and Gradient respectively. The ticks below Feat or Grad indicate whether feature or gradient information is applied
when constructing the projection spaces.

Method Feat Grad CIFAR-100 Superclass MiniImageNet

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

SGP + GPCNS ✓ ✓ 76.25 ± 0.38 -0.13 ± 0.05 59.14 ± 0.40 -0.74 ± 0.36 63.98 ± 0.53 -0.81 ± 0.31
SGP + GPCNS (w/o scaling) ✓ ✓ 73.84 ± 0.29 -0.26 ± 0.09 57.19 ± 0.38 -0.47 ± 0.34 61.26 ± 0.44 -1.25 ± 0.36
TRGP + GPCNS ✓ ✓ 75.58 ± 0.36 -0.06 ± 0.33 59.51 ± 0.32 -0.55 ± 0.27 66.07 ± 0.47 ∗0.03 ± 0.29
TRGP + GPCNS (w/o scaling) ✓ ✓ 74.21 ± 0.38 -0.19 ± 0.36 59.17 ± 0.24 -0.18 ± 0.21 63.28 ± 1.14 -0.29 ± 0.14
GPCNS ✓ 74.40 ± 0.42 -2.16 ± 0.92 58.50 ± 0.43 -1.86 ± 0.83 63.78 ± 0.62 -2.84 ± 1.15
GPCNS (w/o scaling) ✓ 73.46 ± 0.38 -3.08 ± 1.12 58.39 ± 0.42 -1.79 ± 0.72 61.90 ± 1.32 -3.60 ± 1.34

GPM [27] ✓ 72.48 ± 0.40 -0.9 ± 0 57.72 ± 0.70 -1.2 ± 0.4 60.41 ± 0.61 -0.7 ± 0.4

Table 3: Ablation on 𝑮𝑡 and 𝑯 𝑡 in GPCNS. Here Ulti Decom refers to the ultimately decomposed matrix to obtain the basis for
constructing the projection space.

Method Ulti Decom CIFAR-100 Superclass MiniImageNet

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

GPCNS 𝑯 𝑡 74.40 ± 0.42 -2.16 ± 0.92 58.50 ± 0.43 -1.86 ± 0.83 63.78 ± 0.62 -2.84 ± 1.15
GPCNS (w/o 𝑯 𝑡 ) 𝑮𝑡 73.91 ± 0.45 -3.07 ± 1.11 58.18 ± 0.47 -2.09 ± 0.96 61.42 ± 1.41 -3.83 ± 1.29

4.3 Ablation Studies
Ablation on Gradient Information and Feature Information.
To further verify the effectiveness of feature and gradient infor-
mation, we conduct ablation experiments on task level, and the
results are shown in Figure 4. On the top row, we compare FSCLP
+ GPCNS that performed better on different datasets with FSCLP
methods, respectively. The results show that FSCLP + GPCNS has a

visible improvement almost on each task for all the datasets because
of additionally considering gradient information. The middle row
displays the test accuracy curves of FSCLP + GPCNS and GPCNS
for each task. Their fluctuations are similar, while FSCLP + GPCNS
always has higher accuracy because of having found better bases
for projection. When it comes to the bottom row, FSCLP + GPCNS
has the highest BWT on all the datasets, indicating that the impact
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Figure 4: Test accuracy and BWT on three datasets for each
task. TopRow: Comparing accuracy between FSCLP +GPCNS
and FSCLP.MiddleRow: Comparing accuracy between FSCLP
+ GPCNS and GPCNS. Bottom Row: Comparison of BWT
between GPCNS, FSCLP and FSCLP + GPCNS.

of forgetting on this framework is minimal and its performances
are stable.

Ablation on Gradient Scaling.We also conduct ablation exper-
iments on gradient scaling. In Table 2, we observe that non-scaling
methods reduce ACC by less than 0.5% on Superclass, and by less
than 3% on CIFAR-100 as well as MiniImageNet compared to meth-
ods with scaling. In addition, we find that even if GPCNS does not
utilize gradient scaling (see Eq.(10)), it still has higher accuracy
than GPM. We know that both TRGP and SGP introduce gradient
scaling on the basis of GPM. Therefore, gradient information and
feature information are equally powerful and important.

Ablation on 𝑮𝑡 and 𝑯 𝑡 in GPCNS. To verify the necessity of
step 15-18 in Algorithm 1, we also conduct ablation experiments
on 𝑮𝑡 and 𝑯 𝑡 in Table 3. The results show that if 𝑯 𝑡 is not utilized,
the ACC will decrease by 0.49%, 0.32%, and 2.73% on CIFAR-100, Su-
perclass and MiniImageNet respectively. Note that FSCLP + GPCNS
adopts 𝑮𝑡 rather than 𝑯 𝑡 , since𝑴𝑡 provides many additional bases
for selecting.

Ablation on Common Null Space. To verify the effectiveness
of projecting gradients into common null space, we replace the
features in GPM with gradients for ablation experiments in Table 4.
We observe that the accuracy of both GPM (Grad) and SGP (Grad)
on CIFAR-100 Superclass collapse (see pale pink cells in Table 4).
Therefore, FSCLP is not applicable to gradient information and
proposing GPCNS with new paradigm is necessary.

Ablation on norm type and top-𝐾 signular value selection.
To show the effectiveness of adopting nuclear norm, we conduct
ablation experiments by replacing nuclear norm with Frobius norm.
To verify the necessity of selecting bases with top-𝐾 signular value,
we also ablate this step and conduct experiment on three dataset.
The results in Table 5 show that either replacing the nuclear norm
or excluding the top-𝐾 singular values selection for filtering bases
will result in a slight decrease in accuracy.

Table 4: Ablation on Common Null Space. Here Grad with
parentheses denotes that the features in GPM or SGP are
replaced by gradients. In TRGP, features cannot be replaced
with gradients because its code requires the size of feature
matrices to remain unchanged.

Method CIFAR-100 Superclass MiniImageNet

ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%)

GPM 72.48 -0.9 57.72 -1.2 60.41 -0.7
GPM (Grad) 71.42 -3.80 41.34 -19.53 61.80 -0.76
SGP 76.05 -1.23 59.05 -1.4 62.83 -1.12
SGP (Grad) 68.72 -8.18 40.83 -20.12 61.64 -1.28

Table 5: Ablation on norm type and top-𝐾 singular value
selection. Here N-norm and F-norm are the abbreviation of
nuclear norm and Frobius norm respectively. The values
under ACC and BWT are both average percentages.

Method CIFAR-100 Superclass MiniImageNet

ACC BWT ACC BWT ACC BWT

GPCNS (N-norm) 74.40 -2.16 58.50 -1.86 63.78 -2.84
GPCNS (F-norm) 72.89 -6.13 58.10 -2.92 60.42 -5.54
GPCNS (w/o top-𝐾 ) 69.20 -1.41 54.21 -1.79 63.54 -3.26

TRGP + GPCNS (N-norm) 75.58 -0.06 59.51 -0.55 66.07 0.03
TRGP + GPCNS (F-norm) 75.45 -0.17 59.13 -0.74 65.59 -0.37
TRGP + GPCNS (w/o top-𝐾 ) 72.75 -0.09 56.78 -0.06 64.96 -0.25

SGP + GPCNS (N-norm) 76.25 -0.13 59.14 -0.74 63.98 -0.81
SGP + GPCNS (F-norm) 75.12 -1.68 58.87 -1.42 61.54 -2.33
SGP + GPCNS (w/o top-𝐾 ) 74.09 -0.32 57.96 -1.88 62.41 -1.06

(a) Stability (b) Plasticity

Figure 5: The accuracy of final model. (a) Stability: Accuracy
on the first task. (b) Plasticity: Accuracy on the last task. The
FSCLP method on CIFAR-100 is SGP, and on Superclass and
MiniImageNet is TRGP.

4.4 Analysis on Stability and Plasticity
To verify the better plasticity of GPCNS and its effect on improving
plasticity for FSCLP methods when used as a plugin, we record
the test accuracy of the final model on the first and last tasks.
In Figure 5b, we can observe that GPCNS always has the highest
accuracy on the last task, which validates its advantage on plasticity.
Correspondingly, we can also observe that FSCLPmethod has better
stability than GPCNS in Figure 5a. More importantly, FSCLP +
GPCNS leverages the strengths of both techniques in terms of
stability and plasticity, resulting in improved ACC and BWT.
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(a) Training Time (b) Memory Usage

Figure 6: Total training time and memory usage at last epoch.
The colors in (b) represent the same methods as in (a). Here
FSCLP on CIFAR-100 is SGP, and on Superclass and MiniIm-
ageNet is TRGP.

(a) GPCNS (b) TRGP + GPCNS

Figure 7: The impact of 𝛼 when ResNet-18 with GPCNS and
TRGP + GPCNS are performed on Split MiniImageNet.

4.5 Training Time and Memory Overhead
In Figure 6, we compare the time consumption and memory usage
of GPCNS and FSCLP + GPCNS with baseline methods. GPCNS
spends the least training time on Split MiniImageNet and Split
CIFAR-100, and also maintains a relatively low level on CIFAR-
100 Superclass. In addition, we observe that the increased times of
FSCLP + GPCNS due to simultaneously processing gradient and
feature information are quite limited. In terms of memory, GPCNS
has the second lowest memory overhead on all three datasets, and
the memory usage of FSCLP + GPCNS has only slightly increased
compared to pure FSCLP method.

The above results show that the computational costs of our
GPCNS and FSCLP + GPCNS are maintained at a relatively low level.
The reasons are as follows: (1) Only the final gradient of each task is
required in both methods. (2) The sizes of gradient matrices stored
and decomposed in our methods are generally much smaller than
the sizes of representation matrices applied in GPM [27], CGP [3],
TRGP [20] and SGP [28] (see Table 1 supplementary materials).

4.6 Hyperparameter Analysis
We vary the value of the scale coefficient 𝛼 in Eq.(10). Specifically,
𝛼 is set as {1.0, 1.5, 3.0, 4.5, 6.0} successively. Figure 7 shows ACC
and BWT when GPCNS and TRGP + GPCNS are performed on
Split MiniImageNet. We observe that the optimal 𝛼 for GPCNS and
TRGP + GPCNS on Split MiniImageNet are 3 and 1, respectively.
More significantly, TRGP + GPCNS achieves positive BWT when 𝛼
equals 1, 1.5 and 4.5, which indicates that the old knowledge can

Table 6: Comprehensive comparison between FSCLP and
GPCNS. Note that the training cost in the table refers to
when the number of tasks is not very large (e.g. 20 tasks).

FSCLP GPCNS

Information Source Previous features. Previous gradients.
Design Idea Minimizing the shifting

of optimal parameters
for previous task.

Gradients under differ-
ent tasks are projected
in mutually orthogonal
subspaces.

Projection Space Orthogonal directions
of previous feature sub-
space.

Common null space of
the gradients for all pre-
vious tasks.

Training Cost Slightly higher. Slightly lower.
Strengths Stability. Plasticity.
Weaknesses Plasticity. Stability.

be effectively transfered to new knowledge with the help of both
gradient and feature information.

5 Discussion
Comparison between FSCLP and GPCNS. In Table 6, we com-
pare our GPCNS with FSCLP methods, which demonstrates signifi-
cant differences between GPCNS and previous gradient projection
methods. GPCNS projects the gradients of previous tasks into the
common null space, effectively utilizing gradient information and
achieving better plasticity.

More importantly, the advantage of GPCNS happens to be what
the FSCLP method lacks. Therefore, utilizing GPCNS as a plugin
along with the previous FSCLP method can make a gradient pro-
jection method more comprehensive and powerful.

6 Conclusion
In this work, we analyze the effectiveness of FSCLP and find the
limitations of FSCLP are neglecting gradient information and lack-
ing plasticity. Then we propose the idea that gradients for different
tasks should exist in mutually orthogonal subspaces, and further
derive the concept of common null space. We propose GPCNS that
projects current gradients into the common null space of the final
gradients under all previous tasks. More importantly, we present a
collaborative framework that GPCNS is served as a plug-and-play
extension for FSCLPmethods, enabling the simultaneous utilization
of gradient and feature information. Finally, extensive experiments
show that GPCNS exhibits higher plasticity that FSCLP methods
lack. When GPCNS and FSCLP methods are employed under our
collaborative framework, GPCNS can compensate for the shortcom-
ings of existing methods in terms of plasticity and the utilization
of gradient information, thereby constructing improved projection
spaces and achieving enhanced performances.
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