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Abstract—In this paper, we propose an appearance-based
vehicle type classification method from vehicle frontal view
images. Unlike other methods using hand-crafted visual features,
our method is able to automatically learn good features for vehicle
type classification by using a convolutional neural network. In
order to capture rich and discriminative information of vehicles,
the network is pre-trained by the sparse filtering which is an
unsupervised learning method. Besides, the network is with layer-
skipping to ensure that final features contain both high-level
global and low-level local features. After the final features are
obtained, the softmax regression is used to classify vehicle types.
We build a challenging vehicle dataset called BIT-Vehicle dataset
to evaluate the performance of our method. Experimental results
on a public dataset and our own dataset demonstrate that our
method is quite effective in classifying vehicle types.

Keywords—vehicle type classification; convolutional neural net-
work; sparse filtering;

I. INTRODUCTION

Vision-based vehicle type classification is one of the es-
sential tasks in Intelligent Traffic System (ITS), and has a
multitude of applications, such as traffic volume and speed es-
timation, illegal vehicle type detection, and incident detection.
Numerous methods of vehicle type classification have been
proposed, and most of them fall into two categories: model-
based methods and appearance-based methods. Model-based
methods [1][2][3][4] recover the vehicle’s 3D parameters such
as length, width, and height for classification from multi-
view images. Appearance-based methods extract appearance
features (e.g. SIFT [5], Sobel edges [6]) from either vehicle
frontal or side view image to classify vehicle types. In real
applications, more and more vehicle frontal view images are
captured by traffic surveillance cameras in many places such
as checkpoints and intersections. In this paper, we propose
an appearance-based vehicle type classification method from
vehicle frontal view images.

Compared to the appearance-based methods using vehicle
side view images [7][8][9][10], only few work has been
reported on vehicle type classification from vehicle frontal
view images. Petrovic et al. [11] extracted a great many of
features, such as Sobel edge response, edge orientation, direct
normalized gradients, locally normalized gradients, and Harris
corner response from vehicle frontal view images to classify
vehicle types. Negri et al. [12] presented a voting algorithm for
a multiclass vehicle type recognition system based on oriented-
contour points. Psyllos et al. [13] used SIFT features to recog-
nize the logo, manufacture and model of a vehicle. Peng et al.
[14] represented a vehicle by license plate color, vehicle front
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Fig. 1. The framework of our method. For each image with a vehicle, the
convolutional neural network which is pre-trained by the sparse filtering [15]
is first utilized to learn features. The features are then used to classify vehicle
types by the softmax regression.

width, and type probabilities for vehicle type classification.
However, these methods use multiple hand-crafted features
and face the problem that the visual features extracted are not
discriminative enough. To solve this problem, we propose to
learn good features for vehicle type classification.

Convolutional neural networks (ConvNets) [16] are multi-
layer feed-forward neural networks whose structures are
biologically-inspired. Unlike other vision methods using hand-
crafted features, ConvNets are able to automatically learn
multiple stages of invariant features for the specific task.
ConvNets thus have been utilized in a great deal of applications
such as hand tracking [17], face detection [18][19], facial point
detection [20], and image classification [21].

As shown in Fig.1, we use a convolutional neural network
to learn good features for vehicle type classification. As un-
supervised pre-training has shown great usefulness in training
multi-layer neural networks [22][23][24][25], we also provide
an unsupervised pre-training procedure for the network. The
sparse filtering [15] is introduced to pre-train a great number of
filters. As essential parts of the convolutional neural network,
these filters are able to capture rich and discriminative infor-
mation of vehicles for improving classification performances.
The convolutional neural network in our method contains two
stages which generate low-level local and high-level global
features respectively. Unlike traditional ConvNets, our network
is with layer-skipping (i.e., the outputs of the two stages
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Fig. 2. The architecture of our unsupervised convolutional neural network. The network contains two stages, each of which is consisted of convolutional,
absolute rectification, local contrast normalization, average pooling, and subsampling layers. The number behind ”convolution” is the size of the unsupervised
pre-trained sparse filters. The number behind ”average pooling” is the size of the average filter, and the number behind ”subsampling” reflects the step of
subsampling.

are all fed into the classifier), which allows the classifier
use high-level global as well as low-level local features. The
high-level global features provide holistic descriptions of the
vehicle, and the low-level features aim to characterize vehicle
parts precisely. Both of them are beneficial for vehicle type
classification. After the final features are obtained, the softmax
regression is used to classify vehicle types.

II. FEATURE LEARNING

The architecture of our convolutional neural network is
shown in Fig.2. The network contains two stages, each of
which is consisted of convolutional, absolute value recti-
fication, local contrast normalization, average pooling, and
subsampling layers.

A. Convolutional Layer

The convolutional layer computes convolutions of the input
with a series of filters. As a result, it is also called the filter
bank layer. The input of the convolutional layer is a 3D array
whose size is s1 × s2 × s3, where s1 is the number of 2D
features, and s2× s3 is the size of the 2D feature. The output
is also a 3D array with the size of t1 × t2 × t3. Suppose
the filter size is l1 × l2, we thus have t2 = s2 − l1 + 1 and
t3 = s3− l2 + 1 due to the board effects.

Here, we introduce the Sparse Filtering [15] to learn the
filter bank. Sparse filtering is an unsupervised feature learning
algorithm which is easy to implement and hyperparameter-
free. It optimizes for the sparsity in the feature distribution
and avoids explicit modeling of the data distribution. This
gives rise to a simple formulation and permits the effectiveness
of learning. Additionally, the sparse filtering only has one
hyperparameter, the number of features to learn, which can
be easily tuned.

Define a data matrix as X = [x1,x2, · · · ,xn] ∈ R
d×n,

where each column is a data point. Similarly, F ∈ Rt×n is a

feature distribution matrix over X , where each row is a feature
and each column is an example. The element Fij represents
the activity of the i-th feature on the j-th example of F . By
endowing F with sparse constrains, our goal is to obtain a
S = [s1, s2, · · · , st] ∈ R

d×t which satisfies F = S�X . We
thus have Fij = sTi xj , so each column of S can be viewed
as a filter.

Let f(i,�) ∈ R1×n(i = 1, 2, · · · , t) represents the i-th row
of F , and f(�,j) ∈ R

t×1(j = 1, 2, · · · , n) represents the j-
th column of F . The objective function of the sparse filtering
method is computed in three steps: normalizing the feature dis-
tribution matrix by rows, normalizing the feature distribution
matrix by columns, and summing up the absolute values of all
entries. Specifically, in the first step, each feature is divided by

its L2-norm across all examples: f̃(i,�) = f(i,�)/‖f(i,�)‖2.
In this way, each feature is normalized to be equally active.
In the second step, each example is divided by its L2-norm
across all features: f̂(�,j) = f̃(�,j)/‖f̃(�,j)‖2 to ensure all
examples lie on the unit L2-ball. In the third step, we sum up
the absolute values of all the entries in F̂ . The sparse filtering
is described as

min
S

‖F̂‖ =
t∑

i=1

n∑
j=1

|F̂ij |. (1)

Eq.(1) equals to

min
S

n∑
j=1

‖f̂(�,j)‖1 =

n∑
j=1

∥∥∥∥∥ f̃(�,j)
‖f̃(�,j)‖2

∥∥∥∥∥
1

. (2)

The sparse objective makes the feature distribution have three
properties, which have been explored in the neuroscience
literatures [26][27].

Population Sparsity: It means that each example should
only have a few active (non-zero) features. This property called
the population sparsity [26][27] is considered to be an efficient
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means of coding in early vision cortex. The term ‖f̂(�,j)‖1 in
Eq.(2) reflects the population sparsity property of the features
on the j-th example. As f̂(�,j) has been constrained to lie on
the unit L2-ball, the objective function is minimized when the
features are sparse. In other words, the objective tends to place
the examples close to feature axes, and the example which has
similar values on each feature would have a high penalty.

High Dispersal: The feature distribution should have simi-
lar statistics on different features. Here, the statistics are taken
as the mean squared activations by averaging the squared
values in the feature matrix across all the examples:

Ti =
1

n

n∑
j=1

F2
ij =

1

n
‖f(i,�)‖22. (3)

The statistics for different features should be roughly same
which implies that the contributions of all features are roughly
same. This principle is known as the high dispersal. In the
first step of computing the objective function, each feature is
divided by its L2-norm across all examples which ensures that
each feature is normalized to be equally active. Therefore, the
objective optimizes for high dispersal.

Lifetime Sparsity: The property that each feature should
be active only on a few examples is called lifetime sparsity
[26][27]. This property guarantees that the feature is discrim-
inative enough to distinguish different examples. Specifically,
each row of the feature distribution matrix should only have a
few active (non-zero) entries. In the sparse filtering algorithm,
the lifetime sparsity property is ensured by the population
sparsity and high dispersal properties. The feature distribution
matrix should have a great many non-active (zero) elements
due to the population sparsity property. These non-active
elements could not be placed in a few specific rows, otherwise
it would be against the high dispersal property. Therefore, each
feature would have a significant number of non-active elements
and thus be lifetime sparse.

The sparse filtering is easy to implement. The minimization
of Eq.(2) is achieved by L-BFGS optimization method. As
the objective function contains the absolute value operators
which are nondifferentiable, an approximation is introduced.
The absolute value operators are ignored, and the gradient of
the objective function is computed by the back-propagation
algorithm.

For each stage of the convolutional neural network, the
filter size is set to be 9 × 9 pixels. Many patches size of
9 × 9 are randomly extracted from the input, and the sparse
filtering method is utilized to learn the filters. The learnt filters
of the 1-st stage are shown in Fig.3. As we expected, the filters
mainly preserve the edge, point and junction information of the
vehicles. A few filters don’t achieve convergency due to the
computation cost.

B. Absolute Value Rectification Layer

In this module, all the elements are passed into the absolute
value rectification function:

yijk = |xijk|. (4)

This is inspired by the fact that the relationship between two
items in real world is always positive or zero, but not negative.

Fig. 3. The unsupervised pre-trained sparse filters of the 1-st stage.

Several rectifying strategies including the absolute value and
the positive part are tried in [24], and the results are similar.
We choose the absolute value function here.

C. Local Contrast Normalization Layer

The local contrast normalization layer is inspired by com-
putational neuroscience [28][29]. The goal of this layer is
to enforce local competitions between one neuron and its
neighbors, including the neurons nearby in the same feature
map and the ones at the same 2D location in different feature
maps. To achieve this goal, two normalization operations are
performed: subtractive and divisive. For the element xi,j,k
in the input 3D array size of I × J × K, the subtractive
normalization operator computes

yi,j,k = xi,j,k −
∑
o,p,q

ωp,qxo,j+p,k+q, (5)

where ωp,q is a normalized Gaussian filter with the size of
9× 9, so

∑
p,q ωp,q = 1. In addition, the extra zeros are need

to add to the boards of the input while filtering. The divisive
normalization operator is performed as

zi,j,k =
yi,j,k

max
(
M,

√∑
o,p,q ωp,qy

2
o,j+p,k+q

) , (6)

where

M =
1

J ×K

J∑
j=1

K∑
k=1

√∑
o,p,q

ωp,qy2o,j+p,k+q. (7)

D. Average Pooling and Subsampling Layers

The average pooling and subsampling layers aim to make
the representation robust to geometric distortions and small
shifts, similar to the ”complex cells” in standard models of
the visual cortex. In the average pooling layer, we compute
the convolutions of each 2D feature map with an average filter

yi,j,k =
∑
p,q

αp,qxi,j+p,k+q, (8)

where αp,q = 1/(f1 × f2) is the average filter with the size
of f1 × f2. The subsampling procedure is then performed
with the steps of p1 horizontally and p2 vertically as shown
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in Fig.2. Therefore, suppose the input 3D array of these two
layers are size of m× s1× s2, the output is also a 3D array
with the size of m× t1× t2 and

t1 =

⌊
s1− f1

p1

⌋
+ 1,

t2 =

⌊
s2− f2

p2

⌋
+ 1.

(9)

III. CLASSIFICATION

We use the softmax regression to classify vehicle types by
features learnt above. The relationship between the feature and
the probability distribution of its category is modeled by

v = W�x+ b, (10)

where x ∈ R
D×1 represents the input feature, v ∈ R

C×1 is
computed to describe the distribution, and C is the number
of categories. Because the probability has the properties of
nonnegativity and unitarity, the following normalization is
performed:

di =
1

V
evi , i = 1, 2, · · · , C,

V =
C∑
i=1

evi ,
(11)

where vi is the i-th element of v, and d = [d1,d2, · · · ,dC ]�
is the output of the model.

Denote the training samples as {(x(i),y(i)|i =
1, 2, · · · , N} where x(i) is the learnt feature, y(i) is
the probability distribution of x(i)’s category. Specifically,
if x(i) belongs to the j-th class (1 ≤ j ≤ C), the j-th
element of y(i) will be 1 and others will be 0. We want to
learn the parameters, W and b, in the model by using these
training samples. Two principles are introduced to learn the
parameters, the first one is the Kullback-Leibler divergence
(KL):

min
W,b

N∑
i=1

KL(y(i)‖d(i))

= min
W,b

N∑
i=1

( C∑
j=1

y
(i)
j ln

1

d
(i)
j

−
C∑
j=1

y
(i)
j ln

1

y
(i)
j

)

= min
W,b

−
N∑
i=1

C∑
j=1

y
(i)
j lnd

(i)
j ,

(12)

and the second one is the Minimum Squared Error (MSE):

min
W,b

N∑
i=1

1

2
‖d(i) − y(i)‖22. (13)

The online gradient descent is utilized to solve Eq.(12) and
Eq.(13). After the optimized parameters are obtained, the class
of a test sample can be predicted by picking the label which
makes the probability achieving maximum.

Microbus

Bus SedanTruck

Truck & SUVMinivan

Fig. 4. The example images of BIT-Vehicle Dataset. All vehicles in our
dataset fall into 6 types: Bus, Microbus, Minivan, Sedan, SUV, and Truck.

Bus Minivan

Passenger car Sedan Truck

Fig. 5. The example images of the dataset in [30]. This dataset consists of
5 types of vehicles: Bus, Minivan, Passenger car, Sedan, and Truck.

IV. EXPERIMENTS

A. Datasets and Preprocessing

We collected a complex and challenging vehicle dataset
called BIT-Vehicle Dataset to test our method. Fig.4 shows
the example images of our dataset. As shown in the figure,
images in this dataset are captured at different places and
different time. These images contain changes in illumination
condition, scale, the surface color of vehicles and viewpoint.
The top or bottom parts of some vehicles are not included
in the images because of the capturing delay and the size of
the vehicle. In addition, these images have two kinds of sizes:
1600×1200 and 1920×1080. All vehicles in the dataset are
divided into six categories: Bus, Microbus, Minivan, Sedan,
SUV, and Truck. Each category contains 150 vehicles, to
provide a total of 900 vehicles. In order to give a better
estimation of the generalization performance, we use the 10-
fold cross-validation scheme in the experiment. Additionally,
the vehicle whose location is pre-annotated is regarded as the
input of the convolutional neural network.

To make a fair comparison with the previous methods, we
also test our method on the dataset released in [30]. There
are totally 3618 daylight and 1306 nightlight images with the
image size of 1600×1264 in this dataset. All the images are
captured in highways with a fixed camera. The vehicles in
images fall into five categories: Truck, Minivan, Bus, Pas-
senger car, and Sedan(including sport-utility vehicle (SUV)).
Example images are displayed in Fig.5. As shown in the
figure, this dataset contains some challenging factors, including
illumination variations, rain blurring, different color surfaces
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Fig. 6. The confusion matrix of our method on BIT-Vehicle Dataset.

of vehicles, and background interferences. The reported results
of this dataset are the averages of 10 independent experiments.

For both datasets, a preprocess procedure similar to [29] is
performed to the images. First, all images are converted to gray
and resized to a new image with the longer side size of 151
pixels and the height-width ratio fixed. The mean of the image
is then subtracted from each pixel and the standard deviation
is divided. In the third step, the local contrast normalization
is performed similar to Sec.II-C except M = 1 and that no
extra zeros are added when computing Eq.(5). The length of
the longer side is thus to be 151−9+1 = 143 pixels. Finally,
the zero-padding is executed for the shorter side to 143 pixels
to ensure that the input of the network is square.

B. Results on BIT-Vehicle Dataset

In this part, we test our method on BIT-Vehicle dataset
and report its performance. Our approach achieves 92.89%
accuracy. As we expected, our model can precisely classify
vehicle types in some challenging situations, such as different
lighting conditions, serious shadow interferences, and view-
point changes. The primary reason is that our convolutional
neural network is able to learn discriminative features for
vehicle type classification. The confusion matrix is shown in
Fig.6. From the matrix, we find that most of the misclassifi-
cations are among ”Microbus”, ”SUV” and ”Sedan”. This is
because they have quite similar appearances. Additionally, the
fact that the classifier we use is quite simple demonstrates that
the learnt features are discriminative and reliable to classify
vehicle types.

We also evaluate the effects of several components involved
in the convolutional neural network. At first, the unsupervised
pre-trained sparse filters are replaced by random values. The
classification accuracy is displayed in TABLE I. It shows
that the network with unsupervised pre-trained sparse filters
outperforms that with random filters. The performance gain
achieved by our model due to the sparse filters learnt from
unlabeled vehicles are able to capture rich discriminative
information of vehicles for vehicle type classification.

We further investigate the contribution of the network
depth. Here, we compare the performances of two types of

TABLE I. CLASSIFICATION ACCURACIES ON BIT-VEHICLE DATASET.

Method
Accuracy(%)

KL MSE

Random Filter 87.56 88.22

Only 1st stage 89.78 90.22

1st stage+2nd stage
90.22 91.33

without layer-skipping

Our model 92.67 92.89

network architecture. For the first one, only the 1-st stage
is utilized to learn vehicle features, and the dimensionality
of the final feature is thus 2304. For the second one, the
2-nd stage is added but without layer-skipping strategy, and
the dimensionality of the final feature is thus 4096. Their
average classification accuracies are also shown in TABLE
I. The performance difference between them emphasizes that
multi-stage is better than one stage for vehicle feature learning.

At last, the benefit of the layer-skipping strategy is verified.
The layer-skipping strategy connects the features learnt from
the 1-st stage and the 2-nd stage. The features learnt from the
1-st stage are low-level and local, and the outputs of the 2-
nd stage are high-level global features. From TABLE I, we
find that our model outperforms the model only using 1-st
stage. Our model uses the high-level global features to capture
rich and discriminative information, while the model only with
one stage focuses on local parts of vehicles and lacks the
holistic description of the vehicle. Similarly, the contribution
of low-level local features can be seen from the performance
difference between our model and the model without layer-
skipping. With low-level local features, our model is able to
describe the details of the vehicle precisely. Therefore, these
two types of features can be effectively utilized by adding the
layer-skipping strategy into the network.

C. Comparison Results

To compare with previous methods on vehicle type clas-
sification, we test our method on the dataset released in [30].
For fair consideration, the experiments on daylight images and
nightlight images are performed respectively, which is similar
to [30]. As there is only one vehicle in each image of this
dataset, the image is immediately thrown into our convolution-
al neural network to learn features without vehicle detection.
The comparison results are shown in TABLE II where the
results of other methods are available from published papers
conveniently. The comparison results show that our method
achieves 95.7% classification accuracy on daylight images and
88.8% on nightlight images, better than the results of previous
methods. The underlying reason is that the convolutional
neural network we use is able to learn discriminative and reli-
able features for vehicle type classification. The unsupervised
pre-trained sparse filters can capture rich and discriminative
information of vehicles. In addition, the layer-skipping strategy
allows the classifier use both high-level global and low-level
local features. Their advantages can be effectively utilized in
classifying vehicle types. It should be noted that our method
even without vehicle detection outperforms other methods.
Therefore, our method is effective in classifying vehicle types.

176



TABLE II. COMPARISON RESULTS ON THE DATASET IN [30].

Method
Accuracy(%)

Daylight Nightlight

Psyllos et al. [13] 78.3 73.3

Petrovic et al. [11] 84.3 82.7

Peng et al. [30] 90.0 87.6

Dong et al. [31] 91.3 −
Peng et al. [14] 93.7 −
Ours 95.7 88.8

V. CONCLUSION

We have proposed an appearance-based vehicle type classi-
fication method from vehicle frontal view images by using an
unsupervised convolutional neural network. Our model which
is pre-trained by the sparse filtering can automatically learn
discriminative and reliable features for vehicle type classifica-
tion. The layer-skipping strategy in the network ensures that
the final features are consisted of both high-level global and
low-level local features. After the final features are obtained,
the softmax regression is utilized to classify vehicle types.
Experimental results on two datasets showed the effectiveness
of our method on vehicle type classification.
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