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ABSTRACT

Complex robotic tasks often require spatiotemporal reasoning over long sequences
of actions and observations. Yet learning long-context policies remains diffi-
cult: as context length increases, the training process becomes increasingly com-
pute and memory-intensive, and covariate shifts at deployment become more pro-
nounced. Recent methods typically sidestep these challenges by discarding signif-
icant portions of the historical context, risking the loss of crucial information for
subsequent decisions. In this paper, we propose a two-stage training approach that
explicitly regularizes the information preserved in the learned representation: first,
we pre-train a short-context encoder to predict a long sequence of future actions,
maximizing the information each frame encodes about long-range dependencies;
then, given pre-computed frame embeddings, we fine-tune a long-context decoder
on an auxiliary task, where the policy learns to predict past actions alongside fu-
ture ones. This simple design yields two surprising benefits: substantially reduces
memory consumption during training and greatly improves history awareness of
the learned policy. Additionally, the auxiliary task provides a natural mechanism
for self-verification, allowing the policy to assess its sampled predictions at test
time. Experiments on manipulation tasks that necessitate extensive historical con-
text demonstrate that our proposed method improves the performance of long-
context policy by 3× and accelerates policy training by more than 10×.

1 INTRODUCTION

Many robotic tasks are inherently non-Markovian: the optimal action at a given timestep may depend
not only on the current observation but also on past observations and actions (Mandlekar et al., 2022;
Zhao et al., 2023a; Lee et al., 2024b; Zheng et al., 2024). For example, consider manipulation tasks
where the robot arm occludes critical parts of the scene, or multi-stage tasks where early steps inform
later strategies (Nasiriany et al.). Likewise, past actions can prescribe a style of execution – such as
speed, curvature, or strategy – that shapes how future actions should unfold (Chi et al., 2023b; Liu
et al., 2024).
Despite the importance of history for decision-making, learning long-context policies through imi-
tation learning remains difficult due to two fundamental challenges. First, incorporating more his-
torical images into policy inputs often increases the presence of spurious correlations in training
data, leading to amplified covariate shifts and degraded performance during deployment (Ross &
Bagnell, 2010). Often, a policy that can solve a task well with low history degrades to near-zero
performance when context length is increased. Second, conditioning on high-dimensional image
sequences imposes a rapidly growing memory and computation burden, making end-to-end training
practically infeasible at scale (Zheng et al., 2024; Li et al., 2024a).
To circumvent these challenges, recent methods often limit the amount of historical information
the policy sees – either by truncating the context length (Chi et al., 2023b; Black et al., 2024) or
by engineering past observations into compact representations, such as selecting key frames (Wen
et al., 2021) and summing observations (Zheng et al., 2024)). While these strategies can make
training more manageable, they may discard information critical for subsequent decisions. How can
we enable a robot policy to learn more effectively and efficiently from a long sequence of visual
observations?
In this paper, we introduce a simple and general recipe for learning long-context policies. At the
core of approach is past token prediction: an auxiliary training objective, where the policy learns to
reconstruct its previous actions alongside predicting future ones. We find that past token prediction
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Figure 1: We propose a simple framework for learning long-context robot policies. Our method leads to 3x in
performance while reducing the training expense by more than 10x.

enables the learned policy to more effectively attend to relevant information across its entire history,
leading to substantial performance improvements. Crucially, we find that this performance gain
stems primarily from improved decoder representations, rather than improved feature extraction in
single-step observation encoding.
Motivated by this observation, we propose to train a long-context robot policy in two stages. First,
we pre-train a short-context encoder to predict an extended sequence of future actions. Then, we
fine-tune a long-context decoder that jointly predicts past and future actions from pre-computed
frame embeddings. This design enables the policy to capture long-range temporal dependencies
without incurring prohibitive memory costs. Furthermore, past token prediction naturally enables
the learned policy to self-verify: by comparing its predicted past actions with those actually taken,
the policy can estimate the quality of each sampled output and selectively execute the most reliable
one at test time.
Our main contributions are two-fold: (i) revisit the effect of past-token prediction on long-context
robot policy (§3.1), (ii) propose a two-stage training recipe to boost training efficiency (§3.2). Em-
pirically, we validate our method on transformer-based polices across eight challenging simulation
and real-world tasks (§4). Our results show that the proposed method increases the success rate of
long-context policies by 3x on average while reducing training overhead by more than 10 times.
Notably, our method enables policies to solve extended-horizon tasks at 80% success rate, where
prior approaches fail entirely.

2 RELATED WORK

Imitation Learning. Imitation learning has long served as a simple yet powerful paradigm for
robot learning (Argall et al., 2009; Ravichandar et al., 2020; Zare et al., 2024). Early approaches
typically framed it as a supervised learning problem, where the policy learns to map a given obser-
vation to the target action (Ross & Bagnell, 2010). More recent works have shifted toward modeling
the distribution of demonstrations (Zhao et al., 2023b; Chi et al., 2023a; Lee et al., 2024a; Ze et al.,
2024; Bharadhwaj et al., 2024; Wang et al., 2024; Haldar et al., 2024; Liu et al., 2024).
This approach has recently achieved remarkable success towards generalist robot policies (Black
et al., 2024), with performance improving as the scale of training data grows (Li et al., 2024b).
Nevertheless, imitation learning remains highly susceptible to covariate shift (de Haan et al., 2019;
Wen et al., 2020b): works like (Ross et al., 2011) and (Spencer et al., 2021) characterize compound-
ing errors in a feedback loop once the learned policy diverges from the demonstration manifold.
This problem is exacerbated by high-dimensional visual inputs where less-robust features might be
learned due to overspecification (Nasiriany et al., 2024). Notably, recent works (Chi et al., 2023b;
Zheng et al., 2024) have empirically found that image-conditioned specialist and generalist policies
to degrade with history. Our work introduces a training recipe that counteracts this effect while im-
proving efficiency, aiding the development of future history-conditioned imitation learning policies.
Long-Context Policies. Many works have tried to cope with learning over extended sequences of
high-dimensional observations by compressing observations in a more robust form. For example,
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Figure 2: Overview of two-stage training with embedding caching. As PTP acts on the decoder, caching
embeddings substantially improves inference speed without sacrificing performance. We use a visual encoder
from a short-range policy with low validation loss to compute the embeddings of the images in the buffer and
cache them in the buffer. With the cached embeddings we can train the long-horizon policy much faster. At test
time we take the original encoder.

early work studying “copycat” behavior often employed specialized regularizers – such as adver-
sarial objectives (Wen et al., 2020a) and information bottlenecks (Seo et al., 2023) – to remove
past action information. Recent works also use features like keyframes (Wen et al., 2021) and mo-
tion tracks (Ren et al., 2025). Strategies like sketch synthesis (Sundaresan et al., 2024) and visual
trace prompting (Zheng et al., 2024) have been implemented in generalist robot policies for similar
purposes.
While these techniques can be effective under specific scenarios, they inherently make assumptions
that will not hold across tasks such as discarding portions of the input sequence that might be critical
for subsequent decisions. In contrast, our approach regularizes the policy through an auxiliary ob-
jective – past token prediction – that yields a reliable representation in the history decoder without
explicitly discarding features. Most closely related to our work, BC-RNN (Mandlekar et al., 2022),
Diffusion Policy (Chi et al., 2023b) and VQ-BeT (Lee et al., 2024b) implicitly incorporate this idea.
We systematically revisit this technique, introduce a two-stage training process that substantially
reduces training time and memory footprint, and propose a test-time verification mechanism, further
improving performance in challenging settings.

Inference-Time Scaling. Recent research in language modeling, image generation, and robotics
have shown that inference-time compute may allow models to improve their performance (Bansal
et al., 2024; Ma et al., 2025; Nakamoto et al., 2024). Some seeks to build an additional verifier to
re-rank the output samples (Cobbe et al., 2021; Weng et al., 2023b; Lightman et al., 2023; Yu et al.,
2024), while others propose to leverage on the internal knowledge to improve reasoning through
self-verification (Weng et al., 2023a; Stechly et al., 2024). Our method echoes the latter paradigm
in the robotic context: our policy is trained to predict accurate past actions before predicting the
present action and can self-verify at test-time through past action accuracy. Similar to how it may
be more compute-efficient to use test-time compute on a small LLM (Snell et al., 2024), we show
checkpoints trained for fewer epochs or at shorter histories can approach the performance of optimal
checkpoints by using more test-time compute.

3 METHOD

Learning robot policies conditioned on long observation histories has been a long-standing challenge
due to two key factors: high memory demands during training and compounding covariate shifts at
deployment. In this section, we introduce a learning approach that explicitly regularizes internal
representations to improve both training efficiency and policy robustness. Specifically, we will first
revisit past-token prediction, an auxiliary task that has been implicitly used in recent policies but
largely underexplained in the literature (§3.1). Building on our analysis, we will then present a
two-stage training recipe that preserves the benefits of this auxiliary task while reducing memory
consumption (§3.2). Finally, we will introduce an inference technique that leverages on the auxiliary
task to effectively self-verify sample outputs at test time (§3.3).

3
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Figure 4: Effect of past-token prediction.

3.1 PAST-TOKEN PREDICTION

Past-token prediction (PTP) has been implicitly used in prior works on policy learning Chi et al.
(2023b); Lee et al. (2024b), yet its impact has not been systematically analyzed or ablated. In this
work, we seek to provide a detailed characterization of PTP and its effect on policy learning.
As illustrated in Figure 3, past-token prediction involves training a policy to reconstruct both past
actions a′1, . . . , a

′
T−1 and future actions a′T , . . . , a

′
T+C from an observation sequence. The used loss

function is applied over all predicted actions to match target past and future actions:∑
a′
t∈π(o)

loss(a′t, at) for t ∈ [1, T + C]

As we show in Section 4, this auxiliary objective plays a crucial role in enabling policies to leverage
long histories effectively. Notably, we find that PTP matches or even outperforms chunking-based
methods when combined with transformer decoders. Furthermore, PTP enables us to train policies
that learn to solve tasks that without history even with chunking cannot be solved.

3.2 CACHE EMBEDDINGS FROM A PRETRAINED ENCODER

While PTP improves policy robustness, training long-horizon policies remains computationally ex-
pensive due to the need to process large observation histories in GPU memory. To the benefit of
the method, we learn that if we use PTP we can use a frozen encoder trained on no-history context
(which is faster to train than a long-history encoder) and use that one frozen to only train the decoder
of the long-history policy, as we show in 4. Thereafter, this insight that we can decouple the training
of the observation encoder training it with short history, from the action decoder allow us to address
this challenge.
Formally, consider a policy πH composed of πH

enc(oi) = ϕi, which encodes each observation step
(of one or more images and proprioception) and πH

dec(ϕ1, . . . , ϕH) = {a1, . . . , an}, which decodes
actions from these embeddings. On the test environment of a transformer-based Diffusion Policy,
we first fit π2 for 500 epochs. We then initialize πH

enc = π2
enc for the best checkpoint we’ve found

and cache embeddings D′ = {π2
enc(oi), oi∀oi ∈ D}, training πH

dec for another 500 epochs using the
embeddings in D′.
Since these embeddings πenc(o) have dimensionality two orders of magnitude smaller than that of
the raw images, the training efficiency increases significantly (Section 3.2). Intuitively, at history
length h in t epochs each observation in the dataset D is processed ht times for a total cost of
O(|D|ht). This cost comes to dominate training time for long history-conditioned policies. By
caching the embeddings and computing them only at the beginning of training, we can reduce this
encoding cost to O(|D|), obtaining a significant increase in computational efficiency.

3.3 INFERENCE-TIME VERIFICATION

Beyond training efficiency and regularization, we bring the insight that we can leverage PTP at test
time to enhance policy robustness by introducing a self-verification mechanism. This mechanism
allows the policy to select the most reliable action sequence by measuring consistency with its past
predictions.

4
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Figure 5: Test-time verification. Multiple action sequences are sampled from the same observation, and the
policy selects the sequence that is most consistent compared to ground-truth previous actions.

Given an observation sequence o, we sample N candidate action sequences:

A = {A1, . . . , AN}, where Ai ∼ π(o) (1)

Each sampled sequence Ai = {a1, . . . , aT+C} contains actions for both past (a1, . . . , aT−1) and
future timesteps. Since the first T−1 actions have already been executed, we use them as a reference
to evaluate each sampled sequence.
To select the most reliable sequence, we compute a similarity metric between predicted and actual
past actions. Intuitively, if a sampled sequence accurately reconstructs the past, it is more likely to
generate high-quality future actions. We define the similarity metric as the L2 distance:

d(a, a′) =
∑

at,a′
t∈a,a′

||at − a′t||2 (2)

Thus, we select the optimal action sequence A∗ as:

A∗ = argmink d(ak, apast), for ak ∈ A (3)

As illustrated in Figure 5, this method helps keep the policy in-distribution and improves perfor-
mance, particularly on long-horizon tasks. Notably, inference-time verification enables policies
trained for shorter histories or fewer epochs to achieve performance comparable to fully trained
models, providing a simple way of balancing between training efficiency and deployment reliability.

4 EXPERIMENTS

In this section, we empirically evaluate whether our proposed method allows us to efficiently train
strong history-conditioned policies. We focus on the following questions:

1. Is Past Token Prediction (PTP) crucial for policies to improve with increasing context? What
does it affect?

2. Does PTP match low-history performance on current benchmarks and solve tasks requiring long
history?

3. Can PTP maintain strong performance with closed-loop control?

4. Does embedding caching maintain policy performance compared to end-to-end PTP training?

5. How much can caching embeddings speed up training?

6. Can we use inference-time self-verification to improve policy performance without further train-
ing?

Of these questions, the first two relate to understanding the model, the next two to evaluation, and
the last two efficiency. We present the results in this order.

5
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PTP No PTP

Figure 6: Comparison of 16-observation policy performance with and without PTP on simulation tasks. PTP
leads to improvement on all policies, and is especially crucial for realistic, complex tasks and tasks requiring
history.

4.1 ENVIRONMENTS AND DATASETS

In order to answer the questions mentioned above, we set up evaluations on robomimic (Mandlekar
et al., 2021), a set of simulation environments extensively used by the community. In robomimic,
a policy manipulates a set of objects with a Franka Emika arm using visual and proprioceptive ob-
servations. We train on multi-human datasets as multimodality may increase the need for history,
evaluating on the lift, square, tool hang, and transport tasks. Additionally, we use the PushT envi-
ronment introduced in Diffusion Policy (Chi et al., 2023b), as past experiments have demonstrated
a need for action consistency there.
In addition to existing benchmarks, which generally require only limited policy memory, we also set
up two simulated tasks that require long history in order to be solved. First, we gather a long-horizon
square dataset based on the square task, where the robot needs to place the square on the furthest peg
from its initial position. This requires substantial history to remember the initial position throughout
a rollout. We train on a set of 100 scripted demonstrations collected with substantial noise in order
to make it impossible to tell from position or direction alone which peg was the farthest from the
start. We also propose a second long-horizon task using the simulated ALOHA robot, where one of
the arms needs to pick a block, move it to the center of the field of view, and place it at the position
where it was originally, which also requires long history.

4.2 ANALYZING PAST TOKEN PREDICTION

We first study the effects of Past Token Prediction. Previous models have used Past Token Prediction
implicitly without ablating or justifying its use, so we begin by training Diffusion Policy and VQ-
BeT (Lee et al., 2024b) at various history lengths with and without Past Action Prediction. We find
on PushT that both DP-Transformer and VQ-BeT performance collapses with increasing context
length if past action prediction is not enabled, while performance increases with history if past action
prediction is enabled (Fig. 12). Interestingly, past token prediction does not allow DP-CNN to cope
with history: we theorize history-conditioned models must be able to attend to a large receptive field
in the history for good performance.
We then evaluate DP-Transformer with and without PTP on a wide suite of tasks (6). In all cases,
we find significant boosts in performance using PTP, especially on the more visually-complex
robomimic tasks. In long-horizon square, a task designed to need history, we measure differences
of 70% in success rate, while on the complex Tool Hang and Transport tasks the policy has zero
success without Past Token Prediction.
Next, we study two possible hypotheses of the mechanism of PTP’s effect. One possibility is that
PTP encourages nuisance information to be removed from the visual encoder, as previous works
have tried to do explicitly (Seo et al., 2023; Wen et al., 2020a). Another option is that PTP encour-
ages robust representations in the decoder, after merging history steps together.

6
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Figure 7: We compare long-horizon policies to baseline low-history results with action chunking. History-
conditioned policies usually match or improve on short-horizon performance while maintaining strong results
when executed closed-loop. Note ALOHA is not executed without action chunking due to its differing frame
rate, making comparison difficult.

To study if PTP regularizes the encoder, we take an encoder from a policy trained with PTP on the
PushT task and load it into a randomly-initialized decoder during training. We evaluate two variants:
“warmstart,” where the encoder is allowed to change after loading, and “freeze,” where the encoder
is frozen for the duration of training. To evaluate whether PTP instead regularizes the decoder,
we load an encoder from a low-history policy (which shouldn’t be able to remove any nuisance
correlates) and freeze the encoder for the duration of training. We find that only using PTP on the
decoder is sufficient for the policy to perform well, while the same is not true for the encoder (see
Figure 4). The results also suggest that features from a low-history policy are sufficient for good
performance with long contexts.
This discovery that PTP acts on the decoder suggests that our policy can learn from history regardless
of our encoder, so long as the encoded representation is rich enough to accurately predict current and
future actions. The frozen short-context encoder mentioned previously has the benefit of naturally
encoding such rich features, since even a low-history policy can predict future actions accurately
based on the features it provides.
We further test this Decoder PTP protocol on Lift, and find that as in PushT we match the full
PTP performance. Due to useful efficiency boosts that we can obtain from caching (4.4), we adopt
Decoder PTP as our default implementation for the wider suite of robomimic tasks.

4.3 COMPARISON TO SHORT-CONTEXT

Many state-of-the-art robot learning policies avoid history for the reasons mentioned previously.
Instead, they use action chunking (Zhao et al., 2023a), where multiple actions are predicted and
executed from a single timestep without replanning. This approach is appealing because it frees
the model from needing to learn how to predict temporally-consistent actions, resulting in strong
performance without using substantial history.
We consider how PTP compares to these short-context policies on our set of benchmarks. We use the
low-history configurations provided with DP-Transformer to train a policy, and compare it to a PTP
policy with context length 16. We see the history-conditioned policy usually matches or outperforms
the short-history policy when executing action chunks of size 8 (Figure 7). We see an especially high
boost (almost 80%) in performance in our long-horizon task, where open-loop action execution is
not sufficient to preserve the history information needed. This is a strong positive signal that our
policy has indeed learned to make use of history information beyond action chunking.
Evaluating policies at various context lengths on closed-loop control serves to emphasize the in-
creased performance of history-conditioned policies (compare 2 and 16 observations in Figure 8
or see Table 1 in the appendix). Policies with short context lengths must rely on action chunking,
as they are unable to use policy history to identify previous strategies. Thus, on several tasks, the
closed-loop performance of short history tasks drops to near zero.
On these same tasks, our policy maintains strong performance. This independence from action
chunking suggests our policy has learned to capture relevant strategy information from its action
history, allowing it to maintain action consistency and stay in distribution. The short policy must
rely on action chunking to fill this role, which may limit reactivity and adaptability.
As a further test, we also evaluate our PTP policies at various context lengths on closed-loop control,
expecting to see performance improvements as history length increases. This is indeed the case, as
shown in Figure 8. We note that in settings like PushT the effect size is smaller, perhaps due to the
relative simplicity of the inputs, while the change is greatest in complex tasks like transport or tasks
requiring substantial history, like our long-horizon square task.

7
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Figure 8: Comparision of robot policies with various observation lengths. Our method enables the learned
policy to consistently benefit from longer historical contexts.

Figure 9: Comparison of PAP policies trained with caching versus those trained with a frozen encoder. Caching
significantly enhances performance across various training durations, as it allows the policy to train for sub-
stantially more epochs within a fixed time budget.

4.4 QUANTIFYING THE EFFICIENCY OF CACHING

The previous insights on PTP for decoding allow substantial speedups during training, as cached
embeddings can reduce observation encoding time to a constant. Further, due to the decrease in
overall input size from the embeddings, GPU memory access time as a proportion of overall train-
ing time also decreases. To quantify our training efficiency, we compare training times for our
Full PTP and Decoder PTP methods on Lift, Square, and long-horizon Square (as all other tasks
take prohibitively long to train without caching). We plot performance against compute cost and
find a substantial speed-up at every point on the performance curve (Figure 9). We find that for a
given amount of training time, we’re able to substantially improve results with encoder caching as it
enables us to train for many more epochs.
Note that the training time of the cached embeddings policy already takes into consideration the
time to pretrain the encoder which is still the main bottleneck in this process.

4.5 INFERENCE-TIME VERIFICATION

We additionally probe whether the past token outputs of our model can be used to improve the per-
formance of policies (Figure 10). Our hypothesis is that sampling several times and choosing the
sample with greatest consistency with past actions will help the policy stay closer to the distribution.
We test this on both Square and Lift, using checkpoints trained either with substantially fewer train-
ing epochs or checkpoints overfit with truncated history. We see significant improvements in both
settings, with one policy even slightly exceeding the level of our best single-sample policy.

4.6 REAL-WORLD EXPERIMENTS

We finally evaluate wether the key observations from our simulation experiments hold in real-world
environments. We set up a task where a robotic arm must pick up a block from one side of a table
and correctly recall its pickup location to place it on the opposite side. As shown in Figure 11, a
baseline policy without history completes the task only 40% of the time. Qualitatively, we observe
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Figure 10: We evaluate inference-time verification on two different settings, and show that taking more samples
may improve performance of policies trained for shorter periods of time or overfit to shorter history lengths to
near the performance of optimally-tuned policies for that task.

Figure 11: Comparsion of different policies on the real-world long-horizon task. The long-context policy
trained by our method achieves ∼2x higher success rate compared to existing approaches.

that after picking up the block, the arm often moves it to an arbitrary side instead of the correct
opposite location, as it lacks memory of where the block was originally picked up. In contrast, a
policy trained with historical context correctly retains the pickup location and consistently places
the block in the correct spot. Moreover, we find that past token prediction (PTP) is essential for
training long-context policies—without it, performance deteriorates, even compared to policies that
do not use history at all.

5 DISCUSSIONS

Summary. In this work, we characterize a previously unstudied auxiliary objective in robot learn-
ing, past token prediction, as crucial for history-conditioned policy performance. Using our insights,
we present an improved recipe for efficient training of effective long-context policies. Our contribu-
tions are three-fold:

1. Understanding Past Token Prediction. Previous literature gives conflicting views on whether
history can be used in policies without feature engineering. We show that predicting the past
action is a natural regularizer that allows our policy decoder to improve with history even given
input with many spurious features.

2. Efficient Training of Long-Context Policies. Motivated by our observation that Past Token Pre-
diction acts on the decoder of our policy, we cache visual embeddings of our policy, leading to
an extreme speedup in training of history-conditioned policies, especially for long image input
sequences. This lets us train stronger history policies 10× faster than naive training.

3. Inference-Time Self-Verification. We show that PTP can be used at inference-time to select sam-
ples more likely to stay in distribution, improving suboptimal policies substantially. This idea of
self-verification has previously been well-explored in language modeling: PTP-trained policies
allow us to use these principles to improve robot learning.

Limitations and Future Work. While this paper conducts a detailed study of the effects of past
token prediction on long-context policies, there are several areas for future development. First, while
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we demonstrate that PTP is essential for policy improvement with history on multiple imitation
learning policies and robots, our optimizations primarily focus on the single-task setting. As robot
policies scale, a natural extension is to see if these methods improve performance on VLAs. Some
prior work has already found promise for history in these policies (Li et al., 2024b), but no work
has explored using past action prediction or a larger cached encoder (e.g., a vision language model).
Further, the principles underlying PTP can inform more complex objectives to improve effective
decoding of actions from an observation history with many spurious correlations. Additionally, we
explore inference-time verification as a method to enable tradeoffs between training time, history
length, and inference time when training history-conditioned policies. Our verification strategy is
simple, and future work could potentially explore more subtle objectives.
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6 APPENDIX

6.1 PTP ON VARIOUS ARCHITECTURES
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Figure 12: Model performance at various context lengths (on a log scale) with and without past token prediction

We evaluate DP-Transformer, DP-CNN, and VQ-BeT on Image PushT with and without past to-
ken prediction. For DP-CNN, performance decreases in long observation windows both with and
without PTP, while in both DP-T and VQ-BeT there is a striking deviation between no PTP, which
performs worse at extreme time horizons, and PTP, which improves further at extreme time horizons
(12).
We hypothesize that transformer-based architectures perform better than the CNN-based architec-
ture due to the large effective receptive field of the transformer, which can attend to all history
steps, compared to the CNN, which implicitly biases timesteps to pay more attention to neighboring
timesteps. This may suggest that for history-conditioned policies to be successful, the policy must
be able to model history interactions over long timeframes (like the transformer). For this reason,
we proceed over the rest of the paper with evaluations on a transformer-based architecture.

6.2 AGGREGATED RESULTS FOR EACH COMPONENT

Training Time (Normalized) PTP Non PTP

Inference-Time Veri�cation
Caching
Non-Caching

Figure 13: Our method trains a non-history policy to produce a pretrained encoder for useful frame embeddings,
and then fine-tunes a history decoder with past token prediction (PTP). This approach yields substantial benefits
on policy performance and training efficiency, which can be augmented with inference-time verification by
validating past token prediction.

6.3 RAW SUCCESS RATES

We list the raw success rates reported for short and long-horizon policies with and without chunking.
History policies are all trained without chunking, and then the best of their top two checkpoints
evaluated with chunking is reported as the top result. Baseline (two-observation) policies are trained
with chunking, and the same protocol applied to their top checkpoints. We further report the mean
over all tasks for success rates without chunking to highlight the trend of improving performance
with larger context lengths.
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Table 1: Success rate (%) on various robomimic tasks, compared to baseline checkpoint with 2 observation
steps, chunk size=1

Observations Transport Tool Hang Square Lift Push-T Long Square Mean

2 0.053 0.62 0.13 0.85 0.53 0.02 0.37
4 0.13 0.84 0.68 0.88 0.53 0.02 0.51
8 0.48 0.86 0.83 0.9 0.59 0.11 0.63
16 0.51 0.82 0.85 1 0.64 0.81 0.77

Table 2: Success rate (%) on various robomimic tasks, compared to baseline 2-observation, chunk size=8

Observations Lift Square Transport Tool Hang Long Square ALOHA PushT

2 1 0.575 0.6 0.7 0.04 0 0.72
16 1 0.87 0.6 0.88 0.96 0.75 0.63
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