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ABSTRACT

The connection between optimal transport (OT) and control theory is well estab-
lished, most prominently in the Benamou–Brenier dynamic formulation. With
quadratic cost, the OT problem can be reframed as a stochastic control problem in
which a density ρt evolves under a controlled velocity field vt subject to the con-
tinuity equation ∂tρt +∇ · (ρtvt) = 0. In this work, we introduce a velocity prior
into the continuity equation and derive a new Hamilton–Jacobi–Bellman (HJB)
formulation to learn dynamical probability flows. We further extend the approach
to the unbalanced setting by adding a growth term, capturing mass variation pro-
cesses common in scientific domains such as cell proliferation and differentiation.
Importantly, our method requires training only a single neural network to model
vt, without the need for a separate model for the growth term gt. Finally, by de-
composing the velocity field as vtotal = vprior + vcorr, our approach is able to
capture complex transport patterns that prior methods struggle to learn due to the
curl-free limitation.

1 INTRODUCTION

From flow matching (FM) to action matching (AM), learning transport maps between distributions
has been widely explored in recent years (Lipman et al., 2022; Albergo and Vanden-Eijnden, 2022;
Liu et al., 2022; Neklyudov et al., 2023a). Flow Matching (FM) (Lipman et al., 2022) learns a
time–dependent velocity field ut that pushes ρ0 to ρ1 and can realize highly expressive transport
paths; however, the original FM with independent coupling between source and target does not
guarantee least action by minimizing the kinetic energy in the Benamou–Brenier sense. Instead,
it trains ut to match conditional expectations of displacement vectors under a chosen interpolation
scheme, which may yield non-optimal flows.

Action Matching (AM) (Neklyudov et al., 2023a) addresses this by parameterizing a scalar poten-
tial st whose gradient ∇st induces the transport, aligning with the optimality conditions of OT and
yielding lower kinetic energy than unconstrained FM. The price is reduced expressiveness: ∇st is
curl-free, so AM cannot directly represent rotational or cyclic dynamics that are common in scien-
tific domains. From the Helmholtz decomposition perspective (Neklyudov et al., 2023a), any vector
field u∗t can be written as u∗t = ∇s∗t + wt with wt divergence-free (Ambrosio et al., 2005, §8.4.2).
Under this lens, AM retains only the gradient component and discards discards wt, explaining both
its energy efficiency and its inability to encode rotations and cycles.

In this paper, we seek a middle ground – expressive like FM, energy-aware like AM – by introduc-
ing a velocity prior vprior and learning only the residual potential. We note that even compared with
energy-aware FM variants such as OT–CFM(Pooladian et al., 2023; Tong et al., 2023a), our ap-
proach achieves better energy efficiency, as demonstrated in upper Table 1. Specifically, we decom-
pose the velocity field as vtotal(t, x) = vprior(t, x) + ∇st(x). Here vprior captures known rotational
dynamics or domain-specific effects such as RNA velocity in single-cell biology, while∇st accounts
for the OT-consistent gradient component. We train st by minimizing a modified Hamilton–Jacobi
residual that incorporates the prior, together with boundary terms that ensure ρ0→ρ1. This residual-
ized design preserves OT optimality conditions for the learned component, improves interpretability,
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Table 1: Least Action Comparison for Balanced Gaussian Translation

Method Mean error Cov. error W2
Control action

(∇s)
Total kinetic

(vtotal)
Flow Matching 0.204 0.804 0.582 18.369 18.369
OT-FM 0.149 0.659 0.402 18.707 18.707
VP-HJF (Ours) 0.102 0.791 0.577 0.624 17.955
Prior-only (α=1) 0.008 0.171 1.351 0 36.250

and injects inductive bias without paying the kinetic-energy cost of unconstrained original FM. We
name our approach the Velocity Prior Hamiltonian-Jacobi Flow (VP-HJF).

Motivation in practice In domains like single–cell biology and physical systems with known
drifts, accurate priors are available yet incomplete and and mass change such as cell proliferation and
decay is ubiquitous. VP–HJF exploits these priors to encode hard–to–learn structure. The residual
potential learns both the correction that the prior can not explain and the mass changes through the
growth term. This yields a compact and interpretable alternative to fully free vector–field models,
particularly effective when local supervision is noisy but prior knowledge is rich.

2 BACKGROUND

Dynamical Optimal Transport Beyond the classic static Monge–Kantorovich formulation in OT
(Ambrosio et al., 2005; Villani et al., 2008), there exists a dynamical formulation known as the
Benamou–Brenier problem which links OT with PDEs by representing the W2 distance as the
minimum kinetic energy where ρt is density and vt is a velocity field with boundary conditions:
ρ|t=0 = ρ0, ρ|t=1 = ρ1, (Benamou and Brenier, 2000):

W 2
2 (ρ0, ρ1) = inf

ρt,vt

∫ 1

0

∫
1
2∥vt(x)∥

2ρt(x) dx dt, ∂tρt +∇ · (ρtvt) = 0. (1)

Unbalanced Optimal Transport When total mass change over time such as following a growth-
decay process in biology, we add a growth rate gt(x) term to the continuity equation to incorporate
the weight changes (Chizat et al., 2018):

∂tρt(x) +∇·
(
ρt(x) vt(x)

)
= gt(x) ρt(x), ρ|t=0 = ρ0, ρ|t=1 = ρ1, (2)

The Wasserstein–Fisher–Rao distance with scale δ > 0 is defined as the minimal action balancing
transport cost and mass change:

WFR2
δ(ρ0, ρ1) = inf

ρ,v,g

∫ 1

0

∫ (
1
2∥vt(x)∥

2 + δ2

2 gt(x)
2
)
ρt(x) dx dt, s.t. Eq.2. (3)

Hamilton–Jacobi–Bellman (HJB) We recall the classical connection between optimal control
and Hamilton–Jacobi (HJ) theory. Consider a deterministic control system with state x(t) ∈ Rd,
control u(t), dynamics ẋ = f(x, u, t), running cost L(x, u, t), and terminal cost ψ(x). The value
function

V (t, x) = inf
u(·)

{∫ 1

t

L
(
x(s), u(s), s

)
ds + ψ

(
x(1)

)}
gives the minimal cost-to-go from (t, x) under admissible controls. It is well known that V solves the
Hamilton–Jacobi–Bellman (HJB) equation ∂tV (t, x) + H

(
x,∇V (t, x), t

)
= 0, where V (1, x) =

ψ(x) and the Hamiltonian is H(x, p, t) := infu

{
L(x, u, t) + p⊤f(x, u, t)

}
with p = ∇V (t, x).

Action Matching (AM) AM fits a scalar potential sθ to learn a energy-minimizing flow between
distributions by minimizing the (un)balanced HJB residuals.

LuAM =

∫ 1

0

Ex∼ρt

[
∂tsθ(t, x) +

1
2∥∇xsθ(t, x)∥2 +

1

2
s2θ(t, x)

]
dt, (4)

with boundary constraints as: Ex∼ρ0 [s0(x)]− Ex∼ρ1 [s1(x)].

2
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3 METHODOLOGY

We introduce a velocity-prior guided approach, the Velocity Prior Hamiltonian–Jacobi Flow (VP-
HJF), to solve the unbalanced optimal transport problem under the Wasserstein–Fisher–Rao (WFR)
metric (Eq. 2, 3). In contrast to prior approaches that fit two separate networks—one for transport
and one for growth (Zhang et al., 2024; Wang et al., 2025), our method trains a single neural network.
Following (Neklyudov et al., 2023a), we can represent both the transport velocity field and the
growth term through a single scalar potential.

Proposition 3.1 (Neklyudov et al., 2023a, Prop. 3.3). Suppose we have a continuous dynamic flow
with density ρt. Under mild conditions, there exists a unique scalar potential function ŝt(x) such
that the unbalanced continuity equation (2) is satisfied, with the velocity field and growth function
given by v∗t (x) = ∇ŝt(x), g∗t (x) = ŝt(x).

Building on Proposition 3.1, we reduces the WFR problem to learning a single model and incorpo-
rate problem-specific dynamics through a simple velocity decomposition. Specifically, we decom-
pose the velocity field into two parts: a known velocity prior and a learnable corrective velocity field
component:

vtotal(t, x) = vprior(t, x) + vcorr(t, x), (5)

where vprior encodes domain knowledge (e.g. translations, rotations, RNA velocity), and vcorr is the
data–driven corrective component. In this way, the prior captures coarse dynamics while the model
focuses on refinements such as correcting the residual transport and learning mass imbalance that
the prior cannot explain. In essence, our approach improves interpretability and reduces the learning
complexity through adding prior knowledge of the velocity field vprior – leaving the learnable veloc-
ity field vcorr simpler learning tasks compared with other generative modeling methods of learning
the entire velocity field vtotal. Intuitively, our approach pays kinetic cost only for the correction to
the prior drift and for the mass growth-decay component, making learning more efficient.

We can now define our velocity-prior guided unbalanced OT problem under the least-action principle
as:

Definition 3.2. Consider the following least-action objective with δ=1 and subject to the unbalanced
velocity-prior guided continuity equation :

A(ρ, vcorr, g) =
∫ 1

0

∫ (
1
2∥v(t, x)∥

2 + 1
2g(t, x)

2
)
ρt(x) dx dt, (6)

s.t. ∂tρt = −∇·
(
ρt (vprior + vcorr)

)
+ gt ρt, ρ|t=0 = ρ0, ρ|t=1 = ρ1. (7)

Note that in our method we do not optimize over ρ directly. Instead, ρt is induced by a parametric
flow Φθ

t via ẋ = vprior(t, x) +∇sθ(t, x) and defined as ρθt = (Φθ
t )#ρ0.

Prior-guided HJB residual Since solving for the minimum-action problem in primal form in
Definition 3.2 is intractable, we turn to its dual formulation. The key derivation step is to introduce
a scalar potential s(t, x) as the Lagrange multiplier for the prior-guided continuity equation and
applying the Fenchel–Young inequalities to the velocity field and growth term. We then obtain the
following dual lower bound (see Appendix A for details):

A(ρ, vcorr, g) ≥ Eρ0(x)[ s0(x) ] − Eρ1(x)[ s1(x) ]

−
∫ 1

0

∫
ρt(x)

(
∂ts + 1

2∥∇s∥
2 + ∇s · vprior + 1

2s
2
)
dx dt. (8)

The bound is tight point-wise if and only if when we choose the primal variables as

vcorr(t, x) = ∇xs(t, x), g(t, x) = s(t, x),

which shows that s can simultaneously control both the corrective transport ∇xs and the local
growth s. We can then plug these back to the continuity equation to get the optimal particle dynamics
and their log-weights evolve as

d

dt
x(t) = vtotal(t, x) = vprior(t, x) +∇xs(t, x),

d

dt
logwt(x(t)) = s(t, x(t)).

3
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Corollary 3.3 (HJB residual objective). Motivated by the duality form, we propose to parameterize
sθ(t, x) with a neural network and define the velocity-prior guided HJB residual as:

rθ(t, x) := ∂ts+
1
2∥∇xs∥2 +∇xs·vprior + 1

2 s
2. (9)

Then minimizing

LHJB(θ) = Eρ0(x)[s0(x)]− Eρ1(x)[s1(x)] +

∫ 1

0

Eρt(x)

[
w(t, x)rθ(t, x)

2
]
dt (10)

drives sθ toward dual feasibility. Note that in practice, we use squared residual to prevent positive
and negative values from cancellation and add a importance weight w(t) trick to reduce variance.

Importance Reweighting The squared HJB residual can be dominated by a few high-variance
outliers (rare cells, sharp local flows), which destabilizes training. To ensure training stability and
preventing these extreme high residual outliers, we adopt a simple batch-wise importance reweight-
ing that down-weights large residuals. For a mini-batch {(ti, xi)}Bi=1, let ri =

∣∣ rθ(ti, xt,i) ∣∣ + ε
and with a temperature τ > 0. Then for each sample, the weight is inversely proportions to a
temperature-shaped residual as w̃i ∝ r−τ

i . Thus, larger residuals get smaller weight, which re-
duces variance while keeping the update focused and stable.
Theorem 3.4 (Prior-guided HJB optimality). Suppose that the HBJ residual defined in corollary.3.3
satisfies rθ(t, x) = 0 for ρt-a.e on [0, 1]×Rd, and the boundary constraints hold, then (ρt, vcorr, gθ)
satisfies the unbalanced continuity equation and the WFR optimality conditions in Definition 3.2. In
particular, the learned corrective field v∗corr = ∇xsθ and growth g∗ = gθ satisfy the optimality
conditions. (See Appendix B for proof).

While the HJB residual enforces local optimality conditions, it does not guarantee that the terminal
distribution ρθ1 matches with the target ρ1. To bridge this gap, we design a two-part reconstruction
objective: (i) a density matching term through the sliced Wasserstein between the predicted ρ̂1 and
ρ1, and (ii) a mass term aligning the global log-mass ratio. These two terms directly calibrates the
terminal distribution’s shape and mass, complementing the HJB residual.

Reconstruction loss To align the terminal distribution in shape, we use a sliced Wasserstein ob-
jective. Let ρ̂1 be the empirical terminal distribution learned from our model, and ρ1 be the ground
truth target distribution. θℓ is a random projection sampled from θℓ ∼ Unif(Sd−1) for ℓ = 1, . . . , L,
X̂1 are predicted samples, and Y are ground-truth samples, the sliced Wasserstein loss is defined as:

SW2
2(ρ̂1, ρ1) ≈

1

L

L∑
ℓ=1

W 2
2

(
⟨θℓ, X̂1⟩, ⟨θℓ, Y ⟩

)
, (11)

where W 2
2 on R is the 1D Wasserstein distance computed by sorting projections.

To capture global mass change, we track the evolution of particle weights along the learned dy-
namics. Assuming a WFR scale of δ = 1 and a mini-batch of size B, we initialize log-weights as
logwi(0) = 0. The weights evolve according to the potential sθ through d

dt logwi(t) = sθ
(
t, xi(t)

)
,

which yields terminal log-weights logwi(1). At t = 0 the total mass isM(0) =
∑B

i=1 wi(0) = B

while at t = 1, it is M(1) =
∑B

i=1 wi(1) =
∑B

i=1 exp
(
logwi(1)

)
.

To calculate the ground truth mass, we neither have access to the full density ρt nor to the absolute
scale of M(T ). Instead, we use relative mass changes between time points, estimated from the
number of observed particles at each time Tk, which is the k-th time point in a multi-snapshot
setting. For instance, on the single cell datasets with interval [Tk, Tk+1], let Nk be the number of
cells observed at time Tk. We can approximate the ground-truth log mass ratio by

log rtarget,k = log
M(Tk+1)

M(Tk)
≈ log

(
Nk+1

Nk

)
, (12)

The model’s predicted ratios log r̂model,k is obtained from the weight evolution described above. We
then penalize deviations from the ground truth ratio r in the logarithmic form to ensure stability and
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to enforce WFR consistency: Lmass =
(
log r̂ − log r

)2
. Our final reconstruction loss combines the

two components with tunable coefficients:

Lrecon = λsw SW2
2

(
ρ̂1, ρ1

)
+ λmass

(
log r̂ − log r

)2
(13)

with λsw > 0 and λmass > 0. In practice we use L ∈ [64, 512] random projections, and choose
λmass ∈ [0.1, 1] to calibrate mass without overpowering other terms.

Total objective Putting the pieces together, our total training loss is

min
θ
L(θ) = Ex∼ρ0

[s0(x)]− Ex∼ρ1
[s1(x)] + λhjb

∫ 1

0

Ex∼ρt

[
w(t, x) rθ(t, x)

2
]
dt︸ ︷︷ ︸

LHJB

(14)

+ λsw SW2
2(ρ̂1, ρ1) + λmass

(
log r̂ − log r

)2︸ ︷︷ ︸
Lrecon

where rθ(t, x) is the HJB residual, w(t, x) are the nonnegative weights, and ρ̂1(θ) is the terminal
distribution obtained by pushing ρ0 through the learned dynamics.

4 RELATED WORKS

Physics-constrained approaches Existing works (Koshizuka and Sato, 2022; Neklyudov et al.,
2023b; Tong et al., 2020) add a potential-based prior Vt(x) to the HJ equation to incorporate prior
knowledge for trajectory inference. In (Neklyudov et al., 2023b), this yields ∂ts+ 1

2∥∇s∥
2 + Vt +

1
2δ2 s

2 = 0 and the conservative second–order law Ẍt = −∇Vt(Xt). Meanwhile, our method is the
velocity-based prior approach, the known velocity field vprior enters as a drift inside the continuity
equation, which produces the cross-term ∇s · vprior. Since potential-based priors is curl-free, it
can not represent rotational flows as in (Neklyudov et al., 2023a); By contrast, our data-driven
formulation uses a flexible measured vector fields directly as vprior, which can be considered as a
”free drift” and learns only minimal optimal corrections and growth.

Most recently, Curly FM (Petrović et al., 2025) proposes a two-stage pipeline: it first learns a smooth
global velocity field from approximate velocities (e.g., RNA velocity), and then solves a Schrödinger
bridge problem with this learned nonzero drift. In contrast, our VP–HJF framework does not require
an explicit first-stage training step to learn a reference drift. We directly incorporate the velocity prior
as the drift in a Hamilton–Jacobi dual formulation. Moreover, the dynamic prior in Gu et al. (2024)
is assumed to be a clean, well-specified prior. Our setting is more flexible by using the corrective
field vcorr to adjust noisy or misspecified priors.

Other trajectory inference approaches Trajectory inference has also advanced through flow
matching(Haviv et al., 2024; Kapusniak et al., 2024; Atanackovic et al., 2024; Eyring et al., 2023),
and Schrödinger bridge methods, which scale effectively to high-dimensional data. Recent SB vari-
ants further improve performance on single-cell datasets include (Huguet et al., 2022; Tong et al.,
2023b; Shen et al., 2024; Hong et al., 2025; Pariset et al., 2023; Lavenant et al., 2024). For unbal-
anced settings, variational and regularized UOT methods such as TIGON, DeepRUOT, Var-RUOT,
VGFM,and UMFSB directly learn transport dynamics and growth from snapshot data (Sha et al.,
2024; Sun et al., 2025; Wang et al., 2025; Zhang et al., 2025). In particular, Var-RUOT also uses a
single network to model both the velocity field and the growth term, but it did not incorporate prior
known knowledge like ours. Furthermore,Var-RUOT trains a global-in-time trajectory and evaluates
its objective by integrating the dynamics over the entire time horizon, which requires simulating the
full trajectory on a fine time grid. In contrast, we use a local per interval training scheme combined
with a mixture-based sampling strategy to interpolate data between each interval.
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Algorithm 1 Training VP–HJF (Velocity-Prior Hamiltonian–Jacobi Flow)

Require: per time-interval tk snapshots {x, tk, vprior
k }Kk=0, network sθ(t, x), coefficients

α, β, λSW, λmass, batch size B
1: while not converged do
2: Sample a global batch across all intervals

(
x, t, v

)B
b=1
∼ {x, t, vprior}Kk=0

3: Compute s0 ← sθ(t0, x0), s1 ← sθ(t1, x1)

4: for k = 0 to K − 1 do
5: Sample adjacent pairs (xk, vk, xk+1, vk+1)

B
b=1 ∼ {x, t, vprior}Kk=0

6: HJB residual loss for interval [tk, tk+1]:
7: for m = 1 to MHJB do
8: Sample normalized u(m) ∼ U(0, 1)
9: Sample xt,k from the mixture ρt,k of ρk and ρk+1, for b = 1, . . . , B

10: Compute rt,k ← ∂tst,k + 1
2∥∇xst,k∥2 +∇xst,k · vprior

(
t
(m)
k , xt,k

)
+ 1

2

(
st,k

)2
11: Compute importance weights w̃b ∝

∣∣r(b)t,k

∣∣−τ

12: LHJB,k ← LHJB,k + 1
B

∑B
b=1 wb

(
rt,k

)2
13: end for
14: Reconstruction loss:
15: Define ODE rhs: x ẋ = ∇xsθ(t, x) + vprior(t, x), ˙logw = sθ(t, x)

16: Compute (xpredk+1 , logwk+1)← odeint
(

ode rhs, (xk, 0), t ∈ [tk, tk+1]
)

17: Lrecon ← Lrecon + λSW
1
L

∑L
ℓ=1W

2
2

(
xpredk+1 , xk+1

)
+ λmass(log r̂k − log r2k)

18: end for
19: Total loss: L(θ)← αLHJB + β Lrecon

20: Update θ ← θ − η∇θL(θ)
21: end while

5 EXPERIMENTS

5.1 SYNTHETIC DATASET

Balanced case - Rotating Ring First, we show a case when utilizing the velocity prior is crucial in
learning the correct velocity field where curl-free methods like AM fails. We tested on a 2D rotating
ring dataset where the points on the ring (source) are rotated by a fixed angle θ (target). The velocity
prior is defined as vprior = ωJx, where J is the skew-symmetric rotation matrix and x ∈ R2, so
this becomes Jx = [ 0 1; −1 0 ] [x1 x2 ]

⊤ = (−x2, x1)⊤. The task for our model vot is to
learn the residual correction after given the prior rotation knowledge, such as ensuring the boundary
condition by aligning the mismatched source and target density or correcting the radial drift by push
the points inwards or outwards,etc. In Figure 1 left (b), we show that since AM has the curl-free
limitation, without a prior, its model ∇st(x) failed to represent pure rotation where the streamlines
cut through the circle. In Figure 1 left (a), the streamlines from our method form a circular flow
indicating that vprior gives the model the correct inductive bias.

Diverging Petal We created a curved and rotated petal-shape dataset to test our method on di-
verging multi-trajectory paths. The source is a gaussian distribution concentrated in the center and
vprior=ωJx the rotation dynamic defined as before. Our task is to learn vpetal, a radial and angle-
dependent term that push outward the points along the radius with different speed depend on the
angle θ = atan2(y, x). We have

vpetal(x) = s(θ) r̂, r̂ = x
∥x∥ , s(θ) = max

(
0, b+ a cos(kθ)

)
(15)

Compared with the petal shape appeared in AM and MIOFlow (Huguet et al., 2022), the underlying
dynamic flow in our example is harder to learn, where the former one has a straight-axis aligned
radial expansion as r(x) = |x1| + |x2| with the gradient of r(x) being a piece-wise constant and
curl-free. Figure 1 middle shows that our petal shape matches with the target shape. Figure 1 right
shows that the vector field (red arrows) are bending away from pure rotation (blue arrows) to align
strongly with the petal shape by pushing the mass outward.
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Figure 1: Left (first two): Ours correctly learned the rotating dynamic while AM failed. Middle:
Vector field (red) bending away from vprior (blue) to form petal shapes. Right: Predicted target
distribution matches with ground truth

Table 2: Effect of adding Lmass for Lokta-Volterra. rpred is the predicted mass ratio , the absolute log
error |∆ log r| = | log rpred − log rtrue|, the relative error with rtrue = 1.418 and the velocity RMSE.

Method rpred |∆ log r| Rel. % err. Vel. RMSE

VP–HJF (ours) 1.356 0.044 4.30% 0.137
VP–HJF (w/o Lmass) 0.899 0.455 36.56% 0.158
Unbalanced AM 0.938 0.413 33.80% 0.302
Prior-only 1.000 0.348 29.40% 0.050

Balanced case - Gaussian Translation In this experiment, we compare the least-action or energy
costs across different methods. We define an affine prior drift as vprior(x) = µ1 − µ0 with the
parameters µ0 = (0, 0), µ1 = (0.5, 6.0), Σ0 = ((2.5, 0.0), (0.0, 0.3)), Σ1 = ((0.4, 0.0), (0.0, 2.2)).
As shown in Table 1, our proposed VP-HJF achieves Wasserstein distance W2 accuracy on par
with FM Lipman et al. (2022) while OT-FM Tong et al. (2023a); Pooladian et al. (2023) attains
the lowest Wasserstein distance. By contrast, both FM and OT-FM must learn the entire velocity
field ut = ∇s + wt, resulting in a much larger control action. This demonstrates that VP-HJF
leverages the structured prior effectively, where the prior dynamics carry most of the transport,
and the learned correction ∇s makes adjustments. To verify that our improvement is not solely
due to a strong velocity prior vprior itself, we also report a prior-only baseline. The prior alone
shows moderate accuracy but with high kinetic cost, whereas our method balances both accuracy
and energy efficiency.

Lotka–Volterra with growth. We model the prey and predator densities x1(t), x2(t) by a
first–order nonlinear ODE, ẋ1(t) = αx1(t) − β x1(t)x2(t), ẋ2(t) = −γ x2(t) + δ x1(t)x2(t),
where α is the prey’s intrinsic growth rate, β is the predation rate, γ is the predator’s mortality rate,
and δ is the predator’s growth rate from consuming prey(Goel et al., 1971). To model the popu-
lation expansion and decay dynamics, we use a simple scalar growth field and evolve local mass
via the weight dynamics g

(
x(t)

)
= κ

(
x1(t) − x2(t)

)
, d

dt logw(t) = g
(
x(t)

)
The total mass

M(t) = E[w(t)] and the ground-truth mass ratio is calculated as rtrue =M(t)/M(0). We define the
vprior asprior e oracle LV drift with added Gaussian noise with no growth term.

Table 2 shows that adding the explicit mass term Lmass enables our method to closely match rtrue
with 4% of relative error while both unbalanced AM and our method without the Lmass term suffer
from a much higher relative error of over 30%. Although AM aligns transport but leaves the scale
of the scalar potential sθ unconstrained, so the integrated growth

∫ t

0
g(x(t)) dt is miscalibrated. By

contrast, Lmass provides endpoint constraint on the mass – yielding better mass dynamics and more
aligned with the ground truth mass ratio.

5.2 REAL-WORLD DATASET

In this section, we evaluate our method on two single-cell RNA-seq datasets. Both provide RNA ve-
locity, which we use as the velocity prior vprior. Such priors are common in biological and scientific
applications beyond single-cell data. Incorporating them introduces an inductive bias that reduces
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Table 3: Comparison on the EB dataset using SWD, MMD and W1, at the held-out marginals (t1,
t3). Baseline results other than * are taken from (Theodoropoulos et al., 2025)

Method SWD t1 SWD t3 MMD t1 MMD t3 W1t1 W1t3

DeepRUOT 0.73 0.67 0.43 0.36 13.45 14.90
Var-RUOT* 0.37 0.24 0.25 0.06 10.28 11.92
MIOFlow 0.84 0.94 1.01 0.92 13.20 13.57
SBIRR 0.80 0.91 0.71 0.73 15.09 20.39
MMFM 0.59 0.76 0.37 0.35 13.61 14.64
DMSB 0.58 0.54 0.38 0.36 14.08 15.22
3MSBM 0.48 0.38 0.14 0.18 13.89 13.11
VP-HJF (ours)* 0.37 0.47 0.18 0.17 11.83 13.98

Table 4: Robustness analysis of VP–HJF to perturbations of the velocity prior on the EB dataset of
100 dim. We report mean ± std over 5 seeds

Clean Gaussian noise η scale c

0.25 0.75 0.5 1.5

W1 t2 13.26± 0.08 13.19± 0.08 13.19 ±0.08 13.22 ±0.08 13.21 ± 0.08
W1 t4 14.59±0.09 14.58±0.10 14.57 ±0.09 14.56± 0.10 14.62 ± 0.09

learning complexity — our model needs only to learn a corrective flow and growth rather than the
full dynamics from scratch.

EB scRNA-Seq data We evaluate cell-trajectory inference on the Embryoid Body (EB) dataset
of Moon et al. (2019), using the preprocessed release from Koshizuka and Sato (2022); Tong et al.
(2020). The dataset comprises five snapshots over 27 days, grouped as t0 ∈ [0, 3], t1 ∈ [6, 9],
t2∈ [12, 15], t3∈ [18, 21], t4∈ [24, 27]. Leveraging RNA velocity as a prior vprior at each snapshot,
we train a local and shorter trajectory by adopting the multi-marginal local per-interval training: at
each step we sample an adjacent pair (tk, tk+1) and learn only the transport and growth to move
ρtk→ρtk+1

. This yields more stable gradients and low target variance than enforcing all time points
jointly. For details of the training algorithm, see Algorithm 1.

We test on 100-dim PCA components feature space and compare with recent works using the
multi-marginal approach from 3MSBM (Theodoropoulos et al., 2025), SBIRR (Shen et al., 2024),
MMFM (Rohbeck et al., 2025) and DMSB (Chen et al., 2023) as well as other methods using
global-in-time joint training or unbalanced optimal transport DeepRUOT (Zhang et al., 2024), Var-
RUOT (Sun et al., 2025) and MIOFlow (Huguet et al., 2022). We follow the experiment setup from
3MSBM by having t = 1, 3 as the held-out sets and evaluating on various metrics. Table 3 shows
that our method outperforms most methods and remains competitive with Var-RUOT and 3MSBM.
Notably, our method outperforms SBIRR and MMFM, which solve piecewise Schrödinger bridges
and OT couplings whereas methods like 3MSBM and DMSB solve a single global optimization
with a joint coupling, indicating the benefits of using RNA velocity as a local prior with per-interval
supervision. For additional results and comparison with Var-RUOT see Appendix C.

We also conducted robustness analysis on the mis-specification of vprior of our approach. Specif-
ically, we perturb the reference field by (i) adding Gaussian noise, vprior = vprior + η, and (ii)
rescaling its magnitude, vprior = c vprior. In Table 4, W1 at t2 and t4 changes only marginally
under both noise levels (α ∈ {0.25, 0.75}) and scaling factors (c ∈ {0.5, 1.5}). This indicates that
VP–HJF is robust under mild to moderate prior perturbations, with the learned corrective field vcorr
adapting to and compensating for mis-specification in vprior.

Bone marrow scRNA-Seq data We evaluate our approach on a real scRNA-seq bone-marrow
atlas with multiple hematopoietic fates from scVelo (Bergen et al., 2020). Figure 2 (left) shows
trajectories that emanates from early progenitor regions at t=0 (dark blue) and spread out to other
branches by closely following the UMAP reference (gray). Figure 2 (right) shows the learned growth
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Figure 2: Left:Bone marrow trajectories. Colored points (ours) show inferred cell trajectories over-
laid on the reference manifold (gray)) Right: Learned growth field — orange means high growth,
purple means low growth.

field gθ(t, x) = sθ(t, x) that governs local mass dynamics. This maps shows that our model suc-
cessfully captured low growth rate in early progenitors and increases as cells enter the active cycling
and amplification stage. However, we also observe that the high growth rate near some terminal
regions. While this indicates the model can assign higher growth to specific cell types, a strong
terminal-phase growth is biologically implausible. For the bone marrow case, mature or exiting cells
should have near-zero or negative growth. This likely reflect the objective imbalance where trans-
port terms dominating mass calibration, suggesting mild regularization such as time-smoothness on
sθ or branch-wise boundary constraints to better align growth with biology.

6 DISCUSSION AND LIMITATIONS

On the velocity prior quality and assumptions The velocity prior vprior indeed plays a construc-
tive—but double-edged role in our method. A good prior captures coarse dynamics - reducing the
learning complexity and improving on sample efficiency. A mis-specified prior can bias the learned
corrective field sθ(t, x) and slow or destabilize training. Hence, the quality of vprior strongly influ-
ences both optimization and generalization. In practice, mild perturbation of the prior through noise,
scale or mis-specification are corrected by sθ, whereas severe mis-specification such as overly large
or structurally wrong drifts can bias the learned corrective flow. Moreover, vprior does not require
divergence-free assumption. Our dual objective explicitly includes the cross term∇xsθ·vprior in the
HJB residual avoiding hidden orthogonality requirements.

Limitations In Fig. 2 (right) we observe high growth near terminal regions, which is biologically
implausible for mature or cell–cycle–exiting states. Without additional biological constraints such as
cell-cycle markers,branch–terminal boundary conditions or proliferation markers, growth–transport
disentanglement may remain under-determined in some regions. A promising direction is to add
weak supervision on the learned growth model to improve identifiability.

For single–cell datasets we currently use local supervision—training on adjacent pairs with a
time–continuous shared network. This choice is simple and scalable and induces a globally smooth
field, but it does not jointly enforce all marginals as in recent multi–marginal methods, which may
limit long–range trajectory coherence. In future works, extending VP–HJF with global consistency
could improve on long-range trajectory inference.

7 CONCLUSION

Our method decomposes the velocity field by using domain knowledge as prior and using a sin-
gle network to capture both growth and transport. This decomposition yields robust performance
even under mild to moderate prior mis-specification, indicating the flexibility of this framework to
incorporate priors, making it a promising direction for modeling complex cellular dynamics.
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A PRIOR-GUIDED HJB INEQUALITY DERIVATION

To derive the velocity-prior guided HJB residual inequality in Eq.8.
A(ρ, v, g) ≥ Ex∼ρ0

[s0(x)]− Ex∼ρ1
[s1(x)]

−
∫ 1

0

∫
ρt(x)

(
∂ts + 1

2∥∇s∥
2 + ∇s · vprior + 1

2s
2
)
dx dt. (16)

We want to start by minimizing Definition 3.2. Since vprior is constant and known, we only need to
minimize the ”learned” action portion vcorr, then the problem becomes the following:

Consider the velocity–prior guided WFR action:

min
ρ, vot, g

A(ρ, vcorr, g) :=
∫ 1

0

∫
Ω

(
1
2∥vcorr(t, x)∥

2 + 1
2g(t, x)

2
)
ρt(x) dx dt (17)

s.t. ∂tρt +∇·
(
ρt(vprior + vcorr)

)
= gt ρt, ρ|t=0 = ρ0, ρ|t=1 = ρ1.

Step 1: Lagrangian formulation
First, we introduce a scalar multiplier s(t, x), the Lagrangian becomes:

L =

∫ 1

0

∫
Ω

(
1
2∥vcorr∥

2 + 1
2g

2
)
ρ dx dt (18)

+

∫ 1

0

∫
Ω

s
(
∂tρ+∇· (ρ(vprior + vcorr))− gρ

)
dx dt.

Step 2: Integration by parts
Integration by parts in time on

∫
s∂tρ∫ 1

0

∫
Ω

s ∂tρ dx dt =
[ ∫

Ω

s ρ dx
]t=1

t=0
−

∫ 1

0

∫
Ω

ρ ∂ts dx dt (19)

= Ex∼ρ0
[s0(x)]− Ex∼ρ1

[s1(x)]−
∫ 1

0

∫
Ω

ρ ∂ts dx dt.

Integration by parts in space on
∫
s∇ · (ρw) with w := vprior + vot∫

Ω

s∇· (ρw) dx =

∫
∂Ω

s ρw· ndσ −
∫
Ω

∇s· (ρw) dx. (20)

Assuming zero boundary flux or fast decay, the boundary term vanishes:∫ 1

0

∫
Ω

s∇· (ρw) dx dt = −
∫ 1

0

∫
Ω

ρw· ∇s dx dt. (21)

Then, the Lagrangian becomes
L = Ex∼ρ0

[s0(x)]− Ex∼ρ1
[s1(x)] (22)

+

∫ 1

0

∫
Ω

ρt(x)
[
1
2∥vcorr∥

2 − vcorr · ∇s+ 1
2g

2 − s g − ∂ts−∇s· vprior
]
dx dt.

Step 3: Fenchel–Young inequality
The Fenchel–Young inequality states that for any vectors a and p, we have:

1
2∥a∥

2 ≥ p · a− 1
2∥p∥

2 (23)
We set a = vcorr and p = ∇s, then we have:

1
2∥vcorr∥

2 − vcorr · ∇s ≥ − 1
2∥∇s∥

2 (24)
Similarly, we set a = g and p = s, then we have:

1
2g

2 − s g ≥ − 1
2s

2, (25)

with equality iff vcorr = ∇s and g = s. Thus, putting pieces together, we have:
A(ρ, vcorr, g) ≥ Ex∼ρ0

[s0(x)]− Ex∼ρ1
[s1(x)]

−
∫ 1

0

∫
Ω

ρt(x)
(
∂ts + 1

2∥∇s∥
2 + ∇s · vprior + 1

2s
2
)
dx dt. (26)
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B PROOF OF THEOREM 3.4

Theorem B.1 (Prior-guided HJB optimality). Suppose that the HBJ residual defined in corollary.3.3
satisfies rθ(t, x) = 0 for ρt-a.e on [0, 1]×Rd, and the boundary constraints hold, then (ρt, vcorr, gθ)
satisfies the unbalanced continuity equation and the WFR optimality conditions in Definition 3.2. In
particular, the learned corrective field v∗corr = ∇xsθ and growth g∗ = gθ satisfy the optimality
conditions.

Proof sketch The proof of this theorem builds upon the derivations from the previous proof. Re-
call, from step 3 Fenchel–Young inequality above, we have:

A(ρ, vcorr, g) ≥ Ex∼ρ0
[s0(x)]− Ex∼ρ1

[s1(x)]−
∫ 1

0

∫
Ω

ρt(x) rs(t, x) dx dt. (27)

where the HJB residual is defined as:

rs(t, x) := ∂ts+
1
2∥∇xs∥2 +∇xs · vprior + 1

2s
2. (28)

Step 1 (Dual constraint and lower bound)
To ensure a finite dual lower bound, we need to restrict to potentials s satisfying:

rs(t, x) ≥ 0 ∀(t, x). (29)

Then under this constraint, since the last term is nonpositive, we have:

A(ρ, vcorr, g) ≥ Ex∼ρ0 [s0(x)]− Ex∼ρ1 [s1(x)] ∀s (30)

This inequality also holds when we take the infimum over all feasible (ρ, vcorr, g), which gives the
dual problem

inf
ρ,vcorr,g

A(ρ, vcorr, g) ≥ sup
s: rs≥0

(
Ex∼ρ0

[s0(x)]− Ex∼ρ1
[s1(x)]

)
. (31)

Step 2 (Residual Optimality)
Now suppose there exists a potential sθ and a feasible triplet (ρt, vcorr, g) such that

rsθ (t, x) = 0 for ρt-a.e., (32)
vcorr = ∇xsθ, g = sθ, (33)

and the boundary constraints ρ|t=0 = ρ0, ρ|t=1 = ρ1 hold.

Then the Fenchel–Young inequalities are equalities and equation 27 becomes:

A(ρ, vcorr, g) = Ex∼ρ0 [sθ(0, x)]− Ex∼ρ1 [sθ(1, x)]−
∫ 1

0

∫
Ω

ρt(x) rsθ (t, x) dx dt. (34)

Since rsθ = 0 ρ-a.e., then we have:

A(ρ, vcorr, g) = Ex∼ρ0 [sθ(0, x)]− Ex∼ρ1 [sθ(1, x)]. (35)

Combining this with the dual lower bound, we have:

inf
ρ,vcorr,g

A(ρ, vcorr, g) < A(ρ, vcorr, g) (36)

Ex∼ρ0 [sθ(0, x)]− Ex∼ρ1 [sθ(1, x)] < sup
s: rs≥0

(
Ex∼ρ0 [s0(x)]− Ex∼ρ1 [s1(x)]

)
. (37)

So we have:

A(ρ, vcorr, g) = inf
ρ,vcorr,g

A(ρ′, v′corr, g′) = sup
s: rs≥0

(
Ex∼ρ0

[s0(x)]− Ex∼ρ1
[s1(x)]

)
, (38)

Finally, we conclude that (ρt, vcorr, g) is primal optimal. In particular,

v∗corr = ∇xsθ, g∗ = sθ,

and (ρt, v
∗
corr, g

∗) satisfies the unbalanced continuity equation and the WFR optimality conditions
in Definition 3.2.
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Table 5: Comparison on the EB dataset using W2 at the held-out marginals (t1, t3). Baseline results
other than * are taken from (Theodoropoulos et al., 2025).

Method W2 t1 W2 t3

DeepRUOT 13.64 15.10
Var-RUOT* 10.34 12.02
MIOFlow 13.66 14.05
SBIRR 15.42 20.98
MMFM 14.68 14.83
DMSB 14.83 15.49
3MSBM 14.51 13.26
VP-HJF (ours)* 11.94 12.28

Table 6: Comparison on the EB dataset using weighted W1 at marginals t1–t4 for Var-RUOT and
VP-HJF.

Wweighted
1

Method t1 t2 t3 t4

Var-RUOT* 10.28 11.58 11.90 13.28
VP-HJF (ours)* 11.14 12.45 13.14 14.45

C ADDITIONAL EXPERIMENTS

We conducted further comparison on the EB dataset with 100-dim using theW2 metric at the held-
out marginals at t1, t3. Table 5 shows that our approach remains competitive and outperforms most
methods. We then compare more directly with VAR-RUOT in Table 6 using the weighted W1,
since both methods are in the unbalanced optimal transport setting. In this evaluation, we assign
non-uniform particle weights by integrating the learned dynamics through ODE integration and use
these predicted weights when computingW1, instead of uniform masses.

On this weighted W1 metric, Var-RUOT achieves slightly lower values than VP–HJF. This gap
could partly due to the use of noisy RNA-velocity as vprior in our framework, which can trade a
small increase in transport cost for better agreement with the measured dynamics. In addition, Var-
RUOT optimizes a single global-in-time trajectory via SDE simulations, whereas VP–HJF relies on
deterministic ODE rollouts with local per-interval supervision.

further training details on single-cell datasets For both the EB and bone marrow datasets, we
use a 4-layer MLP with Swish activation. The MLP outputs follows the Action Matching implemen-
tation, where the output hθ(t, x) needs to multiply by the original data input x so the scaler output
becomes s = (h×x).sum() Moreover, We optimize the model with Adam and set the learning rate
to 2e − 4 for both datasets. We follow Algorithm 1 to train with 300 epochs and 256 batch size,
using dopri5 with 16 steps for the ode integration. We set the HBJ loss coefficients to λhbj = 0.01 ,
sliced Wasserstein loss coefficient λsw = 10 and the mass loss coefficient to λmass = 0.01.

For the Var-RUOT baseline on EB, we use the authors’ publicly released implementation and con-
figuration, changing only the training epoch to 500 epochs.

D LLM USAGE

We used LLM for improve on writing, mainly for checking grammar. We also used LLM for finding
relevant and related works.
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