
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JANUSCODER: TOWARDS A FOUNDATIONAL VISUAL-
PROGRAMMATIC INTERFACE FOR CODE INTELLIGENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The scope of neural code intelligence is rapidly expanding beyond text-based
source code to encompass the rich visual outputs that programs generate. This
visual dimension is critical for advanced applications like flexible content genera-
tion and precise, program-driven editing of visualizations. However, progress has
been impeded by the scarcity of high-quality multi-modal code data, a bottleneck
stemming from challenges in synthesis and quality assessment. To address these
challenges, we make contributions from both a data and modeling perspective.
We first introduce a complete synthesis toolkit that leverages reciprocal synergies
between data modalities to efficiently produce a large-scale, high-quality corpus
spanning from standard charts to complex interactive web UIs and code-driven
animations. Leveraging this toolkit, we construct JANUSCODE-800K, the largest
multimodal code corpus to date. This powers the training of our models, JANUS-
CODER and JANUSCODERV, which establish a visual-programmatic interface for
generating code from textual instructions, visual inputs, or a combination of both.
Our unified model is a departure from existing approaches that build specialized
models for isolated tasks. Extensive experiments on both text-centric and vision-
centric coding tasks demonstrate the superior performance of the JANUSCODER
series, with our 7B to 14B scale models approaching or even exceeding the per-
formance of commercial models. Furthermore, extensive analysis provides key
insights into harmonizing programmatic logic with its visual expression. Our code,
benchmark, and checkpoints will be made publicly available.

1 INTRODUCTION

The advent of Large Language Models (LLMs; Hurst et al., 2024; Anthropic AI, 2024) has signifi-
cantly advanced the field of code intelligence (Sun et al., 2024), revolutionizing tasks centered on
textual source code. Building on this, the scope of code intelligence naturally expands beyond text to
encompass the rich and diverse visual manifestations that programs generate (Gemini Team, 2025; Si
et al., 2025), with the aspiration of bridging the perceptual–symbolic gap. Establishing a generalist
modeling interface that harmonizes code’s logic with its visual expression is therefore the next frontier.
Such an interface would empower models to flexibly generate data visualizations (Galimzyanov et al.,
2025; Ni et al., 2025) and interactive front-ends (Chen et al., 2025a;b), replicate or precisely edit
visual artifacts from multimodal inputs (Yang et al., 2025b; Xia et al., 2025), and even build complex,
code-driven animations (Ku et al., 2025) to elucidate a concept like “Attention Is All You Need”.

Despite its promise, the connection between code and vision remains in its early stages. While
recent models have shown success in handling unimodal symbolic representations (Xu et al., 2024b),
extending this to multimodal scenarios presents far greater challenges. The first challenge lies at the
modeling level. Current research predominantly focuses on program-aided understanding (Qiu et al.,
2025; Chen et al., 2025c) and reasoning (Surís et al., 2023; Guo et al., 2025), while fine-grained
perception (Liu et al., 2025) and generative capability remain significantly underdeveloped (Wang
et al., 2025a). For the few well-explored scenarios (Wang et al., 2024; Yun et al., 2024), existing
works often build specialized models for isolated targets (e.g., one for chart-to-code, another for
WebUI-to-code), leading to models that can neither generalize across scenarios nor scale effectively.

Second, and more fundamentally, progress is impeded by the scarcity of high-quality, diverse
multimodal code data. The heterogeneity of content in existing corpora (Gui et al., 2025; Ni et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

JanusCoder

Take a screenshot and a piece of
code of a web page, modify code
according to the user‘s instruction

WebUI Generation / Editing

Replicate an interactive simple
harmonic motion visualization
based on the reference image

Demonstration Generation

Generate the Python code that
can reproduce the picture based
on the picture I provide.

Chart to Code

Build an interactive visualization
of Gibbs free energy for a binary
mixture

Dynamic Visualizations

build a web application for
cellular automata

Visual Artifacts

Take a screenshot and a piece of
code of a web page, modify code
according to the user‘s instruction

Animation Generation

<div class="column">
<h3>In </h3>

……

<section class=“visu">
<h4>Evol</h4>

……

<div>
<label>amplitude

……

plt = Plot[G[x], {x, 0, 1},
PlotStyle -> Black]
……

ax = fig.add_subplot()
Surf = ax.plot_surface
……

from manim import *
class AttPattern(Scene):
……

Figure 1: JANUSCODER is a suite of models that establishes a unified visual-programmatic interface,
advancing multimodal code intelligence. It supports diverse tasks by combining code with visual
content generation, editing, and interpretation in a unified manner.

2025) presents a significant challenge, along with varying data richness across different programming
languages (PLs), diverse styles of NL instructions, and the vast array of visual outputs that code can
produce. For instance, these visual outputs can range from static Matplotlib charts and interactive
WebUIs to extended animations in the style of 3Blue1Brown1. Creating a comprehensive corpus
that covers this spectrum is a formidable task. It requires not only large-scale data collection and
processing but also well-matched validation environments (e.g., computation / rendering engines),
and rigorous quality control over the diverse visual contents.

In this work, we are motivated to build a unified model to facilitate the development of multimodal
code intelligence. Toward this goal, we make the following contributions:

1. We develop and release a versatile data synthesis toolkit. This enables the automatic synthesis of
multimodal code data across heterogeneous domains and PLs, including but not limited to charts,
Web UIs, visual artifacts, and code-driven animations. By doing so, it significantly reduces the
engineering efforts required for data curation in future research.

2. Building on this data toolkit, we curate JANUSCODE-800K, the largest multimodal code intelli-
gence corpus to date. Notably, our corpus includes large-scale animation and artifact data that have
not been present in previous works.

3. With the above data innovations and by fostering synergies across different modalities and tasks,
we developed JANUSCODER and JANUSCODERV. As illustrated in Figure 1, these models constitute
a unified interface designed to tackle a broad spectrum of visual–programmatic tasks.

4. We present a comprehensive evaluation, covering seven established and newly proposed bench-
marks. Our models demonstrate superior performance improvements in both text-centric and vision-
centric settings, approaching or even exceeding the performance of leading commercial models. This
indicates that the JANUSCODER series can serve as a strong open-source foundational model for
future research and applications.

2 RELATED WORKS
Code Generation for Visual Interfaces. LLMs have been widely explored for text-centric code
generation of visual interfaces, including data visualizations (Yang et al., 2024), web pages (Chen
et al., 2025d), and interactive UIs (Chen et al., 2025a). Early efforts focused on Python libraries (e.g.,
Matplotlib, Seaborn) for producing figures in scientific workflows (Zhang et al., 2024b; Sun et al.,
2025b). Later work extended to chart generation and editing (Zhao et al., 2025a), and to mapping NL

1https://www.3blue1brown.com/

2

https://www.3blue1brown.com/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

instructions into web-based artifacts (Zhang et al., 2025) or structured UI interactions (Cheng et al.,
2024). Overall, these approaches highlight the potential of LLMs to author executable visual content,
though they remain constrained to text-driven inputs.
Visually-Grounded Code Generation and Understanding. Another line of work emphasizes mul-
timodal inputs (vision-centric), where models interpret visual information to produce or reason about
code. Representative efforts include chart understanding, which evaluates the extraction of structured
knowledge from plots (Masry et al., 2022; Zhang et al., 2024a), and chart-to-code generation, which
requires reproducing scientific plots from images with captions or instructions (Zhao et al., 2025b;
Xia et al., 2025; Wu et al., 2025). Beyond charts, studies extend to theorem visualization (Ku et al.,
2025), multimodal algorithmic problem solving (Li et al., 2024), and structured vector graphics such
as SVGs (Yang et al., 2025c; Nishina & Matsui, 2024). While these works demonstrate progress,
they largely target isolated domains and modalities. In contrast, we move beyond these constraints by
unifying diverse domains and modalities across charts, web UIs, animations, symbolic computation,
and more, taking a leap forward in advancing multimodal code intelligence.

3 METHOD

To empower models for multimodal code intelligence, we propose a versatile data toolkit to tackle
multifaceted demands. In contrast to prior data approaches, which often suffer from a lack of
instruction diversity, scarcity in specialized domains, and insufficient validation for visual-code
alignment, our pipeline establishes a principled workflow. As shown in Figure 2: (1) Data Sourcing,
where raw assets are collected and categorized; (2) Data Synthesis & Curation, where new instruction-
code pairs is generated and refined through a multi-strategy engine; and (3) Quality Control, which
ensures data fidelity through automated validation and LLM/VLM judging.

Collection and Categorization

Public Repos

Algorithms

Artifacts

Code Archive

Web Pages

Matplotlib, WebUI,
General Artifacts

R, MATLAB, SVG

Scientific
Demonstrations

Animation,
Mathematica

NL + Code

(a) Guided Evolution

Code

NL + Code

NL + Code

(b) Reverse Instruction

(c) Re-contextualization

(d) Bidirectional Translation

Evolve

Generate

Recontext

Translate

Validate

NL’ + Code’

NL + Code’

NL’ + Code’

Curation

NL’ + Code’

Refine & Retry

Reward
5 / 5

Initial
Dataset

Scoring and
Filtering

Final Dataset

JanusCode-800K

LLM Judge

VLM Judge
NL Code Img

NL Code

……

(a) Stage 1 (b) Stage 2 (c) Stage 3

Reward
2 / 5

……

Animations

Concept

Reward Modeling

Figure 2: An overview of our toolkit for curating JANUSCODE-800K, which integrates heterogeneous
data sourcing, multi-strategy synthesis and curation, and reward modeling with execution checks and
LLM/VLM judging to ensure data fidelity.

3.1 DATA COLLECTION

Our pipeline begins by aggregating raw data from a vast and heterogeneous sources. These include
large-scale public datasets (e.g., StackV2; Lozhkov et al., 2024), extensive web corpora (e.g., Web-
Code2M; Gui et al., 2025), specialized knowledge bases like the Wolfram Demonstrations Project,
and competitive programming problems (Xu et al., 2025; Sun et al., 2025a). All sourced data is then
classified into two primary formats:

• Paired Data (Dpaired): Datasets containing instruction-code pairs (I, C). When a visual output is
available, it is included as an optional component, forming a triplet (I, C, V).

• Code-Only Data (Dcode): Unlabeled datasets consisting solely of code snippets, denoted as C.

A significant challenge within Dcode is the long-form, complex code files, such as a single Manim
script that generates a 5-minute-long mathematical animation. Such monolithic files contain numerous
distinct conceptual steps but are not structured for direct learning. To address this, we employ a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Overview of the strategies used to construct JanusCode Data from multiple sources, different
colored squares represent different strategies: ■ Guided Evolution; ■ Re-contextualization; ■
Reverse Instruction; ■ Bidirectional Translation.

Source Data Type Size Validation Reward Strategies

Matplotlib 200K Python VLM ■ ■
Charts 77K Python VLM ■ ■
Algorithm 100K Python VLM ■
Mathematica 11K Wolfram Engine LLM ■ ■ ■
Animation 5K Python + Manim Engine VLM ■ ■
Scientific PLs 400K - LLM ■ ■ ■
SVG 400K - VLM ■
WebUI 270K Playwright VLM ■
General Artifacts 10K Playwright VLM ■ ■
Scientific demonstration 10K Playwright VLM ■

sophisticated decomposition strategy utilizing Abstract Syntax Trees (AST). We parse complex
source code into its AST representation and traverse the tree to identify and isolate semantically
coherent, self-contained logical units. The details of the preprocessing pipeline and data sources can
be found in Appendix A and Appendix B, respectively.

3.2 DATA CURATION

We aim to build two complementary types of data: text-centric instruction-code pairs (I, C) for tasks
like Python data visualization, and vision-centric triplets (I, C, V) for tasks such as chart-to-code.
Guided Evolution. We adapt the principle of interaction-driven synthesis (Sun et al., 2025a) for
this strategy to increase data complexity and diversity. Starting with a seed triplet (I, C) ∈ Dpaired,
the evolution is guided by a high-level concept K, represented as keywords (e.g., chart type) or a
web meta-task (e.g., ‘add a widget’). A new instruction is generated via I ′ = fevolve (I, C,K). This
conceptual guidance is critical for creating grounded and novel instructions for visual coding tasks
that move beyond simple heuristic-based evolution (Xu et al., 2024a). Subsequently, the model
generates code C ′ for the new instruction, which is then validated in an execution environment E.
The feedback from this validation step drives the next synthesis iteration.
Re-Contextualization. This method enhances the semantic quality of existing paired data, maximiz-
ing the utility of our verified code assets. For a given pair (I, C) ∈ Dpaired , frecontext performs a deep
analysis of the code C to uncover implicit logic, edge cases, or contextual details not specified in the
original instruction I . It then generates a more descriptive and precise instruction, I ′ = frecontext(I, C).
The primary strength of this approach is its efficiency; it creates a higher-fidelity pair (I ′, C) by
improving the quality of the instruction without the computational overhead of synthesizing and
validating entirely new code. This ensures the model is trained on a semantically richer dataset where
language and code are more tightly aligned.
Reverse Instruction. The primary value of this strategy lies in its ability to transform raw code
into aligned instruction-code pairs, thereby substantially expanding data coverage. Inspired by prior
practices that exploit large-scale open-source code to synthesize realistic tasks (Wei et al., 2024),
we develop a reverse-instruction process: given a reference file Cref ∈ Dcoder a snippet of K lines
Csample is sampled and passed to a function freverse to produce a plausible natural language instruction
I ′′ = freverse (Csample). A model then generates C ′ conditioned on I ′, optionally leveraging Cref
as broader context. This pipeline enables the systematic repurposing of theorems and data analysis
code from scientific PLs like R and Matlab into instruction-following samples (I ′, C ′), effectively
populating our dataset with a rich variety of domain-specific tasks.
Bidirectional Translation. This strategy fosters the learning of abstract, syntax-independent
representations by translating conceptual intent between semantically analogous domains (e.g.,
Manim and Mathematica), effectively multiplying the value of our specialized datasets. Given a
sample (IA, CA) from a source domain A , a new instruction for the target domain B is first
generated: IB = ftranslate

(
IA

)
. Subsequently, the model generates the target code CB that uses the

source code CA as a structural template: CB = ftranslate
(
IB , CA

)
. This approach pragmatically

addresses the challenge of generating complex code from scratch. The process is fully bidirectional.

After data curation, next component of our toolkit is the validation of synthesized code. We leverage
a sandbox E that provides the necessary backends (e.g., Python interpreters, web renderers). Every

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

newly generated code sample C ′ must pass through a formal execution function, V ′ = Exec (C ′, E),
to produce a visual output or pass collected / generated test cases. This step ensures that only
functionally correct code proceeds to the final quality control stage. Samples that fail this validation
are rerouted to the synthesis engine for retry and refinement.

3.3 CROSS-DOMAIN SYNERGIES

Rather than treating data sources in isolation, we deliberately exploit synergies across heterogeneous
domains and modalities. The central idea is that knowledge can be transferred between semantically
related domains (e.g., R code reinforcing Mathematica tasks) and across different modalities (e.g.,
the visual output of a Python data visualization task can be used to construct chart-to-code data).
This approach is highly effective for mitigating data scarcity in specialized areas, such as scientific
demonstration, and enhances the overall coverage and robustness of our dataset.

This principle is applied throughout our data curation process. For instance, the wealth of scientific
computing logic in R and Matlab corpora is generalized to synthesize new data for Manim and
Mathematica using our Reverse Instruction and Bidirectional Translation strategies. Similarly,
foundational data from WebDev, including HTML and SVG code, provides a robust basis for
generating complex, interactive scientific demonstrations. This synergy is crucial for broadening task
diversity and strengthening model generalization, as we discuss further in Section 6.1.

3.4 DATA QUALITY CONTROL

While our synthesis pipeline generates substantial executable text-centric and vision-centric code,
executability alone is an insufficient proxy for the quality of the generated visual content. It is crucial
to recognize that while a program may pass compiler or rendering checks, its actual visual output can
drastically diverge from user instructions or requirements. We therefore construct a reward modeling
pipeline, tailored to our different data types, to systematically assess and filter out misaligned or
low-quality data at scale.

Our reward model employs a VLM as its core engine to assess the quality of data. The reward
process, denoted by the function R, takes NL instruction I , the generated code C, and the resulting
visual output V . These elements are organized within a structured prompt that guides the VLM
through a two-stage evaluation: (1) task understanding, where it summarizes its interpretation of the
instruction, and (2) Multi-dimensional Rating & Scoring across the four key metrics of task relevance,
task completion, code quality, and visual clarity.

Each metric is assigned an integer score on a scale of [1-5]. The final reward score S is calculated as
the average of these scores: S = R(I, C, V). Only data samples whose score S exceeds a predefined
threshold are retained. For data without a visual output V , a similar process is employed using an
LLM to assess the (I, C) pair. More details of reward pipelines are available in Appendix ??.

Table 2: Statistics of JANUSCODE-800K.

Data Type Statistics
Text-centric
Python Visualization: Generation 127.5K
Python Visualization: Editing 51.8K
Scientific PLs 31.8K
SVG 20.0K
Animation 19.5K
General Artifacts 56.8K
Algorithm Data 100.0K

Vision-centric
Chart-to-Code 70.0K
WebUI Generation 200.0K
WebUI Editing 69.5K
Scientific demonstration 53.0K

Text-centric
(50.9%)

Vision-centric
(49.1%)

Py
th

on
Ge

ne
ra

tio
n

(3
1.3

%)

Algorithm
(24.5%)

GeneralArtifacts(14.0%)

Python

Editing

(12.7%)Scientific

PLs(7.8%
)

SVG
(4.9%

)
Anim

ation
(4.8%

)

WebUI

Generation

(51.0%)

Chart-to-Code
(17.8%)

Web
UI

Ed
itin

g

(17
.7%

)

Sc
ie

nt
ifi

c
de

m
on

st
ra

tio
n

(1
3.

5%
)

Figure 3: Distribution of JANUSCODE-800K.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 JANUSCODE-800K

Leveraging our data toolkit, we construct JANUSCODE-800K, a diverse and high-quality multimodal
code intelligence corpus that we will release to the community. To the best of our knowledge, it is the
largest and most comprehensive of its kind to date. The detailed statistics are presented in Table 2.

In terms of its composition, we achieve a balance between the amount of text-centric and vision-centric
data. The overall distribution of task types is shown in Figure 3. During training, JANUSCODERV
utilizes the entire corpus, while JANUSCODER is trained exclusively on the text-centric data.

4 DTVBENCH

We present DTVBENCH for evaluating the capability of models to generate code for dynamic theorem
visualizations. The benchmark integrates two complementary engines: (i) MANIM, an engine for cre-
ating explanatory mathematical animations, and (ii) WOLFRAM MATHEMATICA (Wolfram Research,
2025), a symbolic computation engine supporting interactive visualizations. By combining these two
domains, DTVBENCH assesses a model’s ability to translate NL instructions into dynamic, logically
coherent, and visually faithful visualizations of theorems.

4.1 DATA COLLECTION AND CURATION

We obtain raw samples from human-authored and verified sources and preprocess them following
the method in Section 3.1. Tasks in DTVBENCH are derived from code such as 3BLUE1BROWN
video segments and official Wolfram demonstrations. From these sources, we manually curated 102
visualization tasks for the benchmark.

4.2 EVALUATION

We adopt a multi-dimensional evaluation protocol for both engines. Each generated output is scored
along the following dimensions:

• Executability (sexec ∈ {0, 1}): whether the generated code can be successfully executed.
• Code Similarity (ssim ∈ [1, 5]): structural and syntactic consistency with the reference

solution, judged by GPT-4o.
• Instruction Alignment (salign ∈ [1, 5]): semantic consistency between the natural language

instruction and the produced output, judged by GPT-4o.
• Faithfulness (sfaith ∈ [1, 5]): since dynamic content is primarily intended for human

interpretation and interactive outputs are difficult for LLM-based judges to evaluate, we
introduce an optional subjective score assessing the plausibility and visual correctness of
the generated animation or interactive content.

The overall score is defined as = sexec ·
(
ssim + salign + sfaith

)
. This ensures that only executable code

is considered for further evaluation, while successful generations are rewarded for syntactic fidelity,
semantic alignment, and perceptual faithfulness. More details of DTVBENCH are in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Data Curation and Synthesis. As described in Section 3, we construct a complete data toolkit to
synthesize training data for multimodal code intelligence. All natural language instructions and code
are generated using gpt-oss-120b (OpenAI, 2025). For quality control, we adopt reward models with
different backbones: Qwen2.5-VL-72B-Instruct (Bai et al., 2025) to evaluate vision-centric data such
as Python visualizations and rendered webpages, and Qwen3-235B-A22B (Yang et al., 2025a) to
handle text-centric data (e.g., Mathematica code).
Backbone Models. For model construction, we use Qwen3-{8B,14B} (Yang et al., 2025a) as
the backbones of JANUSCODER, and Qwen2.5-VL-7B-Instruct (Bai et al., 2025) together with
InternVL3.5-8B (Wang et al., 2025b) as the backbones of JANUSCODERV. In the analysis part, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Results on PandasPlotBench, ArtifactsBench, and DTVBENCH.

Model PandasPlotBench ArtifactsBench DTVBENCH

Incorrect Code↓ (%) Visual Task Manim Wolfram

Open-Source

LLaMA3-8B-Instruct 26.9 59 69 36.5 4.92 3.15
Qwen3-8B 20.0 63 74 36.5 6.20 5.18
Qwen2.5-Coder-7B-Ins 21.1 63 76 26.0 8.56 4.04
Qwen3-14B 12.6 68 78 39.8 6.63 5.08
Qwen2.5-Coder-32B-Ins 12.0 66 82 35.5 9.61 4.98
JANUSCODER-8B 14.9 63 80 39.6 9.70 6.07
JANUSCODER-14B 9.7 67 86 41.1 8.41 5.97

Proprietary

GPT-4o 9.7 72 85 37.9 10.60 4.92

additionally include Qwen3-4B, Qwen2.5-Coder-7B-Instruct (Hui et al., 2024), and InternVL3.5-4B
for further comparison. Model details are provided in Appendix D.
Baselines. Beyond the backbones used by the JANUSCODER series, we include additional baselines
for comparison. For unimodal settings, we consider Qwen2.5-Coder-14B-Instruct and Llama-3-
8B (Dubey et al., 2024); for multimodal settings, we adopt MiniCPM-V-2-6 (Yao et al., 2024) and
Llama-3.2-11B-Vision-Instruct (Meta, 2024). We also report GPT-4o (Hurst et al., 2024) results.

5.2 BENCHMARKING

We thoroughly evaluate the JANUSCODER series by employing a broad range of benchmarks that
span both unimodal and multimodal code intelligence tasks:
Unimodal Settings. Unimodal benchmarks mainly focus on text-to-code generation, including
PandasPlotBench (Galimzyanov et al., 2025) for Python visualizations, ArtifactsBench (Zhang et al.,
2025) for interactive visual artifacts, and DTVBENCH for dynamic visualization.
Multimodal Settings. Multimodal benchmarks cover ChartMimic (Yang et al., 2025b) for chart-to-
code tasks, WebCode2M (Gui et al., 2025) and DesignBench (Xiao et al., 2025) for WebUI generation
and editing, and InteractScience (Chen et al., 2025b) for scientific demonstration code generation.
General Coding. We also evaluate on BigCodeBench (Zhuo et al., 2025) and LiveCodeBench (Jain
et al., 2025) to highlight its capability in following complex instructions and algorithmic capability.

5.3 MAIN RESULTS: UNIMODAL TASKS

We first present the results on unimodal tasks in Table 3, where the inputs are mainly NL instructions,
code snippets, or both. The outputs are code, which are then executed to generate figures, animations,
or rendered webpages for evaluation.
Python Visualizations. We begin by evaluating Python-based visualization tasks (Galimzyanov
et al., 2025) where the model generates plotting code from NL descriptions based on DataFrames.

Both our 8B and 14B models show strong performance, exceeding baselines with error rates < 10%,
and achieving comparable or superior results to GPT-4o in task completion and visual similarity.
Moreover, as unified models, JANUSCODERV also excels in unimodal tasks, as reported in Table 7.
Visual Artifacts. JANUSCODER delivers results on ArtifactsBench (Zhang et al., 2025) that are sig-
nificantly better than GPT-4o, which can be attributed to our data pipeline that combines challenging
webdev data for complex interactive components with theorem-related resources and cross-language
code to enrich structural diversity and enhance generalization.
Animations and Interactive Contents. On DTVBENCH, JANUSCODER also performs strongly in
generating dynamic contents, achieving higher code quality and better subjective evaluations than
other baselines, approaching the performance of GPT-4o.

5.4 MAIN RESULTS: MULTIMODAL TASKS

We then report the results on multimodal tasks in Table 4, where the inputs consist of NL instructions,
code, images, or their combinations. The outputs are code, which are subsequently executed or
rendered into visualizations or interactive pages for evaluation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Results on ChartMimic, DesignBench, WebCode2M, and InteractScience.

Model
ChartMimic DesignBench WebCode2M InteractScience

Customized Direct Gen. Edit. Visual TreeBLEU Func. Visual

Low High Low High Overall CLIP VLM

Open-Source

Qwen2.5-VL-7B-Ins 51.07 58.69 40.73 41.70 72.73 6.85 73.42 12.83 8.40% 45.86 19.83
InternVL3-8B 51.88 60.04 48.48 55.41 69.34 7.76 79.62 12.40 8.93% 53.35 22.05
InternVL3.5-8B 51.56 59.55 46.02 53.39 71.73 8.63 79.09 11.95 11.47% 56.79 24.17
MiniCPM-V-2-6 27.53 48.18 21.82 45.26 66.25 4.56 45.85 9.73 0.13% 20.65 7.70
Llama-3.2-11B-Vision-Ins 18.87 39.63 19.32 28.37 62.24 6.61 51.54 6.57 6.67% 32.87 13.24
JANUSCODERV-7B 64.72 72.77 65.73 72.73 73.31 8.79 75.78 26.21 17.73% 60.56 27.67
JANUSCODERV-8B 66.68 74.20 65.79 73.18 68.86 8.63 66.34 18.28 17.60% 61.52 33.32

Proprietary

GPT-4o 59.4 67.42 57.16 64.62 76.83 9.23 82.67 13.00 27.20% 70.14 46.01

Chart-to-Code Tasks. We evaluate JANUSCODERV on ChartMimic (Yang et al., 2025b), JANUS-
CODERV achieves strong results on both high- and low-level metrics, consistently outperforming
baselines and substantially surpassing GPT-4o. As a unified model, it also outperforms recently
released specialized chart-to-code MLLMs (Xia et al., 2025; Zhao et al., 2025b), highlighting the
effectiveness of leveraging cross-task data synergy. Detailed comparisons are provided in Appendix F.
Webpage Generation and Editing. Models are evaluated on generating or editing HTML code
to produce webpages grounded in screenshots. In both WebCode2M (Gui et al., 2025) and Design-
Bench (Xiao et al., 2025), our models demonstrate significant improvements in both visual quality
and the structural similarity of the generated code to the references.
Scientific Demonstration Generation. Finally, we evaluate the most challenging and novel task of
scientific demonstration code generation (Chen et al., 2025b), which requires the integration of visual
understanding, algorithmic reasoning, and spatial comprehension, together with domain knowledge
and front-end coding capabilities.

Due to space limitations, the detailed metrics for the results on all the aforementioned benchmarks
are presented in Appendix E.

6 ANALYSIS

6.1 ABLATION STUDIES

Data Synergies. To validate the cross-domain and cross-modal synergies proposed in Section 3.3,
we conduct ablation studies by selectively removing specific categories of data within JANUSCODE-
800K. The results support our claim, showing that data from non-target domains, even when
cross-modal, can enhance performance on specialized visual-coding tasks (e.g., text-centric data
contributing to multimodal scenarios). This provides useful guidance for the research community,
suggesting that performance in data-scarce scenarios such as animations and artifacts can be improved
by incorporating data from related, more abundant sources.

Table 5: Ablation studies of JANUSCODER and JANUSCODERV across multiple benchmarks. Results
marked with * indicate evaluations conducted on a subset of the benchmark.

Method PandasPlotBench ArtifactsBench* LcbV6
Visual Task

JANUSCODER 63 80 40.99 25.14
w/o Algorithm 62↓ 83↑ 40.31↓ 17.71↓↓
w/o SVG 63 82↑ 40.27↓ 22.86↓
w/o Rewarding 60↓ 77↓ 38.58↓ 24.57↓↓

Method ChartMimic InteractScience WebCode2M

JANUSCODERV 68.74 17.73 75.78
w/o Algorithm 70.16↑ 18.13↑ 72.18↓↓
w/o Chart2Code 56.50↓↓ 16.27↓ 71.92↓↓
w/o Text-centric 60.73↓ 12.93↓↓ 71.82↓↓
w/o Rewarding 58.26↓↓ 17.20↓ 73.78↓

Reward Modeling. As shown above, we randomly sample from the synthetic data that passes
validation but is not filtered by reward modeling. With consistent training set size, we observe a clear
performance drop. This result validates the critical role of our reward modeling for multimodal parts,
demonstrating that successful execution alone is insufficient to guarantee high-quality data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.2 EFFECT OF BACKBONES

To further validate the effectiveness of our data construction, beyond the original experimental
setup we additionally adopt Qwen2.5-Coder-7B-Ins and InternVL3.5-4B as backbones. As shown
in Figure 4, JANUSCODE-800K consistently yields significant improvements across models with
different scales and post-training strategies.

Qwen3-14B Qwen3-8B Qwen2.5-Coder-7B
50

60

70

80

90

100

Pa
nd

as
Pl

ot
B

en
ch

-T
as

k

Baseline
JanusCoder

Qwen2.5-VL-7B InternVL-3.5-8B InternVL-3.5-4B
0

5

10

15

20

25

In
te

ra
ct

Sc
ie

nc
e-

Fu
nc

Baseline
JanusCoderV

Figure 4: Effectiveness on different model backbones

This confirms the soundness of our data design and can empower diverse backbones to become more
generalist models for multimodal code intelligence. More experiments on different backbones are
available in Appendix F.2.

6.3 GENERAL CODING CAPABILITIES

JANUSCODER demonstrates superior general coding capabilities that surpass even specialist ap-
proaches. As shown in Figure 5, it achieves strong performance on general benchmarks while also
outperforming specialist models like VisCoder (Ni et al., 2025) in their own target visualization
domain. Furthermore, it outperforms GPT-4o in both scenarios, which further demonstrates our
model’s balanced capabilities. More comparisons are provided in Appendix F.1.

5 10 15 20 25 30
LiveCodeBench-V6 (Pass@1)

65

70

75

80

85

90

Pa
nd

as
Pl

ot
Be

nc
h-

Ta
sk

 (M
ea

n)

GPT-4o

LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

VisCoder (7B)

JanusCoder (8B)

JanusCoder (14B)

0 5 10 15 20 25 30
BigCodeBench-Hard (Pass@1)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Ar
tif

ac
ts

Be
nc

h
(V

LM
 Ju

dg
e)

Qwen3 (8B)
LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

JanusCoder (8B)

JanusCoder (14B)

Figure 5: Visualization of balanced visual content generation and general coding ability.

7 CONCLUSION

In this work, we introduce JANUSCODER, a suite of foundational models designed to establish a
unified visual-programmatic interface. Supported by a complete and scalable data synthesis toolkit,
our models handle a diverse spectrum of visual code tasks in a unified manner Extensive experiments
on representative benchmarks, including a new benchmark proposed in this work, demonstrate the
stunning performance of the JANUSCODER series, with our 7B to 14B scale models approaching
or even exceeding the capabilities of leading commercial models. Further analysis reveals the key
principles for building such models. JANUSCODER serves as a strong standard for multimodal code
intelligence, setting the stage for future advancements in this field.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide training and evaluation code, together with representative data samples for each category,
in the supplementary materials. Detailed training settings are provided in Appendix D. Due to file
size constraints, model checkpoints and the datasets will be made public to the research community
in the camera-ready version.

REFERENCES

Anthropic AI. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1:1, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

Jiaqi Chen, Yanzhe Zhang, Yutong Zhang, Yijia Shao, and Diyi Yang. Generative interfaces for
language models, 2025a. URL https://arxiv.org/abs/2508.19227.

Qiaosheng Chen, Yang Liu, Lei Li, Kai Chen, Qipeng Guo, Gong Cheng, and Fei Yuan. Inter-
actscience: Programmatic and visually-grounded evaluation of interactive scientific demonstration
code generation, 2025b.

Yamei Chen, Haoquan Zhang, Yangyi Huang, Zeju Qiu, Kaipeng Zhang, Yandong Wen, and Weiyang
Liu. Symbolic graphics programming with large language models, 2025c. URL https://
arxiv.org/abs/2509.05208.

Yunnong Chen, Shixian Ding, YingYing Zhang, Wenkai Chen, Jinzhou Du, Lingyun Sun, and Liuqing
Chen. Designcoder: Hierarchy-aware and self-correcting ui code generation with large language
models. arXiv preprint arXiv:2506.13663, 2025d.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong Wu.
SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9313–9332, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.505.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Timur Galimzyanov, Sergey Titov, Yaroslav Golubev, and Egor Bogomolov. Drawing pandas: A
benchmark for llms in generating plotting code. In 2025 IEEE/ACM 22nd International Conference
on Mining Software Repositories (MSR), pp. 503–507, 2025. doi: 10.1109/MSR66628.2025.00083.

Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context,
and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang, Yi Su, Bohua Chen, Dongping Chen, Siyuan
Wu, Xing Zhou, Wenbin Jiang, Hai Jin, and Xiangliang Zhang. Webcode2m: A real-world dataset
for code generation from webpage designs. In THE WEB CONFERENCE 2025, 2025. URL
https://openreview.net/forum?id=aeP5nmlw5B.

Jiawei Guo, Tianyu Zheng, Yizhi Li, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Graham Neubig,
Wenhu Chen, and Xiang Yue. MAmmoTH-VL: Eliciting multimodal reasoning with instruction
tuning at scale. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 13869–13920, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.680.
URL https://aclanthology.org/2025.acl-long.680/.

10

https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2508.19227
https://arxiv.org/abs/2509.05208
https://arxiv.org/abs/2509.05208
https://aclanthology.org/2024.acl-long.505
https://openreview.net/forum?id=aeP5nmlw5B
https://aclanthology.org/2025.acl-long.680/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
Shivam Sahni, Haowen Ning, Yanning Chen, and Zhipeng Wang. Liger-kernel: Efficient triton
kernels for LLM training. In Championing Open-source DEvelopment in ML Workshop @ ICML25,
2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei
Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https:
//arxiv.org/abs/2409.12186.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free eval-
uation of large language models for code. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.

Lingjie Jiang, Shaohan Huang, Xun Wu, Yixia Li, Dongdong Zhang, and Furu Wei. Viscodex:
Unified multimodal code generation via merging vision and coding models. arXiv preprint
arXiv:2508.09945, 2025.

Max Ku, Cheuk Hei Chong, Jonathan Leung, Krish Shah, Alvin Yu, and Wenhu Chen. Theorem-
ExplainAgent: Towards video-based multimodal explanations for LLM theorem understanding.
In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 6663–6684, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.332. URL
https://aclanthology.org/2025.acl-long.332/.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiyong Huang, and Jing Ma. MMCode:
Benchmarking multimodal large language models for code generation with visually rich program-
ming problems. In Findings of the Association for Computational Linguistics: EMNLP 2024,
pp. 736–783, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-emnlp.42. URL https://aclanthology.org/2024.
findings-emnlp.42/.

Junteng Liu, Weihao Zeng, Xiwen Zhang, Yijun Wang, Zifei Shan, and Junxian He. On the perception
bottleneck of vlms for chart understanding, 2025. URL https://arxiv.org/abs/2503.
18435.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis
Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil
Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, et al. Starcoder 2 and the stack v2: The next
generation, 2024. URL https://arxiv.org/abs/2402.19173.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
mark for question answering about charts with visual and logical reasoning. In Findings of the
Association for Computational Linguistics: ACL 2022, pp. 2263–2279, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL
https://aclanthology.org/2022.findings-acl.177/.

AI Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. Meta AI
Blog. Retrieved December, 20:2024, 2024.

Yuansheng Ni, Ping Nie, Kai Zou, Xiang Yue, and Wenhu Chen. Viscoder: Fine-tuning llms for
executable python visualization code generation, 2025. URL https://arxiv.org/abs/
2506.03930.

Kunato Nishina and Yusuke Matsui. Svgeditbench: A benchmark dataset for quantitative assessment
of llm’s svg editing capabilities, 2024. URL https://arxiv.org/abs/2404.13710.

11

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://openreview.net/forum?id=chfJJYC3iL
https://aclanthology.org/2025.acl-long.332/
https://aclanthology.org/2024.findings-emnlp.42/
https://aclanthology.org/2024.findings-emnlp.42/
https://arxiv.org/abs/2503.18435
https://arxiv.org/abs/2503.18435
https://arxiv.org/abs/2402.19173
https://aclanthology.org/2022.findings-acl.177/
https://arxiv.org/abs/2506.03930
https://arxiv.org/abs/2506.03930
https://arxiv.org/abs/2404.13710

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. gpt-oss-120b & gpt-oss-20b model card. gpt-oss model card, 1:1, 2025.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Zhen Liu, Tim Z. Xiao, Katherine M. Collins, Joshua B.
Tenenbaum, Adrian Weller, Michael J. Black, and Bernhard Schölkopf. Can large language models
understand symbolic graphics programs? In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=Yk87CwhBDx.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System op-
timizations enable training deep learning models with over 100 billion parameters. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’20, pp. 3505–3506, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL https:
//doi.org/10.1145/3394486.3406703.

Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. De-
sign2Code: Benchmarking multimodal code generation for automated front-end engineering.
In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 3956–3974, Albuquerque, New Mexico, April 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.199. URL
https://aclanthology.org/2025.naacl-long.199/.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024.

Qiushi Sun, Jinyang Gong, Lei Li, Qipeng Guo, and Fei Yuan. Codeevo: Interaction-driven synthesis
of code-centric data through hybrid and iterative feedback. arXiv preprint arXiv:2507.22080,
2025a.

Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, et al. Scienceboard: Evaluating multimodal autonomous
agents in realistic scientific workflows. arXiv preprint arXiv:2505.19897, 2025b.

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
11854–11864, 2023. doi: 10.1109/ICCV51070.2023.01092.

Hanbin Wang, Xiaoxuan Zhou, Zhipeng Xu, Keyuan Cheng, Yuxin Zuo, Kai Tian, Jingwei Song,
Junting Lu, Wenhui Hu, and Xueyang Liu. Code-vision: Evaluating multimodal llms logic
understanding and code generation capabilities, 2025a. URL https://arxiv.org/abs/
2502.11829.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, Zhaokai Wang, Zhe Chen, Hongjie Zhang, Ganlin Yang,
Haomin Wang, Qi Wei, Jinhui Yin, Wenhao Li, Erfei Cui, Guanzhou Chen, Zichen Ding, Changyao
Tian, Zhenyu Wu, Jingjing Xie, Zehao Li, Bowen Yang, et al. Internvl3.5: Advancing open-source
multimodal models in versatility, reasoning, and efficiency, 2025b. URL https://arxiv.
org/abs/2508.18265.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Danqi Chen. Charxiv:
Charting gaps in realistic chart understanding in multimodal LLMs. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=cy8mq7QYae.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: empowering
code generation with oss-instruct. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Inc. Wolfram Research. Mathematica, version x.y, 2025. URL https://www.wolfram.com/
mathematica.

12

https://openreview.net/forum?id=Yk87CwhBDx
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://aclanthology.org/2025.naacl-long.199/
https://arxiv.org/abs/2502.11829
https://arxiv.org/abs/2502.11829
https://arxiv.org/abs/2508.18265
https://arxiv.org/abs/2508.18265
https://openreview.net/forum?id=cy8mq7QYae
https://openreview.net/forum?id=cy8mq7QYae
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chengyue Wu, Zhixuan Liang, Yixiao Ge, Qiushan Guo, Zeyu Lu, Jiahao Wang, Ying Shan, and
Ping Luo. Plot2Code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. In Findings of the Association for Computational
Linguistics: NAACL 2025, pp. 3006–3028, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.164.
URL https://aclanthology.org/2025.findings-naacl.164/.

Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye,
Min Dou, Botian Shi, Junchi Yan, and Yu Qiao. Chartx & chartvlm: A versatile benchmark and
foundation model for complicated chart reasoning, 2025. URL https://arxiv.org/abs/
2402.12185.

Jingyu Xiao, Ming Wang, Man Ho Lam, Yuxuan Wan, Junliang Liu, Yintong Huo, and Michael R.
Lyu. Designbench: A comprehensive benchmark for mllm-based front-end code generation, 2025.
URL https://arxiv.org/abs/2506.06251.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
complex instructions. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=CfXh93NDgH.

Fangzhi Xu, Zhiyong Wu, Qiushi Sun, Siyu Ren, Fei Yuan, Shuai Yuan, Qika Lin, Yu Qiao,
and Jun Liu. Symbol-LLM: Towards foundational symbol-centric interface for large lan-
guage models. In Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 13091–13116, Bangkok, Thailand, August
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.707. URL
https://aclanthology.org/2024.acl-long.707/.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. KodCode: A
diverse, challenging, and verifiable synthetic dataset for coding. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2025, pp. 6980–7008, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.365.
URL https://aclanthology.org/2025.findings-acl.365/.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran XU, Xinyu
Zhu, Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang.
Chartmimic: Evaluating LMM’s cross-modal reasoning capability via chart-to-code genera-
tion. In The Thirteenth International Conference on Learning Representations, 2025b. URL
https://openreview.net/forum?id=sGpCzsfd1K.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Jiaxu Zhang, Liao Wang, Gang Yu, Xinjun
Ma, and Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation model. arXiv
preprint arxiv:2504.06263, 2025c.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and Maosong Sun. MatPlotAgent:
Method and evaluation for LLM-based agentic scientific data visualization. In Findings of the
Association for Computational Linguistics: ACL 2024, pp. 11789–11804, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.701.
URL https://aclanthology.org/2024.findings-acl.701/.

13

https://aclanthology.org/2025.findings-naacl.164/
https://arxiv.org/abs/2402.12185
https://arxiv.org/abs/2402.12185
https://arxiv.org/abs/2506.06251
https://openreview.net/forum?id=CfXh93NDgH
https://aclanthology.org/2024.acl-long.707/
https://aclanthology.org/2025.findings-acl.365/
https://openreview.net/forum?id=sGpCzsfd1K
https://aclanthology.org/2024.findings-acl.701/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Mohammad Qazim Bhat, Yongxin Wang, Zutao Jiang,
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo Li, Haonan Li, Preslav Nakov, Timothy
Baldwin, Zhengzhong Liu, Eric P. Xing, Xiaodan Liang, and Zhiqiang Shen. Web2code: A
large-scale webpage-to-code dataset and evaluation framework for multimodal LLMs. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2024. URL https://openreview.net/forum?id=hFVpqkRRH1.

Chenchen Zhang, Yuhang Li, Can Xu, Jiaheng Liu, Ao Liu, Shihui Hu, Dengpeng Wu, Guanhua
Huang, Kejiao Li, Qi Yi, Ruibin Xiong, Haotian Zhu, Yuanxing Zhang, Yuhao Jiang, Yue Zhang,
Zenan Xu, Bohui Zhai, Guoxiang He, Hebin Li, Jie Zhao, Le Zhang, Lingyun Tan, Pengyu Guo,
Xianshu Pang, Yang Ruan, Zhifeng Zhang, Zhonghu Wang, Ziyan Xu, Zuopu Yin, Wiggin Zhou,
Chayse Zhou, and Fengzong Lian. Artifactsbench: Bridging the visual-interactive gap in llm code
generation evaluation, 2025. URL https://arxiv.org/abs/2507.04952.

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei
Huang. TinyChart: Efficient chart understanding with program-of-thoughts learning and vi-
sual token merging. In Proceedings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 1882–1898, Miami, Florida, USA, November 2024a. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.112. URL https:
//aclanthology.org/2024.emnlp-main.112/.

Zhehao Zhang, Weicheng Ma, and Soroush Vosoughi. Is GPT-4V (ision) all you need for automating
academic data visualization? exploring vision-language models’ capability in reproducing aca-
demic charts. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
8271–8288, Miami, Florida, USA, November 2024b. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.485. URL https://aclanthology.org/2024.
findings-emnlp.485/.

Xuanle Zhao, Xuexin Liu, Yang Haoyue, Xianzhen Luo, Fanhu Zeng, Jianling Li, Qi Shi, and
Chi Chen. ChartEdit: How far are MLLMs from automating chart analysis? evaluating
MLLMs’ capability via chart editing. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational Lin-
guistics: ACL 2025, pp. 3616–3630, Vienna, Austria, July 2025a. Association for Computa-
tional Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.185. URL
https://aclanthology.org/2025.findings-acl.185/.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, and Maosong Sun.
ChartCoder: Advancing multimodal large language model for chart-to-code generation. In Pro-
ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 7333–7348, Vienna, Austria, July 2025b. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.363. URL
https://aclanthology.org/2025.acl-long.363/.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTjllL0.

14

https://openreview.net/forum?id=hFVpqkRRH1
https://arxiv.org/abs/2507.04952
https://aclanthology.org/2024.emnlp-main.112/
https://aclanthology.org/2024.emnlp-main.112/
https://aclanthology.org/2024.findings-emnlp.485/
https://aclanthology.org/2024.findings-emnlp.485/
https://aclanthology.org/2025.findings-acl.185/
https://aclanthology.org/2025.acl-long.363/
http://arxiv.org/abs/2403.13372
https://openreview.net/forum?id=YrycTjllL0

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Details about data sources.

Type Data # Samples Sampled? Original Source

Python Visualization Viscoder 200,000 ✓ (Ni et al., 2025)

Chart2Code Viscoder 77,000 ✓ (Ni et al., 2025)
Viscodex 210,000 ✓ (Jiang et al., 2025)

Algorithm CodeEvo 70,000 ✓ (Sun et al., 2025a)
Viscodex 129,000 ✓ (Jiang et al., 2025)

Animation 3Blue1Brown Video Dataset 68,778 Link
Kaggle Manim Dataset 414 Link

SVG MMSVG-Icon 10,000 ✓ (Yang et al., 2025c)
MMSVG-Illustration 10,000 ✓ (Yang et al., 2025c)

Scientific PLs TheStackV2 500,000 ✓ (Lozhkov et al., 2024)

General Artifacts WebDev Arena - Link

WebUI Generation 200,000 ✓ (Gui et al., 2025)
Edit 69,501 ✓ (Gui et al., 2025)

Scientific Demonstration Wolfram Demonstrations - Link

LARGE LANGUAGE MODEL USAGE

In this submission, we employed LLMs to aid and polish writing, including grammar and typo
checking, as well as for identifying related works.

A DATA TOOLKIT DETAILS

A.1 AST PASRSING

We take the follow steps to process large and complex Manim animations collected from GitHub.
AST-based Static Analysis. We employ a static analysis approach to process the Manim source
files without executing them. Each .py script is parsed into an Abstract Syntax Tree (AST), ensuring
reproducibility and avoiding environment-specific dependencies.
Scene Identification. Within the AST, we detect classes that inherit from canonical Manim bases
such as Scene and ThreeDScene. For each scene class, we locate its construct() method,
which encodes the primary animation logic.
Feature Extraction. We traverse the body of the construct() method to extract semantically
meaningful features. These include instantiated objects (e.g., Circle, Text), invoked Anima-
tions (e.g., Create, Write), and embedded textual content. In addition, we record import state-
ments and capture concise code excerpts, while filtering out project-specific dependencies such as
manim_imports_ext.
Data Structuring. The extracted elements are consolidated into structured JSONL entries. Each
entry contains the file identifier, scene class, extracted features, and a prompt template. This
representation preserves the semantic intent of the animation in a format suitable for our data toolkit.

A.2 DETAILS OF GUIDED EVOLUTION

We define a meta task as an abstract, canonicalized edit operation on a web page that captures the
essential type of user intent while remaining agnostic to the specific context, location, or wording.
A meta task therefore denotes an operation class, such as “Change the color of a button” or “Add a
heading text”. Each meta task can be instantiated into concrete edit instructions, expressed in natural
language (e.g., “Add a login button on the right side of the navigation bar”) and grounded to specific
DOM elements and code edits.

B DATA COLLECTION DETAILS

The sources of data used by our toolkit to build JANUSCODE-800K are presented in Table 6.

15

https://github.com/3b1b/videos
https://www.kaggle.com/datasets/ravidussilva/manim-sft/
https://web.lmarena.ai
https://demonstrations.wolfram.com/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Complete PandasPlotBench Results.

Model Incorrect
code %

Mean Score Good (≥75)

Visual Task Visual Task

Proprietary

GPT-4o (20240806) 9.7 72 85 0.63 0.85

Open-Weight: LLM

Qwen2.5-Coder-7B-Instruct 21.1 63 76 0.57 0.75
Qwen2.5-Coder-14B-Instruct 16.0 65 78 0.62 0.80
LLaMA3-8B-Instruct 26.9 59 69 0.53 0.65
LLaMA3.3-70B-Instruct 9.1 68 85 0.61 0.86
Qwen3-8B 20.0 63 74 0.57 0.76
Qwen3-4B-Base 17.1 60 73 0.53 0.74
Qwen3-8B-Base 17.7 63 75 0.57 0.74
Qwen3-14B-Base 11.4 68 81 0.62 0.82
JANUSCODER-8B 14.9 63 80 0.59 0.8
JANUSCODER-14B 9.7 67 86 0.57 0.87

Open-Weight: VLM

LLaMA3.2-11B-Vision-Instruct 20.6 61 77 0.55 0.77
InternVL3-8B 20.6 63 73 0.57 0.69
Qwen2.5-VL-72B-Instruct 9.1 72 85 0.7 0.89
Qwen2.5-VL-7B-Instruct 18.3 63 74 0.57 0.73
InternVL3.5-8B 36 52 63 0.43 0.61
JANUSCODERV-7B 18.9 63 80 0.59 0.8
JANUSCODERV-8B 26.3 57 72 0.48 0.72

C DTVBENCH DETAILS

We construct DTVBENCH by collecting open-source Wolfram demonstrations and Manim scripts,
resulting in 52 Manim animation tasks and 50 Wolfram tasks. For the optional subjective evaluation,
participants were provided with detailed instructions (attached), and all annotators were college-level
students. The benchmark data and testing scripts are included in the supplementary materials.

D TRAINING DETAILS

All training experiments are conducted using the LLaMA-Factory framework (Zheng et al., 2024)
with bfloat16 precision. Following prior work (Ni et al., 2025) and our own observations, we adopt
a learning rate of 1 × 10−5 and train for three epochs across all settings. To enable multi-node
parallelism and accelerate training, we employ FlashAttention-2 (Dao, 2024), Liger-Kernel (Hsu
et al., 2025), and the DeepSpeed framework (Rasley et al., 2020).

For the 4B, 7B, and 8B models, training is performed on 8 × NVIDIA H800 GPUs with ZeRO-2
sharding and a per-device batch size of 2. For the 14B models, training is carried out on 16 × NVIDIA
H800 GPUs with ZeRO-3 sharding and a per-device batch size of 1. With a gradient accumulation
step of 8, the total batch size is fixed at 128 across all configurations.

E DETAILED EXPERIMENTAL RESULTS

E.1 DETAILED RESULTS ON PANDASPLOTBENCH

We present the complete results on PandasPlotBench (Galimzyanov et al., 2025) in Table 7.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: ChartMimic Complete Results: Direct Mimic.

Model Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GeminiProVision 68.2 52.6 64.2 51.3 47.1 53.8 53.3 53.6
Claude-3-opus 83.3 66.8 83.1 49.9 42.1 60.5 60.1 60.3
GPT-4o 73.0 60.6 67.1 59.0 42.0 57.2 64.6 60.9

Open-Weight

IDEFICS2-8B 49.0 6.2 33.1 9.2 9.0 14.4 17.6 16.0
DeepSeek-VL-7B 41.3 15.3 26.6 19.7 14.5 19.0 20.4 19.7
LLaVA-Next-Yi-34B 50.2 15.9 29.6 17.6 15.2 19.6 20.6 20.1
LLaVA-Next-Mistral-7B 59.7 14.0 31.1 19.8 17.8 20.7 21.3 21.0
Qwen2-VL-2B 47.0 20.1 29.5 21.3 17.9 22.2 23.4 22.8
Cogvlm2-llama3-chat-19B 50.5 21.3 31.8 18.4 17.0 22.1 24.5 23.3
InternVL2-2B 52.5 23.6 35.8 16.0 15.4 22.7 24.2 23.5
Qwen2-VL-7B 67.0 26.4 51.0 31.0 23.3 32.9 35.0 34.0
InternVL2-4B 66.2 34.7 51.7 25.2 23.6 33.8 38.4 36.1
InternVL2-8B 61.8 31.5 51.1 28.6 26.2 34.4 38.9 36.6
MiniCPM-Llama3-V-2.5 80.3 30.7 49.6 38.6 27.6 36.6 42.1 39.4
Phi-3-Vision-128K 66.7 37.5 49.6 37.4 29.8 38.6 41.0 39.8
InternVL2-26B 69.3 39.2 58.7 35.9 31.8 41.4 47.4 44.4
Qwen2.5VL-7B-Instruct 68.1 39.8 58.4 40.2 24.5 40.7 41.7 41.2
InternVL3.5-8B 66.7 49.2 57.6 44.7 32.6 46.0 53.4 49.7
JANUSCODERV-7B 80.6 70.2 75.2 64.5 53 65.7 72.7 69.2
JANUSCODERV-8B 80.6 70.4 74.2 65.0 53 65.8 73.2 69.5

E.2 DETAILED RESULTS ON CHARTMIMIC

We present the complete results on ChartMimic (Yang et al., 2025b) in Table 8 and Table 9 for direct
mimic and customized mimic, respectively.

E.3 DETAILED RESULTS ON DESIGNBENCH

For DesignBench (Xiao et al., 2025), Gen. denotes code generation from webpage screenshots and
Edit. denotes code modification according to user instructions given screenshots and source codes,
highlighting the visual–programmatic linkage. Table 10 reports the comparative performance of
proprietary and open-weight models on these two tasks, and “*” indicates that the results are taken
directly from the original paper.

We use CLIP similarity, MLLM Score(MLLM-as-Judge), and CMS (Code Match Scores) for
evaluation. Specifically, CLIP similarity is employed as a visual metric to measure the semantic
alignment between generated and reference screenshots; MLLM Score is derived by prompting
GPT-4o as a judge to rate the quality of edits and repairs on a 0–10 scale, which has been validated
against human evaluation in the original work; and Code Match Score (CMS) quantifies the overlap
of modified lines between generated and ground-truth code using Jaccard similarity.

Among proprietary models, Claude-3.7-sonnet achieves the strongest generation capability, while
GPT-4o slightly outperforms others on editing with the highest MLLM Score. Both models maintain
competitive CMS, indicating robust editing quality.

On the open-weight side, JanusCode-7B stands out with a balanced performance: it ranks first among
open-weight models in code generation and also delivers strong editing results. InternVL3.5-8B
shows competitive editing ability with the highest CMS, suggesting better alignment for fine-grained
code modifications. In contrast,MiniCPM-V-2-6 exhibit limited code editing performance, reflecting
the challenge of scaling down without significant quality loss.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: ChartMimic Complete Results: Customized Mimic.

Model Exec.
Rate

Low-Level High-Level Overall
Text Layout Type Color Avg. GPT-4o

Proprietary

GeminiProVision 76.2 52.2 70.9 56.0 49.4 57.1 59.6 58.4
Claude-3-opus 88.2 75.2 86.8 54.1 44.3 65.1 65.7 65.4
GPT-4o 73.2 64.1 69.0 60.9 43.5 59.4 67.4 63.4

Open-Weight

Qwen2-VL-2B 35.8 17.4 23.9 19.7 16.5 19.4 21.4 20.4
Cogvlm2-llama3-chat-19B 38.7 19.0 27.9 16.5 15.7 19.8 21.6 20.7
LLaVA-Next-Mistral-7B 49.0 20.0 32.0 22.6 19.9 23.6 24.7 24.2
IDEFICS2-8B 49.2 21.6 32.2 18.1 12.2 21.0 27.3 24.2
InternVL2-2B 49.3 22.2 35.4 20.0 18.1 23.9 27.8 25.9
LLaVA-Next-Yi-34B 64.2 28.7 44.8 32.9 27.7 33.5 37.1 35.3
DeepSeek-VL-7B 59.3 27.5 47.5 36.8 31.5 35.8 39.3 37.6
Phi-3-Vision-128K 67.8 29.7 52.5 42.3 36.5 40.3 44.0 42.1
InternVL2-4B 74.0 41.3 55.6 39.6 33.1 42.4 47.8 45.1
Qwen2-VL-7B 73.3 41.0 56.3 43.5 34.2 43.8 47.8 45.8
InternVL2-8B 73.0 43.1 54.4 39.9 35.4 43.2 48.9 46.1
MiniCPM-Llama3-V-2.5 78.7 40.8 58.0 44.8 33.2 44.2 51.5 47.9
InternVL2-26B 73.7 43.9 62.3 43.5 34.3 46.0 51.1 48.6
Qwen2.5VL-7B-Instruct 73.4 54.9 63.3 52.0 34.0 51.1 58.7 54.9
InternVL3.5-8B 71.2 55.3 64.9 52.0 34.0 51.6 59.6 55.6
JANUSCODERV-7B 80.3 66.4 74.1 66.4 51.9 64.7 72.8 68.7
JANUSCODERV-8B 80.7 69.1 75.9 67.8 53.9 66.7 74.2 70.4

Table 10: Generation and Editing performance across models on DesignBench.

Model Gen. Edit.

CLIP MLLM CMS

Proprietary

Claude-3-7-sonnet-20250219* 81.32 9.15 34.39
Gemini-2.0-Flash* 75.88 9.03 29.05
GPT-4o-2024-11-20* 76.83 9.23 33.94

Open-Weight

Qwen2.5-VL-7B-Ins 72.73 6.85 22.33
Llama-3.2-11B-Vision-Ins 62.24 6.61 12.99
InternVL3-8B 69.34 7.76 26.75
InternVL3.5-8B 71.73 8.63 28.65
MiniCPM-V-2-6 66.25 4.56 8.89
JanusCoder-7B 73.31 8.79 27.49
JanusCoder-8B 68.86 8.63 25.60

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Short/Mid/Long performance across metrics on WebCode2M.

Model Short Mid Long

Visual TreeBLEU Visual TreeBLEU Visual TreeBLEU

Proprietary

Gemini 0.35 0.16 0.38 0.15 0.34 0.14
Claude 0.52 0.13 0.35 0.14 0.37 0.13
GPT-4V 0.68 0.12 0.65 0.11 0.62 0.10
GPT-4o 0.85 0.15 0.81 0.13 0.82 0.11

Open-Weight

Qwen2.5-VL-7B-Ins 0.72 0.14 0.76 0.13 0.72 0.11
Llama-3.2-11B-Vision-Ins 0.53 0.08 0.56 0.07 0.46 0.05
InternVL3-8B 0.80 0.14 0.80 0.13 0.79 0.11
InternVL3.5-8B 0.81 0.13 0.80 0.12 0.77 0.11
MiniCPM-V-2-6 0.47 0.11 0.45 0.10 0.45 0.09
JanusCoder-7B 0.79 0.25 0.75 0.28 0.73 0.26
JanusCoder-8B 0.69 0.20 0.69 0.19 0.60 0.16

E.4 DETAILED RESULTS ON WEBCODE2M

The detailed WebCode2M (Gui et al., 2025) results are presented in Table 11, for metrics:

• Visual evaluates whether the generated webpage resembles the reference in appearance at the image
level.

• TreeBLEU assesses whether the generated code preserves the structural correctness of the webpage
at the DOM tree level.

TreeBLEU measures the fraction of all 1-height subtrees in a candidate tree that can be matched in a
reference tree. Formally, let S(·) denote the set of 1-height subtrees; then TreeBLEU is given by

TreeBLEU =
|S(t) ∩ S(t̂)|

|S(t̂)|
,

where t and t̂ represent the candidate and reference trees, respectively.

As shown in Table 11, proprietary models generally achieve stronger visual alignment, with GPT-4o
leading across all lengths. However, TreeBLEU scores reveal a different trend: while proprietary
models perform competitively in appearance-level fidelity, their structural correctness remains limited.

Among open-weight models, JanusCoder-7B and JanusCoder-8B achieve significantly higher Tree-
BLEU scores, surpassing all proprietary counterparts and setting the state-of-the-art in structural
preservation of generated code. This indicates that JanusCoder excels at capturing the DOM-level
organization of webpages, which is critical for generating code that is both usable and extensible.
Although JanusCoder’s visual similarity is slightly lower than the best proprietary models, the results
demonstrate a favorable trade-off: JanusCoder prioritizes structural faithfulness without severely
sacrificing appearance quality.

Overall, these findings highlight JanusCoder as the first open-weight model that narrows the gap with
proprietary systems in visual fidelity while establishing new benchmarks for structural correctness on
WebCode2M.

E.5 DETAILED RESULTS ON INTERACTSCIENCE

INTERACTSCIENCE is a benchmark designed to evaluate the capability of LLMs in the generation
of scientific demonstration code. The benchmark includes two complementary components. The

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 12: Programmatic Functional Test (PFT) and Visually-Grounded Qualitative Test (VQT) results.

Model PFT VQT

Overall % Average % Perfect % Action % CLIP VLM-Judge

Proprietary

GPT-4o 31.07 28.59 10.49 88.47 71.18 46.01
Gemini-2.5-Pro 41.87 38.56 13.99 86.44 72.66 55.26

Open-Weight

Qwen2.5-VL-7B-Instruct 8.40 7.05 0.70 67.29 45.86 19.83
InternVL3-8B-Instruct 8.93 8.13 1.40 74.24 53.35 22.05
InternVL3.5-8B 11.47 10.92 2.10 80.34 56.79 24.17
MiniCPM-V-2.6 0.13 0.08 0.00 29.66 20.65 7.70
Llama-3.2-11B-Vision-Instruct 6.67 5.63 0.70 46.44 32.87 13.24
JANUSCODERV-7B 17.73 16.91 4.20 83.22 60.56 27.67
JANUSCODERV-8B 17.60 17.30 4.20 81.86 61.52 33.32

Programmatic Functional Test (PFT) measures functional pass rate of generated code, reported
with three metrics: Overall (fraction of all test cases passed), Average (mean accuracy across
samples), and Perfect (percentage of cases where all tests for one sample are passed). The Visually-
Grounded Qualitative Test (VQT) assesses semantic alignment between generated outputs and
visual demonstrations. The Action score reflects whether the intended interaction sequence is correctly
executed. CLIP similarity and VLM-Judge scores capture automated and model-based evaluation of
visual grounding quality, respectively.

As shown in Table 12, proprietary models such as Gemini-2.5-Pro achieve strong performance,
especially in perfect pass rate of PFT and VLM-judge quality of VQT. Open-weight baselines,
however, lag behind, with most models struggling on functional correctness and visual alignment.
By contrast, our JanusCoder models (JANUSCODERV-7B and JANUSCODERV-8B) substantially
improve over existing open-weight systems. They outperform strong alternatives such as InternVL3.5
and Llama-3.2-11B across nearly all metrics, achieving higher programmatic correctness in PFT and
more consistent alignment in VQT (e.g., +5–10 points on VLM-Judge).

E.6 DETAILED RESULTS ON ARTIFACTSBENCH

ArtifactsBench (Zhang et al., 2025) is a benchmark designed to evaluate large language models on
program and artifact generation tasks across different domains. The benchmark covers multiple
sub-tasks, including GAME (Game development), SVG (SVG Generation), WEB (Web Application),
SI (Simulation), and MS (Management System). Each sub-task reflects a specific application scenario,
testing the model’s ability to generate domain-relevant, functional, and executable artifacts.

As shown in Table 13, JanusCoder demonstrates competitive performance compared with other
models. The 14B variant of JanusCoder achieves the highest average score (41.10), outperforming
both Qwen3 and GPT-4o. Notably, JanusCoder-14B achieves the best results on WEB (44.47), SI
(41.49), and MS (45.04), indicating its strong capability in handling practical system and application-
level generation tasks. Although its performance on SVG Generation is relatively lower, the overall
results highlight the superior adaptability and effectiveness of JanusCoder in diverse artifact generation
domains.

F DETAILED ANALYSIS AND COMPARISONS

F.1 GENERAL CODING CAPABILITIES

More experiments on balancing visualization capability and general coding capabilities are in Figure 6.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 13: Evaluation across sub-domains on ArtifactsBench.

Model AVG GAME SVG WEB SI MS

Qwen3-8B 36.52 34.58 36.37 38.08 36.15 35.92
JANUSCODER-8B 39.60 36.39 30.47 40.07 41.92 44.75
Qwen3-14B 39.79 38.65 39.50 41.22 38.68 38.67
JANUSCODER-14B 41.10 39.54 24.72 44.47 41.49 45.04
GPT-4o 37.97 36.96 39.54 39.27 35.73 35.83

F.2 EXPERIMENTS ON DIFFERENT BACKBONES

More experiments on the effectiveness of our method regarding different model architectures and
sizes are shown in Figure 7. We can see that our method can vastly improve the performance of
various models across different benchmarks.

G CASE STUDIES

We present some case studies of generated UIs and artifacts, as shown in Figure 8, Figure 9, and
Figure 10.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H PROMPTS

The prompt examples we used in JANUSCODER are listed below.

Synthesis Prompt - Viscode Generation

You will be given two example descriptions of data visualization. Your task is to generate a new
visualization instruction.
Here is your generation logic:

1. If the given description is about data visualization (charts, plots, maps), create a new instruction
that can visualize a similar problem or make a different kind of plot;

2. If the given description is NOT about data visualization, create a brand new visualization
instruction based on the core topic of the original description.

Your output should have two part: plot description and plot style description, and you should follow the
following format:

1. Plot Description: Your new plot description

2. Plot Style Description: Your new description for the plotting style

The two example descriptions are:
Example 1:
[Instruction 1 inserts here]
Example 2:
[Instruction 2 inserts here]

Reward Prompt - Viscode Generation

You will be given a triplet of information:

1. A natural language Instruction;

2. The Code generated to fulfill it;

3. The resulting Image.

Your evaluation must follow a detailed Chain of Thought process, analyzing each component before
assigning a score.

EVALUATION FRAMEWORK

STAGE 1: COMPREHENSIVE TASK UNDERSTANDING

• Analyze the Instruction: Deconstruct the user’s request to identify all explicit requirements
(e.g., chart type, title, colors) and implicit intents (e.g., the information to be conveyed).

• Analyze the Code: Review the generated code for correctness, logic, and quality.

• Analyze the Image: Inspect the final visual output to assess its accuracy and clarity.

STAGE 2: MULTI-DIMENSIONAL RATING & SCORING

Based on your analysis, you will rate the triplet across four dimensions. Then, you will provide a final
score based on the detailed guidelines below.

EVALUATION DIMENSIONS
1. Task Completion: This measures the extent to which the final image and code successfully

fulfill all aspects of the instructed task.

• Accuracy: Does the image accurately represent the data and adhere to all specified chart
types, labels, and titles?

• Completeness: Are all parts of the instruction addressed? Are any requirements missing?

2. Solution Coherence & Code Quality:
• Logic & Efficiency: Does the code follow a logical and efficient sequence of operations

to generate the visualization?

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Correctness & Readability: Is the code syntactically correct and executable? Does it
follow standard programming best practices for clarity?

3. Visual Clarity: This assesses the aesthetic and communicative quality of the final image.

• Readability: Is the chart easy to read and interpret? Are fonts, colors, and labels clear?
• Aesthetics & Layout: Is the visualization well-designed and visually appealing? Is the

layout balanced, free of clutter and overlapping elements?

4. Task Relevance: This measures the practical, real-world value of the assigned task.

• Practicality: Does the instruction represent a realistic and useful data visualization
scenario?

• Value: Does the task serve as a meaningful benchmark for a valuable AI capability?

SCORING GUIDELINES (1–5 SCALE)
• 5 (Excellent): The task is perfectly completed with no flaws. The code is efficient, clean, and

logical. The visual output is clear, accurate, and aesthetically excellent. A flawless submission.

• 4 (Good): The task is mostly completed and achieves the core objective, but with minor, non-
critical issues. This could be a small element missing from the chart, slight code inefficiency, or
minor visual imperfections.

• 3 (Fair): The task is only partially completed, or the output has significant flaws. For example,
the chart type is wrong, the data is misrepresented, the code is highly inefficient, or the visual is
cluttered and hard to read.

• 2 (Poor): The solution attempts the task but deviates significantly from the instructions. The
code may run, but the resulting image is largely incorrect, misleading, or irrelevant to the user’s
request.

• 1 (Failed): The task fails completely. The code is non-executable, produces an error, or the
output is completely unusable.

OUTPUT SPECIFICATION

Your final output must be a single JSON object. It must include your detailed Chain of Thought
reasoning, a score for each of the four dimensions, and a final Total Score (the average of the
dimensional scores).

ILLUSTRATIVE EXAMPLE

Data Triplet:
• Instruction: “Generate a horizontal bar chart showing the projected 2024 revenue for ‘Prod-

uct Alpha’, ‘Product Beta’, and ‘Product Gamma’. Revenues are $4M, $5.5M, and $3.2M
respectively. Use a blue color palette and title the chart ‘Projected Revenue 2024’.”

• Code:

import matplotlib.pyplot as plt

products = ['Product Alpha', 'Product Beta', 'Product Gamma']
revenues = [4, 5.5, 3.2]

plt.figure(figsize=(10, 6))
plt.barh(products, revenues, color='skyblue')
plt.xlabel('Projected Revenue (in Millions)')
plt.ylabel('Product')
Note: The title was forgotten in the code.
plt.tight_layout()
plt.show()

• Image: [An image of a horizontal bar chart with the correct data, labels, and blue color.
However, the chart has no title.]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Output:
{
"Chain of Thought": "1. **Task Understanding:** \
The instruction requires a horizontal bar chart for three products \
with specific revenue figures. It explicitly asks for a blue \
palette and a specific title, 'Projected Revenue 2024'. \
2. **Code Analysis:** \
The Python code uses matplotlib correctly. It defines the correct \
data and uses `barh` for a horizontal chart. The color 'skyblue' \
fits the 'blue color palette' requirement. However, the line to add \
the title (`plt.title(...)`) is missing. The code is clean and \
executable.
3. **Image Analysis:** \
The image shows the correct chart type and data. The axes are \
labeled correctly. The color is blue. The only missing element is \
the title specified in the instruction. \
4. **Rating:** \
Task Completion is flawed because the title is missing. Solution \
Coherence is good as the code is logical, just incomplete. Visual \
Clarity is good but could be better with a title. Task Relevance is \
high as this is a very common business chart.",
"Task Completion": "3",
"Solution Coherence \& Code Quality": "4",
"Visual Clarity": "4",
"Task Relevance": "5",
"Total Score": "4.0"

}

The resulting image is given at the beginning.
The natural language instruction is: [Instruction inserts here]
The code generated is:
[Code inserts here]

Reward Prompt - Viscode Edit

You will be given a triplet of information:

1. The Initial Image (before the edit).

2. The Edit Instruction (a natural language command).

3. The Edited Image (the result after applying the instruction).

Your evaluation must follow a strict, three-step process to determine a final binary outcome.

EVALUATION FRAMEWORK

STEP 1: COMPREHENSIVE ANALYSIS

• Analyze the Initial Image & Instruction: First, understand the content of the Initial
Image and deconstruct the Edit Instruction to identify the user’s core intent. What
object needs to be changed, added, or removed? What style or attribute needs to be modified?

• Analyze the Edited Image: Carefully compare the Edited Image with the Initial
Image. Identify all changes that were made and assess their fidelity to the instruction.

STEP 2: DIMENSIONAL SCORING (INTERNAL THOUGHT PROCESS)
As part of your reasoning, you will mentally score the edit across three critical dimensions on a 1–5 scale.
This scoring is part of your thought process to reach the final judgment.

EVALUATION DIMENSIONS (1–5 SCALE)
1. Instruction Adherence: How well did the edit follow the user’s command?

• 5 (Perfect): The instruction was followed perfectly, including all nuances.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• 4 (Good): The main goal of the instruction was achieved, but with minor deviations (e.g.,
“make the car red” results in a slightly orange car).

• 3 (Fair): The instruction was only partially followed (e.g., “remove the two people” only
removes one).

• 2 (Poor): The edit attempts the instruction but fundamentally misunderstands or fails to
execute it.

• 1 (Failed): The edit completely ignores or acts contrary to the instruction.

2. Edit Quality & Realism: How high is the technical and artistic quality of the edited portion?

• 5 (Excellent): The edit is seamless, photorealistic, and indistinguishable from a real
photograph. No artifacts.

• 4 (Good): The edit is high quality but has very minor, barely noticeable artifacts or
imperfections.

• 3 (Fair): The edit is noticeable. There are visible artifacts, unnatural textures, or slight
inconsistencies in lighting/shadows.

• 2 (Poor): The edit is of low quality, looking obviously fake or “pasted on.” Contains
significant, distracting artifacts.

• 1 (Failed): The edited area is a chaotic mess of pixels, completely broken, or nonsensical.

3. Preservation of Unrelated Areas: How well were the parts of the image not meant to be edited
preserved?

• 5 (Excellent): Only the targeted area was modified. The rest of the image is completely
untouched and pristine.

• 4 (Good): The edit mostly contained itself to the target area but caused tiny, insignificant
changes elsewhere.

• 3 (Fair): The edit bled into other areas, causing noticeable but not catastrophic changes to
the background or other objects.

• 2 (Poor): The edit significantly damaged or altered other important parts of the image.
• 1 (Failed): The entire image is distorted or corrupted as a result of the edit.

STEP 3: FINAL JUDGMENT (FAIL/SUCCESS)
Based on your dimensional scores, you will make a final binary judgment.
Rule: The final result is 1 (Success) if and only if all three dimensional scores are 3 or higher. If any
dimension scores 1 or 2, the final result must be 0 (Fail). This ensures that any significant flaw constitutes
a failure.

OUTPUT SPECIFICATION

Your final output must be a single JSON object containing your detailed Chain of Thought and the
final binary Final Result. You should also include your internal scores for transparency.

ILLUSTRATIVE EXAMPLE:
• Initial Image: [A photo of a brown dog sitting on green grass next to a white fence.]

• Edit Instruction: “Change the grass to snow.”

• Edited Image: [The grass is now white, but the dog’s paws are blurry and partially erased, and
a patch of snow incorrectly covers part of the white fence.]

Output:
{
"Chain of Thought": "1. **Analysis:** The user wants to replace the \
'green grass' with 'snow' while keeping the dog and fence intact. \
2. **Dimensional Scoring:** \
a) **Instruction Adherence:** The grass was indeed changed to snow, \
so the main instruction was followed. Score: 4. \
b) **Edit Quality \& Realism:** \
The edit on the dog's paws is poor, with noticeable blurring and \
erasure. This makes the edit look fake. Score: 2. \

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

c) **Preservation of Unrelated Areas:** \
The edit incorrectly spilled onto the white fence, altering an \
object that should have been preserved. Score: 2. \
3. **Final Judgment:** \
Since two dimensions scored below 3, the edit is a failure.",
"Instruction Adherence Score": 4,
"Edit Quality \& Realism Score": 2,
"Preservation of Unrelated Areas Score": 2,
"Final Result": 0

}

The Initial image and Edited image are given at the beginning.
Edit Instruction is: [The edit instruction inserts here]

Generation Prompt - Artifacts Query

You are an HTML, JavaScript, and CSS expert. Please use your professional knowledge to generate
accurate and professional responses. Generate HTML code to meet the following requirements. Make
sure the code you generate is executable for demonstration purposes.
Query: [Query inserts here]

Generation Prompt - Artifacts Plan

You are an expert in frontend web development (HTML, JavaScript, CSS). Your task is to generate a
complete HTML document containing necessary interactions or animations based on the following HTML
implementation plan. When generating the complete HTML file, you must strictly follow the component
list, element types, and ID definitions provided in the plan, while ensuring that the overall structure,
layout, and interaction logic are consistent with it. You may use HTML, CSS, and JavaScript, and if any
component requires external libraries such as Plotly, Chart.js, or MathJax, they should be included via
CDN. The final HTML file must be fully standalone, directly runnable in a web browser.
Query: [Query inserts here]

Synthesis Prompt - Artifacts Rewrite

You are an expert in prompt rewriting for code generation tasks. Your task is to rewrite a user query into
an instruction prompt that clearly asks for generating a website, web page, or HTML/JavaScript interface
implementing the described idea.
Each rewritten prompt must:

• You can reasonably expand on the original intention, but don’t deviate from the original intention
of designing a website or web page.

• Explicitly mention that the task is to build a website, webpage, HTML, or HTML+JavaScript
implementation (e.g., "You are a code expert. Please use your professional knowledge to
generate accurate and professional responses. Make sure the generated code is executable for
demonstration. Please use HTML and JavaScript to implement a character leveling up and skill
tree system."). Don’t copy the example, be as diverse as possible.

• Follow the structure and expressive style shown in the example, but avoid directly copying it.

• Use clear wording suitable for code generation.

• Produce three rewritten version per input query, ensuring diversity in phrasing and structure.

• Avoid repetition: do not use the same sentence structure or format more than once.

• Avoid rigid templates or overly predictable patterns such as "Make me a website that..." or
"Create a page for...".

Input Format: Query: [Example original user query inserts here]
Output Format:
1. [Example rewritten user query example inserts here]
2. [Example rewritten user query example inserts here]
3. [Example rewritten user query example inserts here]
4. [Example rewritten user query example inserts here]

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

5. [Example rewritten user query example inserts here]
Query: [Target query inserts here]

Reward Prompt - Artifacts

You are a Senior AI Data Visualization Synthesis Quality Assurance Expert. Your mission is to
provide a rigorous, objective, and multi-faceted evaluation of AI-generated data visualizations. You will
be given a triplet of data: a natural language Instruction, the Code (HTML/CSS/JS) generated to
fulfill it, and the resulting rendered Image (a screenshot).
Your evaluation must follow a detailed Chain of Thought process, analyzing each component before
assigning a score.

EVALUATION FRAMEWORK

STAGE 1: COMPREHENSIVE TASK UNDERSTANDING

• Analyze the Instruction: Deconstruct the user’s request to identify all explicit requirements
(e.g., chart type, title, colors) and implicit intents (e.g., the information to be conveyed).

• Analyze the Code: Review the generated HTML/CSS/JS code for correctness, logic, and
quality.

• Analyze the Image: Inspect the final rendered screenshot to assess its accuracy and clarity.

STAGE 2: MULTI-DIMENSIONAL RATING & SCORING

Based on your analysis, you will rate the triplet across four dimensions. Then, you will provide a final
score based on the detailed guidelines below.

EVALUATION DIMENSIONS
1. Task Completion: Measures the extent to which the final image and code successfully fulfill

all aspects of the instructed task.

• Accuracy: Does the screenshot accurately represent the data and adhere to all specified
chart types, labels, and titles?

• Completeness: Are all parts of the instruction addressed? Are any requirements missing?

2. Solution Coherence & Code Quality:
• Logic & Efficiency: Does the code follow a logical and efficient sequence of operations to

generate the visualization? Is the HTML structure semantic? Is CSS/JS used effectively?
• Correctness & Readability: Is the code syntactically correct and renderable in a browser?

Does it follow standard web development best practices?

3. Visual Clarity: Assesses the aesthetic and communicative quality of the final screenshot.

• Readability: Is the chart easy to read and interpret? Are fonts, colors, and labels clear?
• Aesthetics & Layout: Is the visualization well-designed, balanced, and free of clutter?

4. Task Relevance: Measures the practical, real-world value of the assigned task.

• Practicality: Does the instruction represent a realistic and useful data visualization
scenario?

• Value: Does the task serve as a meaningful benchmark for a valuable AI capability?

SCORING GUIDELINES (1–5 SCALE)
• 5 (Excellent): Task is perfectly completed with no flaws. Code is efficient, clean, and logical.

Visual output is clear, accurate, and aesthetically excellent.

• 4 (Good): Task is mostly completed with minor, non-critical issues (e.g., missing small element,
slight inefficiency, or minor visual imperfections).

• 3 (Fair): Task is partially completed, with significant flaws (e.g., wrong chart type, misrepre-
sented data, cluttered visual).

• 2 (Poor): Task deviates significantly from instructions. Code may render, but screenshot is
largely incorrect or irrelevant.

• 1 (Failed): Task fails completely. Code is non-renderable or output is unusable.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

OUTPUT SPECIFICATIONS

Your final output must be a single JSON object. It must include your detailed Chain of Thought
reasoning, a score for each of the four dimensions, and a final Total Score (the average of the
dimensional scores).

ILLUSTRATIVE EXAMPLE

Data Triplet:
• Instruction: “Generate a horizontal bar chart showing the projected 2024 revenue for ’Prod-

uct Alpha’, ’Product Beta’, and ’Product Gamma’. Revenues are $4M, $5.5M, and $3.2M
respectively. Use a blue color palette and title the chart ‘Projected Revenue 2024’.”

• Code:
<!DOCTYPE html>
<html>
<head>

<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>

<canvas id="myChart" style="width:100%;max-width:700px"></canvas>
<script>
const ctx = document.getElementById('myChart').getContext('2d');
new Chart(ctx, {

type: 'bar',
data: {

labels: ['Product Alpha', 'Product Beta', 'Product Gamma'],
datasets: [{

label: 'Revenue (in Millions)',
data: [4, 5.5, 3.2],
backgroundColor: 'rgba(54, 162, 235, 0.6)',
borderColor: 'rgba(54, 162, 235, 1)',
borderWidth: 1

}]
},
options: {

indexAxis: 'y', // Makes the bar chart horizontal
plugins: {
// Note: The title configuration was forgotten in the code.

legend: {
display: false

}
}

}
});
</script>

</body>
</html>

• Image: A screenshot of the rendered HTML page containing a horizontal bar chart with correct
data, labels, and blue color. The chart has no title.

Output:

{
"Chain of Thought": "1. **Task Understanding:** \
The instruction requires a horizontal bar chart for three products \
with specific revenue figures. It explicitly asks for a blue palette \
and a specific title, 'Projected Revenue 2024'. \
2. **Code Analysis:** \
The HTML code uses the Chart.js library to correctly generate the \
visualization. It defines the correct data and uses `indexAxis: 'y'` \
to create a horizontal chart. The `backgroundColor` fits the 'blue \

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

color palette' requirement. However, the `options.plugins.title` \
configuration block is missing, so the specified title is not \
rendered. The code is well-structured and renderable. \
3. **Image Analysis:** \
The screenshot shows the correct chart type and data. The axes are \
labeled correctly. The color is blue. The only missing element is \
the chart title specified in the instruction. \
4. **Rating:** \
Task Completion is flawed because the title is missing. Solution \
Coherence & Code Quality is good as the code is logical and uses a \
standard library, but is incomplete. Visual Clarity is good but could \
be better with a title. Task Relevance is high as this is a very \
common business chart.",
"Task Completion": "3",
"Solution Coherence & Code Quality": "4",
"Visual Clarity": "4",
"Task Relevance": "5",
"Total Score": "4.0"

}

Synthesis Prompt - Webpage Edit Instructions Generation

You are an expert HTML/CSS developer.
You will receive a screenshot of a web page.
Your task is to generate concrete edit instructions for the web page that bring visually noticeable changes
to the page. An edit instruction is composed of an edit action, a visible UI element, and an edit attribute.

EDIT ACTION TYPES

1. Add (introducing new UI elements)

2. Change (modifying elements)

3. Delete (removing elements)

EDITABLE UI ELEMENTS

1. Button (clickable element for user actions, e.g., “Submit”, “Save”)

2. Input field (form element for text or data entry, such as textboxes or number inputs)

3. Card (container element for grouping related content, often with a border or shadow)

4. List item (individual entry within a list, such as menu or todo items)

5. Divider (horizontal or vertical line used to separate content sections)

6. Heading (text element indicating section titles, e.g., <h1>, <h2>)

7. Navigation bar (top-level menus and links)

8. Image (pictures, logos, or illustrations)

9. Icon (symbolic graphic, e.g., checkmark, star)

10. Table (rows and columns of data)

EDITABLE ATTRIBUTE TYPES

1. text (including content, font, and typography modifications)

2. color (encompassing background colors, text colors, and accent colors)

3. position (spatial arrangement and layout adjustments)

4. size (dimensional scaling and resizing operations)

5. shape (geometric modifications and structural changes)

6. layout & spacing (holistic modifications affecting entire UI components)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

REQUIREMENTS FOR GENERATING EDIT INSTRUCTIONS

1. Visual Impact
Every instruction must produce a clear, visually noticeable change (e.g., layout restructuring,
color scheme shifts, adding or removing visible components).

2. Visual References Only
Always describe target elements by their appearance or position on the page (e.g., “the large
green button at the bottom right”, “the navigation bar at the top”). Never use code-specific terms
like class names, IDs, or HTML tags.

3. High-Level Intentions
Express edits as general intentions rather than precise technical details (e.g., say “move the
button closer to the edge” instead of “move the button by 10px”).

4. No Interactivity
Exclude interactive behaviors such as hover states, animations, or JavaScript-based actions.

5. Screenshot-Grounded Only
Do not mention information that could only be known from inspecting the HTML/CSS source.
Rely solely on what is visible in the screenshot.

6. Element Relationships or Multi-Property Changes
An instruction must either:

• Involve at least two elements in relation to each other (e.g., alignment, grouping, ordering,
spacing), or

• Combine multiple changes to a single element into one instruction (e.g., “make the card
smaller and add a gray border”).

7. No Redundancy
Avoid overly similar or repetitive instructions (e.g., do not output both “Swap the first and
second buttons” and “Swap the third and fourth buttons”).

8. Output Format
Generate 3 to 5 instructions as a numbered list, with no explanations or extra comments. If no
suitable instruction can be generated, output exactly one word: “None”.

EXAMPLE INSTRUCTIONS

[Example instruction inserts here]

OUTPUT INSTRUCTIONS

Synthesis Prompt - Webpage Edit

You are an expert HTML/CSS developer.
You take a piece of code of a reference web page, and an instruction from the user.
You need to modify the code according to the user’s instruction to make the webpage satisfy user’s
demands.
Requirements:

• Do not modify any part of the web page other than the parts covered by the instructions.

• For images, use placeholder images from https://placehold.co

• Do not add comments in the code such as "<!– Add other navigation links as needed –>" and
"<!– ... other news items ... –>" in place of writing the full code. WRITE THE FULL CODE.

You MUST wrap your entire code output inside the following markdown \
fences: ```html and ```.

Do not output any extra information or comments.

INSTRUCTION:
[Instruction inserts here]

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

CODE:
```html
{Code inserts here}
```

OUTPUT:

Reward Prompt - Webpage

You are a Senior Quality Assurance Expert in AI-Generated HTML/CSS Code Editing and Visual-
ization.
Your mission is to provide a rigorous, objective, and multi-faceted evaluation of AI-generated code
modification tasks.
You will be given:

1. the original rendered Image (the first input image),

2. the modified rendered Image (the second input image),

3. the natural language Instruction (user’s command for modification),

Your evaluation must follow a detailed Chain of Thought process, analyzing each component before
assigning a score.

EVALUATION FRAMEWORK

STAGE 1: COMPREHENSIVE TASK UNDERSTANDING

• Analyze the Instruction: Break down the user’s request into explicit requirements (e.g.,
“change background to blue”, “add a red button”, “remove the chart title”) and implicit require-
ments (e.g., style consistency, element positioning).

• Compare Images: Identify what has changed between the original and modified image. List
all observed modifications.

• Match Against Instruction: Verify whether the observed image modifications directly and
fully correspond to the instruction. Check if there are missing elements, extra unintended
changes, or partial compliance.

STAGE 2: MULTI-DIMENSIONAL RATING & SCORING

Based on your analysis, you will rate the given example across five dimensions. Then, you will provide a
final score based on the detailed guidelines below.

EVALUATION DIMENSIONS
1. Instruction Fulfillment

• Accuracy: Does the modified code and its rendered image correctly implement every
requested change?

• Completeness: Are all aspects of the instruction covered without omissions?

2. Modification Precision
• Unintended Changes: Were there any modifications not requested by the instruction?
• Minimal Necessary Change: Was the change scope minimized to only what was required,

avoiding collateral edits?

3. Modification Recall
• Faithfulness: Did the modification preserve all unrelated elements from the original code

and image?
• No Content Loss: Was any original information, layout, or visual element inadvertently

lost, degraded, or corrupted?

4. Visual Quality & Consistency
• Clarity: Is the modified element clear, readable, and well-rendered?
• Consistency: Does the change blend naturally with the rest of the image (no layout break,

no visual artifacts)?

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

5. Task Relevance & Usefulness
• Practicality: Does the instruction represent a realistic and useful web-editing scenario?
• Value: Is this example a good benchmark for evaluating AI code-editing and web UI

understanding capabilities?

SCORING GUIDELINES (1–5 SCALE)
• 5 (Excellent): All instructions perfectly implemented; no extra changes; code and visuals are

clean and consistent, code quality is high.
• 4 (Good): Instruction mostly implemented with only minor imperfections or negligible extra

changes. Code and visuals are generally high quality.
• 3 (Fair): Some parts of the instruction are missing or incorrectly applied; noticeable issues in

code, visuals, or unintended changes.
• 2 (Poor): Major deviation from the instruction; significant missing or wrong modifications;

poor code or visual quality.
• 1 (Failed): Instruction not followed at all, or modifications are irrelevant/incorrect; code may

be broken or non-renderable.

OUTPUT SPECIFICATIONS

• Your final output must be a single JSON object. It must include your detailed Chain of
Thought reasoning, a score for each of the five dimensions, and a final Total Score.

• The Total Score should reflect your holistic, overall judgment of the result as a whole, not
a simple arithmetic average of the five dimension scores.

• If you give a score of 5, you must explicitly state that all requirements are perfectly satisfied. If
you give a score below 5, you must list which requirements are violated.

• All scores for each criterion must be integers (1, 2, 3, 4, or 5). Do not assign fractional or
decimal scores to any item, including the overall score.

ILLUSTRATIVE EXAMPLE

Input Data:
• Original Image: [A screenshot of the original HTML page. In the real input, it is the first

image.]
• Modified Image: [A screenshot of the modified HTML page. In the real input, it is the second

image.]
• Instruction: Position the address box alongside the sidebar menu and adjust the text color

inside the box to match the main text color for consistency.
Output:
{
"Chain of Thought": "The instruction requires positioning the \
address box alongside the sidebar menu and ensuring its text color \
matches the main text. In the original page, the address box is \
centered above the content, not aligned with the sidebar. In the \
modified version, the address box appears at the top right, \
visually next to the sidebar menu. The text color remains black, \
matching the main content. The implementation uses absolute \
positioning, achieving a two-column layout but with some alignment \
and responsiveness limitations. No unrelated elements are changed. \
The result visually fulfills the instruction with minor technical \
and aesthetic compromises.",
"Instruction Fulfillment": 4,
"Modification Precision": 5,
"Modification Recall": 5,
"Visual Quality & Consistency": 4,
"Task Relevance & Usefulness": 5,
"Total Score": 4

}

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

INSTRUCTION

[Instruction inserts here]

OUTPUT

Generation Prompt - Webpage Generation

You are an expert HTML/CSS developer. You take screenshots of a reference web page from the user, and
then build single page apps using HTML/CSS.

• Make sure the app looks exactly like the screenshot.

• Pay close attention to background color, text color, font size, font family, padding, margin,
border, etc. Match the colors and sizes exactly.

• Use the exact text from the screenshot.

• Do not add comments in the code such as "<!– Add other navigation links as needed –>" and
"<!– ... other news items ... –>" in place of writing the full code. WRITE THE FULL CODE.

• Repeat elements as needed to match the screenshot. For example, if there are 15 items, the code
should have 15 items. DO NOT LEAVE comments like "<!– Repeat for each news item –>" or
bad things will happen.

• For images, use placeholder images from https://placehold.co and include a detailed description
of the image in the alt text so that an image generation AI can generate the image later.

Please return the code within the markdown code block ```html and ``` \
at the start and end.

Do not output any extra information or comments.
The screenshot: <image>

Generation Prompt - Webpage Edit

You are an expert HTML/CSS developer. You take a screenshot, a piece of code of a reference web page,
and an instruction from the user. You need to modify the code according to the user’s instruction to make
the webpage satisfy user’s demands.
Requirements:

• Do not modify any part of the web page other than the parts covered by the instructions.

• For images, use placeholder images from https://placehold.co

• Do not add comments in the code such as "<!– Add other navigation links as needed –>" and
"<!– ... other news items ... –>" in place of writing the full code. WRITE THE FULL CODE.

You MUST wrap your entire code output inside the following markdown \
fences: ```html and ```.

Do not output any extra information or comments.
Instruction: [Instruction inserts here]
Code: [Code inserts here]
The webpage screenshot: <image>

Synthesis Prompt - R

You are an exceptionally intelligent coding assistant and a creative problem generator for the R language.
You take a small piece of code as inspiration and build a complete, high-quality programming problem
and a runnable solution around it.
You will be given a “seed snippet” of R code. This snippet is for inspiration only.
Seed Snippet:
[Code snippet inserts here]

Your Task:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

1. Get Inspired: Look at the functions, packages, or logic in the seed snippet (e.g., subset,
dplyr::filter, ggplot).

2. Create a New Problem: Invent a completely new, realistic, and self-contained programming
problem that a user might have. This problem should be inspired by the seed but not be about
explaining or fixing the seed itself.

3. Write a Full Solution: Provide a complete, high-quality, and runnable R code solution for
the problem you just invented. The solution must be self-contained. If it requires a package, it
should include library(). If it needs data, it must create a sample data frame.

Output Format: You MUST present your output in exactly two distinct sections: [Problem
Description] and [Code Solution].

Synthesis Prompt - Mathematica

You are an expert coding assistant and a creative problem generator for the Wolfram Language (Mathe-
matica). You take a small piece of code as inspiration and build a complete, high-quality programming
problem and a runnable solution around it.
You will be given a “seed snippet” of Wolfram Language code. This snippet is for inspiration only.
Seed Snippet:
[Code snippet inserts here]

Your Task:
1. Get Inspired: Identify the core concept in the seed (e.g., DSolve, Plot, Manipulate).

2. Create a New Problem: Invent a completely new, self-contained problem. For example, if the
seed is DSolve[...], you could create a problem about solving a different type of differential
equation or visualizing its solution field.

3. Write a Full Solution: Provide a complete, runnable Wolfram Language solution. It must be
self-contained and clearly solve the problem you invented. Use standard conventions and add
comments (* ... *) for clarity.

Output Format: You MUST present your output in exactly two distinct sections: [Problem
Description] and [Code Solution].

Synthesis Prompt - Matlab

You are a highly skilled coding assistant and a creative problem generator for MATLAB. You take a small
piece of code as inspiration and build a complete, high-quality programming problem and a runnable
solution around it.
You will be given a “seed snippet” of MATLAB code. This snippet is for inspiration only.
Seed Snippet:
[Code snippet inserts here]

Your Task:
1. Get Inspired: Observe the functions or operations in the seed (e.g., matrix multiplication,

plot, signal processing functions).

2. Create a New Problem: Invent a new, self-contained engineering or scientific problem. For
instance, if the seed is about matrix multiplication, you could create a problem about solving a
system of linear equations or applying a transformation.

3. Write a Full Solution: Provide a complete, runnable MATLAB script or function. It must be
well-commented (%) and self-contained. If it generates a plot, ensure it is fully labeled.

Output Format: You MUST present your output in exactly two distinct sections: [Problem
Description] and [Code Solution].

Synthesis Prompt - Manim

You are an expert Manim designer tasked with enhancing existing animations. Based on the script below,
write a new, more advanced instruction. Your new instruction must include all the original animation’s

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

features AND add at least one significant new feature. Examples of new features could be: animating a
related mathematical formula, adding explanatory text, transforming the existing shapes into new ones, or
introducing a more complex sequence of animations. Describe the complete, enhanced animation in a
single, detailed paragraph.
Here is the original Manim script:

```python
[Original codes inserts here]
```

Benchmark Prompt - DTVBench Manim

ROLE
You are an expert Manim developer and a strict JSON-only grader.

TASK
Evaluate the [GENERATED CODE] against [REFERENCE CODE] and [INSTRUCTION] using the
rubric below. Then OUTPUT ONE SINGLE-LINE JSON OBJECT ONLY.

RUBRIC (TWO DIMENSIONS, SCORES ARE INTEGERS 1..5)
1. Code Similarity: how close the implementation logic/structure/API usage is to the reference.

2. Instruction Alignment: how well the final animation (sequence/content/timing) matches the
instruction.

INPUTS
[INSTRUCTION]
[Instruction inserts here]
[REFERENCE CODE]
[Reference code inserts here]
[GENERATED CODE]
[Generated code inserts here]

OUTPUT SCHEMA (MUST MATCH KEYS AND TYPES EXACTLY)
Return ONE minified JSON object with EXACTLY these keys:

{
"code_similarity": {

"score": <int 1-5>, "reasoning": "<<=60 words, no newline>"
},
"instruction_alignment": {

"score": <int 1-5>, "reasoning": "<<=60 words, no newline>"
}

}

HARD CONSTRAINTS — READ CAREFULLY
• Output JSON ONLY. No markdown, no code fences, no prose, no prefix/suffix.

• Do NOT wrap with “‘ or “‘json.

• The FIRST character MUST be {{ and the LAST character MUST be }}.

• Single line only (no newline characters). No trailing commas.

• Use integers 1..5 for "score".

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Human Evaluation Guidelines - DTVBench Manim

HUMAN EVALUATION INSTRUCTIONS

You will be shown:

1. Instruction – A natural language description of the animation.

2. Generated Video – An animation produced by a model based on this instruction.

Your task is to judge how well the Generated Video matches the Instruction. Please provide a score from 1
(Very Poor) to 5 (Excellent), and optionally add a short comment to explain your decision.

SCORING GUIDELINE

• 5 (Excellent): The video completely follows the instruction, including all details (objects, text,
colors, positions, animation effects, sequence, timing, etc.).

• 4 (Good): The video follows the instruction very well, with only one or two small mistakes
(e.g., slightly wrong color or layout).

• 3 (Acceptable): The video captures the main idea of the instruction but misses several details
or gets one major aspect wrong.

• 2 (Poor): The video only partially follows the instruction; many important parts are missing or
incorrect.

• 1 (Very Poor): The video does not follow the instruction at all; it looks unrelated.

OUTPUT FORMAT

For each video, please provide:

• Instruction Alignment Score (1–5): ___

• Comments (optional): A brief note on why you chose this score.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
BigCodeBench-Hard-Complete (Pass@1)

65

70

75

80

85

90

Pa
nd

as
Pl

ot
Be

nc
h-

Ta
sk

 (M
ea

n)

Qwen3 (8B)

LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

VisCoder (7B)

JanusCoder (8B)

JanusCoder (14B)

0 5 10 15 20 25 30
BigCodeBench-Hard-Complete (Pass@1)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Ar
tif

ac
ts

Be
nc

h
(V

LM
 Ju

dg
e)

Qwen3 (8B)

LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

JanusCoder (8B)

JanusCoder (14B)

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
BigCodeBench-Hard-Instruct (Pass@1)

65

70

75

80

85

90

Pa
nd

as
Pl

ot
Be

nc
h-

Ta
sk

 (M
ea

n)

Qwen3 (8B)

LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

VisCoder (7B)

JanusCoder (8B)

JanusCoder (14B)

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
BigCodeBench-Hard-Instruct (Pass@1)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Ar
tif

ac
ts

Be
nc

h
(V

LM
 Ju

dg
e)

Qwen3 (8B)

LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

JanusCoder (8B)

JanusCoder (14B)

5 10 15 20 25 30
LiveCodeBench-V5 (Pass@1)

65

70

75

80

85

90

Pa
nd

as
Pl

ot
Be

nc
h-

Ta
sk

 (M
ea

n)

GPT-4o

LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

VisCoder (7B)

JanusCoder (8B)

JanusCoder (14B)

5 10 15 20 25 30
LiveCodeBench-V5 (Pass@1)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Ar
tif

ac
ts

Be
nc

h
(V

LM
 Ju

dg
e)

LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

GPT-4o

JanusCoder (8B)
JanusCoder (14B)

5 10 15 20 25 30
LiveCodeBench-V6 (Pass@1)

65

70

75

80

85

90

Pa
nd

as
Pl

ot
Be

nc
h-

Ta
sk

 (M
ea

n)

GPT-4o

LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

VisCoder (7B)

JanusCoder (8B)

JanusCoder (14B)

5 10 15 20 25 30
LiveCodeBench-V6 (Pass@1)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Ar
tif

ac
ts

Be
nc

h
(V

LM
 Ju

dg
e)

GPT-4o
LLaMA3-Instruct (8B)

Qwen2.5-Coder-Instruct (7B)

JanusCoder (8B)

JanusCoder (14B)

Figure 6: Plot-related performance versus general coding capabilities of different models (all results)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Qwen3-14B Qwen3-8B Qwen2.5-Coder-7B
50

60

70

80

90

100

Pa
nd

as
Pl

ot
B

en
ch

-T
as

k

Baseline
JanusCoder

Qwen3-14B Qwen3-8B Qwen2.5-Coder-7B
10

20

30

40

50

60

Ar
tif

ac
ts

B
en

ch
 (L

ite
)

Baseline
JanusCoder

Qwen2.5-VL-7B InternVL-3.5-8B InternVL-3.5-4B
30

40

50

60

70

80

C
ha

rt
M

im
ic

 (D
ir

ec
t)

Baseline
JanusCoderV

Qwen2.5-VL-7B InternVL-3.5-8B InternVL-3.5-4B
0

5

10

15

20

25

In
te

ra
ct

Sc
ie

nc
e-

Fu
nc

Baseline
JanusCoderV

Figure 7: Effectiveness of our method on various model backbones (all results)

This demo visualises how different climate-policy parameters affect the evolution of atmospheric carbon dioxide and annual
emissions. Move the sliders to see the curves update in real time.

Gemini-2.5-Pro JanusCoder-8B References

Multiple Steady States in a Continuously Stirred Tank Reactor

Gemini-2.5-Pro JanusCoder-8B References

Figure 8: Generated artifacts in InteractScience

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

WebEditing - Color

Qwen-2.5-VL-7B JanusCoderV-7B Gold Reference

WebEditing - Style

Qwen-2.5-VL-7B JanusCoderV-7B Gold Reference

Figure 9: Generated UIs in DesingBench

Develop a plot using a polar projection within a rectangular grid. The plot will map the 'Theta' values against 'R' values from the
DataFrame. This will require transforming the angular data from degrees to radians and setting up a polar coordinate system in a
rectangular plot area. Labels will be added to specific axes to indicate both angular and radial measurements.

Qwen3-8B JanusCoder-8B GPT-4o

Figure 10: Generated figures in PandasPlotBench

39

	Introduction
	Related Works
	Method
	Data Collection
	Data Curation
	Cross-Domain Synergies
	Data Quality Control
	JanusCode-800K

	DTVBench
	Data Collection and Curation
	Evaluation

	Experiments
	Experimental Settings
	Benchmarking
	Main Results: Unimodal Tasks
	Main Results: Multimodal Tasks

	Analysis
	Ablation Studies
	Effect of Backbones
	General Coding Capabilities

	Conclusion
	Data Toolkit Details
	AST Pasrsing
	Details of Guided Evolution

	Data Collection Details
	DTVBench Details
	Training Details
	Detailed Experimental Results
	Detailed results on PandasPlotBench
	Detailed results on ChartMimic
	Detailed results on DesignBench
	Detailed results on WebCode2M
	Detailed Results on InteractScience
	Detailed results on ArtifactsBench

	Detailed Analysis and Comparisons
	General Coding Capabilities
	Experiments on Different Backbones

	Case Studies
	Prompts

