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“A cute corgi sleeping on a book, 4k”
Resolution: 2048×2048

Mountains
Resolution: 2048×2048

FFHQ
Resolution: 1024×1024

Figure 1. Generated samples from our image neural field diffusion models. We show photorealistic high-resolution image generation
by rendering generated image neural fields at 2K resolution for single domain models (left and middle), as well as general text-to-image
models (right), with an efficient diffusion process on latent representation at only 64 × 64 resolution.

Abstract
Diffusion models have shown an impressive ability to

model complex data distributions, with several key advan-
tages over GANs, such as stable training, better coverage
of the training distribution’s modes, and the ability to solve
inverse problems without extra training. However, most dif-
fusion models learn the distribution of fixed-resolution im-
ages. We propose to learn the distribution of continuous
images by training diffusion models on image neural fields,
which can be rendered at any resolution, and show its ad-
vantages over fixed-resolution models. To achieve this, a
key challenge is to obtain a latent space that represents pho-
torealistic image neural fields. We propose a simple and
effective method, inspired by several recent techniques but
with key changes to make the image neural fields photo-
realistic. Our method can be used to convert existing la-
tent diffusion autoencoders into image neural field autoen-
coders. We show that image neural field diffusion mod-
els can be trained using mixed-resolution image datasets,
outperform fixed-resolution diffusion models followed by
super-resolution models, and can solve inverse problems
with conditions applied at different scales efficiently.

1. Introduction

Diffusion models [16, 36, 52] have recently become attrac-
tive alternatives to GANs. These likelihood-based models

†Equal advising.

exhibit fewer artifacts, stable training, can model complex
data distributions, do not suffer from mode collapse, and
can solve inverse problems using the score function with-
out extra training. Since diffusion typically requires many
iterations at a fixed dimension, directly modeling the dif-
fusion process in the pixel space [17, 42, 45] can be in-
efficient for high-resolution image synthesis. Latent diffu-
sion models (LDMs) [43, 59] were proposed as a more ef-
ficient alternative. The key idea is to learn an autoencoder
to map images to a latent representation from which the im-
age can be decoded back, and train a diffusion model on
the lower-dimensional latent representation. Despite their
success, LDMs’ latent space still represents images at fixed
resolution (for example, 256 in LDM [43] and 512 in Stable
Diffusion). To generate higher-resolution images (e.g. 2K),
LDMs usually first generate a low-resolution image and up-
sample it using a separate super-resolution model.

In this work, we propose Image Neural Field Diffusion
models (INFD). Our method is based on the latent diffusion
framework, where we first learn a latent representation that
represents an image neural field (which can be rendered at
any resolution), then learn a diffusion model on this latent
representation. A key challenge of our approach is to learn a
latent space of photorealistic image neural fields where the
diffusion model is applied. We propose a simple and effec-
tive method that can convert an existing autoencoder of la-
tent diffusion models to a neural field autoencoder. We find
that directly implementing an autoencoder with LIIF [8]
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leads to blurred image details, and propose a Convolutional
Local Image Function (CLIF), which can render the latent
representation to photorealistic high-resolution images and
the image content is consistent at different resolutions. Our
neural field autoencoder is trained with L1 loss, perceptual
loss [62], and GAN loss following LDM [43], and is super-
vised from multi-scale patches similar to AnyResGAN [6].

We show that image neural field diffusion models have
several key advantages over fixed-resolution diffusion mod-
els: (i) They can be built from mixed-resolution datasets
without resizing images. The neural field decoder can ren-
der latent representation at any resolution and from patches,
which can take supervision from ground-truth images at
arbitrary high resolution without decoding the whole im-
age. (ii) The same latent representation can be supervised
with GAN loss from fixed-resolution patches at different
scales, with the content consistency across scales, the multi-
scale supervision helps high-resolution generation even if
all ground-truth images are at a fixed high resolution. (iii) It
does not require an extra Super-Resolution (SR) model for
high-resolution generation. Besides the advantage of sim-
plicity, since diffusion-generated low-resolution images do
not have high-resolution ground truth, separate SR models
are typically trained on real images, while the domain gap
between real and generated images could significantly harm
the performance of the SR model. (iv) Image neural field
diffusion models learn a resolution-agnostic image prior.
Therefore, it can be used to solve inverse problems with
a set of conditions defined at different scales efficiently.

In summary, our main contributions are:
• An image neural field autoencoder that can learn rep-

resentations from mixed-resolution datasets and renders
scale-consistent and photorealistic images.

• A method to build diffusion models on mixed-resolution
datasets and synthesize high-resolution images without
extra SR models. Image synthesis is up to 2K resolution
with an efficient latent diffusion process at only 64 × 64
resolution (see samples in Figure 1).

• A framework to solve inverse problems with conditions
applied at different scales of the same image.

2. Related Work
Diffusion Models. Diffusion models are first proposed
by Sohl-Dickstein et. al. [52]. They were recently con-
nected to score-based generative models [53–55] and have
been greatly improved [16, 36] for architectures and other
training details, achieving state-of-the-art results on both
unconditional and conditional image synthesis [11, 17, 35,
44, 46]. Compared to prior GAN-based methods [14, 21,
22, 40, 64], diffusion models have shown nice properties
such as stable training, not suffering from mode collapse,
and can perform image-to-image translation [30, 31] or be
used to solve inverse problems [56], even with an uncondi-

tional model. One of the main drawbacks of current diffu-
sion models is slow inference speed, as it relies on iterative
reverse diffusion steps. While this can be remedied with
faster sampling methods [24, 29, 48], performing the dif-
fusion process in the pixel space of high-resolution images
remains computationally expensive.

Our work is most closely related to latent diffusion mod-
els, which learn to map images to latent representation and
train diffusion model on the latent space [43, 49, 59]. A
key design in this direction is to choose the latent repre-
sentation where the diffusion model is learned. Different
from prior works that learn an autoencoder, where the la-
tent representation corresponds to a fixed resolution image,
we design a decoder and a renderer to learn a latent space
that represents image neural fields. Since our latent space
represents image neural fields, our autoencoder can learn a
representation from high-resolution images in varied sizes
with multi-scale patches, and can synthesize images at high
resolution without relying on extra super-resolution models.
Our method follows LDM [43], which trains in two stages.

Neural Fields for Image Synthesis. Neural field is also
known as Implicit Neural Representations (INR), which
represents signals as coordinate-based neural networks. It
serves as a compact and powerful differentiable represen-
tation and achieves state-of-the-art results mainly for rep-
resenting 3D shapes [9, 32, 38] and scenes [2, 5, 19, 33,
39, 47, 50]. Applications of neural fields for images are ex-
plored in early works [34, 57] and proposed for more appli-
cations such as image super-resolution [8] and image syn-
thesis [1, 51]. Several recent works [6, 22] relax the pixel-
independent assumption and perform convolutions on the
coordinate map to render the output for image synthesis.

The idea of using neural fields for training with any-
resolution images is explored in LIIF [8] for autoencoding
with an L1 loss, AnyResGAN [6] and ScaleParty [37] for
GANs with adversarial loss. Our work aims at building the
resolution-agnostic learning framework for diffusion mod-
els, which is a different model family of generative models.

Image Super-Resolution. Image Super-Resolution [7,
12, 25, 27, 58, 60, 63] (SR) aims at upsampling a
low-resolution image to higher resolution. Many recent
works [8, 18, 26, 61] explore Arbitrary-Scale SR (ASSR)
with a single network. While they are related to our method,
the differences include: (i) Instead of learning an autoen-
coder and an extra SR model, our implementation can be
viewed as making a bottleneck in a single ASSR model and
training diffusion models on the bottleneck. (ii) Our de-
coder is decoding from latent space to RGB space while
super-resolution is upsampling from RGB space to RGB
space. (iii) Our input can potentially have any higher res-
olution information (e.g. crops from high resolution), we
choose it as a fixed-low-resolution image for efficiency.
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Figure 2. Method overview. Given a training image at an arbitrary resolution, we first downsample it to a fixed resolution and pass it into
the encoder E to get a latent representation z. A decoder D then takes z as input and produces a feature map ϕ that drives a neural field
renderer R, which can render images by querying with the appropriate grid of pixel coordinates c and pixel sizes s. The autoencoder is
trained on crops from a randomly downsampled image ground truth, generating image crops at the corresponding coordinates. At test time,
a diffusion model generates a latent representation z, which is then decoded and used to render a high-resolution image.

IDM [13] uses a diffusion model for ASSR where the output
is at a medium resolution.

3. Preliminaries
Our algorithm builds on diffusion models and neural fields.
We introduce the core concepts and notation below.

Diffusion Models. Given a sample x0 from a data distri-
bution q(x0), forward diffusion progressively destroys the
information in x0 in T steps, xt−1 7→ xt, each adding some
small Gaussian noise. The process can be concisely rewrit-
ten as xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I), and

ᾱ1...T gradually decreases from 1 to 0. The final distribu-
tion is approximately normal, q(xT ) ∼ N (0, I). A diffu-
sion model learns to reverse this diffusion process. Once
trained, new samples can be generated by first sampling
xT ∼ q(xT ) and reversing each step of the diffusion pro-
cess using a learned transition probability pθ(xt−1|xt), pa-
rameterized by a neural network. Many prior works on im-
age generation are based on maximizing a reweighted vari-
ational lower-bound of pθ(x0), which is shown by [16] to
lead to the following training objective:

L = Ex0,t,ϵ

[
||ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ||2

]
, (1)

where t is sampled in {1, . . . , T}, and ϵθ is the network
trained to reverse the diffusion process.

Neural Fields. Neural Fields represent a signal using a
coordinate-based neural network. For example, a neural
field can represent an image as a function c = f(x;ϕ),
where x ∈ [−1, 1]2 are the spatial coordinates in the im-
age domain, c ∈ R3 is the RGB color at the corresponding
continuous coordinate, and ϕ denotes the parameters of the
neural field f . Since x can take continuous values, the RGB
value can be decoded at arbitrary coordinates. Accordingly,
an image neural field can be rendered at arbitrary resolution
by sampling the corresponding pixel coordinates.

4. Method

Similar to LDM [43], our approach has two stages. First, we
train an autoencoder that converts images to latent represen-
tations of 2D neural fields (§ 4.1), which can be rendered to
images at any given resolution (§ 4.2). Second, we train a
diffusion model to generate samples from this latent space
(§ 4.3). Figure 2 illustrates our method overview.

4.1. Image Neural Field Autoencoder

In the first stage, we seek to convert every image in our
training set into a photorealistic image neural field. We do
this by training an autoencoder, made of an encoder E, a
decoder D, and a neural field renderer R. The encoder maps
an RGB input image I to a latent code z = E(I), which is
decoded by the decoder to a feature tensor ϕ = D(z) used
by the neural field renderer to produce the final image.

Patch-wise decoding. For training efficiency, we want to
avoid decoding the whole image, because the ground truth
can be at a very high resolution. We take advantage of the
coordinate-based decoding property of neural fields, to train
with constant-size crops from mixed-resolution data, which
is amenable to batching. Specifically, we crop a random
patch pGT at a fixed P × P resolution (the red box in Fig-
ure 2) from a randomly downsampled ground-truth. Since
pGT is a fixed-size patch, downsampling the global ground
truth lets the patch pGT cover regions at varying scales of
the image. This provides supervision at multiple scales to
the latent representation, from local details to global struc-
ture. We discuss this further in § 5.2. Let c denote the
coordinates of pixel centers in the patch within the image,
and s denote their pixel sizes relative to the whole ground-
truth image. Our renderer R takes as input the features
ϕ = D(z) decoded from the latent representation, and the
coordinates and pixel sizes c, s to synthesize an output patch
p = R(c, s;ϕ).
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MLP CNN

LIIF CLIF (ours)

Figure 3. Convolutional Local Image Function (CLIF). Given
a feature map ϕ (yellow dots), for each query point x (green dot),
we fetch the nearest feature vector, along with the relative coor-
dinates and the pixel size. The grid of query information is then
passed into a convolutional network (right) that renders an RGB
grid. Different than the pointwise function LIIF, CLIF has a higher
generation capacity and is learned to be still scale-consistent.

Training objective. We compare the synthesized patch to
the ground truth using a sum of an L1 loss, a perceptual loss
Lperc [62], and an adversarial loss LGAN [14]. The discrim-
inator is simultaneously trained to distinguish between the
distributions of p and pGT . Thus, we minimize the follow-
ing objective to train E, D, and R:

LAE = ||p− pGT ||1 + Lperc(p, pGT ) + LGAN(p). (2)

Our implementation follows the autoencoder architec-
ture of LDM [43], with the same encoder and decoder (re-
moved the last layer) architectures to facilitate comparisons.
Since training images have arbitrary resolutions, we resam-
ple the encoder’s input to a fixed resolution 256 × 256.
Note that despite this downsampling, we still train against
mixed-resolution references. The encoder and decoder are
with a spatial downsampling/upsampling rate of 4 corre-
spondingly, therefore the latent representation is in 64×64.
A vector-quantization (VQ) layer is prepended to the first
layer of the decoder to regularize the latent space. ϕ is
256× 256 with 128 channels. We set patch size P = 256.

4.2. Neural Field Renderer

Our renderer R, shown in Figure 3, is a neural field
coordinate-based decoder, which we dubbed Convolutional
Local Image Function (CLIF). To decode an image patch
with CLIF, each query point c (green dot) fetches the spa-
tially nearest feature vector from the feature map ϕ (yel-
low dots). We concatenate the nearest feature vector with
the query coordinates c and pixel size s, then process the
grid of query information using a convolutional network to
output an RGB image. Intuitively, the concatenated feature
is the field information at a point. By changing the query
coordinates and pixel sizes, we can decode images at any
resolution. LIIF [8] decodes with similar information, but
it uses a pointwise function. We found this limits LIIF’s
ability to produce realistic high-frequency details (see Ap-
pendix A). CLIF remedies this issue by exploiting more
local feature context. Our CLIF renderer is learned to be

scale-consistent, i.e., details are consistent when decoding
at different resolutions (see § 5.7).

4.3. Latent diffusion

Once the autoencoder is trained, we map every image I in
the training dataset to its latent representation z, and train a
diffusion model by optimizing the DDPM [16] objective

LDM = Ez∼E(I),t,ϵ

[
||ϵθ(

√
ᾱtz+

√
1− ᾱtϵ, t)−ϵ||2

]
, (3)

using the distribution over z induced by the encoder. After
training, the encoder can be discarded. The diffusion model
generates a latent representation z, which is then decoded
to ϕ = D(z) and rendered at a resolution specified by the
pixel coordinates R(c, s;ϕ) as described next.

4.4. Patchwise Image Generation

Despite being trained with small patches for efficiency, our
method can generate high-resolution images. For this, we
first generate a global feature map ϕ from a sampled z,
then generate sub-tiles of a large image by querying the
renderer at the corresponding coordinates, as described in
§ 4.2. To avoid discontinuities at tile boundaries, we expand
the query region for each tile by a fixed padding size larger
than CLIF’s receptive field (8 in our experiments). We then
crop the output tiles by the same amount and assemble the
tiles into a seamless composite. Our renderer is fully con-
volutional, it can also generate the image at once, as long as
memory is sufficient to hold intermediate buffers.

5. Experiments
We evaluate our method on several datasets and compare
it to LDM [43] with super-resolution models (§ 5.1). Sec-
tions § 5.2 and § 5.3 presents model ablations. We show
results in solving multi-scale inverse problems in § 5.5, and
text-to-image generation in § 5.6. We further discuss the
comparison with prior any-resolution GANs in § 5.8.

Data. The FFHQ [20] used in LDM [43] contains 70K
high-resolution images (1024×1024) and several baselines
use it for comparison. When comparing to LDM, we follow
their training and validation split: 60K images for training
and 10K for validation. Since our method is flexible and not
limited to a fixed-resolution dataset, we also follow a con-
trolled setting in prior work [6], which constructs a varied-
resolution dataset from FFHQ by constructing and merging
three sets: (i) all images at 256 low-resolution; (ii) a subset
of 5K samples in varied-resolution from 512 to 1024; (iii)
a subset of 1K images at 1024 resolution. We denote this
setting as FFHQ 6K-Mix. Besides FFHQ, we evaluate our
method on the Mountains dataset [6], which contains a low-
resolution subset, with about 500K samples around 1024
resolution, and a high-resolution subset, with about 9K im-
ages at resolutions beyond 2048. Figure 4 shows examples
of our generated results on these datasets.
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1024×1024 512×512
Figure 4. Generated samples from our method on FFHQ and Mountains dataset.

pFID metric. Standard FID evaluation first resizes im-
ages to 299, which evaluates the global structure of images
regardless of their original resolution, but is insufficient to
measure the quality of details from high-resolution gener-
ators. Patch-FID [6] (pFID) addresses this limitation. It
computes the FID between fixed-resolution patches cropped
from arbitrary resolution ground-truth and generated im-
ages, thus evaluating local details in synthesized images.

The original pFID reports the metric on random crops
from images at varying resolutions. Since our practical fo-
cus is on high-resolution synthesis, we evaluate pFID be-
tween patches cropped from fixed-high-resolution images.
To further disentangle the evaluation for image details at
different scales, we separately report pFID for patches at
different resolutions. P /1K denotes the FID between ran-
dom crops at resolution P from ground truth and syn-
thesized images at resolution 1024. For example, pFID-
256/1K evaluates the local details, pFID-1K/1K evaluates
the global structure and is the same as standard FID applied
to 1024-resolution images. We generate 50K samples to
compute FID in most experiments. In some experiments,
we use 5K samples if it suffices to observe the performance
gap (specified after FID@ in Tables).

5.1. Comparison to LDM

LDM [43] trains an autoencoder for images at 256×256 res-
olution and learns a diffusion model on its latent space. For
a fair comparison, we used the same encoder and decoder
architectures as LDM. Our method only adds a lightweight

CLIF renderer, which contains 2 convolution layers and 2
ResNet [15] blocks.

Even though LDM’s diffusion network is fully convolu-
tional and can generate high-resolution images by diffusing
from a larger noise map, it is known that this approach gen-
erates repetitive patterns (e.g. distorted faces with dupli-
cate features, see Appendix C). As a result, we follow the
standard approach to generate high-resolution images with
LDM by running an independent super-resolution model on
its output. We combine LDM with several recent state-of-
the-art arbitrary-scale super-resolution methods: LIIF [8],
ITSRN [61], LTE [26], which allow for inference at contin-
uous upsampling scales, and Real-ESRGAN [60], a super-
resolution model for a fixed upsampling scale that has state-
of-the-art perceptual quality. We report qualitative results
in Figure 5, and the pFID in Table 1 on FFHQ. As Real-
ESRGAN shows the most competitive results, we also com-
pare to it on Mountains dataset in Table 2.

We find that for standard FID at 256 resolution (i.e. pFID
256/256), the image neural field diffusion model is compet-
itive with the original LDM, which can only generate im-
ages at 256. Our retraining of LDM reaches a slightly worse
FID than the officially reported scores, which we attribute
to implementation differences and training variance. At all
higher resolutions, our method outperforms LDM followed
by super-resolution, which is consistent with our qualitative
observation and suggests we achieve better image quality
for high-resolution detail at different scales.

We hypothesize that the main issues for extra super-
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OursLDM + Real-ESRGANLDM + LIIF

Figure 5. Qualitative comparison with LDM followed by super-resolution on FFHQ. LIIF shows noise in details, while Real-ESRGAN
tends to be smooth and results lack rich details. Our approach generates images with more realistic details.

Model #Params Coordinate-based Decoder pFID@50K

256/256 256/1K 512/1K 1K/1K

LDM [43] 33.0M 4.98 - - -
LDM + LIIF [8] 33.0M + 22.3M ✓ - 56.65 17.83 8.97

LDM + ITSRN-RDN [61] 33.0M + 22.6M ✓ - 51.73 17.94 8.02
LDM + SwinIR-LTE [26] 33.0M + 12.1M ✓ - 52.62 17.72 9.09

LDM + Real-ESRGAN [60] 33.0M + 16.7M - 18.38 18.46 16.04

LDM (our reimplementation) 33.0M 6.02 - - -

INFD (ours) 35.7M ✓ 5.34 8.07 6.64 5.57

Table 1. Comparison to Latent Diffusion Model (LDM) with super-resolution models for high-resolution image synthesis on FFHQ dataset.
#Params counts for the decoder, and the renderer or super-resolution model if it exists, which are used in image generation.

resolution models are that: (i) LDM with an extra super-
resolution model can be viewed as first decoding the la-
tent representation to RGB space, then upsample to an-
other RGB space, where the first RGB space becomes a
bottleneck that contains much less information than feature
space; (ii) the artifacts generated by LDM, even inconspic-
uous, can cause a domain shift to the input of the super-
resolution models, which could significantly degrade their
performance. The super-resolution models can not be di-
rectly trained to upsample the generated low-resolution im-
ages since no paired high-resolution ground truth is avail-
able. In our method, the domain shift from real to gener-
ated samples happens in the latent space (with VQ or KL
regularization). We hypothesize that latent space is more
robust than RGB space to the domain shift. We observe that
when replacing the latent space with RGB space, the gen-
erated images become overly smooth similar to LDM with
Real-ESRGAN super-resolution, which is consistent with
our hypothesis (see Appendix B).

5.2. Effect of scale-varied training

Randomly downsampling the global image before extract-
ing fixed-resolution training patches would make patches
cover all scales. With the scale consistency of CLIF, an im-
age neural field is supervised to be realistic in all scales via
the perceptual and GAN losses. We conduct an ablation on
FFHQ to evaluate the impact of this random downsampling

Model pFID@50K

256/1K 512/1K 1K/1K

LDM + Real-ESRGAN [60] 17.36 15.11 10.39
INFD (ours) 7.53 6.84 5.13

Table 2. Comparison to Latent Diffusion Model (LDM) with
super-resolution models on Mountains dataset.

strategy. Specifically, we disable it during training, keeping
all ground-truth images at 1024 resolution. The results are
shown in Table 3. Without random downsampling, the pFID
is worse especially for 512/1K and 1K/1K, suggesting that
random downsampling of the ground truth improves qual-
ity, even if we only aim at generating images at 1024 high
resolution, because it helps supervise every single image to
be realistic at all scales. For Mountains dataset, we observe
that there will be obvious artifacts without random down-
sampling (see Appendix D). This contrasts with the obser-
vation in LIIF [8], which found that random downsampling
hurts performance at a fixed highest scale when it is only
using an L1 loss.

5.3. Training with limited high-resolution images

While previous experiments use high-resolution training
images, a key advantage of our method is that it can
learn from mixed-resolution datasets and still generate
high-resolution outputs, even when the number of high-
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Downsample pFID@50K

256/1K 512/1K 1K/1K

Fix 1024 8.19 6.82 6.04
256–1024 8.07 6.64 5.57

∆ 0.12 0.18 0.47

Table 3. FFHQ dataset. Random downsampling during training
improves image generation quality even for fixed high resolution.

Data pFID@50K

256/1K 512/1K 1K/1K

All HR 8.07 6.64 5.57

6K-Mix 16.27 10.8 11.3
6K-Mix, bal. 12.41 7.74 6.9

Table 4. FFHQ dataset. Our method can learn from mixed-
resolution images with a limited number of full-resolution images.

resolution images is limited. We quantify this in Table 4
using FFHQ 6K-Mix, where most images are at low res-
olution 256, 5K images are at 512–1024, and 1K images
(1.4% of the dataset) are at 1024. Training with the mixed-
resolution dataset as-is (also with random downsampling)
already yields a model that performs decently at 1024, but
with worse details than the model trained with all images
at 1024. We suspect that the model is optimized for too
few steps using images at 1024, since the number of high-
resolution images is small and they go through random
downsampling. We balance the training resolution by sam-
pling images from the 5K + 1K high-resolution subset with
a probability of 0.5. This largely closes the performance
gap (6K-Mix, bal.) with the model train on high-resolution
images only.

5.4. Image generation beyond 1024

We explore going beyond the 1024 resolution and train our
model on a collected dataset of faces at varied resolutions
between 1024 to 2048, and on Mountains dataset including
a higher-resolution subset (a generated sample is shown in
Figure 1). We observe that our method can be effectively
applied to resolutions up to 2K (see Appendix E).

5.5. Inverse problems with conditions at any scale

Our method builds a diffusion model on a latent space that
represents image neural fields. A key property of image
neural fields is that they can be efficiently rendered for
any sub-region at any given resolution without decoding
the whole image at full resolution. With the image prior
learned by diffusion models, it enables efficiently solving
inverse problems where conditions can be defined on any
scale of the image based on coordinates. We take zero-shot
any-scale layout-to-image generation as an example. It uses
CLIP [41] similarity as the constraint for image generation

Mountains	(2048×2048)

“cloud”
(1000×1000)

“sun”
(500×500)

Mountains	(2048×2048)

“grass”
(800×800)

“rocks”
(600×600)

Figure 6. Solving inverse problems with multi-scale condi-
tions per image. We can solve for an image that satisfies multi-
scale conditions, defined as square regions and a text prompt
(left). For this, we decode the corresponding region and pass
it to a pre-trained CLIP [41] model operating at fixed-resolution
(224× 224), and maximize the CLIP similarity to the correspond-
ing text prompt. This enables layout-to-image generation without
extra training. We show generated solutions on the right.

with semantic bounding boxes at arbitrary scales.
Specifically, we take a pre-trained CLIP model, which

takes 224 × 224 fixed-resolution images as inputs. Given
a layout and our image neural field diffusion model (un-
conditional), in each diffusion step, let z denote the current
denoised latent representation, for each semantic bounding
box i in the input layout we render z for the correspond-
ing sub-region to a patch at the resolution 224 × 224, i.e.
patch pi = R ◦ D(z; ci, si), with our decoder D and ren-
derer R, where ci, si denote the coordinates and scale of a
224× 224 pixel grid of bounding box i. The clip similarity
loss li = CLIP(pi, Ti) is computed between patch pi and
the given text Ti. The gradients ∂li

∂z are back-propagated
and then used to modify the diffusion score for each dif-
fusion step. We follow the techniques in DPS [10] as the
inverse problem solver. Figure 6 shows the results of using
our mountains model (2K resolution). Note that without
image neural field diffusion models, a fixed-resolution dif-
fusion model needs to decode the whole region at full res-
olution (e.g. 1000 × 1000 “cloud” region in a 2048 × 2048
canvas) before passing it as 224 × 224 input to CLIP, which
would have very intensive computation and memory cost.

5.6. Qualitative results for text to image generation

We explore a preliminary application of our method for text-
to-image generation by finetuning a pre-trained Stable Dif-
fusion model [43]. Because of the high computational cost
of training Stable Diffusion, we freeze the encoder and only
finetune the decoder from publicly available pre-trained
weights on a high-resolution subset of LAION-5B, which
contains samples at resolutions higher than 2K. Our ren-
derer has the same architecture as in previous experiments
and is jointly trained from scratch. We show some qualita-
tive samples from our fine-tuned model and compare them
to upsampling the Stable Diffusion’s 512×512 output using
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Figure 7. Samples of our method finetuned from Stable Diffusion (LDM) compared to Stable Diffusion with an extra super-resolution
model. Our approach yields finer, high-frequency textures.

Real-ESRGAN in Figure 7. We observe that the compari-
son is similar to the experiments on FFHQ and Mountains:
our method generates more details than the Real-ESRGAN
applied to Stable Diffusion’s outputs (see Appendix G).

5.7. Scale-consistency of CLIF

The CLIF neural field renderer does not assume pixel inde-
pendence and is learned with LPIPS and GAN loss. How-
ever, instead of synthesizing different contents for different
output scales as a conditional GAN, we observe that CLIF
is learned to be scale-consistent even without any explicit
consistency objective, as shown in Figure 8. We observe
that the object boundary precisely aligns when we render
the same latent representation to different resolutions. This
property can help multi-scale supervision on the same latent
representation in training and solving inverse problems.

5.8. Comparison to any-resolution GANs

The idea of using neural fields for training with any-
resolution images was explored for GANs in AnyRes-
GAN [6] and ScaleParty [37]. We observe that the
comparison between image neural field diffusion models
and AnyresGAN matches the comparison between typi-
cal fixed-resolution diffusion models and GANs. We take
AnyResGAN [6], which worked for more diverse high-
resolution images, as an example for comparison. GANs
are still state-of-the-art on FID, especially for the single-
class generation. For example, for typical fixed-resolution
synthesis on FFHQ, StyleGANv3 [22] (the backbone of
AnyResGAN) reports FID 2.79 while LDM [43] (the back-
bone of our implementation) has FID at 4.98. However,
FID is counting for the statistics of deep features and is not
a perfect metric yet for image generation [3, 4]. Image neu-

ral field diffusion model inherits the advantages of diffusion
models over GANs. We detail below.

Sample quality. While our method achieves competitive
FID to AnyResGAN (see Appendix Table 6), as a diffusion
model, we find it shows better quality in actual samples.
We observe that the common artifacts in AnyResGAN (see
Figure 9) are not shown in image neural field diffusion. We
also find the generally best samples from our method have
better quality than the best samples from AnyResGAN.

Sample diversity. We visualize random samples from
ground-truth images in Appendix Figure 20, AnyResGAN
in Appendix Figure 21, and image neural field diffusion
model in Appendix Figure 22. Overall, we observe that
AnyResGAN’s samples layout are relatively more flat and
simple (typically a front view of a mountain, with a horizon-
tal sky-mountain line), while the diffusion-based method
has better sample diversity (usually more layers and con-
tents along the depth in the layout).

Besides, unlike AnyResGAN, INFD is scale-consistent
as shown in Figure 8, and can be used for text-to-image
synthesis (see more samples in Appendix Figures 17,18,19),
which remains a challenge for any-resolution GANs.

6. Limitations
Our current method assumes that the training data are scale-
consistent, i.e., low-resolution images follow the same dis-
tribution as downsampled high-resolution images (see Ap-
pendix F). This assumption is violated by datasets that con-
tain a low-resolution subset with noisy, compressed images,
and a high-resolution subset with clean images (e.g. Birds,
Churches datasets [6]).
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AnyResGAN Ours

Figure 8. Scale consistency of our CLIF renderer. In each pair, the left is rendering at resolution 1K, the right is rendering at resolution
2K then downsampling to 1K. Yellow/green boxes show two examples of inconsistent areas in AnyResGAN (besides the boxes, the object
boundary also does not align well for 1K/2K of AnyResGAN).

AnyResGAN Ours

Figure 9. Qualitative comparison with AnyResGAN [6]. Image neural field diffusion model is based on diffusion models and avoids the
GAN artifacts in FFHQ (black dots) and Mountains (grid-like patterns) (see more examples in Figure 4).

In text-to-image synthesis, our model is fine-tuned from
an existing Stable Diffusion checkpoint on a small subset of
the LAION dataset containing high-resolution images. This
causes two issues. First, the training set of the pre-trained
model includes noisy images, but our high-resolution fine-
tuning dataset only contains clean images; this violates our
scale consistency assumption. As a result, we found that
our model requires extra prompts such as “4k” to gener-
ate detailed high-resolution images. Second, our fine-tuning
LAION subset does not cover all possible object categories,
so our model may not perform optimally on some out-
of-distribution objects. Training from scratch on the full
LAION dataset might resolve these limitations.

Our current encoder works for images at a fixed resolu-
tion. Researching efficient any-resolution encoders is also a
promising avenue for future work. At very high resolutions,
our model sometimes generates artifacts in high-frequency
regions. We hypothesize this because the current LPIPS and
GAN loss are not optimal for model uncertainties. Our cur-
rent CLIF implementation is also lightweight, which may
have a limited representation capacity.

7. Conclusion

We proposed image neural field diffusion models, the dif-
fusion models on a resolution-agnostic latent space, and
demonstrated its advantages over fixed-resolution models.
We presented a simple yet effective framework as an im-
plementation, which can be easily applied to convert from
an existing latent diffusion model. Our method can build
diffusion models from mixed-resolution datasets, achiev-
ing high-resolution image synthesis without extra super-
resolution models.

The resolution-agnostic image prior learned by the diffu-
sion model also enables solving inverse problems with con-
ditions applied at different scales of the same image. The
image neural field can be rendered by patches as needed to
efficiently compute the constraint loss and solve for very
high-resolution images.
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Appendix

A. Comparison to implementing neural field
autoencoder with LIIF [8]

LIIF [8] is an image neural field defined on a feature map,
which can also be used as the renderer in the framework.
However, we observe that directly implementing our frame-
work with LIIF does not produce photorealistic details, as
shown in Figure 10. LIIF was originally proposed for super-
resolution with L1 loss. We find the generator with LIIF
struggles to learn photorealistic details and the adversarial
training quickly collapses with the discriminator as the win-
ner in the adversarial game.

Our proposed CLIF renderer addresses this issue by de-
coding the patch as a whole and incorporating a larger
context with convolution layers. Besides having higher
capacity, we also find CLIF can be learned to be scale-
consistent even with LPIPS and GAN loss and without
point-independent decoding.

B. Ablation on without latent space

To evaluate the benefits of having a latent space for neural
image fields, we compare our method, to a baseline abla-
tion where we remove the encoder and latent space. In-
stead, in this baseline, we first learn an any-scale super-
resolution model for low-resolution images. This super-
resolution model has the same architecture as the compo-
sition of our decoder and renderer R ◦ D. The difference
is that it acts on low-resolution images, rather than the la-
tent representation. We then train a low-resolution diffusion
model. At inference time, we first generate a low-resolution
image by diffusion, then upsample it with R ◦ D. For this
baseline, the low-resolution image has the same spatial di-
mensions 64×64 as the latent representation in our main
model, and all other training settings are kept identical.

Figure 11 shows this baseline generates overly smooth
images. This is already visible at 256×256. The quantita-
tive comparison in Table 5, confirms our model outperforms
the baseline on FID. We hypothesize this is because: (i) the
latent representation contains richer information compared
to a simple low-resolution RGB image with the same spa-
tial dimension. Intuitively, with the latent representation,
our first training stage can encode information relevant to
our final goal to synthesize a high-resolution image, which
is impossible with a plain RGB low-resolution image. This
information is preserved by the diffusion model in the sec-
ond training stage. (ii) The latent space (with VQ or KL
regularization) is more robust than RGB space to the do-
main shift from real to generated sample.

Figure 10. Comparison of using LIIF (left) and CLIF (right, ours)
as the renderer in our framework (Mountains and FFHQ dataset).
We find CLIF can produce more photorealistic details than LIIF
with the convolutional formulation.

Figure 11. Samples of the method where the latent neural field
space is replaced by low-resolution images with the same spatial
dimension (FFHQ dataset). Even at 256 resolution, these images
are overly smooth and lack details, which supports the effective-
ness of having a latent space.

Data Method FID-256@5K

All HR LR-DM + SR 36.01
INFD 9.26

6K-Mix LR-DM + SR 37.97
INFD 9.81

Table 5. Comparison to low-resolution diffusion model with any-
resolution upsampler. The upsampling network has the same ar-
chitecture as our decoder-renderer for comparison.

C. Convolutional samples of LDM [43] for
higher-resolution generation

In LDM [43], the iterative denoising process is operating
over a noise map with a UNet, where the UNet contains
convolution and attention layers. Since both types of layers
can be directly applied to higher-resolution input, a poten-
tial method to generate higher-resolution images is to pro-
cess a noise map with higher resolution without changing
the network. Despite this method increasing the computa-
tion cost linearly to the number of pixels, we observe that
it fails to generate images with correct global structures, as
shown in Figure 12 for the FFHQ unconditional generation
task. We hypothesize this is because the model trained for
256×256 images learns to generate faces at a specific scale,
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Figure 12. Results using LDM [43] trained for 256× 256 faces to
generate higher-resolution faces at 512× 512 by making convolu-
tional samples over a larger noise map.

w/ random downsampling GT w/o random downsampling GT

Figure 13. Comparison of training with/without random down-
sampling the ground-truth images (Mountains dataset, outputs in
the autoencoder stage). Training without random downsampling
produces samples with worse quality.

when making convolutional samples at 512× 512, it might
try to generate multiple 256× 256 faces at different spatial
locations and fails to preserve the global structure.

D. Effect of scale-varied training on Mountains
dataset

Scale-varied training, i.e., training with randomly down-
sampled ground-truth images, allows the same latent rep-
resentation to get supervision from multiple scales with the
fixed-resolution patch, which helps the performance even
if all ground-truth images are at fixed and high resolution.
Besides results on the FFHQ dataset shown in the main pa-
per, we observe that scale-varied training is more important
on the Mountains dataset which contains more complex im-
ages. As shown in Figure 13, without random downsam-
pling of the ground-truth images during training, the model
produces samples with worse quality.

E. Image generation beyond 1K
Our method uses patchwise supervision at arbitrary coordi-
nates and can be trained on higher-resolution images with-
out changing the architecture. We explore going beyond the

Figure 14. 2K results on faces. When training data is available,
our method can be used to generate images at resolutions above
1K. Here we show 2K generated images trained on datasets of
high-resolution portraits.

Model pFID@50K

256/1K 512/1K 1K/1K

AnyRes-GAN [6] 6.17 4.02 3.25
INFD 7.53 6.84 5.13

Table 6. FID comparison between any-resolution GAN and dif-
fusion model on Mountains dataset. While GANs are state-of-
the-art at single class FID, the diffusion-based method achieves
competitive FID and does not have the GAN artifacts shown in
Figure 9, and shows better visual quality on actual images. We
refer to Sec. 5.8 for random samples and detailed discussions.

1024 resolution and train our model on a collected dataset
of faces, which contains images at varied resolutions be-
tween 1K to 2K (about 84% images have 2K resolution).
We show some qualitative results in Figure 14. We observe
that, with no change to the architecture, our method learns
to generate highly detailed textures on skin and hairs for 2K
faces, which suggests the potential for pushing our method
further, for ultra-high resolution image generation.

F. Discussion on dataset scale-consistency
Our model assumes the images in the dataset to be
scale-consistent, i.e., downsampled high-resolution images
follow the same distribution as low-resolution images.
Datasets that severely violate this assumption would de-
grade the performance of our model. This is because if
dataset scale consistency is violated, the latent code en-
coded from low-resolution images might follow a different
distribution than the latent code encoded from downsam-
pled high-resolution images. The high-resolution supervi-
sion is only applied to the latter type of latent code during
training, therefore, the former type of latent code might not
have a guaranteed quality when rendered at high resolution.
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For text-to-image synthesis, our current model is finetuned
with clean high-resolution data from the Stable Diffusion
model, while the Stable Diffusion model could have seen
many noisy low-resolution images in its pre-training, ap-
pending text prompts like “high definition” or “4k” reduces
such distribution shift and thus improves the quality. Train-
ing from scratch with scale-consistent data will not have a
distribution shift in the latent space and might thus avoid
this issue.

G. Additional Generated Samples
We show various additional generated samples in Fig-
ures 15,16,17,18,19 for FFHQ-1024, 2K portrait dataset,
and text-to-image generation at 2K resolution, where the
experimental settings are the same as the main paper. In
text-to-image generation, we observe that while the output
resolution is at 2K, appending the prompt “high definition”
or “4k” after the text description is helpful to generate high-
quality high-resolution images.

H. Implementation Details
H.1. Model architecture

Our encoder and decoder follow the architecture used in
LDM [43]. They are modified from a UNet’s encoder and
decoder by removing the connections that skip the bottle-
neck latent representation. The encoder and decoder are
symmetric, each has 3 levels. Downsampling/upsampling
happens after each level. The base channel is 128, the chan-
nel multiplication factors are 1,2,4 for different levels in the
encoder. There are 2 ResNet blocks within each level. The
feature map of latent representation has a downsampling
rate of 4 compared to the input and has 3 channels. The
CLIF renderer is a convolutional neural network with one
convolution layer, and two ResNet blocks, followed by an-
other convolution layer, convolution kernel sizes are all 3.

Our diffusion model in latent space follows the imple-
mentation in ADM [11] (also used in LDM [43]). The
encoder and decoder have base channels 224 and channel
multiplication factors are 1,2,3,4 at different encoder levels,
with 2 ResNet blocks at every level. At the downsampling
rates of 2,4,8, multi-head self-attention with 32 channels per
head is applied on the feature map.

H.2. Training setting

For the first stage, the encoder, decoder, and renderer are
end-to-end trained jointly. We use Adam [23] with β1 =
0.5, β2 = 0.9 and optimize for 1M iterations. The learn-
ing rate is 3.6 · 10−5 for a batch size of 8. The discrimi-
nator for GAN loss is adversarially trained with the same
optimizer specifications. On Mountains and text-to-image
tasks, we keep the ground-truth images at their original res-
olution with a probability of 0.5 in the last 400K iterations.

For the second stage, the latent space diffusion model is
trained with AdamW [28] for 600K iterations on FFHQ, for
1.7M iterations on Mountains, with β1 = 0.9, β2 = 0.999
and weight decay of 0.01. The learning rate is 9.6 · 10−5

for a batch size of 48. For either the first stage or the second
stage, it takes about 4 days every 1M iterations to train our
model on 4 NVIDIA A100 GPUs.
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Figure 15. Additional generated samples of our method on FFHQ-1024.
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Figure 16. Additional generated samples of our method on 2K portrait dataset.
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“A straw hat, high definition, 4k”
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“Portrait of a colored iguana, high definition, 4k”
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Figure 17. Additional generated samples of our method on text-to-image generation (resolution at 2K).
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“A pancake, high definition, 4k”
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“A leather sofa, high definition, 4k”
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Figure 18. Additional generated samples of our method on text-to-image generation (resolution at 2K).
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“A plate with blueberries and strawberries, 4k”
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“A robot arm made of rusty iron, 4k”
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Figure 19. Additional generated samples of our method on text-to-image generation (resolution at 2K).
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Figure 20. Sample diversity of ground-truth images on Mountains dataset (shown in 256× 256).
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Figure 21. Sample diversity of AnyResGAN [6] on Mountains dataset (shown in 256× 256).
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Figure 22. Sample diversity of image neural field diffusion model on Mountains dataset (shown in 256× 256).
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