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ABSTRACT

Selecting a meaningful subset of features from high-dimensional observations in
unsupervised settings can significantly improve the accuracy of downstream anal-
ysis tasks such as clustering or dimensionality reduction and provide insight into
the sources of heterogeneity in a given dataset. In this paper, we derive a self-
supervised graph-based approach for unsupervised feature selection. The core of
our method is the robust computation of pseudo-labels by applying simple pro-
cessing steps to the graph Laplacian’s eigenvectors. The subset of eigenvectors
used for computing pseudo-labels is chosen according to a model stability crite-
rion. The importance of each feature is then measured by training a surrogate
model to predict the pseudo-labels from the observations. We show that our
method is robust to challenging scenarios, such as the existence of outliers and
complex substructures. Our approach’s efficacy is demonstrated through experi-
ments on real-world datasets, showing its robustness across multiple domains and
particular effectiveness on biological datasets.

1 INTRODUCTION

Sampling technology improvements enable scientists across many disciplines to acquire numerous
variables from biological or physical systems. One of the key challenges in real-world scientific
data is noisy, information-poor, or nuisance features. While such features could be mildly harmful
to supervised learning, they could dramatically affect the downstream analysis (e.g., clustering or
manifold learning) in the unsupervised setting (Mahdavi et al., 2019). To perform reliable data-
driven scientific discovery, there is a growing need for unsupervised feature selection schemes that
may enhance the latent signal of interest by removing nuisance variables.

Unsupervised feature selection (UFS) methods aim to identify a subset of informative features and
thus improve the outcome of downstream analysis tasks such as clustering and manifold learning.
For unsupervised tasks, and in the lack of labels such as a specific cluster or the value of a latent
parameter, the downstream task cannot be used to drive the selection of features. Therefore, most
UFS methods use a label-free criterion that is assumed to correlate with the downstream task. For
example, many UFS schemes rely on a reconstruction prior (Li et al., 2017) and seek a subset of
features that can be used to reconstruct the entire set of features. Autoencoders (AE) are used to
learn a reduced representation of the data, and a sparsification penalty is introduced to force the AE
to remove redundant features. This idea was implemented with several types of sparsity-inducing
regularizers, including ℓ2,1 based (Chandra & Sharma, 2015; Han et al., 2018), relaxed ℓ0 (Balın
et al., 2019; Shaham et al., 2022) and more.

Another widely used criterion for UFS is feature smoothness. Here, the hypothesis is that the
structure of interest (clusters or a manifold) is typically a low-dimensional or low-rank and can
be captured using the graph Laplacian matrix (Ng et al., 2001). Then, the smoothness of features
is measured based on the Rayleigh quotient of the Laplacian, a measure known as the Laplacian
Score (LS) (He et al., 2005). A feature that is smooth with respect to the graph is assumed to be
associated with the main underlying data structures. Many other UFS methods use a graph to select
informative features; these include Nonnegative Discriminative Feature Selection (NDFS) (Li et al.,
2012), which performs feature selection and spectral clustering simultaneously, and its extension Li
& Tang (2015) which adds a loss term that punishes the joint selection of correlated features. Other
graph-based approaches include Li et al. (2018); Roffo et al. (2017); Zhu et al. (2017; 2020); Xie
et al. (2023).
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Embedded unsupervised feature selection schemes aim to cluster the data while simultaneously re-
moving irrelevant features. Examples include Wang et al. (2015), which performs the selection
directly on the clustering matrix, and Zhu & Yang (2018), which learns feature weights while max-
imizing the distance between clusters. In recent years, several works have derived self-supervised
learning methods for feature selection. The key idea is to design a supervised type learning task with
pseudo-labels that do not require human annotation. A seminal work that is based on this paradigm
is Multi-Cluster Feature Selection (MCFS) (Cai et al., 2010). MCFS uses the eigenvectors of the
graph Laplacian as pseudo-labels and learns the informative features by optimizing over an ℓ1 regu-
larized least squares problem. More recently, Lee et al. (2021) used self-supervision with correlated
random gates to enhance the performance of feature selection.

In this work, we present a spectral self-supervised scheme for feature selection. The main idea is
to leverage the eigenvectors of the graph Laplacian selectively and discriminatively. This process is
implemented through a multistage approach. We first generate robust discrete pseudo-labels from the
eigenvectors, followed by filtering them based on a stability measure. We then fit flexible surrogate
classification models on the selected eigenvectors and query the models for feature scores. Using
these components, we can identify informative features that are shown to be effective for clustering
on real-world datasets.

2 PRELIMINARIES

2.1 LAPLACIAN SCORE AND REPRESENTATION-BASED FEATURE SELECTION

Computing a graph-based representation for a set of high-dimensional observations has become
standard practice for tasks in unsupervised learning. In manifold learning, methods such as ISOM-
PAS (Tenenbaum et al., 2000), LLE (Roweis & Saul, 2000), Laplacian eigenmaps (Belkin & Niyogi,
2003), and diffusion maps (Coifman & Lafon, 2006) compute a low-dimensional representation that
is associated with the manifold’s latent structure. In spectral clustering, a set of points is partitioned
by applying the k-means algorithm to the leading Laplacian eigenvectors (Ng et al., 2001).

In graph methods, each node vi corresponds to one of the observations xi ∈ Rp. The weight Wij

between two nodes vi, vj is computed based on some kernel function K(xi,xj). For example, the
popular Gaussian kernel is equal to,

K(xi,xj) = exp

(
− ∥xi − xj∥2

2σ2

)
.

Where the parameter σ determines the bandwidth of the kernel function. Let D be a diagonal matrix
with the degree of each node in the diagonal, such that Dii =

∑
j Wij . The unnormalized graph

Laplacian matrix is equal to
L = D −W .

For any vector v ∈ Rn we have the following equality (Von Luxburg, 2007),

vTLv =
1

2

∑
i,j

(
vi − vj

)2
Wi,j . (1)

The quadratic form in equation 1 gives rise to a notion of graph smoothness. (Ricaud et al., 2019;
Shuman et al., 2013). A vector is smooth with respect to a graph if it has similar values on pairs of
nodes connected with an edge with a significant weight. This notion underlies the Laplacian score
suggested as a measure for unsupervised feature selection (He et al., 2005). Let fm ∈ Rn denote
the values of the m-th feature for all observations. The Laplacian score sm is equal to,

sm = fT
mLfm =

1

2

∑
i,j

(
fm,i − fm,j

)2
Wij . (2)

A low score indicates that a feature is smooth with respect to the computed graph and thus strongly
associated with the latent structure of the high-dimensional data x1, . . . ,xn. The notion of the
Laplacian score has been the basis of several other feature selection methods as well (Lindenbaum
et al., 2021; Shaham et al., 2022; Zhu et al., 2012).

Let vi, λi denote the i-th smallest eigenvector and eigenvalue of the Laplacian L. A slightly different
interpretation of equation 2 is that the score for each feature is equal to a weighted sum of its
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Figure 1: Outline of the Spectral Self-supervised Unsupervised Feature Selection algorithm: (a) A
tSNE scatter plot of noisy MNIST digits (3, 6, 8). (b) The six leading eigenvectors of the graph
Laplacian. Samples are ordered according to the identity of the digit. (c) The six leading eigen-
vectors colored by the output of the k-medoids algorithm, which defines the pseudo-labels y∗

i . (d)
Selecting three eigenvectors with the most stable model hi(X; y). (e) Computing feature scores for
each model fi(X; y). (f) Aggregation of all feature scores across eigenvectors.

correlation with the eigenvectors, such that

sm =

n∑
i=1

λi(f
T
mvi)

2.

A potential drawback of the Laplacian score is its dependence on a large number of eigenvectors.
This may reduce its stability in measuring a feature’s importance to the data’s main structures. To
overcome this limitation, Zhao & Liu (2007) derived an alternative score based only on a feature’s
correlation to the leading Laplacian eigenvectors. A related, more sophisticated approach is Multi-
Cluster Feature Selection (MCFS) (Cai et al., 2010), which computes the solutions to the generalized
eigenvector problem Lv = λDv. The leading eigenvectors are then used as pseudo-labels for a
regression task with l1 regularization. Specifically, MCFS applies Least Angle Regression (LARS)
(Efron et al., 2004) to obtain, for each leading eigenvector vi, a sparse vector of coefficients βi ∈ Rp.
A feature score is computed by maximizing the absolute values of its corresponding coefficient,

sj = max
i
|βi

j |.

The output of MCFS is the set of features with the highest score. In the next section, we derive
Spectral Self-supervised Feature Selection (SSFS), which improves upon the MCFS algorithm in
several critical aspects.

3 SPECTRAL SELF-SUPERVISED FEATURE SELECTION

3.1 RATIONALE

As its title suggests, MCFS aims to uncover features that separate clusters in the data. Let us con-
sider an ideal case where the observations are partitioned into k well-separated clusters, denoted
A1, . . . , Ak, such that the weight matrix Wij = 0 if xi,xj are in separate clusters. Let ei denote an
indicator vector for cluster i such that

eij =

{
1/
√
|Ai| j ∈ Ai

0 o.w,

where |Ai| denotes the size of cluster Ai. In this scenario, the zero eigenvalue of the graph Laplacian
has multiplicity k, and the corresponding eigenvectors are equal, up to a rotation matrix, to a matrix
E ∈ Rn×d whose columns are equal to e1, . . . , ek. In such a case, the k leading eigenvectors are
indeed suitable for use as pseudo-labels for the feature selection task. Assuming that the clusters are
amenable to a linear separation, the MCFS algorithm should provide highly informative features in
terms of cluster separation.

3



Under review as a conference paper at ICLR 2024

(a) Prostate-GE eigenvectors. (b) TOX-171 eigenvectors.

Figure 2: The first four Laplacian eigenvectors of two real datasets. Samples are sorted according
to the real class label and colored by the outcome of a one-dimensional k-medoids per eigenvec-
tors. The vertical bar indicates the separation between the classes. In Prostate-GE, v4 is the most
informative to the class labels, and an outlier can be seen on the upper left in the third and fourth
eigenvectors. In TOX-171, v3 is more informative to the class labels than v2.

However, the cluster separation can be far from perfect in many applications. In such cases, using
the leading k eigenvectors as pseudo-labels for regression may be suboptimal. Let us describe a
couple of common scenarios:

• Complex high-dimensional datasets may contain various substructures that are not the primary
interest but manifest in the top eigenvectors. In contrast, the main structure of interest appears
only later in the spectrum. For illustration, consider the MNIST dataset visualized via tSNE in
Figure 1(a). The data contains images of 3, 6 and 8. Panel (b) shows the elements of the six
leading eigenvectors of the graph Laplacian matrix, sorted by their corresponding digits. The
leading eigenvector shows a clear gap between images of digit 6 and the rest of the data. However,
there is no clear separation between digits 3 and 8. Indeed, the next eigenvector is not associated
with such a separation. Applying feature selection with this eigenvector may produce spurious
features irrelevant to separating the two digits. This scenario is prevalent in the real datasets
used in the experimental section. For example, Figure 2a shows four eigenvectors of a graph
computed from observations containing the genetic expression data from prostate cancer patients
and controls (Singh et al., 2002). The leading two eigenvectors, however, are not associated with
the patient-control separation.

• The leading eigenvectors may be affected by outliers. For example, an eigenvector may indicate a
small group of outliers separated from the rest of the data. This phenomenon can also be seen in
the third and fourth vectors of the Prostate-GE example in Figure 2a. While the fourth eigenvector
separates the categories, it is corrupted by outliers and, hence, unsuitable for use as pseudo-labels
in a classical regression task, as it might highlight features associated with the outliers.

• The relation between important features and the separation of clusters may be highly non-linear.
In such cases, applying linear regression models to obtain feature scores may be too restrictive.

Motivated by the above scenarios, we derive Spectral Self-supervised Feature Selection (SSFS). We
explain our approach in detail in the following two sections.

3.2 EIGENVECTOR PROCESSING AND SELECTION

Generating binary labels. Given the Laplacian eigenvectors V = (v1, ...,vd), our goal is to
generate pseudo-labels that are highly informative to the cluster separation in the data. To that end,
for each eigenvector vi, we compute a binary label vector y∗

i (pseudo-labels) by applying a one-
dimensional k-medoids algorithm (Kaufman & Rousseeuw, 1990) to the elements of vi. In contrast
to k-means, in k-medoids, the cluster centers are set to one of the input points, which makes the
algorithm robust to outliers. In Figure 2, the eigenvectors are colored according to the output of the
k-medoids. After binarization, the fourth eigenvector of the Prostate-GE dataset is highly indicative
of the category. The feature selection is thus based on a classification rather than a regression task,
which is more aligned with selecting features for clustering. In Section 4.2 we show the impact of
the binarization step on multiple real-world datasets.
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Eigenvector selection. Selecting k eigenvectors according to their eigenvalues may be unstable
in cases where the eigenvalues exhibit a small spectral gap. For SSFS, we derive a robust cri-
terion for selecting informative eigenvectors that is based on the stability of a model learned for
each vector. Formally, we consider a surrogate model h : Rp → R, and a feature score function
s(h) ∈ Rp, where p denotes the number of features. For example, h can be the logistic regression
model h(x) = σ(βTx). In that case, a natural score function is the absolute value of the coefficient
vector β. For each eigenvector vi, we train a model hi on B (non-mutually exclusive) subsets of the
input data X and the pseudo-labels y∗

i . We then estimate the variance of the feature score function,
for every feature m ∈ {1, ..., p}:

V̂ar(sm(hi)) =
1

B − 1

B∑
b=1

(sm(hi,b)− s̄m(hi))
2.

This procedure is similar (though not identical) to the d-delete Jackknife method for variance esti-
mation (Shao & Wu, 1989). We keep, as pseudo-labels, the k binarized eigenvectors with the lowest
sum of variance, Ŝi =

∑p
m=1 V̂ar(sm(hi)). We denote the set of selected eigenvectors by I . A

pseudo-code for the pseudo-labels generation and eigenvector selection steps appears in Alg. 1.

3.3 FEATURE SELECTION

For the feature selection step, we train k models, denoted {fi | i ∈ I}, to predict the selected
binary pseudo-labels based on the original data. Similarly to the eigenvector selection step, each
model is associated with a feature score function s(fi). The features are then scored according to
the following maximum criterion,

score(m) = max
i∈I

sm(fi).

Finally, the features are ranked by their scores, and the top-ranked features are selected for the
subsequent analysis. The choice of model for this step can differ from that used in the eigenvector
selection step, allowing for flexibility in the modeling approach (see Section 3.4 for details). Pseudo-
code for SSFS appears in Algorithm 2.

3.4 CHOICE OF SURROGATE MODELS

Our algorithm is compatible with any supervised model capable of providing feature importance
scores. We combine the structural information from the graph Laplacian with the capabilities of
various supervised models for unsupervised feature selection. Empirical evidence supports the use
of more complex models such as Gradient-Boosted Decision Trees for various complex, real-world
datasets (McElfresh et al., 2023; Chen & Guestrin, 2016). These models are capable of capturing
complex nonlinear relationships, which we leverage by training them on pseudo-labels derived from
the Laplacian’s eigenvectors. For example, for eigenvector selection, one can use a simple logistic
regression model for fast training on the resampling procedure and a more complex gradient boosting
model such as XGBoost (Chen & Guestrin, 2016) for the feature selection step.

4 EXPERIMENTS

4.1 EVALUATION ON REAL WORLD DATASETS

Data and experiment description: We applied SSFS to eight real-world datasets from various
domains. Table 1 gives the number of features, samples, and the number of different classes among
the observations for each dataset. All datasets are available online 1.

We compare the performance of our approach to the following alternatives: (i) standard Lapla-
cian score (LS) (He et al., 2005), (ii) Multi-Cluster Feature Selection (MCFS) (Cai et al., 2010), (iii)
Nonnegative Discriminative Feature Selection (NDFS), (Li et al., 2012), (iv) Unsupervised Discrim-
inative Feature Selection (UDFS) (Yang et al., 2011), and (v) Laplacian Score-regularized Concrete
Autoencoder (LS-CAE) (Shaham et al., 2022). To measure the accuracy of each method, we use
the following criterion, previously used in several UFS papers (Li et al., 2012; Cai et al., 2010). We
select the top 2, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, and 300 features for each method. Then,

1https://jundongl.github.io/scikit-feature/datasets.html
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Algorithm 1 Pseudo-code for Eigenvector Selection and Pseudo-labels Generation

Require: Dataset X ∈ Rn×p (with n samples and p features), number of eigenvectors to select k,
number of eigenvectors to compute d, surrogate models H = {hi | i ∈ [d]}, feature scoring
function s : F → Rp, number of resamples B

1: Initialize an empty list for the pseudo pseudo-labelsY∗ and an empty list for the sums of features
variance Ŝ

2: Compute the significant d eigenvectors of the Laplacian of X: V = (v1, ...,vd)
3: for i = 1 to d do
4: Binarize the eigenvector vi using k-medoids to obtain y∗

i , and append to Y∗

5: for b = 1 to B do
6: Subsample ((X)b, (y

∗
i )b) from (X,y∗

i )
7: Fit the model hi,b to ((X)b, (y

∗
i )b)

8: end for
9: for m = 1 to p do

10: Estimate the variance of the m-th feature score:

V̂ar(sm(hi)) =
1

B − 1

B∑
b=1

(sm(hi,b)− s̄m(hi))
2

11: end for
12: Ŝi =

∑p
m=1 V̂ar(sm(hi))

13: Ŝ ← Ŝ ∪ {Ŝi }
14: end for
15: Select the indices of the k smallest elements in Ŝ and store in I
16: return Y∗, I

Algorithm 2 Pseudo-code for Spectral Self-supervised Feature Selection (SSFS)

Require: Dataset X ∈ Rn×p (with n samples and p features) number of eigenvectors to
select k, number of eigenvectors to compute d, surrogate eigenvector selection models
H = {hi | i ∈ [d]}, surrogate feature selection models F = {fi | i ∈ [d]}, feature scoring
function s : F → Rp, number of resamples B, number of features to select ℓ.

1: Apply Algorithm 1 to obtain the pseudo-labels and the selected eigenvectors:
Y∗, I = EigenvectorPreprocessingAndSelection(X, k, d,H, s, B)

2: for i in I do
3: Fit the model fi on (X,y∗

i )
4: Calculate the feature scores s(fi)
5: end for
6: for m = 1 to p do
7: Compute the final score for the m-th feature:

score(m) = max
i∈I

sm(fi)

8: end for
9: return a list of ℓ features with the highest score.

we apply k-means 20 times on the selected features and compute the average clustering accuracy,
computed by (Cai et al., 2011):

ACC = max
π

1

N

N∑
i=1

δ(π(ci), li),

where ci and li are the assigned cluster and true label of the i-th data point, respectively, δ(x, y) is
the delta function which equals one if x = y and zero otherwise, and π represents a permutation of
the cluster labels. The optimization over π can be carried out using the Kuhn-Munkres algorithm
(Munkres, 1957). Table 2 shows, for each method, the highest average accuracy and the number
of features for which it was achieved. Figure 3 shows for each dataset and method the clustering
accuracy for the full range of selected features.

6



Under review as a conference paper at ICLR 2024

Table 1: Real-world datasets descrip-
tion.

Dataset Samples Dim Classes Domain

COIL20 1440 1024 20 Image
ORL 400 1024 40 Image
Yale 165 1024 15 Bio
ALLAML 72 7129 2 Bio
Prostate-GE 102 5966 2 Bio
TOX 171 171 5748 4 Bio
Isolet 1560 617 26 Speech
GISETTE 7000 5000 2 Image

For SSFS, we use the following surrogate models:

• The eigenvector selection model hi is set to Logistic Re-
gression with L2 regularization. We use scikit-learn’s
(Pedregosa et al., 2011) implementation with a default
regularization value of C = 1.0. Feature scores are
equal to the absolute value of the model’s coefficients.

• The feature selection model fi is set to XGBoost clas-
sifier with Gain feature importance. We use the popular
implementation by DMLC (Chen & Guestrin, 2016).

Note that we employ the default hyper-parameters for all
surrogate models as provided in their widely used imple-
mentations. However, it’s worth noting that one can undoubtedly leverage domain knowledge to
select surrogate models and hyperparameters better suited to the specific domain. In addition, for
each dataset, SSFS selects k from d = 2k eigenvectors, where k is the number of distinct classes in
the data.

Results. SSFS ranks best in four of the eight datasets. The advantage over competing methods
is particularly significant in the Yale, TOX-171, and Prostate-GE datasets. As discussed in Section
3.1, the Prostate-GE dataset contains several outliers. In addition, the fourth eigenvector is highly
informative in terms of the class labels compared to the earlier eigenvectors. The ability of SSFS
to deal with such challenging scenarios might explain its performance. For the other four datasets,
while our method is not ranked first, its outcome is on par with the result of the leading method.

Table 2: Average clustering accuracy on benchmark datasets. The number of selected features
yielding the best clustering performance is shown in parentheses, with the best method for each
dataset highlighted in bold.

Dataset LS MCFS NDFS UDFS LS-CAE SSFS

COIL20 61.9 (300) 67.4 (300) 63.4 (200) 61.9 (300) 65.1 (100) 67.1 (300)
GISETTE 70.0 (250) 70.7 (5) 58.3 (100) 69.1 (50) 66.4 (10) 69.7 (150)
Yale 43.9 (300) 44.4 (300) 43.5 (250) 43.8 (50) 45.1 (50) 50.3 (100)
TOX-171 51.3 (5) 44.5 (5) 47.3 (150) 40.2 (250) 46.1 (250) 59.4 (100)
ALLAML 72.2 (200) 75.0 (150) 76.6 (2) 66.4 (50) 63.6 (5) 75.4 (100)
Prostate-GE 58.8 (2) 61.8 (100) 58.8 (2) 63.6 (50) 63.7 (200) 75.9 (10)
ORL 51.6 (300) 57.0 (300) 59.1 (300) 57.3 (300) 60.7 (300) 61.1 (200)
ISOLET 48.9 (300) 50.7 (300) 63.1 (200) 44.6 (300) 62.8 (300) 59.9 (100)

Mean rank 4.25 3.25 3.69 4.81 3.25 1.75
Median rank 4.5 3.5 3.5 5.0 2.5 1.5

4.2 ABLATION STUDY

In this section, we demonstrate the importance of the following components of SSFS: (i) eigenvector
selection, (ii) self-supervision with nonlinear models as surrogate models, and (iii) the binarization
of the Laplacian eigenvectors along with classifiers instead of regressors as surrogate models.

The ablation study is performed both on a synthetic dataset described in Section 4.2.1, and on the
eight real datasets used for evaluation in Section 4.1.

4.2.1 SYNTHETIC DATA

We generate a synthetic dataset as follows: the first five features are generated from two isotropic
Gaussian blobs; these blobs define the clusters of interest. Additional 45 nuisance features are
generated according to a multivariate Gaussian distribution, with zero mean and a block-structured
covariance matrix Σ, such that each block contains 15 features. The covariance elements Σi,j are
equal to 0.5 if i, j are in the same block, and to 0.01 otherwise. We generated a total of 500 samples,
see Appendix A.1.1 for further details. Figurse 4a and 4b show, respectively, a scatter plot of the first
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Figure 3: Clustering accuracy vs. the number of selected features on eight real-world datasets.

five features and a visualization of the covariance matrix. We want to identify the features which
discriminate between the two blobs.

As Figure 4a demonstrates, the two clusters are linearly separated by three distinct features. Further-
more, examining Figure 4c reveals that while the fourth eigenvector distinctly separates the clusters,
the higher-ranked eigenvectors do not exhibit this behavior. This pattern arises due to the correlated
noise, significantly influencing the graph structure. The evaluation on this dataset is performed by
calculating the true positive rate (TPR) with respect to the top-3 selected features and the discrimi-
native features sampled from the two Gaussian blobs. The performance on the real-world datasets
is measured similarly to Section 4.1.

(a) First 5 features (b) Covariance matrix (c) Eigenvectors

Figure 4: Visualizations of the synthetic data: Figure 4a: scatter plot of the first five features corre-
sponding to the Gaussian blobs, colored by the real label. Figure 4b: the covariance matrix of the
dataset. Figure 4c the top-4 eigenvectors, samples are sorted by the label and are partitioned by the
vertical bar, colored according to the output of k-medoids.

4.2.2 RESULTS

Eigenvector Selection. We compare to a variation of SSFS denoted by SSFS (no selection), where
we don’t filter the eigenvectors and train the surrogate feature selector model on leading k eigen-
vectors, where k is set to be the number of distinct classes in the data. As can be seen in Figure
5b, our eigenvector selection scheme provides an advantage in seven out of eight datasets. Similarly
to Sec. 4.1, filtering the eigenvectors is especially advantageous on the Prostate-GE dataset, as our
method successfully selects the most discriminative eigenvectors (see Figure 2a ). On the synthetic
dataset, the selection procedure provides a large advantage, as seen in Table 3. As demonstrated in
Figure 4c, the fourth eigenvector is the informative one with respect to the Gaussian blobs. Indeed,
the fourth eigenvector is selected by the selection procedure, along with the third eigenvector. This
eigenvector yields better features compared to MCFS and SSFS (no selection), which rely on the
top two eigenvectors.
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Classification and regression. We compare the following regression variants of SSFS (denoted
by SSFS (regression), which use the original continuous eigenvectors as pseudo-labels (without
binarization).

• SSFS (regression): uses ridge regression for eigenvector selection and XGBoost regression for the
feature selection as surrogate models.

• SSFS (no selection, regression): uses the top k eigenvectors without binarization and XGBoost
regression.

Table 3: Synthetic data results: Top-3 se-
lected features (sorted in descending order
by rank), along with their TPR (relative to
the first five features).

Method Top-3 Features TPR

SSFS 2, 9, 19 0.3
(no XGBoost) 4, 3, 2 1.0
(no selection) 43, 30, 49 0.0
(regression) 15, 17, 14 0.0

MCFS 47, 7, 43 0.0

As seen in Figure 5a and Table 3, SSFS performs
best on six of the eight real-world datasets. Interest-
ingly, when using continuous regression as a surrogate
model, the selection procedure does not seem to pro-
vide an advantage compared to no selection.

Complex nonlinear models as surrogate models.
We compare to a variant of our method denoted SSFS
(no XGBoost), which employs a Logistic Regression
instead of XGBoost as the surrogate feature selector
model. Figure 5b shows that XGBoost provides an ad-
vantage compared to the linear model on real-world
datasets. On the synthetic dataset, the linear variant
provides better coverage for the top-3 features that sep-
arate the Gaussian blobs, compared to XGBoost (see
Table 3 and Figure 4a). That is not surprising since, in this example, the cluster separation is linear
in each informative feature. We note, however, that the top-ranked feature by SSFS with XGBoost
is a discriminative feature for the clusters in the data (see Figure 4a); therefore, its selection can still
be considered successful in the case of a single feature selection.

(a) Classification and regression (b) Selection, and no XGBoost (logistic regression)

Figure 5: Ablation study results on the real-world datasets. The best clustering accuracy over the
number of selected features is shown for each method.

5 DISCUSSION AND FUTURE WORK

In this work, we proposed a simple procedure for filtering eigenvectors of the graph Laplacian and
demonstrated that such a filtration procedure could have a significant impact on the outcome of the
feature selection process. Our selection process is based on the stability of a classification model
in predicting binary pseudo-labels. However, additional criteria, such as the accuracy of a specific
model or the overlap of the chosen features for different eigenvectors, may provide information on
the suitability of a specific vector for a feature selection task. Additionally, we illustrated the utility
of expressive models, typically used for supervised learning, in unsupervised feature selection.

Another direction for further research is using self-supervised approaches for group feature selection
(GFS) (Sristi et al., 2022). In contrast to the standard feature selection task where the output is
sparse, GFS aims to uncover groups of features with joint effects on the data. Learning models based
on different eigenvectors may provide information about group effects with potential applications
such as detecting brain networks in Neuroscience and gene pathways in genetics.
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A APPENDIX

A.1 ABLATION STUDY ADDITIONAL DETAILS

A.1.1 SYNTHETIC DATA GENERATION

For the synthetic data, we generated 500 samples, where we used the make blobs function from
scikit-learn to generate the first five features, with arguments cluster std=1, centers=2.

A.1.2 ADDITIONAL EXPERIMENTS INFORMATION

We show here additional information for the ablation study on the real-world datasets, which con-
siders all of the number of selected features range: see Figure 6 and Table 4.

Figure 6: Ablation study: Clustering accuracy on real-world datasets

Table 4: Ablation study: average clustering accuracy on benchmark datasets, the number of selected
features is shown in parenthesis for the best clustering accuracy over the feature range.

Dataset no selection no XGBoost no selection, regression regression SSFS

COIL20 65.0 (150) 62.1 (150) 70.5 (100) 69.0 (300) 67.1 (300)
GISETTE 72.5 (10) 64.9 (300) 64.6 (5) 64.6 (5) 69.7 (150)
Yale 48.6 (50) 42.7 (250) 49.8 (200) 47.4 (250) 50.3 (100)
TOX-171 50.9 (2) 45.6 (20) 45.0 (5) 45.5 (50) 59.4 (100)
ALLAML 75.4 (100) 66.7 (50) 71.1 (300) 71.1 (300) 75.4 (100)
Prostate-GE 59.8 (30) 69.6 (30) 61.8 (150) 61.8 (150) 75.9 (10)
ORL 60.0 (300) 56.8 (300) 58.5 (300) 58.5 (200) 61.1 (200)
ISOLET 57.0 (150) 57.1 (300) 61.3 (300) 58.7 (300) 59.9 (100)

Mean rank 2.94 4.0 3.0 3.5 1.56
Median rank 2.5 4.5 3.5 3.5 1.25

A.2 IMPLEMENTATION DETAILS

For all datasets, the features are z-score normalized to have zero mean and unit variance.
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A.2.1 HYPERPARAMETERS

For SSFS, on the real-world datasets, we use the same hyperparameters, as follows:

• Number of eigenvectors to select k is set to the distinct number of classes in the specific
dataset, they are selected from a total of d = 2k eigenvectors.

• Size of each subsample is 95% of the original dataset.
• 500 resamples are performed in every dataset.
• For the affinity matrix, we used a Gaussian kernel with an adaptive scale σiσj such that σi

is the distance to the k = 2 neighbor of xi.

In the ablation study, for regression, we use scikit-learn ridge regression (for eigenvector selection)
and DMLC XGBoost regressor (for the final feature scoring) with their default hyperparameters.

For all of the baseline methods, we used the default hyperparameters. So, for all methods, including
SSFS, the hyperparameters are fixed for all datasets (excluding parameters that correspond to the
number of features to select and the number of clusters).

For LS, MCFS, UDFS and NDFS we used an implementation from the scikit-feature library 2 and
inputted the same similarity matrices as SSFS for the methods which accepted such an argument. We
fixed a bug in MCFS implementation to choose by the max of the absolute value of the coefficients
instead of the max of the coefficients (this improved MCFS performance). For LS-CAE, we used an
implementation from 3.

2https://github.com/jundongl/scikit-feature
3https://github.com/jsvir/lscae
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