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Abstract

Personal attributes represent structured infor-001
mation about a person, such as their hobbies,002
pets, family, likes and dislikes. We introduce003
the tasks of extracting and inferring personal004
attributes from human-human dialogue, and005
analyze the linguistic demands of these tasks.006
To meet these challenges, we introduce a sim-007
ple and extensible model that combines an008
autoregressive language model utilizing con-009
strained attribute generation with a discrimina-010
tive reranker. Our model outperforms strong011
baselines on extracting personal attributes as012
well as inferring personal attributes that are not013
contained verbatim in utterances and instead014
requires commonsense reasoning and lexical015
inferences, which occur frequently in every-016
day conversation. Finally, we demonstrate the017
benefit of incorporating personal attributes in018
social chit-chat and task-oriented dialogue set-019
tings.020

1 Introduction021

Personal attributes are structured information about022

a person, such as what they like, what they have,023

and what their favorite things are. These attributes024

are commonly revealed either explicitly or implic-025

itly during social dialogue as shown in Figure 1,026

allowing people to know more about one another.027

These personal attributes, represented in the form028

of knowledge graph triples (e.g. I, has_hobby, vol-029

unteer), can represent large numbers of personal030

attributes in an interpretable manner, facilitating031

their usage by weakly-coupled downstream dia-032

logue tasks (Li et al., 2014; Qian et al., 2018; Zheng033

et al., 2020a,b; Hogan et al., 2021).034

One such task is to ground open-domain chit-035

chat dialogue agents to minimize inconsistencies036

in their language use (e.g., I like cabbage →(next037

turn) →Cabbage is disgusting) and make them038

engaging to talk with (Li et al., 2016; Zhang et al.,039

2018; Mazaré et al., 2018; Qian et al., 2018; Zheng040

et al., 2020a,b; Li et al., 2020; Majumder et al.,041

Figure 1: Overview of obtaining personal attribute
triple from utterances using our model GenRe. At-
tribute values are contained within the utterance in the
EXTRACTION task, but not the INFERENCE task.

2020). Thus far, personalization in chit-chat has 042

made use of dense embeddings and natural lan- 043

guage sentences. While KG triples have been 044

shown to be capable of grounding Natural Lan- 045

guage Generation (Moon et al., 2019; Koncel- 046

Kedziorski et al., 2019), they have yet to be used 047

to personalize chit-chat dialogue agents. 048

Personal attributes can also help task-oriented 049

dialogue agents to provide personalized recommen- 050

dations (Mo et al., 2017; Joshi et al., 2017; Luo 051

et al., 2019; Lu et al., 2019; Pei et al., 2021). Such 052

personalized recommendations have only been at- 053

tempted for single-domain tasks with a small set of 054

one-hot features (< 30). Personalization across a 055

wide range of tasks (recommending food, movies 056

and music by multi-task dialogue agents such as 057

Alexa, Siri and Assistant) however can require or- 058

ders of magnitude more personal attribute features. 059

This makes KG triples ideal for representing them, 060

given the advantages of this data structure for mod- 061

els to select and utilize pertinent features (Li et al., 062
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2014; Hogan et al., 2021).063

Based on these advantages, we investigate how064

personal attributes can be predicted from dialogue.065

An important bottleneck for this step lies in the poor066

coverage of relevant personal attributes in existing067

labeled datasets. Therefore, we introduce two new068

tasks for identifying personal attributes in Section069

2. As shown in Figure 1, the EXTRACTION task070

requires determining which phrase in an utterance071

indicate a personal attribute, while the INFERENCE072

task adds further challenge by requiring models073

to predict personal attributes that are not explic-074

itly stated verbatim in utterances. This is common075

in conversational settings, where people express076

personal attributes using a variety of semantically077

related words or imply them using commonsense078

reasoning. We analyze how these factors allow079

personal attributes to be linked to utterances that080

express them.081

To tackle these tasks, we propose a simple yet ex-082

tensible model, GenRe, in Section 3. GenRe com-083

bines a constrained attribute generation model (that084

is flexible to accommodate attributes not found ver-085

batim in utterances) with a discriminative reranker086

(that can contrast between highly similar candi-087

dates). Our experiments in Section 4 suggest that088

such design allows our model to outperform strong089

baseline models on both the EXTRACTION and090

INFERENCE tasks. Subsequently in Section 5, de-091

tailed ablation studies demonstrate the value of our092

model components while further analysis identifies093

future areas for improvement.094

Finally in Section 6, we show how personal at-095

tributes in the form of KG triples can improve the096

personalization of open-domain social chit-chat097

agents as well as task-oriented dialogue agents.098

In the former case, personal attributes can be uti-099

lized to improve chat-bot consistency on the Per-100

sonaChat task (Zhang et al., 2018). In the latter101

case, we suggest how our personal attributes can102

support personalization in multi-task, task-oriented103

dialogue settings.104

2 Personal Attribute Tasks105

Based on the usefulness of personal attributes for106

dialogue personalization, we propose the task of107

obtaining personal attributes from natural language108

sentences. We first explain how we formulate two109

complementary tasks from DialogNLI data and110

then formally define our tasks. Finally, we ana-111

lyze the task datasets to gather insights into the112

linguistic phenomena that our tasks involve. 113

2.1 Source of Personal Attributes 114

DialogNLI (Welleck et al., 2019) contains samples 115

of PersonaChat utterances (Zhang et al., 2018) in 116

English, each paired with a manually annotated 117

personal attribute triple. Each triple consists of 118

a head entity, a relation, and a tail entity. These 119

triples were initially annotated to identify entail- 120

ing, contradicting and neutral statements within 121

the PersonaChat corpus. For instance, a statement 122

labelled with (I, [favorite_color], blue) will con- 123

tradict with another statement labelled with (I, [fa- 124

vorite_color], green). The three largest groups of 125

relations are: a. has_X (where X = hobby, vehi- 126

cle, pet) b. favourite_Y (where Y = activity, color, 127

music) c. like_Z (where Z = read, drink, movie). 128

2.2 Extraction and Inference Tasks 129

By re-purposing the DialogNLI dataset, our tasks 130

seek to extract these personal attribute triples from 131

their paired utterances. We first used a script that 132

obtains pairs of personal triples and utterances. 133

Next, we combined relations with similar mean- 134

ings such as like_food and favourite_food and re- 135

moved under-specified relations such as favourite, 136

have and others. Finally, we removed invalid sam- 137

ples with triples containing None or <blank> and 138

removed prefix numbers of tail entities (e.g. 11 139

dogs), since the quantity is not important for our 140

investigation. 141

We formulate two tasks by partitioning the Di- 142

alogNLI dataset into two non-overlapping subsets. 143

Here, each sample refers to a sentence paired with 144

an annotated triple. Train/dev/test splits follow Di- 145

alogNLI, with descriptive statistics shown in Table 146

1. The dataset for the EXTRACTION task contains 147

samples in which both the head and tail entities are 148

spans inside the paired sentence. An example is (I, 149

[has_profession], receptionist) from the sentence 150

“I work as a receptionist in my day job”. We for- 151

mulate the EXTRACTION task in a similar way to 152

existing Relation Extraction tasks such as ACE05 153

(Wadden et al., 2019) and NYT24 (Nayak and Ng, 154

2020). This allows us to apply modeling lessons 155

learned from Relation Extraction. 156

The complementary set is the dataset for the IN- 157

FERENCE task, for which the head entity and/or 158

the tail entity cannot be found as spans within the 159

paired sentence. This is important in real-world 160

conversations because people do not always ex- 161

press their personal attributes explicitly and instead 162

2



EXTRACTION INFERENCE

Samples
train 22911 25328
dev. 2676 2658
test 2746 2452

Unique elements
head entities 88 109
relations 39 39
tail entities 2381 2522

Avg. words
head entities 1.03 1.08
relations 1.00 1.00
tail entities 1.20 1.28
sentences 12.9 12.2

Table 1: Statistics of the dataset for the two tasks.

use paraphrasing and commonsense reasoning to163

do so. An example of a paraphrased triple is (I,164

[physical_attribute], tall) from the sentence “I am165

in the 99th height percentile”, while one based on166

commonsense reasoning is (I, [want_job], umpire)167

from the sentence “my ultimate goal would be call-168

ing a ball game”.169

The INFERENCE task is posed as a challeng-170

ing version of the EXTRACTION task that tests171

models’ ability to identify pertinent information172

in sentences and then make commonsense infer-173

ences/paraphrases based on such information. An174

existing task has sought to predict personal at-175

tributes that are not always explicitly found within176

sentences (Wu et al., 2019). However, it did not177

distinguish between personal attributes that can be178

explicitly found within sentences (i.e. EXTRAC-179

TION) from those that cannot (i.e. INFERENCE) .180

We believe that, given that the inherent difficulty of181

identifying the two types of personal attributes are182

greatly different, it is helpful to pose them as two183

separate tasks. In this way, the research commu-184

nity can first aim for an adequate performance on185

the simpler task before applying lessons to make186

progress at the more challenging task. This is also187

the first time that personal attributes that are not188

explicitly contained in sentences are shown to be189

derivable from words in the sentence using com-190

monsense/lexical inferences.191

2.3 Formal Task Definition192

Given a sentence S, we want to obtain a personal-193

attribute triple in the form of (head entity,194

Figure 2: Bar plot for 10 most common dependency
role labels of tail entities within sentences

relation, tail entity). The relation 195

must belong to a set of 39 predefined relations. 196

In the EXTRACTION subset, the head entity and 197

tail entity are spans within S. Conversely, in the 198

INFERENCE subset, the head entity and/or the tail 199

entity cannot be found as spans within S. 200

2.4 Dataset Analysis 201

We analyze the datasets to obtain insights into how 202

the tasks can be approached. Because the majority 203

of head entities (93.3%) are simply the word “I”, 204

our analysis will focus on tail entities. 205

Dataset for the EXTRACTION task We use de- 206

pendency parses of sentences to understand the 207

relationship between words within tail entities and 208

the sentence ROOT. Dependency parsing was cho- 209

sen because it is a well-studied syntactic task (Nivre 210

et al., 2016) and previously used for the relation 211

extraction task (Zhang et al., 2017). Dependency 212

parses and labels associated with each dependent 213

word were identified using a pre-trained trans- 214

former model from spaCy.1 The parser was trained 215

on data annotated with the ClearNLP dependency 216

schema that is similar to Universal Dependencies 217

(Nivre et al., 2016).2 218

As shown in Figure 2, objects of prepositions 219

(pobj) and direct objects (dobj) each comprise 220

17.5% of tail entities, followed by compound words 221

(compound), attributes (attr) and adjectival com- 222

plements (acomp), plus 138 other long-tail labels. 223

The range of grammatical roles as well as the fact 224

that one third of tail entities do not involve nouns 225

1https://spacy.io/
2https://github.com/clir/clearnlp-

guidelines/blob/master/md/specifications/dependency_labels.md
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Transformation Example %
(sentence→tail entity)

ConceptNet_related mother →female 71.3
ConceptNet_connect wife →married 56.8
WordNet_synonym outside →outdoors 39.5
WordNet_hypernym drum →instrument 5.04
WordNet_hyponym felines →cats 4.17
Same_stem swimming →swim 43.3

Table 2: Proportion (%) of tail entities that can be re-
lated to sentence words after applying each transforma-
tion.

(see Figure in Section A.2) also suggest that the226

tail entities in our dataset go beyond proper nouns,227

which are what many Relation Extraction datasets228

(e.g., ACE05 and NYT24) are mainly concerned229

with. Such diversity in grammatical roles played by230

tail entities means that approaches based on rule-231

based extraction, parsing or named entity recog-232

nition alone are unlikely to be successful in the233

EXTRACTION task.234

Dataset for the INFERENCE task A qualitative235

inspection of the dataset showed that inferences can236

be made on the basis of semantically-related words237

and commonsense inferences, as shown in exam-238

ples discussed in Section 2.2. To better understand239

how tail entities can be inferred from the sentence240

in the INFERENCE subset, we analyze the relation-241

ship between words in the tail entity and words242

in the sentence. 79.2% of tail entities cannot be243

directly identified in the sentence. We performed244

a few transformations to identify potential links245

between the tail entity and the sentence. Concept-246

Net_connect refers to words with highest-weighted247

edges on ConceptNet to sentence words while Con-248

ceptNet_related refers to words that have closest249

embedding distances to sentence words. Details of250

their preparation are in Appendix A.3. As in Table251

2, our analysis shows that a model that can perform252

well on the INFERENCE task requiring both Word-253

Net semantic knowledge (Fellbaum, 1998) as well254

as ConceptNet commonsense knowledge (Speer255

et al., 2017).256

3 GenRe257

This section proposes GenRe, a model that uses a258

unified architecture for both the EXTRACTION and259

the INFERENCE tasks. We use a simple and exten-260

sible generator-reranker framework to address the261

needs of the two tasks. On one hand, a generative 262

model is necessary because head and/or tail entities 263

cannot be directly extracted from the sentence for 264

the INFERENCE dataset. On the other hand, prelim- 265

inary experiments using a Generator in isolation 266

showed that a large proportion of correct triples 267

are among the top-k - but not top-1 - outputs. A 268

Reranker can be used to select the most likely triple 269

among the top-k candidate triples, leading to a large 270

improvement in performance (see Table 4). 271

3.1 Generator 272

We use an autoregressive language model (GPT-2 273

small) as our Generator because its extensive pre- 274

training is useful in generating syntactically and 275

semantically coherent entities. The small model 276

was chosen to keep model size similar to baselines. 277

We finetune this model to predict a personal at- 278

tribute triple occurring in a given input sentence. 279

Specifically, we treat the flattened triples as targets 280

to be predicted using the original sentence as con- 281

text. The triple is formatted with control tokens to 282

distinguish the head entity, relation, and tail entity 283

as follows: 284

y = [HEAD], thead1:m , [RELN], treln, [TAIL], ttail1:k 285

where {[HEAD],[RELN], [TAIL]} are control to- 286

kens, thead1:m is the head entity (a sequence of length 287

m), treln is a relation, and ttail1:k is the tail entity. 288

During evaluation, we are given a sentence as 289

context and seek to generate a personal attribute 290

triple in the flattened format as above. To reduce 291

the search space, we adopt a constrained genera- 292

tion approach. Specifically, after the [RELN] to- 293

ken, only one of 39 predefined relations can be 294

generated, and so the output probability of all other 295

tokens is set to 0. After the [TAIL] token, all output 296

tokens not appearing in the input sentence will have 297

zeroed probabilities in the EXTRACTION task. Con- 298

versely for the INFERENCE task, the only allowed 299

output tokens after the [TAIL] token are those 300

which have appeared following the predicted re- 301

lation in the training data. For example, tail entities 302

that can be generated with a [physical_attribute] re- 303

lation include “short”, “skinny” or “wears glasses”, 304

as these examples occur in the training data. We 305

imposed this restriction to prevent the model from 306

hallucinating attributes that are not associated to 307

the predicted relation (such as “dog” with [physi- 308

cal_attribute]). Despite limiting the model’s ability 309

to generate novel but compatible tail entities (and 310

thereby upper-bounding maximum possible recall 311
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to 75.7%), this approach helped to improve model312

performance overall. Implementation details are in313

Appendix A.4.314

3.2 Reranker315

We use BERT-base as the Reranker because its bi-316

directionality allows tail tokens to influence the317

choice of relation tokens. Furthermore, BERT has318

demonstrated the best commonsense understanding319

among pre-trained language models (Petroni et al.,320

2019; Zhou et al., 2020). These benefits have led321

to many relation extraction models using BERT as322

part of the pipeline (Wadden et al., 2019; Yu et al.,323

2020; Ye et al., 2021).324

For each S, we obtain the L most likely se-325

quences using the Generator, including the con-326

text sentence. Each sequence is labelled as correct327

or incorrect based on whether the predicted triple328

(head entity, relation, tail entity) matches exactly329

the ground-truth triple. Incorrect sequences serve330

as challenging negative samples for the Reranker331

because they are extremely similar to the correct se-332

quence since they were generated together. We fine-333

tune a BERT model with a binary cross-entropy334

loss function to classify whether sequences are cor-335

rect. During inference, we select the sequence with336

the highest likelihood of being correct as our pre-337

dicted sequence. We set L to 10 in all experiments.338

Implementation details are in Appendix A.5.339

4 Experiments340

We first explain the metrics used in the experiments.341

Next, we introduce the baseline models. Finally,342

we examine how GenRe compares to baseline mod-343

els to understand its advantages.344

4.1 Metrics345

Micro-averaged Precision/Recall/F1 were calcu-346

lated following Nayak and Ng (2020), in which a347

sample is considered correct only when all three348

elements (head_entity, relation and tail entity) are349

resolved correctly. We chose these metrics because350

we are interested in the proportion of all predicted351

personal attributes that have been correctly iden-352

tified (precision) and of all ground truth personal353

attributes (recall). F1 is considered as an aggregate354

metric for precision and recall.355

4.2 Baseline Models356

Generative models can be used for both the EX-357

TRACTION and the INFERENCE tasks.358

WDec is an encoder-decoder model that 359

achieved state-of-the-art performance in the 360

NYT24 and NYT29 tasks (Nayak and Ng, 2020). 361

The encoder is a Bi-LSTM, while the decoder is 362

an LSTM with attention over encoder states. An 363

optional copy mechanism can be used: when used, 364

the decoder will only generate tokens found in the 365

original sentence. The copy mechanism was used 366

on the EXTRACTION dataset but not on the INFER- 367

ENCE dataset (given their better empirical perfor- 368

mance). 369

GPT2 is an autoregressive language model that 370

we build GenRe on. We use the same configuration 371

as in GenRe. 372

Extractive models can be used only for the EX- 373

TRACTION task, because they select for head and 374

tail entities from the original sentence. 375

DyGIE++ is a RoBERTa-based model that 376

achieved state-of-the-art performance in multiple 377

relation extraction tasks including ACE05 (Wad- 378

den et al., 2019). It first extracts spans within the 379

original sentence as head and tail entities. Then, 380

it pairs up these entities with a relation and passes 381

them through a graph neural network, with the head 382

and tail entities as the nodes, and relations as the 383

edges. This allows information flow between re- 384

lated entities before passing the triple through a 385

classifier. 386

PNDec is an Encoder-Decoder model that 387

achieved close to SOTA performance in NYT24 388

and NYT29 (Nayak and Ng, 2020). It uses the 389

same encoder as WDec but uses a pointer network 390

to identify head and tail entities from the original 391

sentence, which it pairs with possible relation to- 392

kens to form a triple that is subsequently classified. 393

All baseline models were trained on our datasets 394

using their suggested hyper-parameters. 395

4.3 Model Results 396

The top-performing baseline models on the EX- 397

TRACTION dataset are the extractive models, which 398

select spans within the sentence and classify 399

whether an entire triple is likely to be correct. Be- 400

cause there are only a small number of spans within 401

the sentence, this approach can effectively limit its 402

search space. On the other hand, extractive models 403

cannot solve the INFERENCE task, because the un- 404

derlying assumption that head and tail entities must 405

be found within the sentence does not hold. Con- 406

versely, generative models perform more poorly on 407

the Extraction task but are capable on the INFER- 408
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EXTRACTION INFERENCE

P R F1 P R F1

GenRe 68.0 52.4 59.2 46.5 35.4 39.2
Generative
WDec 57.0 49.0 52.7 33.6 34.7 34.1
GPT2 50.9 31.1 38.6 31.3 17.3 22.3
Extractive
DyGIE++ 60.8 50.9 55.3
PNDec 63.1 49.5 55.5

Table 3: Performance on the test set. GenRe has signif-
icantly higher mean F1 than all baseline models with 5
runs based on a two-tailed t-test (p < 0.05).

ENCE task. This is because generation happens in409

a left-to-right manner, meaning that some elements410

of the triple have to be generated without know-411

ing what the other elements are. Our approach412

of linking a Generative model with a BERT-base413

Reranker (akin to models used by Extractive ap-414

proaches) combines the best of both worlds. Not415

only does it perform well on the Extraction task (≥416

3.7 F1 points over baselines), it also excels on the417

Inference task (≥ 5.1 F1 points over baselines).418

5 Analysis419

We first conduct an ablation study to better under-420

stand the contribution of constrained generation421

and the Reranker, by measuring the performance422

of our model when each component is removed.423

Then, we seek to understand how errors are made424

on predicted personal attribute relations to identify425

future areas of improvement.426

5.1 Ablation Study427

Table 4 shows that both the Reranker and con-428

strained generation contribute to the performance429

of GenRe. In particular, the constrained generation430

plays a larger role on the EXTRACTION dataset431

while the Reranker plays a greater role on the IN-432

FERENCE dataset.433

Constrained generation has a large impact on434

the EXTRACTION dataset (+13.0% F1), likely be-435

cause it very much restricts the generation search436

space to spans from the context sentence. On the437

INFERENCE dataset, the original search space can-438

not be effectively limited to tokens in the context439

sentence. Therefore, applying the heuristic that440

only tail entities associated with a particular rela-441

tion (in the training set) can be decoded is useful,442

even though it upper bounds maximum recall to443

EXTRACTION INFERENCE

P R F1 P R F1

GenRe 68.0 52.4 59.2 46.5 35.4 39.2
- Constr. Gen 53.5 40.7 46.2 37.2 27.1 31.4
- Reranker 67.6 41.0 51.0 31.0 22.3 25.9

Table 4: Ablation study for Reranker and constrained
generation.

75.7%, which is much higher than the achieved 444

35.4%. Compared to the EXTRACTION dataset, the 445

improvement on the INFERENCE dataset is smaller 446

(+7.8% F1), since the range of tail entities that can 447

be decoded after imposing the constraint is greater. 448

The Reranker is needed because, many times, 449

the correct triple can be generated by the Genera- 450

tor but might not be the triple that is predicted to 451

have the highest likelihood. The maximum possi- 452

ble recall on the EXTRACTION and INFERENCE 453

tasks increases from 41.0% to 59.9% and 22.3% 454

to 41.0% respectively when considering top-10 in- 455

stead of only top-1 generated candidate. While the 456

achieved recall (52.4% and 35.4% respectively) are 457

still a distance from the maximum possible recall, 458

the achieved recall is much higher than using the 459

Generator alone. 460

5.2 Misclassification of Relations 461

Major sources of error on the EXTRACTION dataset 462

came from relation tokens that have close se- 463

mantic meanings. They either were related to 464

one another (e.g., [has_profession] vs [want_job]) 465

or could be correlated with one another (e.g., 466

[like_animal] vs [have_pet] or [like_music] vs [fa- 467

vorite_music_artist]) , as illustrated in Table 5. 468

Such errors likely arose due to the way that the 469

DialogNLI dataset (Welleck et al., 2019) was anno- 470

tated. Specifically, annotators were asked to label a 471

single possible triple given a sentence instead of all 472

applicable triples. Because of this, our evaluation 473

metrics are likely to over-penalize models when 474

they generate reasonable triples that did not match 475

the ground truth. Future work can avoid this prob- 476

lem by labelling all possible triples and framing the 477

task as multilabel learning. 478

6 Applications of Personal Attributes 479

Personal attributes can make social chit-chat agents 480

more consistent and engaging as well as enable 481

task-oriented agents to make personalized recom- 482

mendations. In this section, we use personal at- 483
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Top 3 Most Frequent (n)
Dataset True Relation (n) P R F1 Predicted Relations True Tail Entities Predicted Tail Entities

EXTRACTION [has_profession] (274) 83.8 62.0 71.3 [has_profession] (189) teacher (29) nurse (27)
[employed_by_general] (30) nurse (28) real estate (25)
[want_job] (17) real estate agent (25) teacher (19)

[have_pet] (149) 97.3 55.0 70.3 [have_pet] (88) dog (55) cat (32)
[have_family] (18) cat (45) pets (23)
[like_animal] (12) pets (22) dog (18)

INFERENCE [like_food] (77) 46.7 41.6 44.0 [like_food] (62) pizza (18) pizza (19)
[like_activity] (5) onion (9) italian cuisine (10)
[like_animal] (4) italian (7) onion (8)

[like_music] (71) 40.8 23.9 30.2 [like_music] (40) jazz (10) the story so far (12)
[favorite_music_artist] (9) country (9) country (8)
[like_activity] (7) rap (6) jazz (7)

Table 5: Some common relations in EXTRACTION and INFERENCE datasets

tributes to improve chit-chat agent consistency and484

provide information for personalizing task-oriented485

dialogue agents.486

6.1 Consistency in Chit-chat agents487

PersonaChat (Zhang et al., 2018) was created to im-488

prove the personality consistency of open-domain489

chit-chat dialogue agents. PersonaChat was con-490

structed by giving pairs of crowdworkers a set of491

English personal attribute related sentences and492

asking them to chat in a way that is congruent with493

those sentences. Models were then trained to gen-494

erate dialogue responses that are in line with those495

expressed by crowdworkers using the provided per-496

sona information as context.497

Methods We fine-tune the generative version of498

Blender 90M (a transformer-based model trained499

on multiple related tasks) on PersonaChat, which500

is currently the state-of-the-art generative model501

on this task (Roller et al., 2020) and uses personal502

attribute sentences to ground dialogue response503

generation. Building on Blender, we prepend a504

corresponding DialogNLI personal attribute before505

each utterance (i.e. +Per. Attr.), in order to better506

direct the model in generating a suitable response507

that is consistent with the set persona. This mod-508

ification is relatively minimal to demonstrate the509

informativeness of personal attribute KG triples,510

while keeping the model architecture and hyper-511

parameter fine-tuning the same as in the original512

work (details in Appendix A.1).513

Metrics We follow Roller et al. (2020) and Di-514

nan et al. (2019). Metrics for +Per. Attr. setting515

consider both personal attributes and utterances.516

Hits@1 uses the hidden states of the generated out-517

put to select the most likely utterance amongst 20518

candidates (the correct utterance and 19 randomly519

chosen utterances from the corpus). Perplexity re- 520

flects the quality of the trained language model. F1 521

demonstrates the extent of the overlap between the 522

generated sequence and the ground truth sequence. 523

Hits@1 ↑ Perplexity ↓ F1 ↑

Blender 32.3 11.3 20.4
+ Per. Attr. 35.2* 10.4* 20.6*

Table 6: Effects of using personal attributes to augment
Blender on Personachat. Higher is better for Hits@1
and F1; lower is better for perplexity. *Significantly dif-
ferent from Blender with 5 runs based on a two-tailed
t-test (p<0.05).

Fact 1 I love cats and have two cats
Fact 2 I’ve a hat collection of over 1000 hats.
Blender My cats names are all the hats i have
+ Per. Attr. My cats are called kitties

Fact 1 I am a doctor.
Fact 2 My daughter is a child prodigy.
Blender My daughter is prodigy so she gets a lot of accidents.
+ Per. Attr. I’ve seen a lot of accidents.

Table 7: Examples of incorrect utterances generated by
Blender by mixing up two facts, which are avoided by
our Blender + Per. Attr. model

Results As shown in Table 6, including personal 524

attributes can improve performance on the Per- 525

sonaChat task. An inspection of the generated ut- 526

terances suggests that including personal attributes 527

into Blender can more effectively inform the model 528

which persona statement to focus on during gen- 529

eration. This can prevent Blender from including 530

information in irrelevant persona statements (e.g. 531

by mixing up facts from two unrelated persona 532

statements), as in Table 7. 533
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Dataset Domains #Unique
features

Ours Restaurants, Movies, 5583
Music, Sports,
Recreation, Shopping

Ours Restaurants only 206
Joshi et al. (2017) Restaurants 30
Mo et al. (2017) Restaurants 10
Lu et al. (2019) Shopping 7

Table 8: Domains covered by various datasets for per-
sonalizing task-oriented dialogue. #Uniques features
refers to the number of unique attribute-values (e.g. the
specific food people like) that can be used for personal-
ization.

6.2 Personalization in Task-oriented dialogue534

While personalization has been incorporated into535

single-task settings (Joshi et al., 2017; Mo et al.,536

2017; Luo et al., 2019; Lu et al., 2019; Pei et al.,537

2021), there has been no attempt for personaliza-538

tion in multi-task settings. This is against the back-539

ground in which multi-task dialogue is rapidly be-540

coming the standard in task-oriented dialogue eval-541

uation (Byrne et al., 2019; Rastogi et al., 2019;542

Zang et al., 2020; Shalyminov et al., 2020). To543

overcome this gap, we show how our dataset can544

lay a foundational building block for personaliza-545

tion in multi-task dialogue.546

Methods We used several popular datasets on547

multi-task task-oriented dialogue (Zang et al., 2020;548

Shalyminov et al., 2020; Byrne et al., 2019; Ras-549

togi et al., 2019). From each dataset, we manually550

observed its tasks and categorized them into sev-551

eral overarching domains, as shown in Table 8.552

We then created a mapping between the various553

domains and datasets available for personalizing554

task-oriented dialogue (including ours). Domains555

that are not supported by any dataset are omitted.556

Results Compared to existing datasets in Table557

8, our dataset is capable of personalizing recom-558

mendations in a much larger number of domains.559

These domains include restaurants and shopping,560

which have been explored by existing datasets, as561

well as movies, music, sports and recreation, which562

have thus far been overlooked. For domains that563

have been previously explored, such as restaurants,564

our dataset contains a more diverse set of possi-565

ble personal attribute values (e.g. the foods people566

like), which can support it to personalize recom-567

mendations in more realistic manners.568

7 Related Work 569

Personal Attribute Extraction: Most work on ex- 570

tracting personal attributes from natural language 571

(Pappu and Rudnicky, 2014; Mazaré et al., 2018; 572

Wu et al., 2019; Tigunova et al., 2019, 2020) em- 573

ployed distant supervision approaches using heuris- 574

tics and hand-crafted templates, which have poor 575

recall. In contrast, we use a strong supervision ap- 576

proach in which triples were manually annotated. 577

Li et al. (2014) and Yu et al. (2020) attempted to 578

extract personal information from dialogue using 579

a strongly supervised paradigm. However, they fo- 580

cused on demographic attributes as well as interper- 581

sonal relationships, which contrast with our focus 582

on what people own and like. Li et al. (2014) used 583

SVMs to classify relations and CRFs to perform 584

slot filling of entities while Yu et al. (2020) used 585

BERT to identify relations between given entities. 586

Generating KG triple using Language Models: 587

Autoregressive language models have been applied 588

to a wide range of tasks involving the genera- 589

tion of data with similar structures as personal at- 590

tribute KG triples, including dialogue state tracking 591

(Hosseini-Asl et al., 2020) and commonsense KG 592

completion (Bosselut et al., 2019). The most sim- 593

ilar application is Alt et al. (2019), which used 594

the original GPT model (Radford and Narasimhan, 595

2018) for relation classification. Their task formu- 596

lation involves identifying a specific relation (out 597

of around 30 possible options) for two given enti- 598

ties. On the other hand, our tasks seek to identify 599

not only the relation, but also the head and tail 600

entities, which have potentially open vocabulary 601

requirements, which makes them much harder. 602

8 Conclusion 603

In conclusion, we propose the novel tasks of ex- 604

tracting and inferring personal attributes from dia- 605

logue and carefully analyze the linguistic demands 606

of these tasks. To meet the challenges of our tasks, 607

we present GenRe, a model which combines con- 608

strained attribute generation and re-ranking on top 609

of pre-trained language models. GenRe achieves 610

the best performance vs. established Relation Ex- 611

traction baselines on the Extraction task (≥ 3.7 612

F1 points) as well as the more challenging INFER- 613

ENCE task that involves lexical and commonsense 614

inferences (≥ 5.1 F1 points). Together, our work 615

contributes an important step towards realizing the 616

potential of personal attributes in personalization of 617

social chit-chat and task-oriented dialogue agents. 618
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Ethics and Broader Impact619

Privacy in real world applications We inspected620

a selection of the Dialog NLI dataset to ensure it621

contains no real names, personally-identifying in-622

formation or offensive content. Because our task in-623

volves extracting and inferring personal attributes,624

real-world users should be given the option to dis-625

allow particular types of relations from being col-626

lected and/or used for downstream applications.627

Users should also be given the freedom to delete628

their collected personal attributes. A further step629

might be to restrict the extraction and storage of630

personal attributes to only local devices using dif-631

ferential privacy and federated learning techniques.632
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A Appendix882

A.1 Blender Fine-tuning Details883

Finetuning hyperparameters are taken from884

https://parl.ai/projects/recipes/, with the exception885

of validation metric changed to Hits@1. Each fine-886

tuning epoch takes 1.5 hours on a Nvidia V100887

GPU. We only prepend personal attributes before888

system utterances but not user utterances. Metrics889

are for the validation set because test set was not890

available. All experiments were conducted using891

ParlAI (Miller et al., 2017).892

A.2 Task Analysis Details893

Figure 3: Bar plot for 10 most common POS tags of
tail entities.

A.3 Details of Transformations to Link Tail894

Entity to Sentence895

ConceptNet_related: All words in the tail entity896

can be found in the 100 most related words to each897

sentence word based on embedding distance on898

ConceptNet899

ConceptNet_connect: All words in the tail en-900

tity can be found in the 100 words that have the901

highest-weighted edge with each sentence word on902

ConceptNet.903

WordNet_synonym: All words in the tail entity904

can be found in the synonyms of every synset of905

each sentence word on WordNet.906

WordNet_hypernym: All words in the tail en-907

tity can be found in the hypernyms of every synset908

of each sentence word on WordNet909

WordNet_hyponym: All words in the tail entity910

can be found in the hyponyms of every synset of911

each sentence word on WordNet912

Same_stem: All words in the sentence and tail 913

entity are stemmed using a Porter Stemmer (Porter, 914

1980) before searching for the tail entity in the 915

sentence 916

A.4 Generator Details 917

GPT-2-small was used. Additional special tokens 918

including the control tokens ([HEAD], [RELN], 919

[TAIL]) as well as relation tokens were added into 920

the tokenizer. Beam search decoding (beam size 921

= 10) was used at inference time. GPT2-small 922

was accessed from HuggingFace Transformers li- 923

brary with 125M parameters, context window 1024, 924

768-hidden, 768-hidden, 12-heads, dropout = 0.1. 925

AdamW optimizer was used with α = 7.5 ∗ 10−4 926

for the EXTRACTION dataset and α = 2.5 ∗ 10−3 927

for the INFERENCE dataset, following a uniform 928

search using F1 as the criterion at intervals of 929

{2.5, 5, 7.5, 10} ∗ 10n;−5 ≤ n ≤ −3. Learning 930

rate was linearly decayed (over a max epoch of 8) 931

with 100 warm-up steps. Each training epoch took 932

around 0.5 hour on an Nvidia V100 GPU with a 933

batch size of 16. Validation was done every 0.25 934

epochs during training. 5 different seeds (40-44) 935

were set for 5 separate runs. 936

A.5 Reranker Details 937

BERT-base-uncased was used. Additional spe- 938

cial tokens including the control tokens ([HEAD], 939

[RELN], [TAIL]) as well as relation tokens were 940

added into the tokenizer. BERT-base-uncased was 941

accessed from HuggingFace Transformers library 942

(with 12-layer, 768-hidden, 12-heads, 110M param- 943

eters, dropout = 0.1). The choice of the base model 944

was made to have fairness of comparison with base- 945

line models in terms of model size. AdamW op- 946

timizer was used with α = 5 ∗ 10−6, following a 947

uniform search using F1 as the criterion at intervals 948

of {2.5, 5, 7.5, 10} ∗ 10n;−6 ≤ n ≤ −3. Learn- 949

ing rate was linearly decayed (over a max epoch of 950

8) with 100 warm-up steps. Each training epoch 951

took around 1 hour on an Nvidia V100 GPU with 952

a batch size of 10.Validation was done every 0.25 953

epochs during training. 5 different seeds (40-44) 954

were set for 5 separate runs. 955
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