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Abstract

With the rapid advancement of large language001
models (LLMs) for handling complex language002
tasks, an increasing number of studies are em-003
ploying LLMs as agents to emulate the sequen-004
tial decision-making processes of humans often005
represented as Markov decision-making pro-006
cesses (MDPs). The actions in MDPs adhere007
to specific probability distributions and require008
iterative sampling. This arouses curiosity re-009
garding the capacity of LLM agents to compre-010
hend probability distributions, thereby guiding011
the agent’s behavioral decision-making through012
probabilistic sampling and generating behav-013
ioral sequences. To answer the above question,014
we divide the problem into two main aspects:015
sequence simulation with known probability016
distribution and sequence simulation with un-017
known probability distribution. Our analysis018
indicates that LLM agents can understand prob-019
abilities, but they struggle with probability sam-020
pling. Their ability to perform probabilistic021
sampling can be improved to some extent by022
integrating coding tools, but this level of sam-023
pling precision still makes it difficult to simu-024
late human behavior as agents.025

1 Introduction026

With the rapid development of artificial intelli-027

gence technology, large language models (LLMs),028

as a key component, have demonstrated powerful029

language understanding and generation capabili-030

ties (Zhao et al., 2023; Kojima et al., 2022). In031

addition to language generation, people have be-032

gun to explore the field of introducing LLMs into033

the decision-making process, such as simulating034

human sequential decision-making processes as an035

agent, and LLM agents have gradually shown their036

excellent potential in simulating human behaviors037

and decision-making (Li et al., 2023; Gao et al.,038

2023; Leng and Yuan, 2024; Brand et al., 2023;039

Horton, 2023). This brings great convenience to040

research in fields such as computer science, behav-041

ioral science, psychology, and sociology. For ex- 042

ample, the core conversational robots (Zhou et al., 043

2024b) and social robots of LLMs can more realis- 044

tically simulate human speech and behavior. LLM 045

agents have demonstrated promising results in vari- 046

ous tasks simulating human behavior (Taylor et al., 047

2022; Yuan et al., 2022; Aher et al., 2023; He et al., 048

2024). However, whether LLM agents can effec- 049

tively simulate human behavior sequences remains 050

an open question and requires careful validation. 051

Human behavior can often be effectively mod- 052

eled using Markov decision processes (MDPs). Nu- 053

merous studies have applied this framework to sim- 054

ulate human behaviors such as planning (Callaway 055

et al., 2017; Guojiang et al., 2007; Redding et al., 056

2012). MDPs consist of four key components: 057

states, actions, transition probabilities, and rewards. 058

Within this framework, an agent in a given state 059

selects an action, leading to a transition to the next 060

state based on defined probabilities, and receives 061

associated rewards. The parallel between human 062

behavior and MDPs stems from the tendency of 063

decision-making processes to depend on current 064

circumstances and available actions, rather than 065

solely on past experiences. When confronted with 066

a situation, humans typically make decisions based 067

on their present state and the feasible choices, aim- 068

ing to optimize future benefits or satisfaction. This 069

mirrors the states, action selections, and rewards 070

accrued through state transitions in MDPs. 071

In MDPs, sequences of actions follow a specific 072

probability distribution. Similarly, human behav- 073

ioral sequences theoretically adhere to probabilistic 074

distributions as well. Considering the feasibility of 075

using MDPs to model human behavior, an LLM- 076

based agent should generate actions that match a 077

probability distribution if it truly simulates human 078

behavior. But can LLM agents do this? The most 079

direct way to validate this is to explore their proba- 080

bility distribution sampling capabilities. Figure 1 081

illustrates our approach to assessing LLM’s under- 082
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Figure 1: The decision-making process of the LLM agent is a MDP, and the generated action sequence A conforms
to a certain probability distribution. We input Prompt1 for the known probability distribution and Prompt2 for
the unknown probability distribution, analyze the probability distribution of A generated by the LLM agent, and
finally evaluate the behavioral simulation capability of the LLM agent.

standing and sampling capabilities of probability083

distributions. We outline two tasks of varying com-084

plexity: simulating scenarios with known proba-085

bility distributions and generating sequences with086

probability distribution is not clear. Our evalua-087

tion of multiple LLMs in these scenarios aims to088

assess the potential and limitations of LLM agents089

in simulating human decision-making processes.090

In the first scenario, we propose questions about091

known probability distributions. Using these ques-092

tions to prompt LLM agents for probability sam-093

pling, we analyze both the probability distributions094

and the generated sequences answered by the LLM095

agents. However, obtaining an accurate probability096

distribution is often challenging in practical sce-097

narios. Therefore, we shift our focus to sequence098

generation in situations where the probability dis-099

tribution is unclear. Online social networks are100

increasingly utilized in real-life scenarios (Sakaki101

et al., 2013; Panzarasa et al., 2009), prompting us102

to use these networks as contextual backgrounds.103

By observing varying activity levels corresponding104

to different behavior sequences generated by LLM105

agents, we indirectly assess the rationality of the106

sequences sampled. Ultimately, we instruct LLM107

agents to sample from probability distributions by108

generating code, aiming to evaluate whether pro-109

gramming tools can assist LLM agents in improv-110

ing their sampling success rate.111

Our analysis suggests that the probability sam-112

pling performance of LLM agents is not very good.113

While LLM agents demonstrate some understand- 114

ing of simple probability distributions, their success 115

rates in sampling sequences adhering to known dis- 116

tributions are limited. Moreover, they struggle with 117

unknown probability distributions. However, when 118

coupled with programming tools, LLM agents can 119

achieve higher success rates in sampling these dis- 120

tributions by invoking appropriate functions. Yet, 121

their abilities to sample from complex probabil- 122

ity distributions remain comparatively weak, and 123

even with the integration of programming tools, 124

enhancements in sampling capability are elusive. 125

Consequently, prudent consideration is necessary 126

before employing LLM directly for simulating hu- 127

man behavior. 128

Our main contributions are: 129

• Explore the LLM agent’s ability to understand 130

and sample probability distributions from both 131

the perspectives of known and unknown prob- 132

ability distributions. 133

• A method of using programming tools to as- 134

sist sampling is proposed to improve the effect 135

of the LLM agent in the probability distribu- 136

tion sampling process and is effective in sim- 137

ple probability distributions. 138

• Our experimental results reveal the limitations 139

of LLM agents in terms of probability distri- 140

butions when simulating human behavior. 141

2



2 Background142

2.1 MDPs of Human Behavior143

The modeling of human behavior in MDPs could in-144

clude the following aspects (Tan and Cheng, 2009):145

Human behavior can be understood as transitions146

between different states of state space (S), which147

may include emotional states, social identities, and148

more. In each state, humans can choose from a149

series of possible actions or decisions of action150

space (A). These actions lead to state changes with151

certain probabilities, represented by the state tran-152

sition probability P . Human behavior is driven by153

rewards and punishments, described by the reward154

function R. To maximize benefits, humans adopt155

various strategies, captured by a policy π, which156

maps the probability of taking action a in state s.157

Humans typically have long-term goals, such as158

maximizing life satisfaction, career achievement,159

or health. The objective in an MDP is to find a160

policy π that maximizes the expected cumulative161

reward. A common objective function is the total162

discounted return Gt:163

Gt =
∞∑
k=0

γkRt+k+1, (1)164

where t represents current time, γ (0 ≤ γ ≤ 1) is165

the discount factor, representing the present value166

of future rewards.167

Based on the above discussion, human behavior168

can usually be regarded as conforming to a cer-169

tain probability distribution. Given characteristics,170

there is a defined probability distribution (Viti et al.,171

2015). Some simple behaviors conform to common172

probability distributions (Yan et al., 2012; Hu and173

Han, 2008; Wang et al., 2011). Additionally, many174

real-world human behaviors may be complex and175

composed of multiple distributions (Tenorth et al.,176

2013; Sorensen et al., 2017).177

Human behavior can be modeled as MDPs,178

where actions in MDPs can be interpreted as be-179

haviors that follow a series of probability distribu-180

tions (Korthikanti et al., 2010). If LLM agents can181

accurately simulate human behavior, the sequences182

of behaviors they generate should align with these183

probability distributions.184

2.2 Large Language Models as Agent185

In recent years, with the rapid development of186

LLM, more and more studies have discovered the187

great potential of LLM agents in simulating user- 188

generated behaviors. Behavior simulation can gen- 189

erate user research data and facilitate research in 190

recommendation systems, human-computer inter- 191

action, social science research, etc. (Hämäläinen 192

et al., 2023; Kim and Lee, 2023; Li et al., 2023). 193

Social network simulation has many applications 194

in understanding human social behavior patterns, 195

policy formulation and planning, disaster manage- 196

ment, etc. (Panzarasa et al., 2009; Sakaki et al., 197

2013; Jiang and Ferrara, 2023). Many studies have 198

shown that LLM agents can exhibit certain social 199

behavior capabilities, simulate individuals in so- 200

cial networks at a micro level, and imitate human 201

behavior (Gao et al., 2023; Leng and Yuan, 2024). 202

In addition to the analysis and research on the 203

human-like behavior of LLM agents in various 204

fields, owing to the complexity of human think- 205

ing and their outstanding learning and tool usage 206

abilities, several studies (Yao et al., 2023; Schick 207

et al., 2023; Shinn et al., 2023; Zhou et al., 2024a) 208

have designed an agent framework with LLMs as 209

the core. This framework provides LLMs with 210

additional modules such as profile management, 211

reasoning, and tool usage, enabling more accurate 212

simulation of human speech and behavior. 213

The complexity of human behavior poses chal- 214

lenges for artificial intelligence in simulating it. 215

The capability of LLM agents to simulate human 216

behavior through probability distribution remains 217

to be fully explored. 218

3 Verification Methodology 219

To determine if LLMs can effectively simulate ac- 220

tion sampling, we have designed experiments to 221

address the following four research questions: 222

RQ1: Do LLM agents have the ability to under- 223

stand probability distributions? 224

RQ2: Do LLM agents have the ability to sample 225

simple known probability distributions? 226

RQ3: Do LLM agents have the ability to sample 227

complex unknown probability distributions? 228

RQ4: Can LLM agents improve their proba- 229

bility distribution sampling ability by combining 230

programming tools? 231

To verify these issues, we evaluated LLMs on 232

two levels: known and unknown behavioral proba- 233

bility distributions. Additionally, we used code 234

tools to explore LLMs’ probability distribution 235

sampling ability. 236
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3.1 Known Probability Distribution237

To verify if LLM agents can understand and sample238

from a given probability distribution, we compared239

the expected probability distribution with the prob-240

ability distribution of the generated behavior se-241

quence through hypothesis testing. This approach242

addresses RQ1 and RQ2.243

3.1.1 Experimental Design244

To explore the ability of LLM agents to understand245

probability distributions, two sets of controlled ex-246

periments were designed.247

Firstly, given a problem with a known probabil-248

ity distribution PX , we ask LLM agents to predict249

an action sequence A based on the problem, form-250

ing the prompt prom. Our expectation is that the251

probability distribution PA that action sequence A252

conforms to matches PX . For example, given the253

average math score from the last semester, we ask254

LLM agents to predict the next scores. Secondly,255

leveraging the improvement to LLMs through the256

chain of thought (CoT) approach, we add "what257

probability distribution does this sequence conform258

to" to prom, resulting in promD. This guide the259

LLM agents to identify the probability distribution.260

See the Appendix A.1.1 for prompts used in this261

part of the experiment.262

We also extract the type of the probability distri-263

bution from the LLM agents’ answers to verify if264

they can understand probability distributions.265

3.1.2 Evaluation Metrics266

We designe evaluation metrics to assess the proba-267

bility distribution understanding and sampling ca-268

pabilities of LLM agents.269

Firstly, considering PA, unanswered and incor-270

rect answers are regarded as negative samples.271

Only correct answers are regarded as positive sam-272

ples. The proportion of positive samples acc-pd is273

calculated to measure the LLM’s ability to under-274

stand probability distributions.275

Secondly, to evaluate the performance of the276

LLMs in sampling the probability distribution PX .,277

we employ Kolmogorov-Smirnov test (KS test) (Jr.,278

1951). In KS test, The statistic D is used to assess279

whether two samples from the same distribution280

by comparing their empirical distribution functions.281

The empirical distribution functions Fm(x) and282

Gn(x) for the sample from PX and PA represent283

the proportion of samples less than or equal to x.284

D = sup
x

|Fm(x)−Gn(x)|, (2)285

where supx denotes the supremum over all possi- 286

ble values of x. Finally, we assess the fit between 287

the sample sequence and the target probability dis- 288

tribution using the mean p-value p-mean from the 289

KS test. When the p-value is greater than the sig- 290

nificance level α, the test is considered to have 291

passed, and the statistical test pass rate is denoted 292

as success-ks. 293

Additionally, the p-mean is obtained on the p- 294

value after outlier processing. Since the calculated 295

average value is easily affected by outliers, the in- 296

terquartile range (IQR) outlier detection method 297

was used to detect outliers in the experimental 298

data and replace them with the median. In IQR 299

outlier detection, the interquartile range r is the 300

distance between the upper quartile Q3 and the 301

lower quartile Q1. The normal value interval is 302

[Q1− 1.5r,Q3 + 1.5r], and other values are con- 303

sidered outliers. 304

3.2 Unknown Probability Distribution 305

To answer RQ3, we used online social networks as 306

the background to evaluate the simulation capabil- 307

ity of LLM agents through a comparative analysis 308

of the results. 309

3.2.1 Experimental Design 310

In online social network platforms, user activity 311

level l represents the user’s level of activity on 312

the platform and affects users’ behavior or actions. 313

Compared to low-activity-level users, high-activity- 314

level users frequent social platforms more often, 315

post more comments, browse more posts, and are 316

more likely to like and comment on the posts they 317

browse. Therefore, even though the probability 318

distribution of these behaviors is unknown, a com- 319

parative analysis of the probability distributions of 320

sampled results with different l can help determine 321

whether the user action sequences generated by 322

LLM agents adheres to these patterns. 323

We set the activity level variable l in the prompt 324

proml, along with six activity indicators. These 325

indicators include active behavior: the duration of 326

browsing, the number of visits to the social plat- 327

form, and the number of posts in a day; and inter- 328

active behavior: the likes, reposts, and comments 329

on 100 posts. We use proml as the dialogue input 330

for LLMs, prompting them to generate the corre- 331

sponding information. See Appendix A.1.2 for 332

the prompts used in this part of the experiment. 333

The ability of LLMs to simulate user behavior se- 334

quences is analyzed by comparing the generated 335
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results across different values of l.336

3.2.2 Evaluation Metrics337

For active behaviors such as browsing duration,338

number of visits, and number of posts, we directly339

compare the results generated by LLM agents. Tak-340

ing browsing duration as an example, as activity341

level increases, so does browsing duration.342

In interactive behaviors such as likes, reposts,343

and comments, we observed contradictory re-344

sponses from LLMs. When LLM agents were345

tasked with generating binary sequences for likes,346

shares, and comments, and then asked to report347

the counts of these actions, the numbers they pro-348

vided did not match the sequences they actually349

generated. Therefore, we use a more fine-grained350

actual generated sequence to represent the LLMs351

sampling sequence and use the number of likes, re-352

posts, and comments in the action sequence as the353

frequency of LLMs generation. Take likes as an ex-354

ample, Si = {b0, b1, b2, . . . , bni−2, bni−1, bni} rep-355

resents the like sequence sampled by LLM agents356

when l = li. Here, ni is the length of the sequence,357

bj represents the j-th element in the sequence, and358

the value of bj is 1 or 0, indicating like or not like,359

respectively. As l increases, so does the frequency360

of likes. Therefore,361

c1/n1 < c2/n2 < c2/n3

s.t. l1 < l2 < l3,
(3)362

where ci represents the number of 1s in Si.363

For the experimental group that meets the above364

conditions, the simulation is considered successful.365

All data combinations corresponding to different366

activity levels are cross-checked to calculate the367

simulation success rate success-simu.368

3.3 Methods for Code Experiments369

In this section, the goal of our designed experi-370

ment is to answer RQ4. Given that the sampling371

performance of LLM agents in probability distri-372

butions is not very good, we considered whether373

external tools could be used to improve the LLM374

agents’ probability distribution sampling capabili-375

ties. Considering that LLMs have code generation376

capabilities (Chen et al., 2021), Python code can377

be generated and sampled with the help of Python378

tools. Therefore, we asked LLM agents to solve the379

above problems by generating Python code through380

promcode. See the Appendix A.1.3 for prompts re-381

lated to this part of the experiment. After running382

codes, we used the same method to obtain results.383

In experiments with known probability distribu- 384

tions, LLM agents are required to generate Python 385

code based solely on promD. Since the proba- 386

bility distribution is known, the generated Python 387

code is considered correct if the appropriate proba- 388

bility distribution sampling function is called, the 389

parameters are correct, and there are no other code 390

errors. In other cases, the code is considered in- 391

correct. Therefore, no further KS test is required. 392

In the experiment of unknown probability distribu- 393

tions, promcode requires the LLM agent to generate 394

Python code. After running the Python code, the 395

results are analyzed using the same method as in 396

the previous experimental method. 397

4 Experiment 398

Based on the four questions we raised in Section 3 399

and the previous validation methods, in this sec- 400

tion, we will introduce our experimental setup and 401

present the experimental results in sequence. 402

4.1 Experimental Setups 403

4.1.1 Known Probability Distribution 404

We select the following probability distributions. 405

The Poisson distribution describes the number of 406

events occurring within a fixed interval of time 407

or space. The Uniform distribution describes a 408

situation where all possible values have equal prob- 409

ability. The Normal distribution describes data 410

that are symmetrically distributed around the mean. 411

The Exponential distribution describes the time 412

intervals between events in a Poisson process, char- 413

acterized by a constant event rate. The Binomial 414

distribution describes the number of successes in a 415

fixed number of independent trials, each with the 416

same probability of success. 417

4.1.2 Unknown Probability Distribution 418

In this part of the experiment, we selected three ac- 419

tivity levels: 0.2, 0.5, and 0.8, with the maximum 420

activity level set at 1. For the activity measurement 421

index, we chose the duration of browsing, the num- 422

ber of visits to the social platform, the number of 423

posts in a day, and the likes, reposts, and comments 424

on 100 posts. These metrics will all vary with the 425

activity level. 426

4.1.3 Models 427

Five large language models were selected for the ex- 428

periment of known probability distributions: GPT- 429

4 (Achiam et al., 2023), GPT-3.5 (GPT-3.5), Claude 430

2.1 (Bai et al., 2022), Llama2 (Touvron et al., 2023), 431
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Prompts Methods
Probability Distribution

Poisson Uniform Normal Exponential Binomial

prom
one-step 7.0E-21 7.4E-03 1.6E-03 5.8E-33 1.6E-13
multi-step 2.1E-41 8.5E-03 9.7E-23 5.8E-33 2.6E-01

promD
one-step 8.5E-09 3.2E-03 4.0E-03 5.8E-33 6.5E-08
multi-step 2.1E-41 8.6E-03 3.0E-39 1.6E-13 1.3E-03

Table 1: Comparison of the p-mean of different meth-
ods for GPT-3.5 under prom and promD.

and Vicuna (Chiang et al., 2023). Building on this432

foundation, four additional large language mod-433

els were included for the experiment of unknown434

probability distributions: ERNIEBot (ERNIE Bot),435

ChatGLM (Du et al., 2021), Gemini (Team et al.,436

2023), and Mixtral (Jiang et al., 2024). Given the437

complexity of unknown probability distributions438

and the diversity among models, we conducted a439

more comprehensive set of experiments.440

4.2 Experimental Results441

The LLM’s probability distribution sampling abil-442

ity was evaluated in the following four aspects.443

Examples of LLM’s answers in the experiment are444

shown in Appendix A.2.445

In experiments where the prompt is prom, the446

Poisson distribution experiment of GPT-4, and the447

Exponential distribution experiment of GPT-3.5,448

GPT-4, and Claude2.1, the LLM agents could an-449

swer the distribution. Therefore, in these four450

groups of experiments, we reused the data from451

the experiment where the prompt is promD.452

4.2.1 Efficient Action Sampling453

When instructing LLM agents to generate se-454

quences, we compared the multi-step method with455

the one-step method, as shown in Table 1. In the456

multi-step method, actions are generated one at a457

time within the same context, repeated 100 times,458

while the one-step method generates a complete459

sequence of length 100 at once. During the text460

generation process by LLMs, the prefix that has al-461

ready been generated is taken into account. Gener-462

ating 100 actions at once generally yields similar or463

better results compared to generating one action at464

a time, except in the case of Binomial distribution.465

However, the majority of results from both methods466

did not achieve the level of statistical significance.467

Therefore, considering both effectiveness and effi-468

ciency, we opt for the one-step approach.469

Models Metrics
Probability Distribution

Poisson Uniform Normal Exponential Binomial

GPT-3.5 p-mean 7.0E-21 7.4E-03 1.6E-03 5.8E-33 1.6E-13
success-ks 0% 5% 25% 0% 0%

GPT-4 p-mean 6.5E-08 4.6E-03 1.1E-02 6.5E-09 2.9E-03
success-ks 0% 0% 40% 0% 30%

Claude 2.1 p-mean 5.1E-56 1.2E-02 9.3E-03 1.2E-10 2.2E-06
success-ks 0% 45% 45% 0% 0%

Llama2 p-mean 3.3E-115 7.8E-17 9.2E-10 0.0 2.5E-05
success-ks 0% 0% 10% 5% 0%

Vicuna p-meann 1.8E-57 1.6E-204 7.1E-03 1.1E-46 3.8E-04
success-ks 0% 5% 50% 0% 15%

Table 2: The p-mean and the success-ks when the prob-
ability distribution is known and the prompt is prompt.
Bold data indicates the model with the largest p-mean
on this probability distribution.

4.2.2 Understanding of Probability 470

Distributions 471

If LLM agents can identify the probability distri- 472

bution PX that a random variable conforms to, it 473

reflects LLM agents’ ability to understand proba- 474

bility distributions concerning question RQ1. 475

As depicted in Figure 2, when LLM agents are 476

not required to answer probability distributions, ex- 477

cept for the Exponential distribution of GPT-3.5 478

and the Poisson and Exponential distribution of 479

GPT-4, LLM agents rarely take the initiative to 480

answer the question of what distribution it con- 481

forms to. However, this does not imply that they 482

do not know the PX . In the promD scenario, ex- 483

cept for partial probability distributions of Vicuna 484

and Llama2, the acc-pd of other models is higher, 485

reaching more than 80%. Similar results were ob- 486

served in the promcode experiment. This demon- 487

strates that LLMs have a certain ability to under- 488

stand probability distributions and can infer the 489

probability distribution based on the questions, al- 490

though the acc-pd of the vicuna model is lower 491

than other models. 492

4.2.3 Sampling from A Known Probability 493

Distribution 494

In this section, we answered question RQ2. For the 495

random variable X and the probability distribution 496

PX it obeys, the KS test is employed to assess 497

whether the sequence sampled by the LLM agent 498

conforms to PX . Here, we set the significance level 499

α in the KS test to the commonly used 0.01, the 500

average p-value is denoted as p-mean, and the test 501

pass rate is success-ks. 502

As shown in Table 2 and Table 3, from the per- 503

spective of success-ks, most models can achieve 504

the highest test pass rate on the Normal distribution, 505

while the success-ks on other probability distribu- 506
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Figure 2: Comparison of the acc-pd of different prompts for each LLM agent under different probability distributions

Models Metrics
Probability Distribution

Poisson Uniform Normal Exponential Binomial

GPT-3.5 p-mean 8.5E-09 3.2E-03 4.0E-03 5.8E-33 6.5E-08
success-ks 0% 0% 50% 0% 20%

GPT-4 p-mean 6.5E-08 3.2E-03 3.4E-03 6.5E-09 1.5E-02
success-ks 0% 0% 20% 0% 40%

Claude 2.1 p-mean 6.5E-06 1.1E-02 5.6E-02 1.2E-10 2.3E-04
success-ks 0% 55% 45% 0% 10%

Llama2 p-mean 8.8E-46 1.0E-08 1.6E-07 7.8E-38 1.6E-02
success-ks 0% 0% 10% 0% 50%

Vicuna p-mean 2.2E-31 1.6E-09 5.8E-03 2.2E-123 3.9E-10
success-ks 0% 0% 25% 0% 10%

Table 3: The p-mean and the success-ks when the
probability distribution is known and the prompt is
promptD. Bold data indicates the model with the
largest p-mean on this probability distribution.

tions is lower, and in many cases the success-ks is507

0%. Judging from the p-mean, the simulation per-508

formance of all models on Normal, Uniform, and509

Binomial distribution is much higher than on the510

Exponential and Poisson distribution. At the same511

time, during our experiments, we found that the512

Vicuna model often incorrectly answered questions513

about other probability distributions as Normal dis-514

tributions. We speculate that the reason for this515

phenomenon may be that there is more data con-516

sistent with the Normal distribution in the LLMs517

training data, while there is less data for Exponen-518

tial and Poisson distribution.519

The probability distribution sampling perfor-520

mance of GPT-4 is better than other models in half521

of the experimental groups, followed by Claude2.1522

with better performance. In addition, by comparing523

experiments with prom and promD, we found that524

instructing LLM agents by adding "what probabil-525

ity distribution does this sequence conform to" in526

the prompt can increase the p-mean. This suggests527

that this method can enhance the distribution sam-528

pling ability of LLM agents, although the p-value 529

often fails to reach the significance level α. There- 530

fore, we conclude that while LLM agents lack the 531

inherent ability to sample from known probability 532

distributions, tools can be employed to enhance 533

their performance with simple distributions. 534

4.2.4 Sampling from An Unknown Probability 535

Distribution 536

For different activity levels l, the success-simu is 537

calculated based on various activity indicators to 538

measure the rationality of the behavior simulated 539

by LLM agents when the probability distribution is 540

unknown concerning question RQ3. 541

As seen in Figure 3, most success-simu of var- 542

ious models are less than 30%, especially Llama2, 543

ERNIEBot, ChatGLM, and Gemini, with an av- 544

erage success-simu of only slightly more than 545

10%. Furthermore, there is significant performance 546

variance among models under different activity in- 547

dicators, indicating that most of the sampling re- 548

sults of unknown probability distributions by LLM 549

agents do not meet the required conditions, and 550

LLM agents lack the ability to sample unknown 551

probability distributions. 552

4.2.5 Probability Distribution Sampling 553

Combined with Code Tools 554

In this section, we answered question RQ4. In 555

the code experiment section, promcode leads LLM 556

agents to generate Python code, and the results are 557

obtained by running the Python code. 558

In experiments with known probability distri- 559

butions, the accuracy of the code acc-code and 560

the acc-pd are calculated. It can be seen from 561

Table 4 and Figure 2 that the acc-code and the 562
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Figure 3: Comparison of the success-simu of proml and promcode for each LLM agent under unknown probability
distributions. "Duration" is the browsing duration, "Sessions" is the number of visits to the social platform, "Likes"
is the proportion of likes, "Reposts" is the proportion of forwarding, "Comments" is the proportion of comments,
and "Posts" is the number of posts.

Models
Probability Distribution

Poisson Uniform Normal Exponential Binomial

GPT-3.5 100% 100% 100% 75% 100%
GPT-4 100% 100% 100% 100% 100%
Claude 2.1 75% 100% 95% 100% 100%
Llama2 5% 100% 65% 0% 55%
Vicuna 15% 40% 65% 10% 65%

Table 4: In the case of known probability distribution,
the acc-code of each model on the probability distribu-
tion by generating Python code.

acc-pd of GPT-3.5, GPT-4, and Claude2.1 have563

reached nearly 100% in most probability distribu-564

tions, while Llama2 and Vicuna do not perform565

as well. But overall, there has been significant566

improvement in sampling known probability distri-567

butions through Python code.568

In the experiment with unknown probability dis-569

tributions, the running results of the code were570

statistically evaluated in the same way. As shown571

in Figure 3, we found that combining code tools572

cannot improve the unknown probability distri-573

bution sampling ability of LLM agents, and the574

success-simu of each model is still low. More-575

over, during the experiment, we found that most576

LLM agents use code to randomly generate results577

without considering activity levels l. We speculate578

that because the problem of unknown probability579

distribution is relatively complex, and there is no580

suitable Python tool function that can directly gen-581

erate results, LLM agents still need to generate582

code through their own reasoning and then obtain 583

results through the code. Unlike the problem of 584

known probability distribution, where they only 585

need to reason about the correct probability dis- 586

tribution and parameters, they can usually get the 587

correct code. When reasoning skills are still lack- 588

ing, it is difficult to generate better code. 589

5 Conclusion 590

This paper evaluates the reliability of LLM agents’ 591

behavior simulations from the perspective of novel 592

probability distributions. We explore their capabil- 593

ities through KS tests of known distributions and 594

evaluations of unknown distributions. Our findings 595

indicate that while LLM agents have some under- 596

standing of probability distributions, their sampling 597

abilities are insufficient. Consequently, it is chal- 598

lenging to generate behavior sequences that con- 599

form to specific distributions solely with LLMs. 600

This limitation arises from the probabilistic nature 601

of LLMs’ word prediction, which results in a lay- 602

ered probability distribution. Even with program- 603

ming tools, improving sampling performance for 604

complex distributions remains difficult. Due to the 605

probabilistic nature of actions in MDPs, without 606

effective sampling capabilities, LLM agents strug- 607

gle to simulate human behavior accurately. Future 608

work will focus on enhancing the LLM agent’s 609

probability distribution sampling abilities to im- 610

prove behavioral simulations. 611
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Limitations612

Due to resource limitations, some experiments lack613

comprehensive evaluation. For example, when614

comparing the similarity between multi-step gen-615

erated sequences and sequences containing 100616

digits generated at once, only the GPT-3.5 model617

was evaluated.618

Additionally, the experiment in this article is619

based on prompt engineering and faces issues of in-620

stability. Before conducting experiments, we com-621

pared various prompts and selected those that were622

relatively better and elicited better responses from623

the LLM. Future work will further address this624

issue by developing more diverse prompts and en-625

hancing the robustness of evaluations.626

Ethics Statement627

This study adheres to rigorous ethical standards to628

ensure the integrity and credibility of the research.629

The primary focus is on evaluating the reliability630

of LLM agents’ behavior simulations, which does631

not involve any human participants or sensitive632

data. Transparency is maintained through clear633

reporting of methods and results. The study was634

approved by the appropriate ethics review board,635

and efforts were made to responsibly use resources636

and consider the future implications of the research637

findings.638
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A Appendix842

A.1 Prompts843

We guide LLM agents to generate sequences844

through prompts. The prompts used in the experi-845

ment are as follows.846

A.1.1 Prompts for Known Probability847

Distributions848

This section shows the prompts for known proba-849

bility distributions. Table 5 is prom and Table 6 is850

promD.851

Probability distributions prom

Poisson distribution In the past, an average of 3 babies were born
per hour. Estimate the number of babies born
per hour 100 times in the future. List these 100
numbers (duplicates are allowed), separated
by commas.

Uniform distribution Simulate 100 rolls of the dice and list the 100
points separated by commas.

Normal distribution A classmate’s average score on the math test
last semester was 70 points. List his possible
scores on 100 math tests this year. List these
100 grades (can be repeated), separated by
commas.

Exponential distribution Assume that a coffee shop has an average of
one customer coming in every ten minutes,
guess how long it will take to wait for the
next customer 100 times, and list these 100
numbers, separated by commas.

Binomial distribution Assume you have a 30% probability of answer-
ing "0" and a 70% probability of answering
"1". Please answer 100 times. All answers are
separated by commas.

Table 5: prom for different probability distributions in
experiments with known probability distributions.

promD

prom + What probability distribution does
this sequence conform to

Table 6: promD in experiments with known probabil-
ity distributions. We only added a sentence after each
prom.

A.1.2 Prompts for Unknown Probability 852

Distributions 853

This section shows the prompts for unknown prob- 854

ability distributions. Table 7 is the template of 855

proml. 856

A.1.3 Prompts for Code Experiments 857

This section shows the prompts for code experi- 858

ments. Table 8 is the template of promcode. 859

A.2 Experimental Examples 860

A.2.1 Examples in Known Probability 861

Distributions Experiments 862

Some examples of LLM agents’ answers in known 863

probability distribution experiments are shown in 864

Figure 4. 865

A.2.2 Examples in Unknown Probability 866

Distributions Experiments 867

An example of LLM agents’ answer in the un- 868

known probability distribution experiments is 869

shown in Table 9. 870

A.2.3 Examples in Code Experiments 871

Some examples of LLM agents’ answers in the 872

code experiment are shown in Table 10 and Ta- 873

ble 11. 874
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proml

Please make sure to provide a simulated answer to the question, ignoring background informa-
tion about the social platform and the user. Assume you are a user on an online social platform,
with a user activity level of [l]. Please provide the total time spent browsing the platform during
idle time in a day (in minutes), the number of browsing sessions, and the number of posts made
by the user. Additionally, please provide a complete set of likes, shares, and comments on 100
posts (using 1 to represent likes, shares, and comments, and 0 to represent no likes, shares, and
comments, separated by commas).
Please strictly adhere to the following format for output:
Browsing Duration:
Number of Browsing Sessions:
Likes:
Shares:
Comments:
Number of Posts:

Below is an example of an answer:
Browsing Duration: 30
Number of browsing Sessions: 3
Likes: (a string of 100 0s and 1s, where 1 represents a like and 0 represents no like, separated
by commas)
Shares: (a string of 100 0s and 1s, where 1 represents a share and 0 represents no share,
separated by commas)
Comments: (a string of 100 0s and 1s, where 1 represents a comment and 0 represents no
comment, separated by commas)
Number of Posts: 3

Table 7: proml in unknown probability distribution experiments, where l in [] represents different levels of activity.

Experiments promcode

known probability distribution Directly give Python code to solve the following
problems: + promD.

unknown probability distribution Directly give Python code to solve the following
problems: + proml

Table 8: promcode in code experiments.
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Figure 4: Some examples in known probability distributions experiments.The four pictures respectively represent
the frequency histograms of vicuna in the Binomial distribution, Claude in the Exponential distribution, GPT-4
in the Normal distribution, and llama in the Uniform distribution under prom. The red line represents the ideal
probability density function curve.
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An example answer of Claude2.1

Browsing Duration: 72
Number of Browsing Sessions: 6
Likes: 1,1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,0,0,1,0,1,0,1,1,1,1,0,1,1,0,0,0,
1,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,1,0,0,0,0,1,0,0,1,0,0,0,1,1,1,0,0,0,
0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,
0,1,0,1,1,1,0,1,0,0,0,0
Shares: 1,1,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,
1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0
Comments: 0,1,0,0,0,1,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,1,0,1,
1,1,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,
1,0,0,1,0,1,0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,1,1,0,0,0,1,1,1,0,0,1,0,0,0
Number of Posts: 6

Table 9: An example answer of Claude2.1 in experiments when the probability distribution is unknown.

An example answer of GPT-3.5

import random

def next_customer_wait_time():
# Average time between customers in minutes
average_time_between_customers = 10

# Generate random wait time following exponential distribution
wait_time = random.expovariate(1 / average_time_between_customers)
return wait_time

# Simulate waiting time for the next customer 100 times
waiting_times = [next_customer_wait_time() for _ in range(100)]

# Print the waiting times separated by commas
print(', '.join(map(str, waiting_times)))

Table 10: An example answer of GPT-3.5 in code experiments when the probability distribution is Exponential
distribution.
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An example answer of GPT-4

import random

# Constants
TIME_SPENT_BASELINE \text{=} 45
# Assume an average user spends 45 minutes a day
ACTIVITY_LEVEL = 0.2
NUM_POSTS = 100

# User-specific calculations
time_spent_browsing = TIME_SPENT_BASELINE * ACTIVITY_LEVEL
number_of_sessions = random.randint(1, 5)
# Assume 1-5 sessions for a low activity user
number_of_posts = round(ACTIVITY_LEVEL * 2)
# Assume an active user posts twice per day

# Social interactions are random according to the activity level
likes = [random.choice([0, 1]) for _ in range(NUM_POSTS)]
shares = [random.choice([0, 1]) for _ in range(NUM_POSTS)]
comments = [random.choice([0, 1]) for _ in range(NUM_POSTS)]

# Output
print(f"Browsing Duration: {time_spent_browsing:.2f}")
print(f"Number of Browsing Sessions: {number_of_sessions}")
print('Likes:', ':'.join(map(str, likes)))
print('Shares:', ':'.join(map(str, shares)))
print('Comments:', ':'.join(map(str, comments)))
print(f"Number of Posts: {number_of_posts}")

Table 11: An example answer of GPT-4 in code experiments when the probability distribution is unknown.
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