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Abstract

Vision and learning have long been considered to be two areas of research
linked only distantly. However, recent developments in vision research have
changed the conceptual definition of vision from a signal-evaluating pro-
cess to a goal-oriented interpreting process, and this shift binds learning,
together with the resulting internal representations, intimately to vision. In
this review, we consider various types of learning (perceptual, statistical, and
rule/abstract) associated with vision in the past decades and argue that they
represent differently specialized versions of the fundamental learning pro-
cess, which must be captured in its entirety when applied to complex visual
processes. We show why the generalized version of statistical learning can
provide the appropriate setup for such a unified treatment of learning in vi-
sion,what computational framework best accommodates this kind of statisti-
cal learning, and what plausible neural scheme could feasibly implement this
framework. Finally, we list the challenges that the field of statistical learning
faces in fulfilling the promise of being the right vehicle for advancing our
understanding of vision in its entirety.
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1. INTRODUCTION

Modern vision research has evolved from its early days,when spatial vision was its dominant area of
study (DeValois &DeValois 1990,Graham 1989), with a heavy focus on the behavioral and neural
details of low-level visual processing of spatial frequency, orientation, binocularity, or motion, into
a field in which contextual information, perceptual biases, short- and long-term memory, the task
at hand, and cognitive factors play as much of a role in understanding the process as does the fine
quantification of the incoming sensory input (Cicchini et al. 2021, de Lange et al. 2018, Feldman
1997, Grosof et al. 1993, Maunsell 2015, Murray 2021, Palmer & Rock 1994, Sotiropoulos et al.
2011,Wagemans et al. 2012, von der Heydt et al. 1984).One direct ramification of this conceptual
shift is a change in the status of learning and the internal representations that it creates in the con-
text of visual processing.When the information of interest was defined as the orientation of a small
edge segment or the brightness of a patch in a particular region of the visual field, it was possible
to conceptualize the task of vision as figuring out a scalar value of a particular single dimension
conveyed through the light falling on a part of the retina that can be handled by an appropriately
tuned feature detector (DiCarlo et al. 2012, Marr 1982, Riesenhuber & Poggio 1999, Zhou et al.
2000). Even when using this experimental design, though, the persistent challenge of handling
various more intricate visual problems, such as lightness and size illusions, motion aftereffects, or
color constancy, indicated that a complete treatment of visual processing would require a more
complex framework (Brainard & Freeman 1997, Chaudhuri 1990, Feldman 1997, Gilchrist et al.
1999, Palmer & Rock 1994,Wagemans et al. 2012).We posit that, with the expansion of the field
of vision research to mid- and high-level vision, including Gestalt structures, surface perception,
face recognition, and scene interpretation, and the realization of the important effects of context,
biases, and the actual task for which vision is momentarily used, the contemporary definition of the
problem of vision has changed from a problem of signal evaluation to a problem of goal-oriented
interpretation (Froudarakis et al. 2019, Gilbert & Li 2013, Hayhoe 2017, Roelfsema & de Lange
2016, Yuille & Kersten 2006).

One of the most profound consequences among the many generated by this shift in approach
concerns the status of internal knowledge and of the process of acquiring this knowledge, namely
learning. Learning is commonly defined as a long-term improvement in performance due to train-
ing or exposure (Fahle&Poggio 2002,Gallistel 1990,Gibson 1969, Sagi &Tanne 1994), and it has
traditionally been treated as a fringe topic in vision, without which visual perception can be per-
fectly well understood (DeValois&DeValois 1990,Frisby&Stone 2010,Graham 1989).However,
given that internally stored knowledge can radically and intricately influence the interpretation
(i.e., the effect) of a piece of incoming sensory information even at the earliest visual areas (Briggs
et al. 2013,Grosof et al. 1993, Kok & de Lange 2014, Kok et al. 2012,Murray et al. 2002, Smith &
Muckli 2010, van Bergen et al. 2015), and that this knowledge perpetually changes due to recently
obtained incoming information (Hua et al. 2010, Schoups et al. 2001), internal knowledge and
learning, which define the emergence and change of this knowledge, become inseparable aspects
of the visual process. The realization of this synergetic link gives a new importance to the topic of
learning in vision.

In this review, we codify three types of learning, perceptual learning (PL), statistical learning
(SL), and rule/abstract learning (RAL), and review their role in and the basis of their original
separation in studies of visual perception.We argue that they are not separate learning types, but
instead are extreme versions of the same process, and that learning in vision should be concep-
tualized in a framework that allows all three types of learning to occur simultaneously to capture
human visual perception at the level of complexity where new insights could be gained about it.
We propose that an extended version of SL firmly embedded in a probabilistic computational
approach is the right conceptualization for such a framework. Finally, looking at the present
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literature through the lens of this framework, we identify what critical questions this extended
SL framework should tackle next to unfold the full complexity of the interplay between visual
perception and learning.

2. TYPES OF LEARNING IN VISION

2.1. Perceptual Learning

Learning in vision has been studied at different levels and can be roughly grouped into three
areas with increasing levels of abstractness of the represented information: PL, SL, and RAL
(Figure 1). PL is considered to be the most elementary type of learning, in which observers’
performance improves in simple sensory tasks after extensive practice (Fahle & Poggio 2002)
(Figure 1a). Several comprehensive reviews are available on PL in vision (Dosher & Lu 2017,
Maniglia & Seitz 2018, Sagi 2011,Watanabe & Sasaki 2015); thus, we mention only a few charac-
teristics relevant to our argument. Visual PL tasks typically include basic dimensions such as visual
contrast (Adini et al. 2004, Dorais & Sagi 1997, Lengyel & Fiser 2019, Yu et al. 2004) and motion
detection (Ball & Sekuler 1987), orientation (Fiorentini & Berardi 1980, Lengyel & Fiser 2019),
or texture discrimination (Ahissar & Hochstein 1997). The effect of PL emerges after practice
for 5–14 days of repetitive exposure over a couple of hours ( Jeter et al. 2010), and it is quanti-
fied by improvements in a detection or discrimination threshold indicating a change in sensitivity
(Fahle & Poggio 2002) (Figure 1b). PL is considered to be a low-level phenomenon based on
the specificity of learning, as any gain in performance that the learner demonstrates after practice
would diminish as soon as the original experimental conditions are changed (Fahle & Morgan
1996). Several such conditions have been identified, such as presentation of the stimulus at a dif-
ferent location (Fahle & Morgan 1996, Schoups et al. 1995), orientation (Crist et al. 1997), or
spatial frequency (Fiorentini & Berardi 1980), and performance decrement due to presentation
of the monocular stimuli to a different eye has been fundamental in solidifying PL as a low-level
process, since the integration of monocular representations happens in V1 (Schoups et al. 1995).

2.2. Rule/Abstract Learning

RAL resides at the opposite end of the abstraction scale from PL (Figure 1e–f ). For a long time,
it was considered to be outside of the scope of vision, as it deals with complex cognitive concepts
based on abstract symbolic knowledge, including prototypes and higher-level features, and
focuses on specific tasks, such as grammar learning (Dehaene et al. 2015, Fitch & Friederici 2012,
Harlow 1949, Kemp&Tenenbaum 2008, Rabagliati et al. 2019, Saffran et al. 2007). Such learning
is commonly referred to as rule learning owing to the fact that many complex concept-based
structural descriptions are called rules, especially in research on language acquisition (Gómez &
Gerken 1999,Marcus et al. 1999, Peña et al. 2002).However, a rule can be as simple as noting that
a specific high tone is very likely to be accompanied by another specific low tone, which amounts
to a high co-occurrence or transitional probability. Importantly, only the subset of learning such
links that operates in dimensions clearly distanced from the observable sensory input would
customarily qualify as abstract learning. Thus, while, for historical reasons, we refer to this type of
learning as RAL, we emphasize that “rules” and “rule learning” are slightly confusing notational
terms originating from research on language and logic, and that RAL learning in sensory research
is better characterized by the level of abstraction and the degree of generalizability (Austerweil
et al. 2019, Dehaene et al. 2015). Moreover, importing the term “rule learning” from formal
grammar learning has led to also importing the problematic definition of abstract learning
from the domain of language acquisition, which might not be appropriate for defining the same
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Figure 1 (Figure appears on preceding page)

The typical paradigms and corresponding results of perceptual learning (PL), statistical learning (SL), and rule/abstract learning (RAL).
(a) PL using a classic orientation discrimination task with oriented grating stimuli. (b) Observers’ discrimination thresholds improve
over the course of the training session (blue line). Depending on the task and the stimuli, the discrimination thresholds at the beginning
of a generalization task may remain high, indicating specificity (red line), or start at a low value, demonstrating transfer (green line).
(c) Classical spatial visual SL with passive exposure to a stream of multi-element training scenes (shown on a gray background)
generated from the inventory of chunks (inset) and subsequent 2-alternative-forced-choice familiarity test establishing the amount of
learning. (d) Higher-than-chance (0.5) performance on the familiarity test indicates generalization through the learned chunks from the
training to the test scenes. (e) Examples of RAL tasks in which, similar to classical temporal SL tasks, three groups of observers watch a
temporal sequence of shape images but with different latent structures (triplets, maps, and networks, respectively). After being trained
on one structure, the observers are exposed to examples of all three types of structure composed of elements that they have never seen
before. ( f ) Observers learn the new task faster and better when the type of structure is similar to the one that they were exposed to
during training. Additional abbreviation: NS, nonsignificant result.

problem in vision. Therefore, we do not include these approaches anchored in the domain of lan-
guage learning in the present overview beyond noting that many extensive reviews cover the topic
(Aslin & Newport 2012, Dehaene et al. 2015, Fitch & Friederici 2012, Gómez & Gerken 2000).

Given the number of studies dealing with abstract learning in general, RAL has been linked to
vision by a surprisingly small number of early behavioral work. An indication of the influence of
the grammar learning approach is that the majority of these efforts were based on the paradigm
used in research on infant grammar learning. These studies were typically based on the task of
learning a repeating pattern of elements (e.g., AAB) in a sequential stream of spoken auditory in-
put (Endress et al. 2007, Gerken 2006, Marcus et al. 1999, Peña et al. 2002). A common feature
of these auditory studies was a strong separation of RAL from more basic learning types based
on the fact that the test in the paradigm of these studies used completely new tokens not seen
during the training session; thus, any learned information based directly on the observed features
of the training tokens could not serve as the basis of the acquired rule. The follow-up claim that,
therefore, rule learning might be possible only for humans and only in the auditory domain be-
cause of our predisposition to learn languages (Marcus et al. 2004) has been proven incorrect
through demonstrations of successful rule learning in the domain of vision in an identical exper-
imental setup in both humans (Ferguson et al. 2018, Saffran et al. 2007) and rats (Murphy et al.
2008).

In other studies, RAL is attributed to vision mostly through visual cognition and scene inter-
pretation without an organic link to visual perception (Gershman et al. 2016,Goodman et al. 2008,
Lake et al. 2015, Mark et al. 2020, Overlan et al. 2017). Notable examples of recent RAL studies
were based on quick learning of abstract regularities from exposure to a limited set of stimuli,
and they tested generalization of this learning in adulthood and infancy (Buchsbaum et al. 2015,
Ferguson et al. 2018, Garner et al. 2016, Mark et al. 2020, Overlan et al. 2017, Rabagliati et al.
2019,Werchan & Amso 2020) (Figure 1e). In contrast to classical PL, where the dominant quan-
tification of learning is the amount of improvement in performance, RAL is commonly evaluated
in terms of the ability to generalize the acquired knowledge in a new context (Dehaene et al. 2015,
Lake et al. 2017) (Figure 1f ). Generalization is typically measured either by the difference in per-
formance at the beginning of the original and of the follow-up task (Wang et al. 2016) or by the
speed of learning (Kattner et al. 2017). Crucially, while both the performance at the start of the
test and the speed of learning can be observed in the shape of the measured learning curve, this
curve is a simple one-dimensional aggregate indicator of a complex, multifactor learning process,
which by itself is insufficient for uncovering the essential components of learning and their causal
interactions (Heald et al. 2021). Indeed, RAL studies are labeled variously as investigations of
“meta-learning,” “learning-to-learn,” “task-learning,” “transfer-learning,” or “structure learning,”
and this spectrum of labels indicates the wide range of causes that can determine the learning
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behavior under various conditions (Bavelier et al. 2012, Braun et al. 2010, Griffiths et al. 2019,
Hupp & Sloutsky 2011, Kemp & Tenenbaum 2008, Kemp et al. 2010,Mark et al. 2020, Niv 2019,
Schulz et al. 2020, Solway et al. 2014, Wang 2021,Woods & McDermott 2018).

Although RAL studies use a vast diversity of paradigms, types of inspected generalization, and
applied tests, they can still be tabulated coarsely into two main groups by their focus. Studies
in the first group explore the problem of how to represent knowledge in a structured manner
for a particular purpose. In this context, representing structure can mean separating out relevant
from irrelevant features to form either simple or hierarchical categories of objects (Erdogan et al.
2015) or motion patterns (Bill et al. 2020), creating a map structure of a domain independent of
tokens (Mark et al. 2020) or establishing the rules of a game regardless of nuisance parameters
of the environment (Pouncy et al. 2021), but it can also refer to extracting aspects of a task in
an experiment (Franklin & Frank 2018). Studies in the second group deal with the problem of
how to use a structured representation for generalization purposes. These studies investigate how
humans generalize through property induction (Kemp&Tenenbaum 2009), how they use learned
reward functions for generalization during search tasks in spatially or conceptually correlated and
graph-structured reward environments (Castañón et al. 2021;Wu et al. 2018, 2020), and how they
can learn how to generalize (Austerweil et al. 2019).

A key characteristic of all of these studies is that, even if they are anchored in some sensory
modality, their learning domain is structured and complex, they are defined by various abstract
parameters and higher-level contexts, and they often include rewards or at least some partial feed-
back. In other words, the involved perceptual processes are always investigated in a context of a
particular natural task, in terms of both the cover story and the experimental setup. Therefore,
these studies convey information not about learning in a perceptual domain per se, but instead
about learning in a perceptual domain given an abstract setting.

2.3. Statistical Learning

Themore recently emerging third domain of learning, called SL, is situated between PL and RAL
on the abstraction scale (Fiser 2009) (Figure 1c–d); however, its label is misleading on multiple
counts. First, all learning is statistical, since all learning aims to extract structural information
that, by definition, is manifested by various correlations in the input data and thus reflected by
detectable statistics. Second, the term “statistical learning” had been used by mathematicians,
statisticians, and computer scientists in a much wider computational context and different frame-
works well before it emerged as a label with a restricted interpretation in the domain of language
learning in infants (Hastie et al. 2013, Vapnik 1999, von Luxburg & Schölkopf 2011), and this
reuse of the term has generated much confusion in the literature. Third, since its inception, re-
search on SL has concentrated mainly on issues in the domain of language, and consequently,
its profile has been heavily skewed toward abstract issues related to the emergence of grammar
in language acquisition (Aslin 2017, Saffran & Kirkham 2018, Saffran et al. 1996). Even though
early papers transferring the basic methodology of SL into the domain of vision provided a setup
suitable for breaking away from this restricted view of SL and integrating it with general statistics-
based learning (Austerweil &Griffiths 2011, Fiser & Aslin 2005, Lee et al. 2021,Orbán et al. 2008,
Yildirim& Jacobs 2013), to date, a substantial fraction of SL studies have followed the constrained
path set by the early language-related work (Bettoni et al. 2021, Bulf et al. 2021, Frost et al. 2019,
Schonberg et al. 2018, Siegelman et al. 2018).

The classical notion of SL is of a type of representational learning that is purely observational,
without any explicit task or feedback, and that automatically and implicitly develops an internal
structural representation of repeatedly appearing spatial and temporal patterns in the sensory in-
put (Aslin 2017, Aslin & Newport 2012, Saffran & Kirkham 2018) (Figure 1c). Early visual SL
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studies reported that both adults and infants become sensitive to joint, conditional probabilities
and higher-order embedded spatial and temporal structures of previously unfamiliar inputs (Bulf
et al. 2011; Fiser & Aslin 2002b, 2005; Ongchoco et al. 2016) (Figure 1d). These early results
were extended to several modalities (visual, auditory, and tactile) (Conway & Christiansen 2005,
Glicksohn & Cohen 2013, Lengyel et al. 2019) and to different levels of stimulus complexities
(Austerweil & Griffiths 2011, Orbán et al. 2008), and similar results were reported across several
animal species (Avarguès-Weber et al. 2020, Rosa-Salva et al. 2018, Saffran et al. 2008, Santolin
et al. 2016, Toro & Trobalón 2005). It has been firmly established that SL is automatic; its effect
persists for a long time (Kim et al. 2009); sleep does not improve it (Nemeth et al. 2010); and,while
attention can affect SL (Turk-Browne et al. 2005), it is not a prerequisite for successful learning
(Musz et al. 2015).

At the computational level, the loose definition of SL and the preponderance of results
across domains and conditions obtained with its methodology have led to several unresolved
consequences. First, a lively debate has emerged over whether SL is a domain-specific or a
domain-general process that might serve as the fundamental learning method for acquiring
internal representations of the environment (Aslin 2017, Frost et al. 2015, Lengyel et al. 2019,
Turk-Browne et al. 2005). Second, SL has been related to or equated with various other types of
learning schemes, such as implicit learning (Perruchet & Pacton 2006); chunking (Mareschal &
French 2017, Perruchet 2019); probabilistic learning (Austerweil & Griffiths 2011, Orbán et al.
2008); and, through mixing Marr’s levels of analysis, distributed learning and neural networks
(Plaut & Vande Velde 2017, Schapiro et al. 2017). Third, as mentioned in Section 2.2, SL has
been strongly separated from abstract rule learning and concept learning (Marcus et al. 1999,
Peña et al. 2002). In addition, communities working with the separate types of PL, SL, and RAL
have established their own stimuli, methodology, and measurement of learning, which prevents
easy comparison and clarification of misunderstandings across these three subfields of research
on learning. As a result, while each of these fields (especially the study of SL) has witnessed a
spectacular increase in the number of publications and the variety of approaches over the years,
there has been much less impressive progress in the conceptual clarification of how these different
types of learning relate to each other and fit into perceptual processes.

3. THE NECESSITY OF INTEGRATING THE THREE TYPES
OF LEARNING

In a recent paper, we investigated one aspect of integrating the three types of learning in vision
by scrutinizing the relationship between PL and SL (Fiser & Lengyel 2019). We demonstrated
that, with the advent of new and more complex behavioral experimental designs, the results of
PL experiments started to show many signs of higher-level learning, losing their distinctiveness
compared to SL; vice versa, the results of SL studies displayed effects at lower-level attributes that
do not fit in the original symbolic framework. We went on to propose that PL and SL should be
viewed not as two separate types of learning, but rather as two extreme testing paradigms of the
same complex learning mechanism, where the PL paradigm lacks more complex sensory struc-
tures and context, while the SL paradigm does not use low-level fine sensory features. Finally,
we argued that, by treating PL and SL jointly in the framework of hierarchical Bayesian mod-
els (HBMs) and assuming a sampling-based approximative implementation of this framework in
the brain, one could not only parsimoniously address outstanding puzzles in both fields but also
provide several testable predictions about human learning at the theoretical as well as at the im-
plementational level. Based on this conceptual setup, in this section, we investigate whether RAL
should be integrated into the same framework and, if so, how.
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3.1. Fundamental Characteristics of Statistical Learning

To evaluate the feasibility of integrating SL and RAL, we first assess the similarities and differ-
ences between the two types of learning. There are three essential features of the traditional
SL paradigm: compositionality, implicitness, and abstraction. Compositionality means that the
paradigm uses a limited number of observable tokens in a given sensory domain (e.g., N < 20
distinctive individual shapes in vision) and forms an inventory from these tokens in either the
temporal or the spatial domain. In the temporal domain, a member of the inventory is a pair or
triplet of shapes with elements that always appear consecutively in a fixed order,while in the spatial
domain, the shapes of the pair or triplet always appear in a fixed spatial arrangement together.Dur-
ing a temporal practice session, such inventory elements are chained into a long stream without
obvious separations between the inventory elements (Fiser & Aslin 2002a, Kirkham et al. 2002),
while in the spatial practice, a few inventory elements are shown together in each scene without
any segmentation cues separating the shapes of two inventory elements from each other (Fiser &
Aslin 2001). This method of creating the sensory stimuli ensures that the identity of the inventory
members (e.g., shape pairs) is never revealed while the individual elements (shapes) are all clearly
visible. This way, while the set of stimuli has a well-defined underlying structure based on the
inventory members, the observer sees only aggregate compositional scenes and never the under-
lying components alone. Moreover, due to careful counterbalancing in the experimental design,
neither the features of the individual elements nor any other statistics of the scenes and streams
(e.g., mean appearance frequency, position in the scene, or the identity of low-level features) can
provide any relevant information about the underlying structure of the stimulus space.

The second feature, implicitness, means that, during the exposure period, the observers have
no task to perform; they simply passively (but attentively) perceive the stream of stimuli con-
taining the inventory elements from a few dozen to a hundred times. While this implicitness of
the learning task should not be confused with the implicitness of the resulting knowledge, a large
number of tests have confirmed that the overwhelming majority of existing SL studies produce
explicit knowledge only in less than 5% of the observers (Bertels et al. 2012, Kim et al. 2009,
Lengyel et al. 2019). This feature of the paradigm makes it suitable for investigating both issues
of the effect of task implicitness or explicitness and the transition of knowledge from an implicit
to an explicit state.

The third feature, abstractness, is related to the subsequent test following the exposure phase,
in which observers’ familiarity with (Fiser & Aslin 2001) or reaction speed in response to (Barakat
et al. 2013, Turk-Browne et al. 2005) true inventory elements versus random pair or triplet com-
position of shapes is assessed. Any difference in performance between true and random struc-
tures is taken as evidence that the observers learned to perform automatic segmentation of the
input into sensible chunks during the exposure. In other words, they became more sensitive to the
true inventory structure, i.e., they learned the members of the underlying inventory. Importantly,
this is not an old–new test, since the measured sensitivity results from components not being seen
alone during the exposure before the test; thus, the existence of these components has to be in-
ferred from the composite scenes. In the simplest cases, SL tests can be passed by applying some
straightforward counting strategies on elements or element pairs; experiments with more intri-
cate designs showed that humans performed well in tests where such strategies were fruitless and
true abstraction of the inventory members was required for success (Orbán et al. 2008).Neverthe-
less, with some notable exceptions (Fiser & Aslin 2005, Lee et al. 2021), the vast majority of the
studies using this paradigm to date demonstrated learning of only the simplest statistics. These
statistics comprise occurrence frequencies and joint as well as conditional (in the temporal do-
main, transitional) probabilities between two or three observable elements forming an inventory
member (Bettoni et al. 2021, Bulf et al. 2011, Endress & Johnson 2021, Siegelman et al. 2019). Just

272 Fiser • Lengyel

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

02
2.

8:
26

5-
29

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

17
6.

63
.1

2.
20

1 
on

 0
9/

23
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



as the ways in which humans learn higher-level statistics have not been fully explored, there are
only a few studies focusing on other aspects of abstractness, i.e., the effect of multiple dimensions,
context, and task dependency on SL (Luo & Zhao 2018, Otsuka & Saiki 2016, Turk-Browne et al.
2008, Zhao et al. 2011).

3.2. Fundamental Characteristics of Rule/Abstract Learning

As detailed above, RAL is a much less homogeneous domain than SL, but there are three essential
features of RAL paradigms. These are the separation of learning from the observed stimulus, the
explicitness of the observer’s task, and the scope of higher-level abstraction. Separation from the
observed stimulus means that the majority of abstract learning operates on concepts as inputs
that do not have a direct equivalent in the sensory domains. For example, in the standard AAB
rule-learning paradigm, even though observed tokens convey the relevant structure, the structure
itself is defined along the abstract dimension of identity (same, same, different), and it can remain
unchanged even if all observed tokens in the scene are replaced (Saffran et al. 2007). This level of
abstraction in RAL can be variable, however. For example, if the AAB structure is defined along
a simpler dimension, such as size (i.e., small, small, large), several observed measures of the input,
such as positional distribution of light energy in a given spatial frequency band, can strongly
correlate with the abstract structure and thus can be used as a proxy for RAL (MacKenzie & Fiser
2010). In contrast, if the three items appear in different positions across the scenes, or if real-life
sizes are considered instead of pictorial sizes, no low-level proxies can help, and learning must be
performed at a truly higher level of abstraction.

The second feature, task explicitness, is just a typical feature, rather than an exclusive norm in
RAL. For example, infant studies, by necessity, cannot use explicit tasks; thus, the AAB type and
other infant studies rely on implicit tasks, and therefore, they are exceptions in terms of this feature
(Ferguson et al. 2018, Garner et al. 2016, Overlan et al. 2017, Rabagliati et al. 2019, Schonberg
et al. 2018, Werchan & Amso 2020). Nevertheless, the majority of RAL studies with children
and adults use verbal descriptions and specific cognitive tasks (e.g., categorization) to constrain
the observers’ learning processes (Franklin & Frank 2020, Rabi & Minda 2014, Yang et al. 2021,
Yildirim & Jacobs 2013).

The third feature, the scope of higher-level abstraction, is the defining feature of RAL. Truly
high-level abstraction is traditionally interpreted as mental processes related to ideas, i.e., abstract
concepts that have no physical forms and can be handled by linguistic or amodal representations
(Chomsky 1956, Dehaene et al. 2015, Lake et al. 2015, Pinker & Jackendoff 2005). Typical ex-
amples of such concepts include freedom, quality, humor, tradition, morals, mathematics, success,
and learning, to name a few. In contrast, higher-level abstraction attributed to RAL is typically
related to more concrete concepts, such as table, letter, or animal, that are more closely grounded
in perception and action, possess some links to specific sensory features despite the large variabil-
ity in appearance, and are frequently conceptualized as categories or object classes (Rosch 1973,
1975). Importantly, while the natural domain of RAL is higher- rather than truly high-level ab-
straction, this higher-level abstraction in RAL is more broadly defined than a generic taxonomic
tree of category structures. As detailed in Section 2.2, this abstraction involves learning and uti-
lizing relations, fragments, whole contexts, and task similarities and other structural information
(Bavelier et al. 2012, Kattner et al. 2017, Kiefer & Harpaintner 2020).

3.3. The Case for Integrating Statistical Learning and Rule/Abstract Learning

Given these disparate characteristics of SL and RAL,why should they be integrated, and how does
this integration relate to understanding visual perception? Early pioneers in vision research fully
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acknowledged the complexity of vision but followed the strategy of exploring the visual process
only in an extremely restricted context and in isolation from higher-level processes that lead to
object recognition, scene interpretation, or execution of various complex tasks based on vision.
This approach was based on the rationale that a generic description of early vision might pro-
vide sufficient support for those higher-level cognitive investigations (Marr 1982). However, this
strategy did not prevail, as it turned out that the context in which each isolated piece of low-level
sensory information could appear strongly modulated the meaning and significance of the given
information beyond any easy description (Cicchini et al. 2021, Cloherty et al. 2016, Grosof et al.
1993,Kok& de Lange 2014,Kok et al. 2012,Murray et al. 2002, Smith&Muckli 2010, van Bergen
et al. 2015).Moreover, these contextual and task-related modulations could leave lasting effects in
subsequent visual processes (Ahissar & Hochstein 1997, Ishikawa & Mogi 2011, Pomerantz et al.
1977). While these more complex results of vision solidified the notion that some learning must
be modeled together with visual perception in an integrated manner, they left open the question
of which types of learning those are.

While superficial comparison of the essential features of SL and RAL gives the impression
that it is correct to separate them in studies of vision, a more careful examination supports a
different conclusion. Specifically, enforcement of compositionality at the level of tokens in SL
paradigms suggests that extracting a more global structure of the input beyond the sea of pixel-
wise correlations is an essential feature of SL. This means that SL performs abstraction away
from the visually observed low-level attributes the same way that RAL does. While RAL focuses
on higher levels of abstraction compared to SL, evidence suggests that abstraction can be defined
on a continuous spectrum due to its being embedded in different perceptual processes to differ-
ent degrees; this continuity removes the strict separation between RAL and SL (Fiser & Lengyel
2019, Kiefer &Harpaintner 2020). To provide further support for this view, we conducted a meta-
analysis mapping existing PL, SL, and RAL studies along two axes: the complexity of the stim-
ulus and the specificity of the task used in the study (Figure 2a). As pointed out above, classical
PL and SL studies used complementary types of stimuli (simple versus more complex displays)
and opposite types of tasks (highly specific versus nonspecific), and both of these differences re-
inforced the idea that PL has higher specificity, whereas SL has stronger generalization (Fiser &
Lengyel 2019).With the introduction of newer paradigms in both domains that deviated from the
classical tasks and stimuli, this distinction in generalization diminished, which led to the vanishing
of the separation between PL and SL (Fiser & Lengyel 2019). While the stimulus complexities
of SL and RAL studies are more comparable, RAL studies have a larger spectrum of task defini-
tions compared to SL studies, ranging between implicit and explicit setups and focusing more on
context and task effects. This detaches abstraction from generalization, and blurs the difference
in the level of generalization between SL and RAL. In fact, some RAL studies using very specific
task settings find minimal generalization (e.g., Kattner et al. 2016). However, forcing SL and RAL
studies into implicit versus explicit task setups is not necessary, as investigation of both types of
learning can easily begin with an implicit setup and continue toward explicit settings, a progression
that is a typical condition in natural tasks. This means that SL and RAL are neighbors in terms of
the complexity of visual stimuli and can be defined very similarly in terms of task specificity.

Based on the above evidence about the different types of learning and the emerging link be-
tween learning and vision, the fundamental tenet of this review is that PL, SL, and RAL not only
can be but also should be studied in a unified computational framework. If learning in perception
is perpetual and occurs at each level of the representational hierarchy, and if the main goal of
understanding learning is to clarify how it interacts with perception, particularly with vision, for
higher efficiency, then a framework is necessary that can accommodate the various aspects of
learning at all levels. In addition, this framework should naturally integrate with the interpretative

274 Fiser • Lengyel

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

02
2.

8:
26

5-
29

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

17
6.

63
.1

2.
20

1 
on

 0
9/

23
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



definition of visual perception. Such a framework will have to embrace behavioral changes of
experience-based learning, from the simplest sensitivity change in detecting contrast variations, to
developing new general concepts such as firmness based on the visual appearance of a surface, to
forming abstract categories based on other mental concepts such as task structures and contexts.

[30] - Milton et al. (2017)
[31] - Ohta et al. (2013)
[32] - Cohen et al. (2021)
[33] - Gewirtz & Davis (1997)

Mean/tuning function

Br
ai

n 
ar

ea
 a

ff
ec

te
d 

by
 le

ar
ni

ng

Variability/covariability Population codes Functional connectivity

[18]

[24]

[23]

[28]

[17]

[22] 

[29]
[25]

[25] 

[26]

[26] 

[3]

[15]

[1]

[7] 
[6] 

[14] 

[16] 

[12] 

[20]

[4] [5]

[10] 
[13] 

[2] 

[8] 
[11] 

[21]

Neural correlates

[18] 

[9] 

V1
V3

MT

LGN

V4

LO

L-ATL

FFC

IT

PFC

MTL

OTC

L-STG

Insula
IFG

AmygA

LIP

Pre-cuneus

PIT
[19] 

PUT

HPC
EC

OFC

ACC
IPL

[41] [36][43] [42]
[45]

[40]
[46][44]

[32]

[30]

[35]
[33]

[37] [39][38] [31]

[32]

[31]

[36]
[34][27]

[17] - Karuza et al. (2017)
[18] - Turk-Browne et al. (2009)
[19] - Kaposvari et al. (2018)
[20] - Meyer & Olson (2011)
[21] - Ramachandran et al. (2016)
[22] - Aly et al. (2018)
[23] - Schapiro et al. (2012)
[24] - Schapiro et al. (2013)
[25] - Wang et al. (2017)
[26] - Karlaftis et al. (2018)
[27] - Henin et al. (2021)
[28] - Karuza et al. (2013)
[29] - Alamia et al. (2016)

[24]

Ta
sk

 s
pe

ci
fic

it
y

Stimulus complexity

[1] - Fiorentini & Berardi (1980) 
[2] - Xiao et al. (2008)
[3] - Wang et al. (2016) 
[4] - Kuai et al. (2005) 

[5] - Tartaglia et al. (2009)
[6] - Watanabe et al. (2001) 
[7] - Tanaka et al. (2005)
[8] - Rosenthal et al. (2010)

L E S S
G E N E R A L I Z AT I O N

[1] [2]

[6]

[4]

[13]

[9] [10]

[12]

[7]

[17]

Basic frequencies Higher-order correaltions Causal structures

[11]

[3]

[18]

Low-level stimuli Multi-element displays Complex scenes

N
o 

ta
sk

Co
ve

r s
to

ry
Ir

re
le

va
nt

 ta
sk

Sp
ec

ifi
c 

ta
sk [

[4]
[3]

M O R E
G E N E R A L I Z AT I O N

[8]

Classical PL

Roving

Double training

Conceptual PL

[5]
Imagery PL

Irrelevant
feature PL

Expertise PL

Implicit
sequence
learning

Classical SL Higher-order SL Chunk learning
(spatial)

Chunk learning
(temporal)

Cross-modal
SL

[14]

SL biases
object 

perception

[15]
SL biases
summary
statistics

SL biases
feature

perception
[16]

Classical RAL

Artificial
grammar

[19]
Category learning

[20]
Task-set
learning

[23]
Task learning

[22]
Higher-order

feature learning

[21]
Visual

recursion
learning

[24]
Context learning

[27]
Task structure

learning

[25]
Cognitive map learning

[26]
Causal structure

learning

[28]
RL policy
learning

[29]
Video game

a

b

[9] - Fiser & Aslin (2001)
[10] - Fiser & Aslin (2005)
[11] - Orban et al. (2008)
[12] - Schapiro et al. (2016)
[13] - Lengyel et al. (2019)
[14] - Lengyel & Fiser (2021)
[15] - Zhao et al. (2011)
[16] - Luo & Zhao (2018)

[17] - Saffran et al. (2007) 
[18] - Gomez & Gerken (1999) 
[19] - Minda & Smith (2001)
[20] - Collins & Frank (2013) 
[21] - Martins et al. (2015)
[22] - Austerweil & Griffiths (2011)
[23] - Kattner et al. (2017)
[24] - Werchan et al. (2015)
[25] - Mark et al. (2020)
[26] - Kemp et al. (2010)
[27] - Acuna & Schrater (2010)
[28] - Tomov et al. (2021)
[29] - Green et al. (2010)

Natural scenes and tasks

[1] - Yu et al. (2016)
[2] - Goltstein et al. (2013)
[3] - Schoups et al. (2001)
[4] - Yan et al. (2014)
[5] - Hua et al. (2010)
[6] - Chen et al. (2016)
[7] - Adab & Vogels (2011)
[8] - Yang & Maunsell (2004)
[9] - Ni et al. (2018)
[10] - Sanayei et al. (2018)
[11] - Gu et al. (2011)
[12] - Liu & Pack (2017)
[13] - Kuai et al. (2016)
[14] - Adab et al. (2014)
[15] - Law & Gold (2008)
[16] - Bi et al. (2014)

[34] - Retailleau & Morris (2018)
[35] - Gravert et al. (2017)
[36] - Baram et al. (2021)

[37] - Koechlin & Jubault (2006)
[38] - Bahlmann et al. (2008)
[39] - L. Wang et al. (2015)

[40] - Werchan & Amso (2020)
[41] - Durstewitz et al. (2010)
[42] - Paniukov & Davis (2018)

[43] - Shima et al. (2007)
[44] - Schuck et al. (2016)
[45] - Chan et al. (2016)
[46] - Zhou et al. (2021)

PL

SL

RAL

PL

RAL

SL

(Caption appears on following page)

www.annualreviews.org • Statistical Learning in Vision 275

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

02
2.

8:
26

5-
29

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

17
6.

63
.1

2.
20

1 
on

 0
9/

23
/2

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Figure 2 (Figure appears on preceding page)

The three learning types, indicated with colored labels. (a) The relationships among the three learning types in terms of stimulus
complexity and task specificity. Studies categorized originally as perceptual learning (PL) (red), statistical learning (SL) (blue), and
rule/abstract learning (RAL) (green) are mapped onto the dimensions of stimulus complexity (x axis) and task specificity (y axis). The
differences among the three learning types have been diminishing, demonstrated by the growing number of studies in the overlapping
areas (e.g., see studies 14, 15, 19, 20, 22). The gray curved arrow indicates the direction of increased generalization reported in studies.
The orange area depicts the range of natural tasks. (b) The relationships among the three learning types in terms of neural correlates
and related brain areas. Reports on neural correlates of PL (red), SL (blue), and RAL (green) are ordered according to the complexity of
the reported neural correlates modulated by learning (x axis) and approximate position of the investigated brain area within the cortical
hierarchy (y axis) and colored in red, blue, or green according to the type of learning predominantly influencing the area. Colored
ellipses indicate typical combinations of neural correlates and involved areas of the three learning types.

4. NEURAL CORRELATES OF LEARNING IN VISION

While reviewing the large spectrum of neural correlates in connection with each of the three
learning types is beyond the scope of this review, several such reviews exist for PL (LeMessurier
& Feldman 2018, Maniglia & Seitz 2018), SL (Batterink et al. 2019, Kourtzi &Welchman 2019),
and RAL (Dehaene et al. 2015, Tervo et al. 2016). In this section, we point out the clear structural
tendencies that can be observed when these neural signatures of the classical versions of the three
learning types are tabulated along the axes of the neural correlates and the brain areas involved
in learning (Figure 2b). Classical PL studies typically found effects of learning in terms of simple
single-unit measures such as changes in the mean, variability (tuning curves), or covariability of
single-cell responses in lower visual areas. Meanwhile, early SL studies focusing on neural cor-
relates reported involvements of only a few higher-order visual areas but many more areas not
directly related to visual processing. SL studies also typically measured population activities and
the strength of links between areas rather than firing rate means and variance. The neurophys-
iological results of RAL studies amplified these tendencies of SL studies by implicating a large
number of high cognitive areas in the prefrontal and orbitofrontal areas and finding effects of
learning in terms of complex changes in functional connectivity across areas, rather than shifts in
individual cell responses.

It is important to realize that the observed structural tendencies in Figure 2b are strongly re-
lated to the fact, demonstrated in Figure 2a, that classical studies of PL, SL, and RAL use charac-
teristically different types of stimuli and experimental tasks. Since learning is functionally defined
by the tasks and the stimulus, the articulated separation of low- versus high-level learning types
and the corresponding clustering of neural correlates should diminish as studies of the different
learning types use more similar setups. Indeed, evidence collected with novel task paradigms and
stimuli shows involvement of not only low-level but also higher-level cortical areas in PL ( Jing
et al. 2021, Law & Gold 2008, Li 2016), as well as neural signatures that are not related to recep-
tive field changes but rather to altered population coding even in the primary visual areas (Ghose
et al. 2002). This reinforces the idea that the strict separation between cortical areas involved in
PL and SL is not warranted (Fiser & Lengyel 2019).

Research in the domain of spatial navigation has similarly diminished the separation between
SL and RAL (Garvert et al. 2017, Hafting et al. 2005, Retailleau & Morris 2018). Based on the
concept of cognitive maps (O’Keefe & Nadel 1978, Tolman 1948) and the discovery of place and
grid cells (Hafting et al. 2005, O’Keefe & Dostrovsky 1971), a general framework of structural
map-like internal representations in the brain emerged to explain 2D navigation (Nadasdy et al.
2017, O’Keefe & Nadel 1978). Learning representations for 2D navigation can be viewed as a
process of learning more complex versions of the spatial structures handled by SL. This frame-
work has been generalized from spatial to other map-like structures and further to any structural
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nonspatial internal representation based on evidence that neural activity in the hippocampal
formation and that in the prefrontal cortex exhibit similar patterns (Baram et al. 2021). These rep-
resentations were suggested to enable flexible human behavior by facilitating abilities of inference
and abstraction on the type of structural knowledge that RAL generates (Mark et al. 2020).

5. THE COMPUTATIONAL FRAMEWORK OF LEARNING IN VISION

5.1. Implications of Previous Perceptual Learning, Statistical Learning,
and Rule/Abstract Learning Models for a Common Framework

As computational models of PL have been reviewed extensively elsewhere (Dosher & Lu 2017,
Fiser & Lengyel 2019), in this section, we focus on the requirements of integrating SL and RAL
into a single computational framework. Inspired by the agenda set in the study of language learn-
ing, early models of visual SL were framed in the context of learning pairs or triplets of elements
in a stream of sequentially presented single items with the central question of whether learning
transitional probabilities or identifying groups of elements as chunks is the correct underlying
computational model (Perruchet 2019, Perruchet & Pacton 2006). While this debate has been
resolved by evidence that chunk learning is a better conceptualization (Glicksohn & Cohen 2011,
Orbán et al. 2008, Perruchet 2019), different definitions of chunk and versions of the underly-
ing computational models have emerged in the literature. These proposals range from models
combining cooperation and competition principles with observed psychological process, such as
compositionality of the representation (Perruchet & Vinter 1998); to connectionist implementa-
tion of autoassociative networks (French et al. 2011), i.e., neural network implementations with
higher fidelity of cortical structures (Schapiro et al. 2017); to probabilistic models (Austerweil &
Griffiths 2011, Lee et al. 2021, Orbán et al. 2008). For example, recent improvements of the con-
nectionist approach using deep neural networks (DNNs) showed remarkable results in solving
difficult visual problems by distributed hierarchical supervised learning (Eickenberg et al. 2017,
Kriegeskorte 2015, Kubilius et al. 2016, Wenliang & Seitz 2018, Yamins et al. 2014). However,
there seems to be a considerable consensus that, despite this success, DNNs do not capture the
essential features of human visual learning (Geirhos et al. 2018, Kietzmann et al. 2019, Lake &
Baroni 2018, Lake et al. 2017, Srivastava et al. 2019, Ullman et al. 2016). In contrast, it has been
found that, while simple visual SL results can be replicated even by frequency- or co-occurrence-
counting naive models, only probabilistic chunk learning models can capture the SL results of
humans learning more challenging embedded structures of the visual input (Orbán et al. 2008).

As discussed in Section 2.2, the study of RAL is not linked strongly to vision, as it focuses
on the general principles of human learning, and therefore, it investigates the effects of tasks,
contexts, and overall distal structures generating the sensory input, with less emphasis on the
visual signal per se. Consequently, models of RAL utilize a wide range of current techniques of
machine learning that are not reviewed in this article for the sake of brevity (Alhama & Zuidema
2019, Altmann 2002, Lake et al. 2017). Due to the large, complex, and structured problem spaces
and the strong emphasis on flexible generalization as the main goal, the overwhelming majority
of RAL models utilize a probabilistic framework (Acuña & Schrater 2010, Austerweil et al. 2019,
Bavelier et al. 2012, Collins & Frank 2013, Eckstein & Collins 2020, Garvert et al. 2017, Lake
et al. 2017, Mark et al. 2020, Tomov et al. 2021). These models, particularly HBMs, have been
argued to be the most suitable for handling the challenges of abstract learning problems (Lake
et al. 2015, 2017; Tenenbaum et al. 2011). The HBM has also been the framework of choice for
integrating PL and SL to formalize the interplay between those two types of learning (Fiser &
Lengyel 2019).
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5.2. Integrating Perceptual Learning, Statistical Learning, and Rule/Abstract
Learning in a Hierarchical Bayesian Model

The converging views in the studies of SL and RAL on using the probabilistic framework are in
consonance with the recent trend of treating complex visual perception with probabilistic models
(Knill & Pouget 2004, Yuille & Kersten 2006). These models represent both sensory informa-
tion and uncertainty about that information, and thus, they can effectively handle the ambiguity
and context dependence of the stimulus (Eckstein 2017, Hayhoe 2017, Murray 2021, Yuille &
Kersten 2006). A recent paper argued that, given the scope of generalizability demonstrated by
humans in visually guided natural tasks, uncertainty must be represented even at the earliest levels
of the hierarchical sensory processing, and that evaluating the incoming information requires a
joint inference across all of these levels (Koblinger et al. 2021). However, if this is the case, then
learning must follow the same strategy by jointly adjusting the internal knowledge through co-
ordinating across all three types of learning; otherwise, it cannot support vision effectively (Fiser
et al. 2010). We posit that, for integrating learning and visual perception with the goal of better
understanding complex vision, a model of learning is required that comprises all of the types of
learning in a frameworkwhere they can seamlessly interact with each other andwith the perceptual
process.

We have presented a proof-of-concept example to demonstrate that this requirement is well
satisfied by an HBM model in the case of integrating PL and SL (Fiser & Lengyel 2019). The
SL part of this example was depicted by the simplest pair-based contextual structure, but HBM
allows learning and using for inference a much richer structural representation (Fazeli et al. 2019;
Lake et al. 2015, 2017). Computational studies have demonstrated that the higher levels of this
structured representation can evolve to various representational arrangement classes ranging
from simple linear 1D chains to more complicated 2D grids, trees, rings, and cliques (Kemp
& Tenenbaum 2008). In principle, this representation can successfully capture not only the
type of rules used in empirical rule-learning vision experiments to date, but also highly specific
real structures or abstract regularities or laws based on spatial arrangements, lighting, or size
and depth variations (French & DeAngelis 2020, Lee et al. 2021, Murray 2021, Orbán et al.
2008). Thus, RAL can be integrated into the proposed PL–SL framework simply by extending
upward the hierarchy of the upper structure, which can store highly ordered internal knowledge
traditionally not included in PL and SL studies (Figure 3). Such an integrated learning model
can naturally discover and generalize across structural regularities at any level, from sensory
variations through object and sequence identities to context, task, and value similarities that
inescapably emerge in any complex visual situation.

5.3. The Blessing of Approximation-by-Sampling for Implementing
a Probabilistic Framework

Interpreting learning through a wide variety of themeasurements of neural responses has been one
of the fundamental difficulties for establishing the link between vision and learning (LeMessurier
& Feldman 2018). The proposal that learning in vision should be formalized by HBMs introduces
abstract probability distributions as the fundamental representational concept for perception, in-
stead of the traditionally used firing rates of individual cells, and this seems to make the challenge
of interpretations even harder (Pouget et al. 2013). However, rather than complicating things,
this shift in the proposed computational representations gives an opportunity for a reinterpreta-
tion and unification of earlier findings in the literature. The probability distributions used by the
HBM framework are computationally intractable for real-world problems, and therefore, they re-
quire feasible approximative algorithms at the level of neural computing when implemented in
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Figure 3

Demonstration of the extended SL framework. The HBM (left) provides a general schema for the computational framework unifying
the three types of learning. An example of the extended SL paradigm based on the HBM involving PL (bottom row, pink background), SL
(middle row, blue background), and RAL (top row, green background) is also shown along with the corresponding generative model
formulated in the HBM framework ( framed, right). In this example, RAL handles two task conditions changing randomly, trial by trial,
between spatial frequency and orientation discrimination. SL handles the fact that, in each task, the reference value is selected, not
randomly, but according to the order defined by sequentially chosen reference pairs from an inventory. PL is responsible for the
improvement of the fine discrimination between two sequentially provided Gabor stimuli. Abbreviations: cpd, cycles per degree; HBM,
hierarchical Bayesian model; PL, perceptual learning; RAL, rule/abstract learning; Ref., reference; SL, statistical learning.

the brain (Fiser et al. 2010, Pouget et al. 2013). Consequently, a principled mapping between the
abstract probabilistic computations for learning (and visual perception) and the measurable neural
characteristics of the brain’s activity associated with learning needs to be established to link the
framework to physiological quantities. Different frameworks including probabilistic population
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codes (Ma et al. 2006) and sampling-based methods (Fiser et al. 2010, Hoyer & Hyvarinen 2003,
Lee &Mumford 2003) have been proposed as biologically feasible approximations of probabilistic
inference in the brain. Among these are sampling-based approximations, which have been argued
to capture the available neural evidence not only for perception but also for learning (Fiser et al.
2010). In addition, recent papers have shown how sampling-based methods can derive a precise
mapping between the abstract probabilistic computations and different traditional signatures of
neural activity, including neural tuning curves, response means and variability, gains, correlations
and population sparseness, response dynamics, and oscillations (Echeveste et al. 2020,Orbán et al.
2016). These results represent the first steps in developing appropriate mappings that can provide
the necessary means to establish a systematic connection between the abstract formalism of per-
ception and learning and the physiological characteristics of brain functioning at multiple levels
of the neural hierarchy.

6. CHALLENGES OF INTEGRATING STATISTICAL LEARNING
WITH VISION

As we claim in this review, an extended version of learning based on SL combined with PL and
RAL in a probabilistic framework might be the right approach to integrate learning into vision;
however, the currently available models and studies based on this principle represent an unques-
tionably modest initial step in this direction. In this final section of our review, we list five major
challenges that SL faces in becoming a feasible and adequate model of visual learning and men-
tion recent developments in each of these areas.The five challenges relate to suitable experimental
stimuli; hierarchy of representation; link between SL and vision; formalization of learning in vi-
sion; and finally, the neural correlates of visual learning.

The first challenge is equipping SL with more natural stimuli and context. The very first step is
to eliminate the artificial separation between temporal (Turk-Browne et al. 2005) and spatial (Fiser
& Aslin 2001) SL paradigms and to begin working with spatiotemporal sequences (Garber & Fiser
2021b). This would facilitate the abandonment of the use of simplistic and detached models based
on transitional-probability/temporal-prediction versus batch-clustering/occurrence-frequencies
and foster the emergence of models with adequate complexity to support visual perception. The
second step is to use stimuli with natural dimensions (gray-scale images of real 3D shapes) rather
than symbols (individual black 2D forms on a white background on a grid). Integrating PL and SL
will necessarily speed up this transition, but a formidable task will be to develop such stimuli with-
out losing control over the increase in learning complexity due to the evoked number of dimen-
sions. A corollary step in solving this challenge is using not only natural dimensions for the stimuli,
but also natural structures of the visual input, such as occlusions and saccade-based changes.

The second challenge is integrating RAL and making it relevant to vision. As a first step, the
underlying structural complexity of the setups used in SL paradigms should be extended to allow
for the emergence of more abstract hierarchies of representations. These structures could include
categories (Garber & Fiser 2021a) and contexts based both on input stimuli and on task speci-
fication (Collins & Frank 2013, Minda & Smith 2001, Werchan et al. 2015). The second step is
to explore how the emergent abstractions by SL would tie into fundamental variables of visual
perception. One possible example of this exploration is clarifying the links among the occlusion-
based emergence of the concept of 3D depth, the emergence of absolute size based on depth, and
the potential role of this abstraction in the emergence of size invariance and size constancy. Un-
derstanding such abstraction processes in learning would help us identify how abstract concepts
contribute to visual perception.

The third, complementary, challenge is validating the representation resulting from SL
as a true object-like representation. If SL is integrated with visual perception, then it should
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create representations that replicate known behavioral phenomena that emerge with true object
representations. For example, one of the multiple well-documented attentional effects in vision,
called object-based attention, has recently been reproduced with chunks learned in a standard SL
paradigm (Lengyel et al. 2021). Another example is amodal object generalization in perception,
for which a study has shown that learning of purely visual or purely haptic sensory structures by
SL immediately generalizes over to the other modality (Lengyel et al. 2019). Similar studies are
needed for several levels of visual processing ranging from Gestalt effects to illusions of various
kinds. A related aspect of this challenge concerns the links between long-term semantic memory
formed by SL and two other types of visual memory, working memory (WM) and episodic
memory. Brady et al. (2009) provided initial reports of interaction between knowledge formed
by SL and WM, but further clarifications are needed. While episodic memory in vision has been
explored by measuring the capacity and specificity of memory for episodic information (Brady
et al. 2008), the relationship between episodic memory and SL-based representations is a widely
unexplored topic (Sherman & Turk-Browne 2020).

The fourth challenge is formally developing and validating the HBM computational frame-
work that accommodates results of not only SL but also PL and RAL (Figure 3). As a first step,
the joint modeling of PL and SL should be developed to explain the puzzling pattern of results
in the literature obtained by nontraditional PL or SL paradigms. These models could use only
one level of the upper hierarchy, representing the knowledge gained by SL, and show how the
influence of this knowledge on lower-level stimuli provides the flexibility to capture human per-
formance. This model structure would be sufficient to explore, for example, the roving results of
PL, that is, the well-established phenomenon that, when a PL discrimination task is not learnable
with the reference stimuli randomly interleaved during training, it is often learned when the ref-
erence stimuli are grouped in blocks or change according to a fixed sequence (Kuai et al. 2005,
Zhang et al. 2008). The same model should be applicable to handle the enhanced generalization
effects observed in double-training PL paradigms (Wang et al. 2014, Xiao et al. 2008), includ-
ing category-induced biases in orientation perception (Tan et al. 2019) and even results showing
imagination-based improvements in PL (Tartaglia et al. 2009). Moreover, the same model struc-
ture should be sufficient to handle results showing the perceptual biases of classical studies of SL
(Barakat et al. 2013, Luo & Zhao 2018, Zhao et al. 2011).

The second step is integrating RAL into the framework by extending the number of levels in
the upper part of the HBM and investigating more complex interactions between variables at the
different levels of abstraction. These investigations can approach the issue from two directions.
First, they can focus on clarifying whether there is evidence for hallmark characteristics of prob-
abilistic representation and inference, such as explaining-away effects (Yuille & Kersten 2006), in
hierarchical representations newly learned by SL. Second, they can explore whether the proposed
framework could accommodate various specific types of metalearning effects in the literature,
such as extensive play of video games causing improvements not only in spatial and temporal res-
olution and contrast sensitivity of vision, but also in visual short-term memory and information
accumulation for decision making (Bavelier et al. 2012). The third formidable step in overcom-
ing this challenge is incorporating the temporal aspect of sequentiality in learning into current
models. Although various simple approximations of sequential learning, such as hidden Markov
models, state space models, and partially observed Markov decision processes, already exist, a full
framework of feasible approximation of sequential probabilistic learning in the brain is still in
development (Heald et al. 2021, Radulescu et al. 2021).

The final challenge is identifying physiologically testable neural correlates of statistical learn-
ing in vision (https://www.kitp.ucsb.edu/activities/brainlearn23). Pinpointing the neural cor-
relates of sensory learning has been a notoriously difficult undertaking, since effects of specific
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vision-related changes were mixed with those of general context- and task-related changes (Law
& Gold 2008). With the advent of a more sophisticated probabilistic SL model of the learning
process, the different effects might be parsed more successfully (Heald et al. 2021).While the first
steps of deriving neurophysiologically meaningful predictions based on sophisticated approxima-
tive probabilistic models have been made (Echeveste et al. 2020, Orbán et al. 2016), the devel-
opment of a much wider scope of metrics capturing complex neural phenomena is still a task for
future research (Buzsaḱi & Draguhn 2004, Semedo et al. 2019).

SUMMARY POINTS

1. To understand complex vision, research on visual perception and learning needs to be
integrated.

2. To exploit the potential insights that learning can offer to understand vision, the full
spectrum of learning, currently represented by the separate fields of PL, SL, and RAL,
must be considered as a whole.

3. Such a joint treatment is possible under an approximate probabilistic framework, since
PL, SL, and RAL are not conceptually different learning types, but rather, different ex-
treme versions of the same representational learning schema.

4. The unified framework can offer not only explanations for hitherto puzzling behavioral
phenomena and new predictions, but also a tighter link between vision and the neural
bases of learning.

FUTURE ISSUES

1. Integration of vision and learning requires the extension and synthesis of existing vi-
sual learning paradigms. This includes the use of more complex and more natural stim-
uli with a hierarchical structure, as well as consideration of the context of the visual
input.

2. In addition, the relevance of the established link between vision and learning needs to
be confirmed by experiments linking the representations resulted from visual learning
to true object representations.

3. The adequateness of the hierarchical probabilistic framework for visual learning needs
to be clarified computationally with an emphasis on sequential learning and the amount
and type of generalization that the framework can provide.

4. The biological plausibility of the proposed framework has to be established by providing
a general neural coding approach that can capture, in a feasible manner, probabilistic
computation in the brain and provide testable predictions for electrophysiological
experiments.
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