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ABSTRACT

Multitask Reinforcement Learning is a promising way to obtain models with better
performance, generalisation, data efficiency, and robustness. Most existing work
is limited to compatible settings, where the state and action space dimensions are
the same across tasks. Graph Neural Networks (GNN) are one way to address in-
compatible environments, because they can process graphs of arbitrary size. They
also allow practitioners to inject biases encoded in the structure of the input graph.
Existing work in graph-based continuous control uses the physical morphology of
the agent to construct the input graph, i.e., encoding limb features as node labels
and using edges to connect the nodes if their corresponded limbs are physically
connected. In this work, we present a series of ablations on existing methods that
show that morphological information encoded in the graph does not improve their
performance. Motivated by the hypothesis that any benefits GNNs extract from
the graph structure are outweighed by difficulties they create for message pass-
ing, we also propose AMORPHEUS, a transformer-based approach. Further results
show that, while AMORPHEUS ignores the morphological information that GNNs
encode, it nonetheless substantially outperforms GNN-based methods that use the
morphological information to define the message-passing scheme.

1 INTRODUCTION

Multitask Reinforcement Learning (MTRL) (Vithayathil Varghese & Mahmoud, 2020) leverages
commonalities between multiple tasks to obtain policies with better returns, generalisation, data
efficiency, or robustness. Most MTRL work assumes compatible state-action spaces, where the
dimensionality of the states and actions is the same across tasks. However, many practically impor-
tant domains, such as robotics, combinatorial optimization, and object-oriented environments, have
incompatible state-action spaces and cannot be solved by common MTRL approaches.

Incompatible environments are avoided largely because they are inconvenient for function approxi-
mation: conventional architectures expect fixed-size inputs and outputs. One way to overcome this
limitation is to use Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al., 2005; Battaglia
et al., 2018). A key feature of GNNs is that they can process graphs of arbitrary size and thus, in
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principle, allow MTRL in incompatible environments. However, GNNs also have a second key fea-
ture: they allow models to condition on structural information about how state features are related,
e.g., how a robot’s limbs are connected. In effect, this enables practitioners to incorporate additional
domain knowledge where states are described as labelled graphs. Here, a graph is a collection of
labelled nodes, indicating the features of corresponding objects, and edges, indicating the relations
between them. In many cases, e.g., with the robot mentioned above, such domain knowledge is
readily available. This results in a structural inductive bias that restricts the model’s computation
graph, determining how errors backpropagate through the network.

GNNs have been applied to MTRL in continuous control environments, a staple benchmark of mod-
ern Reinforcement Learning (RL), by leveraging both of the key features mentioned above (Wang
et al., 2018; Huang et al., 2020). In these two works, the labelled graphs are based on the agent’s
physical morphology, with nodes labelled with the observable features of their corresponding limbs,
e.g., coordinates, angular velocities and limb type. If two limbs are physically connected, there is
an edge between their corresponding nodes. However, the assumption that it is beneficial to restrict
the model’s computation graph in this way has to our knowledge not been validated.

To investigate this issue, we conduct a series of ablations on existing GNN-based continuous control
methods. The results show that removing morphological information does not harm the performance
of these models. In addition, we propose AMORPHEUS, a new continuous control MTRL method
based on transformers (Vaswani et al., 2017) instead of GNNs that use morphological information
to define the message-passing scheme. AMORPHEUS is motivated by the hypothesis that any benefit
GNNs can extract from the morphological domain knowledge encoded in the graph is outweighed
by the difficulty that the graph creates for message passing. In a sparsely connected graph, crucial
state information must be communicated across multiple hops, which we hypothesise is difficult in
practice to learn. AMORPHEUS uses transformers instead, which can be thought of as fully connected
GNNs with attentional aggregation (Battaglia et al., 2018). Hence, AMORPHEUS ignores the mor-
phological domain knowledge but in exchange obviates the need to learn multi-hop communication.
Similarly, in Natural Language Processing, transformers were shown to perform better without an
explicit structural bias and even learn such structures from data (Vig & Belinkov, 2019; Goldberg,
2019; Tenney et al., 2019; Peters et al., 2018).

Our results on incompatible MTRL continious control benchmarks (Huang et al., 2020; Wang et al.,
2018) strongly support our hypothesis: AMORPHEUS substantially outperforms GNN-based alter-
natives with fixed message-passing schemes in terms of sample efficiency and final performance.
In addition, AMORPHEUS exhibits nontrivial behaviour such as cyclic attention patterns coordinated
with gaits.

2 BACKGROUND

We now describe the necessary background for the rest of the paper.

2.1 REINFORCEMENT LEARNING

A Markov Decision Process (MDP) is a tuple 〈S,A,R, T , ρ0〉. The first two elements define the
set of states S and the set of actions A. The next element defines the reward function R(s, a, s′)
with s, s′ ∈ S and a ∈ A. T (s′|s, a) is the probability distribution function over states s′ ∈ S after
taking action a in state s. The last element of the tuple ρ0 is the distribution over initial states. Task
and environment are synonyms for MDPs in this work.

A policy π(a|s) is a mapping from states to distributions over actions. The goal of an RL agent is to
find a policy that maximises the expected discounted cumulative return J = E

[∑∞
t=0 γ

trt
]
, where

γ ∈ [0, 1) is a discount factor, t is the discrete environment step and rt is the reward at step t. In the
MTRL setting, the agent aims to maximise the average performance across N tasks: 1

N

∑N
i=1 Ji.

We use MTRL return to denote the average performance across the tasks.

In this paper, we assume that states and actions are multivariate, but dimensionality remains constant
for one MDP: s ∈ Rk,∀s ∈ S, and a ∈ Rk

′
,∀a ∈ A. We use dim(S) = k and dim(A) = k′

to denote this dimensionality, which can differ amongst MDPs. We consider two tasks MDP1 and
MDP2 as incompatible if the dimensionality of their state or action spaces disagree, i.e., dim(S1) 6=
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dim(S2) or dim(A1) 6= dim(A2) with the subscript denoting a task index. In this case MTRL
policies or value functions can not be represented by a Multi-layer Perceptron (MLP), which requires
fixed input dimensions. We do not have additional assumptions on the semantics behind the state
and action set elements and focus on the dimensions mismatch only.

Our approach, as well as the baselines in this work (Wang et al., 2018; Huang et al., 2020), use Policy
Gradient (PG) methods (Peters & Schaal, 2006). PG methods optimise a policy using gradient
ascent on the objective: θt+1 = θt + α∇θJ |θ=θt , where θ parameterises a policy. Often, to reduce
variance in the gradient estimates, one learns a critic so that the policy gradient becomes ∇θJ(θ)=
E
[∑

tA
π
t ∇θ log πθ(at|st)

]
, where Aπt is an estimate of the advantage function (e.g., TD residual

rt + γV π(st+1) − V π(st)). The state-value function V π(s) is the expected discounted return a
policy π receives starting at state s. Wang et al. (2018) use PPO (Schulman et al., 2017), which
restricts a policy update to avoid instabilities from drastic changes in the policy behaviour. Huang
et al. (2020) use TD3 (Fujimoto et al., 2018), a PG method based on DDPG (Lillicrap et al., 2016).

2.2 GRAPH NEURAL NETWORKS FOR INCOMPATIBLE MULTITASK RL

GNNs can address incompatible environments because they can process graphs of arbitrary sizes
and topologies. A GNN is a function that takes a labelled graph as input and outputs a graph G′
with different labels but the same topology. Here, a labelled graph G := 〈V, E〉 consists of a set of
vertices vi ∈ V , labelled with vectors vi ∈ Rmv and a set of directed edges eij ∈ E from vertex vi
to vj , labelled with vectors eij ∈ Rme . The output graph G′ has the same topology but the labels
can be of different dimensionality than the input, that is, v′i ∈ Rm

′
v and e′ij ∈ Rm

′
e . By graph

topology we mean the connectivity of the graph, which can be represented by an adjacency matrix,
a binary matrix {a}ij whose elements aij equal to one iff there is an edge eij ∈ E connecting
vertices vi, vj ∈ V .

A GNN computes the output labels for entities of type k by parameterised update functions φkψ
represented by neural networks that can be learnt end-to-end via backpropagation. These updates
can depend on a varying number of edges or vertices, which have to be summarised first using
aggregation functions that we denote ρ. Apart from their ability to operate on sets of elements,
aggregation functions should be permutation invariant. Examples of such aggregation functions
include summation, averaging and max or min operations.

Incompatible MTRL for continuous control implies learning a common policy for a set of agents with
different number of limbs and connectivity of those limbs, i.e. morphology. To be more precise, a set
of incompatible continuous control environments is a set of MDPs described in Section 2.1. When a
state is represented as a graph, each node label contains features of its corresponding limb, e.g., limb
type, coordinates, and angular velocity. Similarly, each factor of an action set element corresponds
to a node with the label meaning the torque for a joint to emit. The typical reward function of a
MuJoCo (Todorov et al., 2012) environment includes a reward for staying alive, distance covered,
and a penalty for action magnitudes.

We now describe two existing approaches to incompatible control: NERVENET (Wang et al., 2018)
and Shared Modular Policies (SMP) (Huang et al., 2020).

2.2.1 NERVENET

In NERVENET, the input observations are first encoded via a MLP processing each node labels as a
batch element: vi ← φχ

(
vi
)
,∀vi ∈ V . After that, the message-passing part of the model block

performs the following computations (in order):

e′ij ← φeψ
(
vi
)

,∀eij ∈ E ,
vi ← φvξ

(
vi, ρ{e′ki | eki ∈ E}

)
,∀vi ∈ V .

The edge updater φeψ in NERVENET is an MLP which does not take the receiver’s state into account.
Using only one message pass restricts the learned function to local computations on the graph. The
node updater φvξ is a Gated Recurrent Unit (GRU) (Cho et al., 2014) which maintains the internal
state when doing multiple message-passing iterations, and takes the aggregated outputs of the edge
updater for all incoming edges as inputs. After the message-passing stage, the MLP decoder takes
the states of the nodes and, like the encoder, independently processes them, emitting scalars used as
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the mean for the normal distribution from which actions are sampled: videc ← φη
(
vi
)
,∀vi ∈ V .

The standard deviation of this distribution is a separate state-independent vector with one scalar per
action.

2.2.2 SHARED MODULAR POLICIES

SMP is a variant of a GNN that operates only on trees. Computation is performed in two stages:
top-down and bottom-up. In the first stage, information propagates level by level from leaves to
the root with parents aggregating information from their children. In the second stage, information
propagates from parents to the leaves with parents emitting multiple messages, one per child. The
policy emits actions at the second stage of the computation together with the downstream messages.

Instead of a permutation invariant aggregation, the messages are concatenated. This, as well as
separate messages for the children, also injects structural bias to the model, e.g., separating the
messages for the left and right parts of robots with bilateral symmetry. In addition, its message-
passing schema depends on the morphology and the choice of the root node. In fact, Huang et al.
(2020) show that the root node choice can affect performance by 15%.

SMP trains a separate model for the actor and critic. An actor outputs one action per non-root
node. The critic outputs a scalar per node as well. When updating a critic, a value loss is computed
independently per each node with targets using the same scalar reward from the environment.

2.3 TRANSFORMERS

Transformers can be seen as GNNs applied to fully connected graphs with the attention as an edge-
to-vertex aggregation operation (Battaglia et al., 2018). Self-attention used in transformers is an
associative memory-like mechanism that first projects the feature vector of each node vi ∈ Rmv

into three vectors: query qi := Θvi ∈ Rd, key ki := Θ̄vi ∈ Rd and value v̂i := Θ̂vi ∈ Rmv .
Parameter matrices Θ, Θ̄, and Θ̂ are learnt. The query of the receiver vi is compared to the key
value of senders using a dot product. The resulting values wi are used as weights in the weighted
sum of all the value vectors in the graph. The computation proceeds as follows:

wi := softmax
( [k1,...,kn]

>qi√
d

)
v′i := [v̂1, . . . , v̂n]wi

,∀vi ∈ V , (1)

with [x1, x2, ..., xn] being a Rk×n matrix of concatenated vectors xi ∈ Rk. Often, multiple attention
heads, i.e., Θ, Θ̄, and Θ̂ matrices, are used to learn different interactions between the nodes and
mitigate the consequences of unlucky initialisation. The output of multiple heads is concatenated
and later projected to respect the dimensions.

A transformer block is a combination of an attention block and a feedforward layer with a possible
normalisation between them. In addition, there are residual connections from the input to the atten-
tion output and from the output of the attention to the feedforward layer output. Transformer blocks
can be stacked together to take higher order dependencies into account, i.e., reacting not only to the
features of the nodes, but how the features of the nodes change after applying a transformer block.

3 THE ROLE OF MORPHOLOGY IN EXISTING WORK

In this section, we provide evidence against the assumption that GNNs improve performance by
exploiting information about physical morphology (Huang et al., 2020; Wang et al., 2018). Here
and in all of the following sections, we run experiments for three random seeds and report the
average undiscounted MTRL return and the standard error across the seeds.

To determine if information about the agent’s morphology encoded in the relational graph structure
is essential to the success of SMP, we compare its performance given full information about the
structure (morphology), given no information about the structure (star), and given a structural bias
unrelated to the agent’s morphology (line). Ideally, we would test a fully connected architecture as
well, but SMP only works with trees. Figure 9 in Appendix B illustrates the tested topologies.

The results in Figure 1a and 1b demonstrate that, surprisingly, performance is not contingent on
having information about the physical morphology. A star agent performs on par with the
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(a) SMP, Walker++
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(b) SMP, Humanoid++
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Figure 1: Neither SMP nor NERVENET leverage the agent’s morphological information, or the posi-
tive effects are outweighted by their negative effect on message passing.

morphology agent, thus refuting the assumption that the method learns because it exploits infor-
mation about the agent’s physical morphology. The line agent performs worse, perhaps because
the network must propagate messages even further away, and information is lost with each hop due
to the finite size of the MLPs causing information bottlenecks (Alon & Yahav, 2020).

We also present similar results for NERVENET. Figure 1c shows that all of the variants we tried
perform similarly well on Walkers from (Wang et al., 2018), with star being marginally better.
Since NERVENET can process non-tree graphs, we also tested a fully connected variant. This ver-
sion learns more slowly at the beginning, probably because of difficulties with differentiating nodes
at the aggregation step. Interestingly, in contrast to SMP, in NERVENET line performs on par
with morphology. This might be symptomatic of problems with the message-passing mechanism
of SMP, e.g., bottlenecks leading to information loss.

4 AMORPHEUS

Inspired by the results above, we propose AMORPHEUS, a transformer-based method for incompati-
ble MTRL in continuous control. AMORPHEUS is motivated by the hypothesis that any benefit GNNs
can extract from the morphological domain knowledge encoded in the graph is outweighed by the
difficulty that the graph creates for message passing. In a sparse graph, crucial state information
must be communicated across multiple hops, which we hypothesise is difficult to learn in practice.

AMORPHEUS belongs to the encode-process-decode family of architectures (Battaglia et al., 2018)
with a transformer at its core. Since transformers can be seen as GNNs operating on fully connected
graphs, this approach allows us to learn a message passing schema for each state and each pass sep-
arately, and limits the number of message passes needed to propagate sufficient information through
the graph. Multi-hop message propagation in the presence of aggregation, which could cause prob-
lems with gradient propagation and information loss, is no longer required. We implement both
actor and critic in the SMP codebase (Huang et al., 2020) and made our implementation available
online at https://github.com/yobibyte/amorpheus. Like in SMP, there is no weight

limb 1limb 1 limb 1limb 1

transformerencoder

limb 3
limb 2
limb  1

torso

decoder

Figure 2: AMORPHEUS architecture. Lines with squares at the end denote concatenation. Arrows
going separately through encoder and decoder denote that rows of the input matrix are processed
independently as batch elements. Dashed arrows denote message-passing in a transformer block.
The diagram depicts the policy network, the critic has an identical architecture, with the decoder
outputs interpreted as value function values.
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sharing between the actor and the critic. Both of them consist of three parts: a linear encoder, a
transformer in the middle, and the output decoder MLP.

Figure 2 illustrates the AMORPHEUS architecture (policy). The encoder and decoder process each
node independently, as if they are different elements of a mini-batch. Like SMP, the policy network
has one output per graph node. The critic has the same architecture as on Figure 2, and, as in Huang
et al. (2020), each critic node outputs a scalar with the value loss independently computed per node.

Similarly to NERVENET and SMP, AMORPHEUS is modular and can be used in incompatible environ-
ments, including those not seen in training. In contrast to SMP which is constrained by the maximum
number of children per node seen at the model initialisation in training, AMORPHEUS can be applied
to any other morphology with no constraints on the physical connectivity.

Instead of one-hot encoding used in natural language processing, we apply a linear layer on node
observations. Each node observation uses the same state representation as SMP and includes a limb
type (e.g. hip or shoulder), position with a relative x coordinate of the limb with respect to the torso,
positional and rotational velocities, rotations, angle and possible range of the values for the angle
normalised to [0, 1]. We add residual connections from the input features to the decoder output
to avoid the nodes forgetting their own features by the time the decoder independently computes
the actions. Both actor and critic use two attention heads for each of the three transformer layers.
Layer Normalisation (Ba et al., 2016) is a crucial component of transformers which we also use in
AMORPHEUS. See Appendix A for more details on the implementation.

4.1 EXPERIMENTAL RESULTS

We first test AMORPHEUS on the set of MTRL environments proposed by Huang et al. (2020). For
Walker++, we omit flipped environments, since Huang et al. (2020) implement flipping on the
model level. For AMORPHEUS, the flipped environments look identical to the original ones. Our
experiments in this Section are built on top of the TD3 implementation used in Huang et al. (2020).

Figure 3 supports our hypothesis that explicit morphological information encoded in graph topology
is not needed to yield a single policy achieving high average returns across a set of incompatible con-
tinuous control environments. Free from the need to learn multi-hop communication and equipped
with the attention mechanism, AMORPHEUS clearly outperforms SMP, the state-of-the-art algorithm
for incompatible continuous control. Huang et al. (2020) report that training SMP on Cheetah++
together with other environments makes SMP unstable. By contrast, AMORPHEUS has no trouble
learning in this regime (Figure 3g and 3h).

Our experiments demonstrate that node features have enough information for AMORPHEUS to per-
form the task and limb discrimination needed for successful MTRL continuous control policies. For
example, a model can distinguish left from right, not from structural biases as in SMP, but from the
relative position of the limb w.r.t. the root node provided in the node features.

While the total number of tasks in the SMP benchmarks is high, they all share one key characteristic.
All tasks in a benchmark are built using subsets of the limbs from an archetype (e.g., Walker++ or
Cheetah++). To verify that our results hold more broadly, we adapted the Walkers benchmark
(Wang et al., 2018) and compared AMORPHEUS with SMP and NERVENET on it. This benchmark
includes five agents with different morphologies: a Hopper, a HalfCheetah, a FullCheetah, a Walker,
and an Ostrich. The results in Figure 4 are consistent1 with our previous experiments, demonstrating
the benefits of AMORPHEUS’ fully-connected graph with attentional aggregation.

1Note that the performance of NERVENET is not directly comparable, as the observational features and
the learning algorithm differ from AMORPHEUS and SMP. We do not test NERVENET on SMP benchmarks
because the codebases are not compatible and comparing NERVENET and SMP is not the focus of the paper.
Even if we implemented NERVENET in the SMP training loop, it is unclear how the critic of NERVENET would
perform in a new setting. The original paper considers two options for the critic: one GNN-based and one MLP-
based. We use the latter in Figure 4 as the former takes only the root node output labels as an input and is thus
most likely to face difficulty in learning multi-hop message-passing. The MLP critic should perform better
because training an MLP is easier, though it might be sample-inefficient when the number of tasks is large.
For example, in Cheetah++ an agent would need to learn 12 different critics. Finally, NERVENET learns a
separate MLP encoder per task, partially defeating the purpose of using GNN for incompatible environments.
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(c) Humanoid++
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(d) Hopper++
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(e) Walker-Humanoid++
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(f) Walker-Humanoid-Hopper++
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(g) Cheetah-Walker-Humanoid++
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(h) Cheetah-Walker-Humanoid-Hopper++

Figure 3: AMORPHEUS consistently outperforms SMP on MTRL benchmarks from Huang et al.
(2020), supporting our hypothesis that no explicit structural information is needed to learn a suc-
cessful MTRL policy and that facilitated message-passing procedure results in faster learning.

While we focused on MTRL in this work, we also evaluated AMORPHEUS in a zero-shot generalisa-
tion setting. Table 3 in Appendix D provides initial results demonstrating AMORPHEUS’s potential.

4.2 ATTENTION MASK ANALYSIS

GNN-based policies, especially those that use attention, are more interpretable than monolithic MLP
policies. We now analyse the attention masks that AMORPHEUS learns. Having an implicit structure
that is state dependent is one of the benefits of AMORPHEUS (every node has access to other nodes’
annotations, and the aggregation weights depend on the input as shown in Equation 1). By contrast,
NERVENET and SMP have a rigid message-passing structure that does not change throughout training
or throughout a rollout. Indeed, Figure 5 shows a variety of masks a Walker++ model exhibits
within a Walker-7 rollout, confirming that AMORPHEUS attends to different parts of the state space
based on the input.

Both Wang et al. (2018) and Huang et al. (2020) notice periodic patterns arising in their models.
Smilarly, AMORPHEUS demonstrates cycles in attention masks, usually arising for the first layer of
the transformer. Figure 6 shows the column-wise sum of the attention masks coordinated with an
upper-leg limb of a Walker-7 agent. Intuitively, the column-wise sum shows how much other
nodes are interested in the node corresponding to that column.

Interestingly, attention masks in earlier layers change more slowly within a rollout than those of the
downstream layers. Figure 13 in Appendix C.2 demonstrates this phenomenon for three different
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Figure 4: MTRL performance on
Walkers (Wang et al., 2018).
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Figure 6: In the first attention layer of a Walker-7 rollout, nodes attend to an upper leg (column-
wise mask sum ∼ 3) when the leg is closer to the ground (normalized angle ∼ 0).

Walker++ models tested on Walker-7. This shows that AMORPHEUS might, in principle, learn a
rigid structure (as in GNNs) if needed.

Finally, we investigate how attention masks evolve over time. Early in training, the masks are
spread across the whole graph. Later on, the mask weights distributions become less uniform.
Figures 10, 11 and 12 in Appendix C.1 demonstrate this phenomenon on Walker-7.

5 RELATED WORK

Most MTRL research considers the compatible case (Rusu et al., 2016; Parisotto et al., 2016; Teh
et al., 2017; Vithayathil Varghese & Mahmoud, 2020). MTRL for continuous control is often done
from pixels with CNNs solving part of the compatibility issue. DMLab (Beattie et al., 2016) is a
popular choice when learning from pixels with a compatible action space shared across the environ-
ments (Hessel et al., 2019; Song et al., 2020).

GNNs started to stretch the possibilities of RL allowing MTRL in incompatible environments. Khalil
et al. (2017) learn combinatorial optimisation algorithms over graphs. Kurin et al. (2020) learn
a branching heuristic of a SAT solver. Applying approximations schemes typically used in RL to
these settings is impossible, because they expect input and output to be of fixed size. Another form of
(potentially incompatible) RL using message passing are coordination graphs (e.g. DCG, Boehmer
et al., 2020), that use the max-plus algorithm (Pearl, 1989) to coordinate action selection between
multiple agents. One can apply DCG in single-agent RL using ideas of Tavakoli et al. (2021).

Several methods for incompatible continuous control have also been proposed. Chen et al. (2018)
pad the state vector with zeros to have the same dimensionality for robots with different number of
joints, and condition the policy on the hardware information of the agent. D’Eramo et al. (2020)
demonstrate a positive effect of learning a common network for multiple tasks, learning a specific
encoder and a decoder one per task. We expect this method to suffer from sample-inefficiency be-
cause it has to learn separate input and output heads per each task. Moreover, Wang et al. (2018)
have a similar implementation of their MTRL baseline showing that GNNs have benefits over MLPs
for incompatible control. Huang et al. (2020), whose work is the main baseline in this paper, ap-
ply a GNN-like approach and study its MTRL and generalisation properties. The method can be
used only with trees, its aggregation function is not permutation invariant, and the message-passing
schema stays fixed throughout the training procedure. Wang et al. (2018) and Huang et al. (2020)
attribute the effectiveness of their methods to the ability of the GNNs to exploit information about
agent morphology. In this work, we present evidence against this hypothesis, showing that existing
approaches do not exploit morphological information as was previously believed.
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Attention mechanisms have also been used in the RL setting. Zambaldi et al. (2018) consider self-
attention to deal with an object-oriented state space. They further generalize this to variable action
spaces and test generalisation on Starcraft-II mini-games that have a varying number of units and
other environmental entities. Duan et al. (2017) apply attention for both temporal dependency and a
factorised state space (different objects in the scene) keeping the action space compatible. Parisotto
et al. (2020) use transformers as a replacement for a recurrent policy. Loynd et al. (2020) use
transformers to add history dependence in a POMDP as well as for factored observations, having a
node per game object. The authors do not consider a factored action space, with the policy receiving
the aggregated information of the graph after the message passing ends. Baker et al. (2020) use
self-attention to account for a factored state-space to attend over objects or other agents in the scene.
AMORPHEUS does not use a transformer for recurrency but for the factored state and action spaces,
with each non-torso node having an action output. Iqbal & Sha (2019) apply attention to generalise
MTRL multi-agent policies over varying environmental objects and Iqbal et al. (2020) extend this to
a factored action space by summarising the values of all agents with a mixing network (Rashid et al.,
2020). Li et al. (2020) learn embeddings for a multi-agent actor-critic architecture by generating the
weights of a graph convolutional network (GCN, Kipf & Welling, 2017) with attention. This allows
a different topology in every state, similar to AMORPHEUS, which goes one step further and allows
to change the topology in every round of message passing.

Another line of work aims to infer graph topology instead of hardcoding one. Differentiable Graph
Module (Kazi et al., 2020) predicts edge probabilities doing a continuous relaxation of k-nearest
neighbours to differentiate the output with respect to the edges in the graph. Johnson et al. (2020)
learn to augment a given graph with additional edges to improve the performance of a downstream
task. Kipf et al. (2018) use variational autoencoders (Kingma & Welling, 2014) using a GNN for
reconstruction. Notably, the authors notice that message passing on a fully connected graph might
work better than when restricted by skeleton when evaluated on human motion capture data.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the role of explicit morphological information in graph-based con-
tinous control. We ablated existing methods SMP and NERVENET, providing evidence against the
belief that these methods improve performance by exploiting explicit morphological structure en-
coded in graph edges. Motivated by our findings, we presented AMORPHEUS, a transformer-based
method for MTRL in incompatible environments. AMORPHEUS obviates the need to propagate mes-
sages far away in the graph and can attend to different regions of the observations depending on the
input and the particular point in training. As a result, AMORPHEUS clearly outperforms existing work
in incompatible continuous control. In addition, AMORPHEUS exhibits non-trivial behaviour such as
periodic cycles of attention masks coordinated with the gait. The results show that information in
the node features alone is enough to learn a successful MTRL policy. We believe our results further
push the boundaries of incompatible MTRL and provide valuable insights for further progress.

One possible drawback of AMORPHEUS is its computational complexity. Transformers suffer from
quadratic complexity in the number of nodes with a growing body of work addressing this issue (Tay
et al., 2020). However, the number of the nodes in continuous control problems is relatively low
compared to much longer sequences used in NLP (Devlin et al., 2019). Moreover, Transformers
are higly parallelisable, compared to SMP with the data dependency across tree levels (the tree is
processed level by level with each level taking the output of the previous level as an input).

We focused on investigating the effect of injecting explicit morphological information into the
model. However, there are also opportunities to improve the learning algorithm itself. Potential
directions of improvement include averaging gradients instead of performing sequential task up-
dates, or balancing tasks updates with multi-armed bandits or PopArt (Hessel et al., 2019).
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A REPRODUCIBILITY

We initially took the transformer implementation from the Official Pytorch Tutorial (Sequence-
to-Sequence Modeling, Pytorch Tutorial) which uses TransformerEncoderLayer from Py-
torch (Paszke et al., 2017). We modified it for the regression task instead of classification, and
removed masking and the positional encoding. Table 1 provides all the hyperparameters needed to
replicate our experiments.

Table 1: Hyperparameters of our experiments

Hyperparameter Value Comment
AMORPHEUS

– Learning rate 0.0001
– Gradient clipping 0.1
– Normalisation LayerNorm As an argument to TransformerEncoder in torch.nn
– Attention layers 3
– Attention heads 2
– Attention hidden size 256
– Encoder output size 128

Training

– runs 3 per benchmark

AMORPHEUS makes use of gradient clipping and a smaller learning rate. We found, that SMP also
performs better with the decreased learning rate (0.0001) as well and we use it throughout the work.
Figure 7 demonstrates the effect of a smaller learning rate on Walker++. All other SMP hyperpa-
rameters are as reported in the original paper with the two-directional message passing.
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Figure 7: Smaller learning rate make SMP to
yield better results on Walker++.
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Figure 8: Removing the return limit slightly de-
teriorates the performance of NerveNet on Walk-
ers.

Wang et al. (2018) add an artificial return limit of 3800 for their Walkers environment. We remove
this limit and compare the methods without it. For NerveNet, we plot the results with the option best
for it. Figure 8 compares the two options.
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Table 2: Full list of environments used in this work.

Environment Training Zero-shot testing
Walker++

walker 2 main walker 3 main
walker 4 main walker 6 main
walker 5 main
walker 7 main

humanoid++

humanoid 2d 7 left arm humanoid 2d 7 left leg
humanoid 2d 7 lower arms humanoid 2d 8 right knee
humanoid 2d 7 right arm
humanoid 2d 7 right leg
humanoid 2d 8 left knee
humanoid 2d 9 full

Cheetah++

cheetah 2 back cheetah 3 balanced
cheetah 2 front cheetah 5 back
cheetah 3 back cheetah 6 front
cheetah 3 front
cheetah 4 allback
cheetah 4 allfront
cheetah 4 back
cheetah 4 front
cheetah 5 balanced
cheetah 5 front
cheetah 6 back
cheetah 7 full

Cheetah-Walker-
-Humanoid

All in the column above All in the column above

Hopper++

hopper 3
hopper 4
hopper 5

Cheetah-Walker-
-Humanoid-Hopper

All in the column above All in the column above

Walkers from
Wang et al. (2018)

Ostrich
HalfCheetah
FullCheetah
Hopper
HalfHumanoid
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B MORPHOLOGY ABLATIONS

Figure 9 shows examples of graph topologies we used in structure ablation experiments.
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Figure 9: Examples of graph topologies used in the structure ablation experiments.
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C ATTENTION MASK ANALYSIS

C.1 EVOLUTION OF MASKS THROUGHOUT THE TRAINING PROCESS

Figures 10, 11 and 12 demonstrate the evolution of AMORPHEUS attention masks during training.
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Figure 10: Walker++ masks for the 3 attention layers on Walker-7 at the beginning of training.
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Figure 11: Walker++ masks for the 3 attention layers on Walker-7 after 2.5 mil frames.
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Figure 12: Walker++ masks for the 3 attention layers on Walker-7 at the end of training.
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C.2 ATTENTION MASKS CUMULATIVE CHANGE
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Figure 13: Absolutive cumulative change in the attention masks for three different models on
Walker-7.

D GENERALISATION RESULTS

Table 3: Initial results on generalisation. The numbers show the average performance of three seeds
evaluated on 100 rollouts and standard error of the mean. While the average values are higher
for AMORPHEUS on 5 out of 7 benchmarks, high variance of both methods might be indicative of
instabilities in generalisation behaviour due to large differences between the training and testing
tasks.

AMORPHEUS SMP

walker-3-main 666.24 (133.66) 175.65 (157.38)
walker-6-main 1171.35 (832.91) 729.26 (135.60)

humanoid-2d-7-left-leg 2821.22 (1340.29) 2158.29 (785.33)
humanoid-2d-8-right-knee 2717.21 (624.80 ) 327.93 (125.75)

cheetah-3-balanced 474.82 (74.05) 156.16 (33.00)
cheetah-5-back 3417.72 (306.84) 3820.77 (301.95)
cheetah-6-front 5081.71 (391.08) 6019.07 (506.55)

E RESIDUAL CONNECTION ABLATION

We use the residual connection in AMORPHEUS as a safety mechanim to prevent nodes from for-
getting their own observations. To check that AMORPHEUS’s improvements do not come from the
residual connection alone, we performed the ablation. As one can see on Figure 14, we cannot at-
tribute the success of our method to this improvement alone. High variance on Humanoid++ is
related to the fact that one seed started to improve much later, and the average performance suffered
as the result.
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(b) Cheetah++
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(c) Humanoid++
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(d) Hopper++
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(e) Walker-Humanoid++
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(f) Walker-Humanoid-Hopper++
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(g) Cheetah-Walker-Humanoid++
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(h) Cheetah-Walker-Humanoid-Hopper++

Figure 14: Residual connection ablation experiment.
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