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Reproducibility Summary1

Scope of Reproducibility2

We reproduce the results of the paper "On Warm-Starting Neural Network Training." In many real-world applications,3

the training data is not readily available and is accumulated over time. As training models from scratch is a time-4

consuming task, it is preferred to use warm-starting, i.e., using the already existing models as the starting point to obtain5

faster convergence. This paper investigates the effect of warm-starting on the final model’s performance. It identifies a6

noticeable gap between warm-started and randomly-initialized models, hereafter referenced as the warm-starting gap.7

Furthermore, they provide a solution to mitigate this side-effect. In addition to reproducing the original paper’s results,8

we propose an alternative solution and assess its effectiveness.9

Methodology10

We reproduced almost every figure and table in the main text and some of those in the appendix. We used our11

implementation to produce these results. In case of a mismatch of the results, we also investigated the cause and12

proposed possible explanations. We mainly used GPUs to train our models using infrastructure offered by public clouds13

and those that were available to us privately.14

Results15

Most of our results closely match the reported results in the original paper. Therefore, we confirm that the warm-starting16

gap exists in certain settings and that the Shrink-Perturb method successfully reduces or eliminates this gap. However,17

in some cases, we were not able to completely reproduce their results. By investigating the root of such mismatches,18

we provide another solution to avoid this gap. In particular, we show that data augmentation also helps to reduce the19

warm-starting gap.20

What was easy21

The experiments described in the paper were based on regular training of neural networks on a portion of widely-used22

datasets, possibly from a pre-trained model. Therefore implementing each experiment was relatively easy to do.23

Furthermore, since many of the parameters were reported in the original paper, we did not need much tuning in most24

experiments. Finally, it is straightforward to implement and use the proposed solution.25

What was difficult26

Though implementing each experiment is relatively simple, the numerosity of experiments proved to be slightly27

challenging. In particular, each of the online experiments in the original setting requires training a deep network to28

convergence more than 30 times. In these cases, we sometimes changed the settings, sacrificing granularity to reduce29

computation time. However, these changes did not affect the interpretability of the final results.30

Communication with original authors31

We briefly communicated with the authors to clarify the experiments’ details, such as the convergence conditions.32

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction33

Training large models from scratch is usually time and energy-consuming, so it is desired to have a method to accelerate34

retraining neural networks with new data added to the training set. The well-known solution to this problem is35

warm-starting. Warm-Starting is the process of using the weights of a model, pre-trained on a subset of the data, as the36

starting point of training with the complete data.37

The paper investigates the effect of warm-starting on the final model’s accuracy and identifies a generalization gap on38

warm-started models. The paper also provides a method to mitigate this gap by shrinking the pre-trained weights and39

adding a random perturbation.40

In this report, we repeat the original paper’s experiments and compare them with the reported results. Also, we extend41

the original paper results by investigating the effect of data augmentation on this phenomenon. In particular, we establish42

that using data augmentation might be a second solution to mitigating the generalization gap.43

We report and discuss our results in Section 2. In section 3, we detail our experimental settings and hyperparameters.44

2 Results & Discussion45

2.1 Warm-Starting Generalization Gap46

Similar to the paper, we start by demonstrating the existence of a generalization gap when using warm-starting before47

training. We use the same set of experiments used by the authors. Unless otherwise stated, we follow the settings48

described in the paper for our experiments.49

In particular, in the offline setting, we first train our model on half of the training data and then further train the50

pre-trained model on the whole dataset. We compare the resulting model with a model trained from randomly initialized51

weights. Figure 1 depicts the test accuracy of ResNet-18 [1] during training in this setting and matches Figure 1 of the52

paper.53
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Figure 1: Test accuracy during training a ResNet-18
with SGD with and without warm-starting. The results
for the randomly-initialized model has been shifted
200 epochs to overlap the part of training where the
warm-started model is trained on the whole dataset.

We repeat this experiment with different datasets, models, and54

optimizers. In particular we perform experiments on CIFAR-1055

[2], CIFAR-100 [2], and SVHN [3]. As our model, we exper-56

iment with ResNet-18, a three-layer perceptron, and logistic57

regression. The same models and datasets were used in the58

original paper. For the optimizers, we compare SGD [4] and59

Adam [5]. In this particular experiment, we compare SGD60

with and without momentum. In the rest of this work, unless61

explicitly stated, SGD is used without momentum. The final62

accuracies are reported in Table 1 similar to Table 1 of the63

original paper. Our results are similar to the paper’s results for64

CIFAR-10 and CIFAR-100 datasets. In particular, we observe a65

generalization gap when using a warm-started model instead of66

training from scratch. However, we did not observe the same67

gap on the SVHN dataset. Furthermore, we were unable to68

obtain a reasonable accuracy with the MLP model using SGD69

without momentum with the reported setting on SVHN. We70

instead report the result of using 0.005 learning rate. We did71

not perform hyperparameter tuning for the other experiments.72

In the online setting, we follow the original paper and train our73

model in several steps, increasing the amount of data available74

at each step. This setting is a more accurate simulation of the real-world problems where the training data grows over75

time.76

We split the training data into batches of 1000 samples and start adding them, one by one, to the pool of available data.77

We follow two different scenarios. In one scenario, we reinitialize our model randomly after each batch is added and78

train it from scratch. In the other scenario, we continue training the model with the parameters learned in the previous79

step.80

After each batch is added, we continue training our model until convergence before adding the next batch. We assume81

convergence when the model reaches 99% training accuracy. By communicating with the original paper’s authors, we82

confirmed that this is the same condition used in the original paper.83
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As in the paper, we optimize the model using Adam optimizer with a learning rate of 0.001 on CIFAR-10. Given the84

discrepancy of our results on the SVHN datasets in the offline settings, we additionally perform the same experiment on85

this dataset. For the CIFAR-10 dataset, the generalization gap between random-initialization training and warm-start86

training is clearly observed (Figure 2a).87

However, like the offline experiment, we did not observe the gap for the SVHN dataset (Figure 2b). Still, we were88

able to reproduce the gap by increasing the convergence accuracy threshold to 99.9% (Figure 2c). Note that 99% train89

accuracy is more challenging to achieve on the CIFAR-10 dataset than on SVHN and therefore requires more training,90

possibly leading to more over-fitting. Increasing the convergence threshold compensates for this difference.91

CIFAR-10 SGD ADAM MSGD
Random Init 60.3 (0.1) 80.3 (0.1) 65.5 (0.2)
Warm Start 57.8 (0.4) 79.0 (0.1) 63.4 (0.2)

SVHN
Random Init 84.7 (0.1) 92.4 (0.2) 87.7 (0.1)
Warm Start 86.3 (0.4) 93.2 (0.2) 87.2 (0.1)
CIFAR-100
Random Init 30.5 (0.3) 48.8 (0.2) 34.4 (0.1)
Warm Start 27.6 (0.5) 46.1 (0.2) 30.6 (0.3)

(a) Test accuracies for ResNet-18

CIFAR-10 SGD ADAM MSGD
Random Init 38.2 (0.2) 46.5 (0.2) 45.9 (0.1)
Warm Start 38.5 (0.3) 46.0 (0.3) 43.5 (0.4)

SVHN
Random Init 72.7(1.0)* 72.2 (0.8) 68.8 (1.0)
Warm Start 67.3(1.7)* 72.5 (0.5) 70.0 (0.6)
CIFAR-100
Random Init 5.1 (0.2) 19.5 (0.3) 16.4 (0.1)
Warm Start 5.1 (0.3) 18.6 (0.1) 16.6 (0.2)

(b) Test accuracies for MLP

CIFAR-10 SGD ADAM MSGD
Random Init 39.8 (0.1) 35.6 (0.3) 38.4 (0.3)
Warm Start 39.7 (0.2) 35.2 (0.3) 38.5 (0.2)

SVHN
Random Init 19.8 (0.6) 24.2 (0.9) 22.4 (0.4)
Warm Start 19.8 (0.4) 24.4 (0.8) 22.8 (0.4)
CIFAR-100
Random Init 16.6 (0.2) 12.6 (0.2) 17.2 (0.2)
Warm Start 16.5 (0.1) 12.2 (0.1) 17.0 (0.1)

(c) Test accuracies for Logistic Regression

Table 1: Test accuracies for various datasets and mod-
els and optimizer for warm-start training and training
from random initialization. We use an MLP with Tanh
activation with 3 hidden layers of 100 neurons. A dif-
ferent learning rate was used for cells marked with a
star (*).

This result and the fact that the authors show that the proposed92

Shrink-Perturb method is similar to an aggressive regularization93

brings up the question of whether this gap might be a side-effect94

of over-fitting when training on partial data. There are various95

known techniques to prevent overfitting. The original paper96

investigates the effect of some of these techniques, namely97

regularization, and early-stopping. We reproduced these exper-98

iments and explained the results below.99

Early-Stopping: To investigate the effect of early-stopping,100

following the original paper, we trained a ResNet-18 model on101

half of the CIFAR-10 data and checkpointed its parameters ev-102

ery 20 epochs. The result is plotted in Figure 3, which matches103

Figure 4 of the original paper and shows the warm-starting gap104

can be observed even after 20 epochs of training. To decrease105

computational costs, we used lower granularity than the orig-106

inal paper to perform this experiment, saving parameters every107

20 epochs rather than 5 epochs. Also, we only perform each108

experiment once.109

Regularization: Regularization is commonly used to improve110

generalization. The original paper explores the effect of various111

types of regularization. Due to time and resource limitations,112

we only look into weight decay, which is widely used and113

is a de-facto standard for training the state-of-the-art models.114

We repeat the offline setting experiment on CIFAR-10 with a115

weight decay of 0.1 on both the pre-training and main training.116

However, contrary to the original paper’s results, we observe117

that the warm-starting gap decreases when applying weight118

decay. We also test with weight decay values of 0.01 and 0.001.119

We find out that higher values of weight decay result in lower120

warm-starting gap. The results are reported in Table 2, which121

corresponds to Appendix Table 13 of the original paper.122

Data Augmentation: Data augmentation is widely used to123

obtain state-of-the-art performance and is known to help gener-124

alization [6], but it is not used in the other experiments of this125

paper. It is specifically important to check the effect of data126

augmentation since it is widely used in practice. Therefore we127

extend the original paper’s experiments by investigating the im-128

pact of data augmentation. We report our results in Section 2.4.129

2.2 Effect of Hyperparametes130

Our results show that in some cases, a generalization gap exists131

when pre-training our model on a portion of the final dataset.132

However, when training in the online setting on SVHN, we133

could only observe this gap with a high enough convergence threshold. The paper investigates the effect of other134

training hyperparameters, namely learning rate and batch size.135

To investigate the effect of learning rate and batch size, we train a ResNet-18 with different values for these hyperpa-136

rameters. We choose the learning rate from {0.1, 0.01, 0.001} and the batch size from {128, 64, 32, 16}. We iterate137
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(a) For the CIFAR-10 dataset, the generalization gap be-
tween randomly initialized and warm started models is ob-
served for the 99.0% convergence threshold. However, the
training time required at each step increases almost linearly
in the case of randomly initialized model, but is constant
when using warm-starting.
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(b) For the SVHN dataset,
there is no generalization gap
between randomly initialized
and warm started models with
the 99.0% convergence thresh-
old.
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(c) For SVHN, the generaliza-
tion gap appears by increasing
the convergence threshold to
99.9%.

Figure 2: Online learning experiment on CIFAR-10. the horizontal axis shows the number of samples available to train
the model.

0.1 0.01 0.001
Random Initialization 81.44 62.73 60.42

Warm Starting 81.16 61.22 58.63

Table 2: Accuracy of training a ResNet-18 with and without warm-starting for different values of weight decay.

over all pairs for these values. For each pair, we train over the full CIFAR-10. We also train a different model over138

50% of the CIFAR-10 dataset and use it to warm-start a model and train it on the whole dataset. We use a different139

learning rate and batch size, randomly chosen from the sets of values, in the second part of the training, i.e., for training140

the warm-started model. We repeat each experiment 9 times. Each model is trained to 99% training accuracy. The141

test accuracy is plotted against training time in Figure 4, which corresponds with Figure 3 of the paper. Note that the142

training time for the warm-started model corresponds to the time of the second part of the training. In other words, the143

time of training on half of the dataset is not included. This is justified because the goal is to assess if warm-starting144

leads to comparable accuracy while saving training time when a new batch of data arrives. In our results, choosing the145

right hyperparameters can lead to achieving comparable or even better accuracy, when using warm-starting, faster than146

training a randomly initialized model. This does not match the results of the paper, where the warm-started models with147

comparable accuracy take the same amount of training time as the randomly initialized models. While we perform less148

experiments in the warm-started setting, we perform the same number of experiments with random initialization as149

described in the original paper’s text. However, the number of points in Figure 3 of the original paper corresponding to150

randomly initialized models, is more than what has been described in the text. We note that performing more randomly151

initialized experiments might be the reason for the mismatch in our results with the original paper.152

2.3 Shrink & Perturb Solution153

In addition to establishing the warm-starting gap’s existence and investigating its roots, the paper also provides a method154

to mitigate this issue. In this method, the training starts from a shrunk and perturbed version of the pre-trained weights,155

so we reference it as the Shrink-Perturb method. More specifically, for a given λ and σ, the new weight is computed as156

wnew = λwpretrained + σwrandom (1)

where wold is the pre-trained weight and wrandom is the corresponding weight from a randomly initialized model.157

Whenever we apply the Shrink-Perturb transformation, we create a new randomly initialized model and use its weights158

as wrandom.159

We tested the effectiveness of this method in both offline and online settings. In the offline setting, we applied the160

Shrink-Perturb transform after pre-training on 50% of CIFAR-10. We used σ = 10−4 and repeated this experiment161

with different values of λ. We plotted the test accuracy during training on all of the data in Figure 5. It can be seen that162

the method is effective and leads to even better performance than the randomly initialized model.163
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Figure 3: Left: Test accuracy while training on half of CIFAR-
10. Right: Plot of test accuracy damage, as percentage differ-
ence from random initialization, against number of warm-starting
epochs.

Figure 4: Training time vs Test accuracy for
randomly initialized and warm-started models
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Figure 5: Test accuracy during training a
ResNet-18 with SGD with warm starting and
Shrink-Perturb and without it
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Figure 6: Test accuracy during training a ResNet-18 in the on-
line setting while applying Shrink-Perturb method with different
values of λ.

In the online setting, we applied the Shrink-Perturb transform every time a new batch of data is added. To reduce164

computation cost, we add data in batches of 2500 samples. The result for σ = 10−4 and different values of λ is plotted165

in Figure 6. Figure 6 matches Figure 7 of the original paper. The result of applying the Shrink-Perturb method in the166

offline setting is not reported in the original paper.167
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Figure 7: Test accuracy of trained models for
different shrinkage coefficients λ.

To assess the impact of shrinking weights on the model’s performance,168

we fit different models to CIFAR-10. Then, we shrink the weight169

with different values of λ and evaluate the accuracy. Similar to the170

paper, we train ResNet18 and an MLP with ReLU activation with171

and without bias. In addition, we also train an MLP with Tanh172

activation with and without bias. The result is shown in Figure 7,173

which corresponds with Figure 6 of the paper. The only difference174

in our findings with the original paper’s is that we observe classifier175

performance damage for MLP with ReLU for λ > 0.6. Though176

for λ > 0.8 the damage is negligible. Also, note that shrinking the177

weights of an MLP without bias and ReLU activation only scales the178

final output, which does not affect the output labels. Therefore its179

immunity to shrinkage is expected. The more interesting result is that180

even for ResNet-18 or MLP with Tanh activation, the test accuracy181

is not significantly damaged for λ values greater than 0.2.182

In order to explain why the Shrink-Perturb method is effective, the183

original paper compares the average gradients over the first and sec-184
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Figure 8: Average over old data or new data of L2 norm of gradient with respect to model parameters. WS refers to
warm starting without and SP to warm starting with Shrink-Perturb.

ond half of the dataset during the training of the warm-started model in the offline setting. In particular, a ResNet-18 is185

first trained on half of CIFAR-10. Warm-starting from the pre-trained model, the model is trained on the full dataset186

while measuring the average gradient over the first and second half of the dataset simultaneously. It is observed that the187

gradient for the first half, which the model was pre-trained on, is substantially lower than for the second part. However,188

applying the Shrink-Perturb transformation eliminates this difference. We reproduced this experiment with some slight189

modifications. In particular, instead of averaging the gradient over part of the dataset after each batch, we did it at the190

beginning of each epoch. We plotted these values in Figure 8. Our result matches Figure 5 of the original paper. In191

particular, we confirm that the Shrink-Perturb method successfully eliminates the gap between the gradients.192

2.4 Effect of Data Augmentation193

Data augmentation is widely used in practice. However, it is not used for the experiments in the original paper.194

Therefore, we decided to assess its impact on the generalization gap for warm starting training.195

We perform our experiments on ResNet-18 and CIFAR-10. To augment the data, we first pad the image with 4 pixels on196

each side and then randomly crop it back to 32x32. We then perform a random horizontal flip with probability 0.5. We197

also apply color jitter with brightness, contrast, and saturation factor equal to 0.25. Finally, we also apply small random198

rotations. All experiments were done with SGD and a learning rate equal to 0.001 in order to make the setup consistent199

with previous warm start experiments. The results are reported on Figure 9 .200

It can be seen that applying the augmentation mitigates the warm-starting gap. We allow the models to train for 350201

epochs. However, because the learning rate is low, the models are not fully converged even after 350 epochs. We did not202

continue the training because of resource limitations. However, it is visible that warm-starting with data augmentation203

can achieve good performance faster than training from scratch.204

To explain the effectiveness of the Shrink-Perturb solution, the original paper’s authors looked at the differences of the205

gradient norm for the first and the second part of the dataset, which is heavily reduced after applying Shrink-Perturb (as206

shown in Figure 8). Following the same direction, we checked if applying data augmentation can affect the difference207

as well. It can be seen in Figure 10 that, similar to the shrink perturb method, the gradient norm difference is also208

mitigated when using data augmentation.209

It is clear that applying data augmentation prevented overfitting. The original warm start setup has a large divergence210

between train and test accuracy from the beginning of the training. On the contrary, the model trained with data211

augmentation has close performance on train and test datasets. We leave the investigation of other overfitting prevention212

techniques’ effects as future work.213

Additionally, we note that data augmentation usually slows down the convergence and it cannot be applied to every task214

since for some types of data transform set cannot be defined. Due to the limits of this report, we also leave the careful215

comparison between data augmentations and Shrink & Perturb as future research in this area.216

2.5 Warm-Starting Gap in Transfer Learning217

Deep learning models require large training sets to perform well. This presents a problem in many practical cases218

where only limited data is available, and acquiring additional data is expensive. This has encouraged the use of transfer219

learning [7; 8; 9]; the practice of warm-starting from a model trained on a different dataset.220
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Figure 9: Test and train accuracy of models in warm start setting with
and without data augmentation. RI refers to Random Initialization.

Figure 10: Gradients with respect to the first
and the second half of the dataset, DA refers
to Data Augmentation
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Figure 11: Test accuracy against the available portion of data p for training a model on one dataset with warm-starting
from another dataset.

To investigate whether a similar gap is observed in transfer learning, we trained a ResNet-18 model on one dataset and221

used the pre-trained weights to warm-start training on a different dataset. We performed this experiment for all pairs of222

CIFAR-100, CIFAR-10, and SVHN datasets. To also investigate the effect of the amount of the data available, we also223

considered subsets of these datasets where only a fraction p of data is available. More accurately, for every two datasets224

and p ∈ {0.1, 0.3, 0.6, 1.0}, we chose a random subset from each dataset containing p× n data points, where n is the225

total number of data points in that dataset. We performed the described transfer learning experiment for these subsets226

and recorded the final test accuracy. To assess the effect of warm-starting and the Shrink-Perturb method, we plotted227

the final test accuracy of each of the described three settings (random initialization, warm starting, and warm-starting228

with Shrink-Perturb) with respect to p in Figure 11. In this experiment, we used Adam as our optimizer. This figure229

corresponds with Figure 9 of the original paper.230

At each part of the training, we train our models for 200 epochs. When training CIFAR-100 starting from weights of a231

model trained on SVHN or CIFAR-10, the last layer is initialized randomly because of the mismatch in the number of232

classes. It can be seen that, as mentioned in the paper, the warm-starting gap exists in the transfer learning settings as233

well, and that it is worsened when the amount of data available is increased. Furthermore, the Shrink-Perturb method234

proves useful in this setting, as well.235

3 Methodology236

In this section, we define the setting we used for our experiments. There was no available code for the original paper,237

and we implemented everything from scratch. We use the PyTorch framework for the implementations.238
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3.1 Model descriptions239

Most of the experiments are performed using ResNet-18 [1]. Some experiments are also performed on a Multi-Layered240

Perceptron (MLP) and Logistic Regression. We detailed the structure of each of these models below.241

• ResNet-18: We used an implementation of ResNet-18 tuned for CIFAR-10 dataset. We used the code from242

https://github.com/huyvnphan/PyTorch_CIFAR-10. In all experiments, batch normalization [10] was243

enabled.244

• MLP: The MLP has three hidden layers, each of which has 100 neurons. Either ReLU or Tanh was used as245

the activation function. Unless explicitly stated, the bias term is added.246

• Logistic Regression: We implement Logistic Regression as a Multi-Layered Perceptron with no hidden247

layers.248

We used either Adam or SGD optimizers for training the models. More accurately, we use Adam in Table 1, Figure 2,249

Figure 6, and Figure 11. In all other experiments, we use SGD. We use 0.001 learning rate and batches of size 128.250

Unless otherwise stated, we used SGD without momentum and without weight decay. In cases where momentum was251

used (such as in Table 1), the value of momentum was set to 0.9. The Adam optimizer was used with default parameters252

from PyTorch’s implementation, namely β1 = 0.9, and β2 = 0.999.253

3.2 Datasets254

Same as the original paper, we perform experiments on CIFAR-10, CIFAR-100, and SVHN datasets. We normalize255

each of the RGB channels by the mean and standard deviation of that channel in the CIFAR-10 dataset. Except for the256

data augmentation experiments, we do not apply any data augmentation.257

3.3 Hyperparameters258

We used hyperparameters stated in the original paper in most of our experiments. In cases where we deviated from the259

reported values, mostly due to computational resource and time limitation, we have reported them in the text where we260

described the experiment. In case a hyperparameter is not reported in the original paper, we either communicated with261

the authors to ask the hyperparameters, pick a value making reasonable assumptions, or try out different values and262

report the result for all of them. In all these cases, we clarified the parameter we used in the text.263

3.4 Experimental setup264

We ran our experiments on both public cloud infrastructure, such as Google Colab and private GPUs that were265

available to us. Therefore the infrastructure varies between different experiments. Our implementations for all the266

experiments in this work is available in the Supplementary Material and also in https://github.com/CS-433/267

cs-433-project-2-fesenjoon.268

4 Communication with Authors269

In the original paper [11], it was not clear what convergence condition was used to stop the training. Therefore, We270

communicated with the authors via email and asked them to explain the convergence condition used in the experiments271

more clearly. They stated that convergence happens when the training accuracy reaches 99%. However, for reproducing272

the Table 1 which also uses simpler models like Logistic Regression and MLP, it is not possible to reach 99% accuracy.273

They clarified that in this scenario, the convergence condition is met when the training accuracy stops improving.274

5 Conclusion275

We have verified the existence of the generalization gap in certain training settings. Additionally, we have confirmed276

that the introduced Shrink-Perturb method can be effective in removing this gap. We did this by repeating experiments277

of the original paper and performing some experiments of our own. However, we also encountered cases where we278

were not able to reproduce the warm-starting gap or where the Shrink-Perturb method was not very successful. In279

addition, we reproduced several experiments to investigate the effect of hyper-parameters, such as learning rate, on280

this phenomenon. Finally, we have shown that applying data augmentation can also help to remove this gap. To allow281

others to reproduce our results, we have detailed our experiments and have released our code.282
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