
On Vanishing Gradients, Over-Smoothing, and
Over-Squashing in GNNs:

Bridging Recurrent and Graph Learning

Álvaro Arroyo1,˚ Alessio Gravina2,˚ Benjamin Gutteridge 1 Federico Barbero 1

Claudio Gallicchio2 Xiaowen Dong1 Michael Bronstein1,3 Pierre Vandergheynst4

1University of Oxford 2University of Pisa 3AITHYRA 4EPFL

Abstract

Graph Neural Networks (GNNs) are models that leverage the graph structure
to transmit information between nodes, typically through the message-passing
operation. While widely successful, this approach is well-known to suffer from
representational collapse as the number of layers increases and insensitivity to
the information contained at distant and poorly connected nodes. In this paper,
we present a unified view of the appearance of these issues through the lens of
vanishing gradients, using ideas from linear control theory for our analysis. We
propose an interpretation of GNNs as recurrent models and empirically demonstrate
that a simple state-space formulation of a GNN effectively alleviates these issues at
no extra trainable parameter cost. Further, we show theoretically and empirically
that (i) Traditional GNNs are by design prone to extreme gradient vanishing
even after a few layers; (ii) Feature collapse is directly related to the mechanism
causing vanishing gradients; (iii) Long-range modeling is most easily achieved by
a combination of graph rewiring and vanishing gradient mitigation. We believe our
work will help bridge the gap between the recurrent and graph learning literature
and unlock the design of new effective models that benefit from both worlds.

1 Introduction

Graph Neural Networks (GNNs) [98, 45, 94, 76, 17, 29] have become a widely used architecture for
processing information on graph domains. Most GNNs operate via message passing, where infor-
mation is exchanged between neighboring nodes, giving rise to Message-Passing Neural Networks
(MPNNs). Some of the most popular instances of this type of architecture include GCN [67], GAT
[101], GIN [106], and GraphSAGE [56].

Despite its widespread use, this paradigm also suffers from some fundamental limitations. Most
importantly, we highlight the issue of feature collapse (sometimes termed as over-smoothing) [79, 18],
where feature representations become exponentially similar as the number of layers increases,
and over-squashing [1, 100, 30], which describes the difficulty of propagating information across
faraway nodes, as the exponential growth in a node’s receptive field results in many messages being
compressed into fixed-size vectors. Although these two issues have been studied extensively, and there
exists evidence that they are trade-offs of each other [44], there is no unified theoretical framework
that explains why architectures that solve these problems work and whether there exists a common
underlying cause that governs these problems.

In this work, we analyze these issues arising from GNN depth through the lens of vanishing
gradients. In particular, we ask several questions regarding the appearance and consequences of this

˚Equal contribution. Correspondance to alvaro.arroyo@univ.ox.ac.uk

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

phenomenon in GNNs: (i) How prone are GNNs to gradient vanishing? (ii) What is the effect of
gradient vanishing on node feature evolution? (iii) Can preventing vanishing gradients effectively
mitigate over-squashing and enable long-range modelling? (iv) Can methods used in the non-linear
[61, 82, 9] and more recently, linear [52, 81] recurrent neural network (RNN) literature be effective
at dealing with feature collapse and long-range modeling? We answer these questions by providing a
novel perspective that bridges the gap between recurrent and graph learning.

Figure 1: Latent evolution of 2-
dimensional node features when pass-
ing through layers of a GNN-SSM with
eigpΛq « 1. Node states evolve in a
norm-preserving manner, without col-
lapsing or contracting. The blue lines
indicate how each node feature evolves
across layers, i.e., as more layers are
added. Each circle corresponds to a
node’s 2D feature. Circles connected
by a blue line represent the same node
across successive layers.The color of
each circle encodes the norm of the node
feature, and the vector field indicates di-
rection.

Contributions and outline. In summary, the contribu-
tions of this work are the following:

• In Section 3, we explore the connection between GNNs
and recurrent models and demonstrate how classical
GNNs are susceptible to a phenomenon we term extreme
gradient vanishing. We propose GNN-SSM, a GNN
model that is written as a state-space model, allowing
for better control of the spectrum of the Jacobian.

• In Section 4, we show how vanishing gradients con-
tribute to node feature evolution, providing a more pre-
cise explanation for why GNNs struggle with depth and
how node feature collapse emerges via spectral analysis
of the layer-wise Jacobians. We show that GNN-SSMs
are able to exactly control the rate of collapse of deep
representations.

• In Section 5, we show how vanishing gradients are re-
lated to over-squashing. We argue that over-squashing
should therefore be tackled by approaches that both per-
form graph rewiring and mitigate vanishing gradients.

Overall, we believe that our work provides a new and
interesting perspective on well-known problems that occur
in GNNs, from the point of view of sequence models. We
believe this to be an important observation connecting two
very wide – yet surprisingly disjoint – bodies of literature.

2 Background and Related Work

We start by providing the required background on graph and sequence models. We further discuss
the existing literature on over-smoothing and over-squashing in GNNs and vanishing gradients in
recurrent sequence models.

2.1 Message Passing Neural Networks

Let a graph G be a tuple pV,Eq where V is the set of nodes and E is the set of edges. We denote edge
from node u P V to node v P V with pu, vq P E. The connectivity structure of the graph is encoded
through an adjacency matrix defined as A P Rnˆn where n is the number of nodes in the graph.
We assume that G is an undirected graph and that there is a set of feature vectors thvuvPV P Rd,
with each feature vector being associated with a node in the graph. Graph Neural Networks (GNNs)
are functions fθ : pG, thvuq ÞÑ y, with parameters θ trained via gradient descent and y being a
node-level or graph level prediction label. These models typically take the form of Message Passing
Neural Networks (MPNNs), which compute latent representation by composing K layers of the
following node-wise operation:

hpkq
u “ ϕpkqphpk´1q

u , ψpkqpthpk´1q
v : pu, vq P Euqq, (1)

for k “ t1, . . . ,Ku, where ψpkq is a permutation-invariant aggregation function and ϕpkq combines
the incoming messages from one’s neighbors with the previous embedding of oneself to produce an
updated representation. The most commonly used aggregation function takes the form

ψpkqpthpk´1q
v : pu, vq P Euq “

ÿ

u

Ãuvh
pk´1q
v (2)

2

where Ã “ D´ 1
2AD´ 1

2 , and D P Rnˆn is a diagonal matrix where Dii “
ř

j Aij . One can also
consider a matrix representation of the features Hpkq P Rnˆdk . Throughout the paper, we will use the
terms GNN and MPNN interchangeably, and will generally consider the most widely used instance
of GNNs, which are Graph Convolutional Networks (GCNs) [67] whose matrix update equation is
given by:

Hpkq “ σ
`

ÂHpk´1qWpk´1q
˘

, (3)

where Â “ pD ` Iq
´1{2

pA ` Iq pD ` Iq
´1{2 is the adjacency matrix with added self connections

through the identity matrix I, and σp¨q is a nonlinearity. Our analysis also applies to Graph Attention
Networks (GATs) [101], where the fixed normalized adjacency is replaced by a learned adjacency
matrix which dynamically modulates connectivity while preserving the key spectral properties used
in our analysis.

2.2 Recurrent Neural Networks
A Recurrent Neural Network (RNN) is a function gθ : x ÞÑ y, where x “ pxp1q,xp2q, . . . ,xpKqq

and y “ pyp1q,yp2q, . . . ,ypKqq, where xpkq P Rd is the input vector at time step k and ypkq P Rm

is the output vector at time step k, and θ are learnable parameters. RNNs are designed to handle
sequential data by maintaining a hidden state hpkq P Rdh that captures information from previous
time steps. This hidden state2 allows the network to model sequential dependencies in the data. The
update equations for the hidden state of the RNN are as follows:

hpkq “ σpWhh
pk´1q ` Wxx

pkqq. (4)

This type of approach has deep connections with ideas from dynamical systems [99] and chaotic
systems [39]. These ideas have become more relevant in recent work [54, 81], where the nonlinearity
in (4) is removed in the interest of parallelization and the ability to directly control the dynamics
of the system through the eigenvalues of the state transition matrix Wh. We note that these types
of approaches are also popular in the reservoir computing literature [63], where the state transition
matrix is left untrained and more emphasis is placed on the dynamics of the model.

2.3 The Vanishing and Exploding Gradient Problem

Both RNNs and GNNs are trained using the chain rule. One can backpropagate gradients w.r.t. the
weights at ith layer of a K-layer GNN or RNN as

BL
Bθpiq

“
BL

BHpKq

˜

K
ź

k“i`1

BHpkq

BHpk´1q

¸

BHpiq

Bθpiq
, (5)

where matrix Hpkq in an RNN will contain a single state vector. As identified by [82], a major issue
in training this type of models arises from the product Jacobian, given by:

J “

K
ź

k“i`1

BHpkq

BHpk´1q
“

K
ź

k“i`1

Jk. (6)

In general, we have that if ||Jk||2 « λ for all layers, then ||J||2 ď λK´i. This means that we require
λ « 1 for gradients to neither explode nor vanish, a condition also known as edge of chaos.

2.4 Over-smoothing, Over-squashing, and Vanishing Gradients in GNNs

Node Feature Collapse and Over-smoothing. GNNs are known to not perform well at large depths
[69]. This issue has been heavily linked with the issue of over-smoothing [18, 80], which describes
the tendency of GNNs to produce smoother representations as more and more layers are added. In
Section 4, we study this issue from the lens of vanishing gradients and show that the performance
degradation of GNNs has a much simpler explanation: it occurs due to the norm-contracting
nature of GNN updates, which is also intimately related to some notions of smoothing presented in
the literature [90].3

2Note that we purposefully maintain the same notation for the hidden state as the one in the previous
subsection for node features.

3We elaborate on the definition we use in the paper around over-smoothing as it related to the broader
literature in Appendix E.

3

Over-squashing. Over-squashing [1, 100, 30, 7] was originally introduced as a bottleneck resulting
from ‘squashing’ into node representations amounts of information that are growing potentially
exponentially quickly due to the topology of the graph. It is often characterized by the quantity∥∥∥Bh

pKq
u {Bh

p0q
v

∥∥∥ being low, implying that the final representation of node u is not very sensitive
to the initial representation at some other node v. While the relationship between over-squashing
and vanishing gradients was hinted at by [30], in Section 5 we explore this relationship in detail
by showing that techniques aimed to mitigate vanishing gradients in sequence models help to
mitigate over-squashing in GNNs.

Vanishing gradients. Vanishing gradients have been extensively studied in RNNs [11, 61, 82],
while this problem has been surprisingly mostly overlooked in the GNN community. For a detailed
discussion on the relevant literature, we point the reader to the Appendix F. We simply highlight that
there are works that have seen success in taking ideas from sequence modelling [91, 47, 102, 10, 66]
or signal propagation [40, 95] and bridging them to GNNs, but they rarely have a detailed discussion
on vanishing gradients. In Section 5, we show that vanishing gradient mitigation techniques from
RNNs seem to be very effective towards the mitigation of feature collapse and over-squashing
in GNNs and argue that the two communities have very aligned problems and goals.

3 Connecting Sequence and Graph Learning through State-Space Models

In this section, we study GNNs from a sequence model perspective. We show that the most common
classes of GNNs are more prone to vanishing gradients than feedforward or recurrent networks due
to the spectral contractive nature of the normalized adjacency matrix. We then propose GNN-SSMs,
a state-space-model-inspired construction of a GNN that allows more direct control of the spectrum.

3.1 Similarities and differences between learning on sequences and graphs

The GNN architectures that first popularized deep learning on graphs [17, 29] were initially presented
as a generalization of Convolutional Neural Networks (CNNs) to irregular domains. GCNs [67]
subsequently restricted the architecture in [29] to a one-hop neighborhood. While this is still termed
“convolutional” (due to weight sharing across nodes), the iterative process of aggregating information
from each node’s neighborhood can also be viewed as recurrent-like state updates.

If we consider an RNN unrolled over time, it forms a directed path graph feeding into a state node
with a self-connection, making it a special case of a GNN. Conversely, node representations in
GNNs can be stacked using matrix vectorization, allowing us to interpret GNN layer operations as
iterative state updates. This connection suggests that the main difficulty faced by RNNs, namely the
vanishing and exploding gradients problem [82], may likewise hinder the learning ability of GNNs.
We note, however, that one key difference between RNNs and GNNs is that RNN memory only
depends on how much information is dissipated by the model during the hidden state update, whereas
GNNs normalize messages by the inverse node degree, which introduces an additional information
dissipation step that we will explore in more detail in Section 5.

3.2 Graph convolutional and attentional models are prone to extreme gradient vanishing

Based on the previously introduced notion of stacking node representations using the matrix vectoriza-
tion operation, we now analyze the gradient dynamics of GNN. In particular, we focus on the gradient
propagation capabilities of graph convolutional and attentional models at initialization, given their
widespread use in the literature. Specifically, we demonstrate that the singular values of the layer-wise
Jacobian in these models form a highly contractive mapping, which prevents effective information
propagation beyond a few layers. We formalize this claim in Lemma 3.1 and Theorem 3.2, and we
refer the reader to Appendix A.1 for the corresponding proofs.
Lemma 3.1 (Spectrum of layer-wise Jacobian’s singular values). Let Hpkq

“ Ã Hpk´1q W be a linear
GCN layer, where Ã has eigenvalues tλ1, . . . , λnu and WWT has eigenvalues tµ1, . . . , µdku. Consider the
layer-wise Jacobian J “ B vec

`

Hpkq
˘

{B vec
`

Hpk´1q
˘

, then the squared singular values of J are given by the
set

␣

λ2
i µj

ˇ

ˇ i “ 1, . . . , n, j “ 1, . . . , dk
(

.

4

Theorem 3.2 (Jacobian singular-value distribution). Assume the setting of Lemma 3.1, and let W P Rdk´1ˆdk

be initialized with i.i.d. N p0, σ2
q entries. Denote the squared singular values of the Jacobian by γi,j . Then,

for sufficiently large dk the empirical eigenvalue distribution of WWT converges to the Marchenko-Pastur
distribution. Then, the mean and variance of each γi,j are

E
“

γi,j
‰

“ λ2
i σ

2, (7)

Var
“

γi,j
‰

“ λ4
i σ

4 dk
dk´1

. (8)

Theorem 3.2 shows that the singular-value spectrum of the Jacobian is modulated by the squared
spectrum of the normalized adjacency. Since |λi| ď 1 for all eigenvalues of the normal-
ized adjacency, the ability of GCNs to propagate gradients is in expectation worse than that of
RNNs or MLPs. In particular, iterating these operations causes the majority of the spectrum
to shrink to zero more quickly than in classical deep linear [93] or nonlinear [84] networks.
Moreover, using sigmoidal activations and orthogonal weights will not push the singular-value
spectrum to the edge of chaos as in [84], due to the additional contraction from the adjacency.

0.0 0.2 0.4 0.6 0.8 1.0

|λ|
0

200

400

600

F
re
q
u
en
cy

GCN-Linear

GCN-ReLU

Linear

-1 0 1
Real

-1

0

1

Im
ag
in
a
ry

-1 0 1
Real

-1

0

1

Im
ag
in
a
ry

Figure 2: Left: Histogram of eigenvalue modulus of the Jacobian for
linear, linear convolutional, and nonlinear convolutional layers. Middle:
Vectorized Jacobian for GCN. Right: Vectorized Jacobian for GCN-
SSM with eigpΛq « 1, eigpBq « 0.1.

The effect of each op-
eration on the layer-
wise Jacobian is empir-
ically demonstrated in
Figure 2, which also
showcases the contrac-
tion effect of the nor-
malized adjacency. The
figure reveals that even
a single layer’s Jaco-
bian exhibits a long tail
of squared singular val-
ues near zero. This
spectral structure leads

to ill-conditioned gradient propagation and non-isometric (not norm-preserving) signal dynamics.
The same results hold for GATs, as the adjacency still exhibits a contractive spectral structure despite
being learned during training.

Note that to overcome this contraction without altering the architecture, one would have to both set
σ2 in a way that precisely compensates for the normalized adjacency (which can be computationally
expensive to estimate) and choose the nonlinearity carefully. In the next subsection, we present a
general, simple, and computationally efficient method to place the Jacobian at the edge of chaos at
initialization by writing feature updates in a state-space representation.

3.3 GNN-SSM: Improving the training dynamics of GNNs through state-space models

To allow direct control of the signal propagation dynamics of any GNN, we can rewrite its layer-to-
layer update as a state-space model. Concretely, we express the update as

Hpk`1qT
“ ΛHpkqT

` BXpkqT

“ ΛHpkqT
` BFθ

`

Hpkq, k
˘T (9)

where we refer to Λ as the state transition matrix and B as the input matrix,4 and FθpHpkq, kq as
a time-varying coupling function which connects each node to some neighborhood. We refer to
the model defined in Equation (9) as GNN-SSM. From an RNN perspective, Λ plays the role of the
“memory”, in charge of recalling all the representations at each layer at the readout layer, while the
neighborhood aggregation plays the role of an input injected into the state via B. In traditional GNNs,
this recurrent memory mechanism is absent, so these models act in a memoryless way: features at
one layer do not explicitly store or retrieve past information in the way a stateful model would.

In the state-space view, the eigenvalues of Λ determine the memory dynamics: large eigenvalues
can preserve signals (or, if above unity, cause exploding modes), whereas small eigenvalues quickly

4Here, we deviate from the traditional state-space formalism, which uses A as the state transition matrix,
since we use this notation for the adjacency. Further, we employ transposes to increase the resemblance to the
traditional SSM updates.

5

attenuate them. Meanwhile, B controls which aspects of the node features get injected into the
hidden state at each step. Because this framework is agnostic to the exact coupling function, any
MPNN layer can serve as Fθ . We showcase the effect of these matrices on the layer-wise Jacobian in
Proposition 3.3.
Proposition 3.3 (Effect of state-space matrices). Consider the setting in (9) and Γ “

B vecpFθpHpkqqq{B vecpHpkqq. Let b denote the Kronecker product. Then, the norm of the vectorized
Jacobian J is bounded as:

}J}2 ď }Idk
b Λ}2 ` }Idk

b B}2}Γ}2

“ }Λ}2 ` }B}2}Γ}2, (10)

The result above shows that the spectrum of the Jacobian is controlled through the eigenvalues of Λ.
If we have that the spectrum of Γ is around zero, it suffices to have eigpΛq « 1 to bring the vectorized
Jacobian to the edge of chaos. We empirically validate this in Figure 2.

For simplicity and clarity of conclusions, we consider Λ and B to be shared across layers and fixed
(i.e., not trained by gradient descent) to guarantee the desired properties. To construct Λ, we first
generate a random unitary matrix, which has all eigenvalues on the unit circle, and then scale it to
control the spectral radius5, allowing us to design with precise control over the system dynamics. Only
the coupling function Fθ is optimized. Empirically, we observe that this simpler scheme actually
improves downstream performance in some settings. We highlight, however, that this is the most
simple instance of a more general framework that aims to incorporate ideas from recurrent processing
into GNNs without losing permutation-equivariance. One could easily extend this state-space idea to
include more complex gating [61] or other constraints on the state transition matrix [60].

4 How does Extreme Gradient Vanishing affect Over-smoothing?
In this section, we study the practical implications of the mechanism causing vanishing gradients in
GNNs in relation to node feature evolution. We show empirically and theoretically how GNN layers
acting as contractions make node features collapse to a fixed point. We experimentally validate our
points by analyzing Dirichlet energy, node feature norms, and node classification performance for
increasing numbers of layers. Overall, we believe this section provides a more practical and general
understanding of the consequences of extreme vanishing in GNNs by analyzing them from the point
of view of their layer-wise Jacobians.

4.1 A contractive GNN leads to node feature collapse
We consider in our analysis GNN layers as in Equation 3. We view a GNN layer as a map fk :
Rnd Ñ Rnd and construct a deep GNN f via composition of K layers, i.e. f “ fK ˝ ¨ ¨ ¨ ˝ f1.
Let Jf P Rndˆnd denote the layer-wise Jacobian of a GNN f . 6 The supremum of the Jacobian
(if well-defined) of f over a convex set U corresponds to the Lipschitz constant ∥f∥Lip [58], i.e.
∥f∥Lip “ supHPU ∥Jf pHq∥, where by submultiplicativity of Lipschitz constants we have that

∥f∥Lip ď
śK

k“1 ∥fk∥Lip. We point to the Appendix A.2 for a more detailed explanation of the objects
in question. A Lipschitz function f is contractive if ∥f∥Lip ă 1. We now assume that ∥fk∥Lip ă 1

for all k, meaning that each layer is a contraction mapping.7

Lemma 4.1 (Banach Fixed Point Theorem [5]). Let f be an operator with Lipschitz constant
∥f∥Lip ă 1. Then for any starting point x0, the fixed-point iteration xn`1 “ fpxnq converges to the
unique fixed point of f at a linear rate O

`

1{ ∥f∥nLip

˘

From Lemma 4.1 above and the extreme gradient vanishing results presented in Section 3.2, we
can distinguish two cases for contractive GNN layers: (1) With shared layers (as in [31]), repeated
applications of the GNN will result in convergence to a unique fixed point; (2) with repeated
application of non-shared but highly contracting layers, the overall GNN function will converge to,
or very close to, a unique fixed point in a single forward pass due to the low Lipschitz constant of

5An alternative strategy consists in computing the matrix eigendecomposition, manually place the eigenvalues
where desired, and reconstruct the matrix.

6In our analysis, it is important that the input to the GNN is a vector in Rnd rather than a matrix in Rnˆd,
as the Jacobians and norms are different for the two cases. For this reason, it is important to take care in the
definitions of these objects.

7Note that the analysis holds for any submultiplicative matrix norm.

6

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

gy

λmax=0.25

λmax=0.5

λmax=0.75

λmax=1

λmax=1.05

2 16 32 48 64
Layer

20

40

60

80

A
cc

u
ra

cy
 (

%
)

GCN-SSM, eig(Λ)= 1
GCN-SSM

GCN

GCN-Residual

Figure 3: Experimental evaluation on Cora for an increasing number of layers. Left: Dirichlet Energy
evolution for different ||Λ||2. Middle: 2-Dimensional random feature projection evolution with a
fixed point at zero. Right: Node classification performance.

the overall GNN. Both cases result in convergence towards a fixed point as all nodes evolve using
common transformations. In practice, we observe that node representations tend to collapse to a zero
norm node state, see Figure 3. To study this further, we consider a GNN update, under the following
assumption, which is consistent with the setup in (3):

Lemma 4.2. Consider a GNN layer fK as in Equation 3, with non-linearity σ such that σp0q “ 0
(e.g. ReLU or tanh). Then, fp0q “ 0, i.e. 0 is a fixed point of f .

Then, we have that node representations will evolve as in Proposition 4.3 presented next.

Proposition 4.3 (Convergence to a unique fixed point.). Let ∥fk∥Lip ă 1 ´ ϵ for some ϵ ą 0 for all
k “ 1 . . . L. Then, for H P U Ď Rnd, we have that:

∥fpHq∥ ă p1 ´ ϵqK ∥H∥ ă ∥H∥ . (11)

In particular, as K Ñ 8, fpHq Ñ 0.
In other words, in the setting we have considered, if layers fk are contractive, their repeated application
will monotonically converge to the unique fixed point 0, by Lemmas 4.2 and 4.1, which serves to
explain the behavior observed empirically. We note that this is similar to the analysis in [88], but we
highlight that our analysis is much more broad, as it applied to a number of models beyond GCNs, and
is it only required knowledge of behavior of each layer through the Lipschitz constant. Furthermore,
we emphasize the important connection between the Lipschitz constant and the vanishing gradients
problem, which are linked through the Jacobian.

The collapse of node features to a single point has been typically described as over-smoothing. In
particular, over-smoothing describes the tendency of node features to become too similar to each
other as more layers are added in GNNs [18]. A common way of measuring over-smoothing in GNNs,
see [91, 90], is via the unnormalized Dirichlet energy EpHq.8 Given a feature matrix H P Rnˆd on
an unweighted graph G, EpHq takes the form:

EpHq “ tr
`

HJ∆H
˘

“
ÿ

pu,vqPE

∥hu ´ hv∥2 , (12)

where ∆ is the unnormalized graph Laplacian [28]. The Dirichlet energy measures the smoothness
of a signal over a graph and will be minimized when the signal is constant over each node – at least
when using the unnormalized Laplacian. In Proposition 4.4, we show how the layer-wise Jacobians
relate to the unnormalized Dirichlet energy.
Proposition 4.4 (Contractions decrease Dirichlet energy.). Let f be a GNN, |E| be the number of edges in G,
and H P Rnd. We have the following bound:

EpfpHqq ď 2|E|
K
ź

k“1

∥fk∥2Lip ∥H∥2 . (13)

In particular, if ∥fk∥Lip ă 1 ´ ϵ for some ϵ ą 0 for all k “ 1 . . .K, then as K Ñ 8 we have that
EpfpHqq Ñ 0.

This result shows that the energy is directly controlled by the norm of the input signal H and by
the contracting effect of the layers fk. The repeated application of contractive layers results in the
unnormalized Dirichlet energy being artificially lowered as signals are gradually reduced in norm.

8We offer a more precise characterization oh how this relates to the normalized Dirichlet energy of node
features in Appendix E.

7

100 101 102

Layer

10¡4

1010

1024

1038

D
ir

ic
h
le

t
E

n
er

gy GIN

GatedGCN

0.0 0.2 0.4 0.6

|λ|
0

1000

2000

F
re
q
u
en
cy

GCN

0.0 0.2 0.4 0.6

|λ|
0

1000

GAT

0 1 2 3

|λ|
0

1000

2000

GIN

0 2 4

|λ|
0

500

1000

Gated-GCN

Figure 4: Left: Evolution of Dirichlet Energy on the Cora dataset for GIN and Gated-GCN. Right:
Histograms of eigenvalue spectra of layer-to-layer Jacobians for GIN and Gated-GCN.

Important consequences of our theoretical results. 1) The most important takeaway of the
analysis above is that vanishing gradients are directly connected to over-smoothing through the
Lipschitz constant. In particular, the same mechanism that causes gradient vanishing issues, is
responsible for the collapse of all features to a unique zero fixed point (i.e. zero feature collapse)
where the Dirichlet energy is minimized. The quick collapse of traditional graph convolutional and
attentional models can also be understood from the extreme gradient vanishing result introduced
in Section 3. As such, while much of the literature, starting with [80, 18], has attributed over-
smoothing to iterative aggregation and convergence to a rank-one subspace, our analysis shows
that this phenomenon is instead an artifact of representations collapsing to zero. As later noted
by [3] (without any formal argument), over-smoothing is not necessarily the cause of performance
degradation. Here, we provide a theoretical explanation for the poor performance of MPNNs at
large depths, linking it to inherent trainability limitations arising from vanishing (and in some
cases exploding) gradients.

2) This result also provides a connection between the study of GNNs and the study of signal
propagation (or dynamical isometry) in feedforward networks [93, 86, 84] and recurrent neural
networks [61, 2, 81]. In the dynamical isometry literature, the primary interest is to improve the
learning times of deep feedforward networks, whereas the recurrent neural network literature focuses
on memory and long-range information retrieval. We highlight that connecting ideas from these
fields of study will enable the design of new models that benefit from both worlds, even though
these techniques were originally developed with different objectives in mind. This also serves as an
explanation for why simple modifications, such as residual connections or normalization, worked
in practice to mitigate over-smoothing, given their links to dynamical isometry [107, 75].

3) Finally, we highlight that this result provides an objective evaluation metric to gauge whether
a GNN will over-smooth or not. We hope that the eigenanalysis of the Jacobian will become a
widespread empirical test used for this purpose.

4.2 Empirical validation of theoretical results
To validate the theory above, we perform a series of empirical tests. In particular, we check the
evolution of the Dirichlet energy, latent vector norms, and node classification accuracy on the Cora
dataset as the number of layers of different models is increased. The results are presented in Figure 3.
Further, we present additional experiments for different graph structures and models in Appendix
D.1, and showcase how several models with edge-of-chaos Jacobians result in no over-smoothing,
reinforcing the generality of this result beyond classical MPNNs.

From Figure 3, we see that one can exactly control the evolution of the Dirichlet energy of the system
through the spectrum of the Jacobian, which can, in turn, be modified through the spectrum of Λ
in the GNN-SSM model. Furthermore, this shrinks faster the lower the norm of the Jacobian is,
which validates Proposition 4.4. Beyond a Dirichlet energy analysis of the system, notice that node
classification performance does not deteriorate when eigpΛq « 1, and improves over simply applying
an SSM layer with no modulation of the hyperparameters or a residual connection without gating.
The dynamics of the GNN in this setting are shown in Figure 1.9

Results for Additional MPNNs. In this section, we have focused on GCN and GAT because their
layer operators admit clean characterizations, which makes the analysis mathematically tractable.
However, the arguments extend to any GNN, where it suffices to examine the eigenvalues of the layer-

9Note that in the case of GCN, it is sufficient to scale weight norms to prevent the Dirichlet energy from
collapsing to zero with additional layers, as the Dirichlet energy only depends on the maximum eigenvalue of
the Jacobian. However, obtaining good performance on node-classification tasks required to transport the whole
spectrum to be centred around the edge of chaos to obtain good performance. We elaborate on this in App. E

8

wise Jacobians. To make this concrete, in Figure 4 we plot (i) histograms of the Jacobian eigenvalues
for GIN [106], and Gated-GCN [16], and (ii) the evolution of each model’s Dirichlet energy as the
number of layers increases. We observe that GIN exhibits occasional outliers with |λ| ą 1 and
Gated-GCN displays a sizeable mass above the unit circle, which indicates unstable dynamics. This
perspective helps explain several empirical findings reported in [3]: the divergence of Dirichlet energy
in some architectures follows directly from norm expansion driven by unstable Jacobians, whereas
the zero feature collapse seen in GCN and GAT reflects their contraction. Consequently, while not all
GNNs oversmooth (some instead become unstable and blow up) the generally poor performance of
many GNNs at large depths can be understood through their learning dynamics: collapse under
contraction (as in GCNs and GATs, especially with ReLUs) or divergence under instability.

5 The Impact of Vanishing Gradients on Over-squashing
In this section, we study the connection between vanishing gradients and over-squashing in GNNs,
which fills in the gaps and open questions left in the analysis of [30]. 10

5.1 Mitigating over-squashing by combining increased connectivity and non-dissipativity
Over-squashing is typically measured via the sensitivity of a node embedding after k layers with
respect to the input of another node using the node-wise Jacobian.

Theorem 5.1 (Sensitivity bounds, [30]). Consider a standard MPNN with k layers, where cσ is the
Lipschitz constant of the activation σ, w is the maximal entry-value over all weight matrices, and d is
the embedding dimension. For u, v P V we have

›

›

›

›

›

Bh
pkq
v

Bh
p0q
u

›

›

›

›

›

ď pcσwdqk
looomooon

model

pOkqvu
loomoon

topology

, (14)

where O “ crI ` caA P Rnˆn is the message passing matrix adopted by the MPNN, and where cr
and ca are the contributions of the self-connection and aggregation term.

Theorem 5.1 shows that the sensitivity of the node embedding is a combination of (i) a term based on
the graph topology and (ii) a term dependent on the model dynamics, with over-squashing occurring
when the right-hand side of Equation (14) becomes too small. We highlight that this differs from
the standard product Jacobian, which arises in RNNs. This is because, in MPNNs, messages are
scaled by the inverse node degree, incurring an extra information dissipation step. Consequently,
while recurrent architectures only need to adjust their dynamics to ensure long memory, MPNNs
must simultaneously enhance graph connectivity and modify their dynamics to mitigate vanishing
and exploding gradients.

Table 1: Ablation on LRGB
datasets. d Ò adds latent dims; ´

removes; ` adds.

Model Pept-func Pept-struct
APÒ MAEÓ (ˆ10´2)

GCN 60.93˘0.138 33.41˘0.041

kGCN-SSM 69.02˘0.218 28.98˘0.324

`d Ò 72.12˘0.268 27.01˘0.071

´eigpΛq « 1 61.41˘0.724 25.81˘0.032

´SSM 57.76˘1.971 26.02˘0.213

´khop 60.93˘0.138 33.41˘0.041

DRew-GCN 68.04˘1.442 27.66˘0.187

`d Ò 68.05˘0.626 27.64˘0.067

´Delay 49.02˘2.512 27.08˘0.041

Even though the sensitivity bound in Theorem 5.1 is controlled
by two components, the majority of the literature has typically
focused on addressing only the topological term via graph
rewiring [42, 100, 65, 8, 41], with some methods also target-
ing the model dynamics [47, 48, 59]. In fact, [30] explicitly
discourages increasing the model term in Theorem 5.1 and
claims that doing so could lead to over-fitting and poorer gen-
eralization. However, we argue that increasing the model term,
directly linked to vanishing gradients as discussed in Section 4,
is essential to mitigate over-squashing. Rather than harming
performance, boosting this term helps prevent over-smoothing,
since even in a well-connected graph where information can
be reached in fewer hops, unaddressed vanishing gradients
due to the model term will cause the target node’s features
to collapse during message passing. Frameworks combining
these strategies include [55], which integrates graph rewiring with a delay term, and [32], which

10In this part, we mostly focus on long-range interactions, which has been in many cases treated synonymously
with over-squashing in the literature. For a more precise characterization of the relationship between over-
squashing and long range, we point the reader to [3]. We highlight that we believe the distinction between
computational and topological bottlenecks is not particularly relevant in our setting.

9

merges multi-hop aggregation with ideas from SSMs.11 These approaches have generally led to
state-of-the-art results, significantly improving performance over standalone rewiring.

5.2 Empirical validation of claims
We focus our empirical validation on answering the following questions: (i) What is the result of
combining an effective rewiring scheme with vanishing gradient mitigation? (ii) Will this result in
similar state-of-the-art results? To investigate this, we construct a minimal model that combines high
connectivity with non-dissipativity. In particular, we make of the GNN-SSM model and employ a
k-hop aggregation scheme for the coupling function Fθ , which we term kGNN-SSM (more details are
provided in Appendix B).

0 50 100
#Nodes

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

GCN

kGCN

kGCN-SSM

kGCN-SSM, eig(Λ)= 1

0 50 100
#Nodes

20

40

60

80

100

eig(Λ)=0.25
eig(Λ)=0.5
eig(Λ)=0.75
eig(Λ)=1.0

Figure 5: Left: Performance on the RingTrans-
fer task. Right: Effect of dissipativity.

We start by testing the performance on the RingTrans-
fer task introduced in [30], as it is a task where we
certifiably know that long-range dependencies exist.
We modify the eigpΛq in the kGNN-SSM to move the
Jacobian from the edge of stability to a progressively
more dissipative state. The results are shown in Figure
5. From the figure, we see that (i) kGNN-SSM achieves
state-of-the art performance only when coupling strong
connectivity and an edge of chaos Jacobian (ii) making
the model more dissipative directly results in worse
long-range modeling capabilities. We believe the latter point demonstrates the importance of the
model term in Theorem 5.1.
Table 2: Mean and std. for test log10pMSEq averaged
over 4 random weight initializations on the GPP tasks

Model Diam. SSSP Ecc.

GCN 0.742˘0.047 0.950
˘9.18¨10´5 0.847˘0.003

+ SSM -2.431˘0.033 -2.821˘0.565 -2.245˘0.003

+ eigpΛq « 1 -2.444˘0.098 -3.593˘0.103 -2.258˘0.009

+ k-hop -3.075˘0.055 -3.604˘0.029 -4.265˘0.178

DRew-GCN -2.369˘0.105 -1.591˘0.003 -2.100˘0.026

+ delay -2.402˘0.110 -1.602˘0.008 -2.029˘0.024

Next, we ablate each component of the model
on three graph property prediction tasks in-
troduced in [47] alongside the real-world
long-range graph benchmark (LRGB) from
[36], focusing on the peptides-func and
peptides-struct tasks. Additional details
regarding the datasets and the experimental
setting are reported in Appendix C. Here, we
focus on ablating the effect of rewiring, adding
an SSM layer, and placing the model at the

edge of chaos through Λ. In the LRBG tasks, we additionally ablate the effect of increasing the
hidden memory size, as we consider forty layers in the peptides-func dataset, which requires more
long-range capabilities. Here, we also ablate DRew [55] under the same settings. We also provide
a more detailed comparison with other models in Appendix D.3, and provide additional comments
around the LRGB tasks in Appendix D.4.

The results are shown in Tables 1 and 2. Across the board, we observe that kGNN-SSM not only matches
DRew-Delay, but also outperforms it by a large amount in all cases, showcasing the strength of our
state-space approach. In particular, we generally observe significant decreases in performance when
removing both the high connectivity and non-dissipativity components of the model, highlighting
their individual importance. Finally, we see that increasing memory size plays a big role in the
peptides-func task, which is in line with observations made in the sequence modeling literature
[53].

6 Conclusion
In this work, we revisit the well-known problems of representational collapse and over-squashing in
GNNs from the lens of vanishing gradients, by studying GNNs from the perspective of recurrent and
state-space models. In particular, we show that GNNs are prone to a phenomenon we term extreme
gradient vanishing, which results in ill-conditioned signal propagation with few layers. As such, we
argue that it is important to control the layerwise Jacobian and propose a state-space-inspired GNN
model, termed GNN-SSM, to do so. We then uncover that vanishing gradients result in a specific form
of over-smoothing in which all signals converge exactly to a unique fixed point, and support this claim
empirically. Finally, we theoretically argue and empirically show that the mitigation of over-squashing
is best achieved through a combination of strong graph connectivity and non-dissipative dynamics.

11Further links between the delay term and vanishing gradients are discussed in Appendix D.2. Further, we
show that models tend to converge to the edge of chaos during training in Appendix D.3.

10

Acknowledgments and Disclosure of Funding

AA and XD thank the Oxford-Man Institute for financial support. XD also acknowledges support from
EPSRC No. EP/T023333/1. AA thanks T. Anderson Keller for engaging comments on early versions
of the manuscript, Max Welling for valuable pointers to the dynamical isometry literature. AG and
CG acknowledge funding from EU-EIC EMERGE (Grant No. 101070918). CG acknowledges
support from NEURONE, a project funded by the European Union - Next Generation EU, M4C1
CUP I53D23003600006, under program PRIN 2022 (prj. code 20229JRTZA).

References
[1] Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical

Implications. In International Conference on Learning Representations, 2021.

[2] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In International conference on machine learning, pages 1120–1128. PMLR, 2016.

[3] Adrian Arnaiz-Rodriguez and Federico Errica. Oversmoothing," oversquashing", heterophily,
long-range, and more: Demystifying common beliefs in graph machine learning. arXiv
preprint arXiv:2505.15547, 2025.

[4] Jacob Bamberger, Benjamin Gutteridge, Scott le Roux, Michael M Bronstein, and Xiaowen
Dong. On measuring long-range interactions in graph neural networks. In Forty-second
International Conference on Machine Learning, 2025.

[5] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales. Fundamenta mathematicae, 3(1):133–181, 1922.

[6] Federico Barbero, Alvaro Arroyo, Xiangming Gu, Christos Perivolaropoulos, Michael Bron-
stein, Petar Veličković, and Razvan Pascanu. Why do llms attend to the first token? arXiv
preprint arXiv:2504.02732, 2025.

[7] Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João GM Araújo,
Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses! information
over-squashing in language tasks. arXiv preprint arXiv:2406.04267, 2024.

[8] Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Gio-
vanni. Locality-aware graph-rewiring in gnns. arXiv preprint arXiv:2310.01668, 2023.

[9] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prud-
nikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm:
Extended long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

[10] Ali Behrouz and Farnoosh Hashemi. Graph Mamba: Towards Learning on Graphs with State
Space Models, 2024.

[11] Yoshua Bengio. Learning long-term dependencies with gradient descent is difficult. IEEE
transactions on neural networks, 5(2):157–166, 1994.

[12] Richard Bergna, Sergio Calvo-Ordonez, Felix L Opolka, Pietro Liò, and Jose Miguel
Hernandez-Lobato. Uncertainty modeling in graph neural networks via stochastic differ-
ential equations. arXiv preprint arXiv:2408.16115, 2024.

[13] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing
in gnns through the lens of effective resistance. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[14] Cristian Bodnar, Francesco Di Giovanni, Benjamin P. Chamberlain, Pietro Liò, and Michael M.
Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing
in GNNs, 2022.

[15] Haitz Sáez de Ocáriz Borde, Álvaro Arroyo, and Ingmar Posner. Projections of model spaces
for latent graph inference. arXiv preprint arXiv:2303.11754, 2023.

11

[16] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

[17] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs, 2014.

[18] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

[19] Sergio Calvo-Ordonez, Jiahao Huang, Lipei Zhang, Guang Yang, Carola-Bibiane Schonlieb,
and Angelica I Aviles-Rivero. Beyond u: Making diffusion models faster & lighter. arXiv
preprint arXiv:2310.20092, 2023.

[20] Sergio Calvo-Ordonez, Matthieu Meunier, Francesco Piatti, and Yuantao Shi. Partially stochas-
tic infinitely deep bayesian neural networks. arXiv preprint arXiv:2402.03495, 2024.

[21] Sergio Calvo-Ordoñez, Jonathan Plenk, Richard Bergna, Alvaro Cartea, Jose Miguel
Hernandez-Lobato, Konstantina Palla, and Kamil Ciosek. Observation noise and initialization
in wide neural networks. arXiv preprint arXiv:2502.01556, 2025.

[22] Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen
Dong, and Michael Bronstein. Beltrami flow and neural diffusion on graphs. Advances in
Neural Information Processing Systems, 34:1594–1609, 2021.

[23] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele
Rossi, and Michael M Bronstein. GRAND: Graph neural diffusion. In International Conference
on Machine Learning (ICML), pages 1407–1418. PMLR, 2021.

[24] Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional
neural networks, 2019.

[25] Peter G Chang, Gerardo Durán-Martín, Alexander Y Shestopaloff, Matt Jones, and Kevin
Murphy. Low-rank extended kalman filtering for online learning of neural networks from
streaming data. arXiv preprint arXiv:2305.19535, 2023.

[26] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep
Graph Convolutional Networks. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1725–1735. PMLR, 13–18 Jul 2020.

[27] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[28] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

[29] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering, 2017.

[30] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and
Michael M Bronstein. On over-squashing in message passing neural networks: The impact
of width, depth, and topology. In International Conference on Machine Learning, pages
7865–7885. PMLR, 2023.

[31] Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich,
and Michael M Bronstein. Graph neural networks as gradient flows: understanding graph
convolutions via energy. arXiv preprint arXiv:2206.10991, 2022.

[32] Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance filtering
for graph representation learning. In Forty-first International Conference on Machine Learning,
2024.

[33] Gerardo Duran-Martin, Matias Altamirano, Alexander Y Shestopaloff, Leandro Sánchez-
Betancourt, Jeremias Knoblauch, Matt Jones, François-Xavier Briol, and Kevin Murphy.
Outlier-robust kalman filtering through generalised bayes. arXiv preprint arXiv:2405.05646,
2024.

12

[34] Gerardo Duran-Martin, Leandro Sánchez-Betancourt, Alexander Y Shestopaloff, and Kevin
Murphy. Bone: a unifying framework for bayesian online learning in non-stationary environ-
ments. arXiv preprint arXiv:2411.10153, 2024.

[35] Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to
Graphs. AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

[36] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems, volume 35, pages 22326–22340. Curran Associates, Inc., 2022.

[37] Moshe Eliasof, Alessio Gravina, Andrea Ceni, Claudio Gallicchio, Davide Bacciu, and Carola-
Bibiane Schönlieb. Graph Adaptive Autoregressive Moving Average Models. In Forty-second
International Conference on Machine Learning, 2025.

[38] Moshe Eliasof, Eldad Haber, and Eran Treister. Pde-gcn: Novel architectures for graph
neural networks motivated by partial differential equations. Advances in neural information
processing systems, 34:3836–3849, 2021.

[39] Rainer Engelken and Fred Wolf. Lyapunov spectra of chaotic recurrent neural networks.
Physical Review Research, 5(4):043044, 2023.

[40] Bastian Epping, Alexandre René, Moritz Helias, and Michael T Schaub. Graph neural networks
do not always oversmooth. arXiv preprint arXiv:2406.02269, 2024.

[41] Ben Finkelshtein, Xingyue Huang, Michael M Bronstein, and Ismail Ilkan Ceylan. Cooperative
graph neural networks. In Forty-first International Conference on Machine Learning, 2024.

[42] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

[43] Simon Geisler, Arthur Kosmala, Daniel Herbst, and Stephan Günnemann. Spatio-spectral graph
neural networks. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
49022–49080. Curran Associates, Inc., 2024.

[44] Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros.
On the trade-off between over-smoothing and over-squashing in deep graph neural networks.
In Proceedings of the 32nd ACM international conference on information and knowledge
management, pages 566–576, 2023.

[45] M Gori, G Monfardini, and F Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pages 729–734. IEEE, 2005.

[46] Alessio Gravina and Davide Bacciu. Deep Learning for Dynamic Graphs: Models and
Benchmarks. IEEE Transactions on Neural Networks and Learning Systems, 35(9):11788–
11801, 2024.

[47] Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN: a stable
architecture for Deep Graph Networks. In The Eleventh International Conference on Learning
Representations, 2023.

[48] Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane
Schönlieb. On Oversquashing in Graph Neural Networks Through the Lens of Dynamical
Systems. Proceedings of the AAAI Conference on Artificial Intelligence, 39(16):16906–16914,
Apr. 2025.

[49] Alessio Gravina, Claudio Gallicchio, and Davide Bacciu. Non-dissipative Propagation by
Randomized Anti-symmetric Deep Graph Networks. In Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pages 25–36, Cham, 2025. Springer Nature
Switzerland.

13

[50] Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohnfeldt.
Long Range Propagation on Continuous-Time Dynamic Graphs. In Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pages 16206–16225. PMLR, 21–27 Jul 2024.

[51] Alessio Gravina, Daniele Zambon, Davide Bacciu, and Cesare Alippi. Temporal graph
odes for irregularly-sampled time series. In Kate Larson, editor, Proceedings of the Thirty-
Third International Joint Conference on Artificial Intelligence, IJCAI-24, pages 4025–4034.
International Joint Conferences on Artificial Intelligence Organization, 8 2024.

[52] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[53] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with
structured state spaces. In International Conference on Learning Representations, 2021.

[54] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature repre-
sentations in product spaces. In ICLR, 2019.

[55] Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni.
DRew: dynamically rewired message passing with delay. In International Conference on
Machine Learning, pages 12252–12267. PMLR, 2023.

[56] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[57] Ali Hariri, Álvaro Arroyo, Alessio Gravina, Moshe Eliasof, Carola-Bibiane Schönlieb, Davide
Bacciu, Kamyar Azizzadenesheli, Xiaowen Dong, and Pierre Vandergheynst. Return of
ChebNet: Understanding and Improving an Overlooked GNN on Long Range Tasks. arXiv,
abs/2506.07624, 2025.

[58] K Khalil Hassan et al. Nonlinear systems. Departement of Electrical and computer Engineer-
ing, Michigan State University, 2002.

[59] Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu.
Port-Hamiltonian Architectural Bias for Long-Range Propagation in Deep Graph Networks.
In The Thirteenth International Conference on Learning Representations, 2025.

[60] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and long-
memory tasks. In International Conference on Machine Learning, pages 2034–2042. PMLR,
2016.

[61] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[62] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs.
In Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS ’20. Curran Associates Inc., 2020.

[63] Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German National Research Center for Information
Technology GMD Technical Report, 148(34):13, 2001.

[64] Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant of
relu networks. Advances in Neural Information Processing Systems, 33:7344–7353, 2020.

[65] Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral
rewiring for addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022.

[66] Bobak T Kiani, Lukas Fesser, and Melanie Weber. Unitary convolutions for learning on graphs
and groups. arXiv preprint arXiv:2410.05499, 2024.

14

[67] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2017.

[68] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34:21618–21629, 2021.

[69] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as
deep as cnns? In Proceedings of the IEEE/CVF international conference on computer vision,
pages 9267–9276, 2019.

[70] Huidong Liang, Haitz Sáez de Ocáriz Borde, Baskaran Sripathmanathan, Michael Bronstein,
and Xiaowen Dong. Towards quantifying long-range interactions in graph machine learning: a
large graph dataset and a measurement. arXiv preprint arXiv:2503.09008, 2025.

[71] Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, and Xiaokui Xiao. Eignn: Efficient
infinite-depth graph neural networks. Advances in Neural Information Processing Systems,
34:18762–18773, 2021.

[72] Vladimir Alexandrovich Marchenko and Leonid Andreevich Pastur. Distribution of eigenvalues
for some sets of random matrices. Matematicheskii Sbornik, 114(4):507–536, 1967.

[73] Thomas Markovich. Qdc: Quantum diffusion convolution kernels on graphs, 2023.

[74] Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian
approach to oversmoothing. Advances in Neural Information Processing Systems, 36, 2024.

[75] Alexandru Meterez, Amir Joudaki, Francesco Orabona, Alexander Immer, Gunnar Ratsch,
and Hadi Daneshmand. Towards training without depth limits: Batch normalization without
gradient explosion. In The Twelfth International Conference on Learning Representations,
2024.

[76] Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approach. IEEE
Transactions on Neural Networks, 20(3):498–511, 2009.

[77] Fernando Moreno-Pino, Álvaro Arroyo, Harrison Waldon, Xiaowen Dong, and Álvaro Cartea.
Rough transformers: Lightweight and continuous time series modelling through signature
patching. Advances in Neural Information Processing Systems, 37:106264–106294, 2024.

[78] Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On
second order behaviour in augmented neural odes. Advances in neural information processing
systems, 33:5911–5921, 2020.

[79] Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. arXiv preprint arXiv:1905.09550, 2019.

[80] Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power
for Node Classification. In International Conference on Learning Representations, 2020.

[81] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In
International Conference on Machine Learning, pages 26670–26698. PMLR, 2023.

[82] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th International Conference on International
Conference on Machine Learning, volume 28, pages III–1310, 2013.

[83] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. In International Conference on Learning Represen-
tations, 2020.

[84] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. Advances in neural information
processing systems, 30, 2017.

15

[85] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In The Eleventh International Conference on Learning Representations,
2023.

[86] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. Advances in neural
information processing systems, 29, 2016.

[87] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in
Neural Information Processing Systems, 35, 2022.

[88] Andreas Roth and Thomas Liebig. Rank collapse causes over-smoothing and over-correlation
in graph neural networks. In Learning on Graphs Conference, pages 35–1. PMLR, 2024.

[89] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential
equations for irregularly-sampled time series. Advances in neural information processing
systems, 32, 2019.

[90] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing
in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

[91] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
Bronstein. Graph-coupled oscillator networks. In International Conference on Machine
Learning, pages 18888–18909. PMLR, 2022.

[92] Haitz Sáez de Ocáriz Borde, Alvaro Arroyo, Ismael Morales, Ingmar Posner, and Xiaowen
Dong. Neural latent geometry search: product manifold inference via gromov-hausdorff-
informed bayesian optimization. Advances in Neural Information Processing Systems, 36,
2024.

[93] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[94] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE transactions on neural networks, 20(1):61–80,
2008.

[95] Michael Scholkemper, Xinyi Wu, Ali Jadbabaie, and Michael T Schaub. Residual con-
nections and normalization can provably prevent oversmoothing in gnns. arXiv preprint
arXiv:2406.02997, 2024.

[96] Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing
problem on gnns: Current methods, benchmarks and challenges, 2023.

[97] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked
Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. In
Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artifi-
cial Intelligence, IJCAI-21, pages 1548–1554. International Joint Conferences on Artificial
Intelligence Organization, 8 2021. Main Track.

[98] Alessandro Sperduti. Encoding labeled graphs by labeling raam. Advances in Neural Informa-
tion Processing Systems, 6, 1993.

[99] Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. CRC press, 2018.

[100] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
arXiv preprint arXiv:2111.14522, 2021.

[101] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. ArXiv, 2018.

16

[102] Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024.

[103] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the Diffusion Process
in Linear Graph Convolutional Networks. In Advances in Neural Information Processing
Systems, volume 34, pages 5758–5769. Curran Associates, Inc., 2021.

[104] Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (Graph) Transformers Induced by Energy Constrained Diffusion. In The Eleventh
International Conference on Learning Representations, 2023.

[105] Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in
attention-based graph neural networks. Advances in Neural Information Processing Systems,
36:35084–35106, 2023.

[106] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[107] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S Schoenholz.
A mean field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

[108] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 40–48, New York,
New York, USA, 20–22 Jun 2016. PMLR.

[109] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
Neural Information Processing Systems, 34:28877–28888, 2021.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All the claims found in the abstract and introduction are supported by the
results and theorems discussed in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, this is included in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

18

Justification: Yes, all assumptions are stated and proofs can be found in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, datasets are publicly available and the hyperparameters used in the code
is in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we follow the standard procedure for each individual dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the results in the format “mean ˘ standard error".
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided information on the GPU used in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our submission abides by the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential positive and negative societal impacts after the conclusion
section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The release of our data and models does not pose a direct risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide citations for all sources of code and/or data used, both in the paper
and in the accompanying repository.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects were involved in the experiments con-
ducted for this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects were involved in the experiments con-
ducted for this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not a central component of the paper in terms of methodological
advancements.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

A Theoretical Results

A.1 Proofs of Jacobian Theorems

Definition A.1 (Vectorization and Kronecker product). Let X P Rmˆn be a real matrix. The
vectorization of X, denoted vecpXq, is the pmnq-dimensional column vector obtained by stacking
the columns of X:

vecpXq “

»

—

—

—

–

X:,1

X:,2

...
X:,n

fi

ffi

ffi

ffi

fl

P Rmn.

One key property of the vectorization operator is its relationship to the Kronecker product. In
particular, for compatible matrices A,B,C, we have

vec
`

ABC
˘

“ pCT b Aq vec
`

B
˘

.

Here, b denotes the Kronecker product.
Definition A.2 (Wishart matrix). Let X P Rnˆp be a matrix with i.i.d. entries Xij „ N p0, σ2q. The
random matrix XTX P Rpˆp is called a Wishart matrix (up to a scaling factor). In particular, such a
matrix follows the Wishart distribution Wppn, σ2q in certain parametrizations.
Definition A.3 (Marchenko–Pastur distribution. [72]). In the high-dimensional limit (n, p Ñ 8 at
a fixed ratio p{n Ñ c), the empirical eigenvalue distribution of the (properly normalized) Wishart
matrix XTX converges to the Marchenko–Pastur distribution. Concretely, if X P Rnˆp has entries
N p0, 1q, then the eigenvalues of XTX lie within rp1 ´

?
cq2, p1 `

?
cq2s for large n, p, and their

density converges to

fMPpxq “
1

2πc x

a

px´ aminqpamax ´ xq, x P ramin, amaxs,

with amin “ p1 ´
?
cq2 and amax “ p1 `

?
cq2. If the entries of X have variance σ2 ‰ 1, then the

support is rescaled by σ2.

Lemma A.4 (Spectrum of the Jacobian’s singular values). Let Hpkq “ Ã Hpk´1q W be a linear
GCN layer, where Ã has eigenvalues tλ1, . . . , λnu and WWT has eigenvalues tµ1, . . . , µdk

u.
Consider the layer-wise Jacobian J “ B vec

`

Hpkq
˘

{B vec
`

Hpk´1q
˘

, Then the squared singular
values of J are given by the set

␣

λ2i µj

ˇ

ˇ i “ 1, . . . , n, j “ 1, . . . , dk
(

.

Proof. By the property of vectorization (Definition A.1), we have

vec
`

ÃHpk´1q W
˘

“ pWT b Ãq vec
`

Hpk´1q
˘

.

Hence
J “ WT b Ã.

By properties of the Kronecker product, the eigenvalues of JJT are the products of the eigenvalues
of WTW and Ã2. Equivalently,

spec
`

JJT
˘

“ spec
`

WTW
˘

b spec
`

Ã2
˘

,

where spec is the vectorized version of the set of eigenvalues of a matrix. If WTW has eigenvalues
tµju

dk
j“1 and Ã2 has eigenvalues tλ2i uni“1, then the squared singular values of J are precisely λ2i µj

for i P t1, . . . , nu, j P t1, . . . , dku.

Theorem A.5 (Jacobian singular-value distribution). Assume the setting of Lemma 3.1, and let
W P Rdk´1ˆdk be initialized with i.i.d. N p0, σ2q entries. Denote the squared singular values of
the Jacobian by γi,j . Then, for sufficiently large dk the empirical eigenvalue distribution WWT

converges to the Marchenko-Pastur distribution. Then, the mean and variance of each γi,j are

E
“

γi,j
‰

“ λ2i σ
2, (15)

Var
“

γi,j
‰

“ λ4i σ
4 dk
dk´1

. (16)

25

Proof. In this setting, WWT is Wishart if W has i.i.d. Gaussian entries. Its eigenvalues µj thus
converge to the Marchenko–Pastur distribution for large dk. From standard results on the moments of
Wishart eigenvalues,

Epµjq “ σ2, Varpµjq “ σ4 dk
dk´1

.

Since γi,j “ λ2i µj , we obtain

Erγi,js “ λ2i Erµjs “ λ2i σ
2,

Varrγi,js “ λ4i Varpµjq “ λ4i σ
4 dk
dk´1

.

This completes the proof.

Proposition A.6 (Effect of state-space matrices). Consider the setting in (9) and Γ “

B vecpFθpHpkqqq{B vecpHpkqq. Let b denote the Kronecker product. Then, the norm of the vectorized
Jacobian J is bounded as:

}J}2 ď }Idk
b Λ}2 ` }Idk

b B}2}Γ}2

“ }Λ}2 ` }B}2}Γ}2, (17)

Proof. We start by writing
J “ pIdk

b Λq ` pIdk
b BqΓ.

Using the triangle inequality for the spectral norm,

}J}2 “
›

›pIdk
b Λq ` pIdk

b BqΓ
›

›

2
ď }Idk

b Λ}2 ` }pIdk
b BqΓ}2.

By the submultiplicative property of the spectral norm,

}pIdk
b BqΓ}2 ď }Idk

b B}2 }Γ}2.

Since }Idk
b M}2 “ }M}2 for any matrix M, we obtain

}Idk
b Λ}2 “ }Λ}2 and }Idk

b B}2 “ }B}2.

Hence,
}J}2 ď }Λ}2 ` }B}2 }Γ}2.

A.2 Proofs to Smoothing Theorems

Definition A.7 (Lipschitz continuity). A function f : Rn Ñ Rm is Lipschitz continuous if there
exists an L ě 0 such that for all x,y P Rn, we have that:

∥fpxq ´ fpyq∥ ď L ∥x ´ y∥ ,

where we equip Rn and Rm with their respective norms. The minimal such L is called the Lipschitz
constant of f .

The notion of Lipschitz continuity is effectively a bound on the rate of change of a function. It is
therefore not surprising that one can relate the Lipschitz constant to the Jacobian of f . In particular,
we state a useful and well-known result [58] that relates the (continuous) Jacobian map Jf of a
continuous function f : Rn Ñ Rm to its Lipschitz constant L ě 0. In particular, the Lipschitz
constant is is the supremum of the (induced) norm of the Jacobian taken over its domain.

Lemma A.8 ([58]). Let f : Rn Ñ Rm be continuous, with continuous Jacobian Jf . Con-
sider a convex set U Ď Rn If there exists L ě 0 such that ∥Jf pxq∥ ď L for all x P U , then
∥fpxq ´ fpyq∥ ď L ∥x ´ y∥. In particular, we have that the Lipschitz constant of f L is:

L “ sup
xPU

∥Jf pxq∥ .

26

The condition of U being convex is a technicality that is easily achieved in practice with the assump-
tion that input features are bounded and that therefore they live in a convex hull U . In particular, at
each layer k one can also find a convex hull Uk such that the image of the layer k ´ 1 is contained
within Uk. We highlight that for non-linearities such as ReLU, there are technical difficulties when
taking this supremum as there is a non-differentiable point at 0. This can be circumvented by consid-
ering instead a supremum of the (Clarke) generalized Jacobian [64]. We ignore this small detail in
this work for simplicity as for ReLU this is equivalent to considering the supremum over U{0, i.e.
simply ignoring the problematic point 0.

Lemma A.9. Consider a GNN layer fℓ as in Equation 3, with non-linearity σ such that σp0q “ 0
(e.g. ReLU or tanh). Then, fp0q “ 0, i.e. 0 is a fixed point of f .

Proof. fℓp0q “ σ
´

Â0W
¯

“ σ p0q “ 0.

Proposition A.10 (Convergence to unique fixed point.). Let ∥fℓ∥Lip ď 1 ´ ϵ for some ϵ ą 0 for all
ℓ “ 1 . . . L. Then, for H P U Ď Rnd, we have that:

∥fpHq∥ ď p1 ´ ϵqL ∥H∥ ă ∥H∥ . (18)

In particular, as L Ñ 8, fpHq Ñ 0.

Proof. By Lipschitz regularity of f over U , we have that ∥fpxq ´ fpyq∥ ď ∥f∥Lip ∥x ´ y∥. Recall
that by Lemma 4.2, we have that fp0q “ 0. This implies:

∥fpHq ´ fp0q∥ “ ∥fpHq∥
ď ∥f∥Lip ∥H∥

ď

L
ź

ℓ“1

∥fℓ∥Lip ∥H∥

ă ∥H∥ ,

where in the last step we use the fact that Lipschitz constants are submultiplicative and that for all ℓ
we have that ∥fℓ∥Lip ă 1 by assumption. The final statement is immediate by the Banach fixed point
theorem and by noting that fℓ all share the same fixed point 0 by Lemma 4.2.

Proposition A.11 (Contractions decrease Dirichlet energy.). Let f be a GNN, |E| be the number of
edges in G, and H P Rnd. We have the following bound:

EpfpHqq ď 2|E|
L
ź

ℓ“1

∥fℓ∥2Lip ∥H∥2 . (19)

In particular, if ∥fℓ∥Lip ď 1 ´ ϵ for some ϵ ą 0 for all ℓ “ 1 . . . L, then as L Ñ 8, EpfpHqq Ñ 0.

Proof. We denote by fpHq|i P Rd, the d-dimensional evaluation of f(H) at node i. We make use of
the inequality ∥fpHq|i∥ ď ∥H∥.

27

EpfpHqq “
ÿ

i„j

∥fpHq|i ´ fpHq|j∥2

ď
ÿ

i„j

∥fpHq|i∥2 ` ∥fpHq|j∥2

ď 2
ÿ

i„j

∥fpHq∥2

ď 2 ∥f∥2Lip

ÿ

i„j

∥H∥2

“ 2 ∥f∥2Lip |E| ∥H∥2

ď 2
L
ź

ℓ“1

∥fℓ∥2Lip |E| ∥H∥2 .

It is then clear that, if ∥fℓ∥Lip ď 1 ´ ϵ for some ϵ ą 0 for all ℓ “ 1 . . . L,
śL

ℓ“1 ∥fℓ∥
2
Lip ď p1 ´ ϵq2L Ñ 0 as L Ñ 8.

We note that a similar procedure was used in [80, 18] for the specific case of GCNs. Our procedure is
more general, as we use the Lipschitz constant of the network, which only requires knowledge of the
input-output Jacobian of each layer of the network. In the case of GCN, this would encapsulate the
dynamics of the adjacency and weight matrix, and also allows us to understand how any GNN (no
matter how complex its internal structure) affects the Dirichlet energy, without requiring the use of
heavy assumptions or simplifications for mathematical tractability.

B kGNN-SSM: A simple method to combine high connectivity and
non-dissipativity.

To test our assumption on more complex downstream tasks, we construct a minimal model that
combines high connectivity with non-dissipativity. To guarantee high connectivity, we employ a
k-hop aggregation scheme. In particular, each node i at layer k will aggregate information as

a
pkq

i,k “ ψk
´

th
pkq

j : j P Nkpiqu

¯

, (20)

where
Nkpiq :“ tj P V : dGpi, jq “ ku

and dG : V ˆ V Ñ Rě0 is the length of the minimal walk connecting nodes i and j. This approach
avoids a large amount of information being squashed into a single vector, and is more in line with the
recurrent paradigm. We note that this scheme is similar to [32], but in this case we do not consider
different block or parameter sharing, and our recurrent mechanism is based on an untrained SSM
layer.

We denote a GNN endowed with this rewiring scheme and wrapped with our SSM layer as kGNN-SSM.

C Experimental Details

In this section, we provide additional experimental details, including dataset and experimental setting
description and employed hyperparameters.

Over-smoothing task. In this task, we aim to analyze the dynamics of the Dirichlet energy across
three different graph topologies: Cora [108], Texas [83], and a grid graph. The Cora dataset is a
citation network consisting of 2,708 nodes (papers) and 10,556 edges (citations). The Texas dataset
represents a webpage graph with 183 nodes (web pages) and 499 edges (hyperlinks). Lastly, the grid
graph is a two-dimensional 10 ˆ 10 regular grid with 4-neighbor connectivity. For all three graphs,
node features are randomly initialized from a normal distribution with a mean of 0 and variance of
1. These node features are then propagated over 80 layers (or iterations) using untrained GNNs to
observe the energy dynamics.

28

Table 3: The grid of hyperparameters employed during model selection for the graph property
prediction tasks (GraphProp), and peptides-func and peptides-struct.

Hyperparameters Values
GraphProp peptides- (func, struct)

Optimizer Adam AdamW
Learning rate 0.003 0.001
Weight decay 10´6 -
N. Layers 10 40,17
embedding dim 20, 30 105
σ tanh ReLU
eigpΛq 0.5, 0.75, 1.0 1.0

Graph Property Prediction. This experiment consists of predicting two node-level (i.e., eccentric-
ity and single source shortest path) and one graph-level (i.e., graph diameter) properties on synthetic
graphs sampled from different distribution, i.e., Erdős–Rényi, Barabasi-Albert, grid, caveman, tree,
ladder, line, star, caterpillar, and lobster. Each graph contains between 25 and 35 nodes, with nodes
assigned with input features sampled from a uniform distribution in the interval r0, 1q. The target
values correspond to the predicted graph property. The dataset consists of 5,120 graphs for training,
640 for validation and 1,280 for testing.

We employ the same experimental setting and data outlined in [47]. Each model is designed as
three components: the encoder, the graph convolution, and the readout. We perform hyperparameter
tuning via grid search, optimizing the Mean Square Error (MSE). The models are trained using the
Adam optimizer for a maximum of 1500 epochs, with early stopping based on the validation error,
applying a 100 epochs patience. For each model configuration, we perform 4 training runs with
different weight initializations and report the average results. We report in Table 3 the employed grid
of hyperparameters.

Long-Range Graph Benchmark. We consider the peptides-func and peptides-struct
datasets from [36]. Both datasets consist of 15,535 graphs, where each graph corresponds to
1D amino acid chain (i.e., peptide), where nodes are the heavy atoms of the peptide and edges are the
bonds between them. peptides-func is a multi-label graph classification dataset whose objective
is to predict the peptide function, such as antibacterial and antiviral function. peptides-struct is a
multi-label graph regression dataset focused on predicting the 3D structural properties of peptides,
such as the inertia of the molecule and maximum atom-pair distance.

We use the same experimental setting and splits from [36]. We perform hyperparameter tuning
via grid search, optimizing the Average Precision (AP) in the Peptides-func and Mean Absolute
Error (MAE) in the Peptide-struct. The models are trained using the AdamW optimizer for a
maximum of 300 epochs. For each model configuration, we perform four training runs with different
weight initializations and report the average results. We report in Table 3 the employed grid of
hyperparameters.

Tested Hyperparameters. In Table 3 we report the grid of hyperparameters employed in our
experiments by our method.

All experiments were run on a single NVIDIA RTX4090 GPU.

D Additional empirical results

In this section, we propose additional empirical results on over-smoothing and over-squashing, as
well as the eigendistribution of the layerwise Jacobians of various standard GNNs.

D.1 Additional Over-Smoothing Results

Here, we include additional results related to over-smoothing experiments. Figure 6 shows the effect
of ||Λ||2 in GCN-SSM on different graph structures (similarly Figure 7 for GAT-SSM), showing that

29

lower Jacobian norms leads to a rapid decay of the Dirichlet energy, whereas values closer to one
result in a more stable energy evolution. This result is also confirmed by Figure 8 and Figure 9. The
former presents the vectorized Jacobian for ADGN [47], SWAN [48], and PHDGN [59] on Cora,
while the latter the Dirichlet energy evolution of different models on different topologies. Notably, in
Figure 9, ADGN, SWAN, and PHDGN exhibit stable Dirichlet energy across layers, and Figure 8
reveals that these Jacobian norms are close to one. These results confirm that stable dynamics also
ensure a non-decaying Dirichlet energy, effectively preventing over-smoothing.

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

gy

Cora, GCN

λmax=0.25

λmax=0.5

λmax=0.75

λmax=1

λmax=1.05

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

gy

GCN, Grid

λmax=0.25

λmax=0.5

λmax=0.75

λmax=1

λmax=1.05

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

gy

GCN, Texas

λmax=0.25

λmax=0.5

λmax=0.75

λmax=1

λmax=1.05

Figure 6: Dirichlet Energy evolution of GCN-SSM for different ||Λ||2 on different graph topologies.
Left: Cora. Middle: Grid graph. Right: Texas.

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

g
y

GAT, Cora

λmax=0.25

λmax=0.5

λmax=0.75

λmax=1

λmax=1.05

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

g
y

GAT, Grid

λmax=0.25

λmax=0.5

λmax=0.75

λmax=1

λmax=1.05

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

g
y

GAT, Texas

λmax=0.25

λmax=0.5

λmax=0.75

λmax=1

λmax=1.05

Figure 7: Dirichlet Energy evolution of GAT-SSM for different ||Λ||2 on different graph topologies.
Left: Cora. Middle: Grid graph. Right: Texas.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Real

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Im
ag
in
ar
y

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Real

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Im
ag
in
ar
y

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Real

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Im
ag
in
ar
y

Figure 8: Vectorized Jacobian for ADGN [47], SWAN [48], and PHDGN [59] on Cora. Left: ADGN.
Middle: SWAN. Right: PHDGN.

D.2 Link between delay and vanishing gradients

Here, we show how the delay term in [55] is directly related to preventing vanishing gradients. We
do so by showing that adding the delay term to a GCN is effective at preventing over-smoothing,
see Figure 10, as well as by checking the histogram of eigenvalues of the Jacobian, see Figure
12. Figure 11 shows the effect of ||Λ||2 in DRew-SSM on the performance on the RingTransfer
task, showing that lower Jacobian norms leads to a rapid performance decay, i.e., poor long-range
propagation.

30

100 101

Layer

10¡16

10¡12

10¡8

10¡4

100

D
ir

ic
h
le

t
E

n
er

g
y

GCN

GAT

ADGN

SWAN

PHDGN

100 101

Layer

10¡16

10¡12

10¡8

10¡4

100

D
ir

ic
h
le

t
E

n
er

g
y

GCN

GAT

ADGN

SWAN

PHDGN

100 101

Layer

10¡16

10¡12

10¡8

10¡4

100

D
ir

ic
h
le

t
E

n
er

g
y

GCN

GAT

ADGN

SWAN

PHDGN

Figure 9: Dirichlet Energy evolution of different models on different topologies. Left: Cora. Middle:
Grid graph. Right: Texas.

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

gy

GCN

GCN-Delay

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

gy
GCN

GCN-Delay

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

D
ir

ic
h
le

t
E

n
er

gy

GCN

GCN-Delay

Figure 10: Dirichlet Energy evolution of GCN (+delay mechanism) on different topologies. Left:
Cora. Middle: Grid graph. Right: Texas.

0 50 100
#Nodes

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

GCN

DRew

DRew-SSM

DRew-SSM, eig(Λ)= 1

0 50 100
#Nodes

20

40

60

80

100

eig(Λ)=0.25
eig(Λ)=0.5
eig(Λ)=0.75
eig(Λ)=1.0

Figure 11: Left: Performance on the RingTransfer task for DRew [55]. Right: Effect of dissipativity
on performance.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y

100

101

102

103

104

105

Figure 12: Eigenvalue distribution of DRew-GCN+delay on the ring transfer task.

D.3 Graph Property Prediction

Edge-of-chaos behavior and long-range propagation. To further support our claim that mitigating
gradient vanishing is key to strong long-range performance, Figure 13 shows each method’s average
Jacobian eigenvalue distance to the edge-of-chaos (EoC) region. The figure demonstrates that methods
such as ADGN [47] and SWAN [48], which remain closer to EoC, effectively propagate information
over large graph radii, resulting in superior performance across all three tasks. Figure 14 presents
an ablation study on multiple ADGN variants, controlled by the hyperparameter γ, which governs
the positioning of the Jacobian eigenvalues (γ ă 0 places them outside the stability region, γ ą 0
inside, and γ “ 0 on the unit circle). Notably, regardless of the initial value of γ, ADGN consistently
converges towards the EoC region as performance improves.

31

0 500 1000
0.0

0.5

1.0

E
o
C

 D
is

ta
n
ce

DIAM

0 500 1000
0.0

0.5

1.0
SSSP

0 500 1000
0.0

0.5

1.0
ECC

0 500 1000
Epochs

0.0

1.0

lo
g
10

(M
S
E

)

0 500 1000
Epochs

-2.0

0.0

0 500 1000
Epochs

0.0

0.5

1.0

ADGN GCN GIN GraphCON SWAN

Figure 13: Performance on Graph Property Prediction tasks and average Jacobian eigenvalue distance
to the edge of chaos (EoC) region for different GNN models.

0 500 1000

0.0

0.2

E
oC

D
is

ta
n

ce

DIAM

0 500 1000

0.0

0.2

SSSP

0 500 1000

0.0

0.1

0.2

0.3
ECC

0 500 1000
Epochs

-0.5

0.0

0.5

1.0

lo
g 1

0
(M

S
E

)

0 500 1000
Epochs

-2.0

-1.0

0.0

1.0

0 500 1000
Epochs

0.4

0.6

0.8

ADGN(γ = −0.1) ADGN(γ = 0) ADGN(γ = 0.1) ADGN(γ = 0.5) ADGN(γ = 1)

Figure 14: Performance on Graph Property Prediction tasks and average Jacobian eigenvalue distance
to the edge of chaos (EoC) region for different ADGN dynamics, i.e., γ P r´0.1, 1s. Negative values
of γ places the eigenvalues of the ADGN Jacobian outside the stability region, otherwise for positive
values.

Complete results. Table 4 compares our method on graph property prediction tasks against a range
of state-of-the-art approaches, including GCN [67], GAT [101], GraphSAGE [56], GIN [106], GC-
NII [26], DGC [103], GRAND [23], GraphCON [91], ADGN [47], SWAN [48], PH-DGN [59], and
DRew [55]. Our method achieves exceptional results across all three tasks, consistently surpassing
MPNN baselines, differential equation-inspired GNNs, and multi-hop GNNs. These findings under-
score how combining powerful model dynamics with improved connectivity provides substantial
benefits in tasks that require long-range information propagation.

32

Table 4: Mean test set log10pMSEq(Ó) and std averaged on 4 random weight initializations on Graph
Property Prediction tasks. The lower, the better. Baseline results are reported from [47, 48, 59].

Model Diameter SSSP Eccentricity

MPNNs
GCN 0.7424˘0.0466 0.9499˘0.0001 0.8468˘0.0028

GAT 0.8221˘0.0752 0.6951˘0.1499 0.7909˘0.0222

GraphSAGE 0.8645˘0.0401 0.2863˘0.1843 0.7863˘0.0207

GIN 0.6131˘0.0990 -0.5408˘0.4193 0.9504˘0.0007

GCNII 0.5287˘0.0570 -1.1329˘0.0135 0.7640˘0.0355

Differential Equation inspired GNNs
DGC 0.6028˘0.0050 -0.1483˘0.0231 0.8261˘0.0032

GRAND 0.6715˘0.0490 -0.0942˘0.3897 0.6602˘0.1393

GraphCON 0.0964˘0.0620 -1.3836˘0.0092 0.6833˘0.0074

ADGN -0.5188˘0.1812 -3.2417˘0.0751 0.4296˘0.1003

SWAN -0.5981˘0.1145 -3.5425˘0.0830 -0.0739˘0.2190

PH-DGN -0.5473˘0.1074 -4.2993˘0.0721 -0.9348˘0.2097

Graph Transformers
GPS -0.5121˘0.0426 -3.5990˘0.1949 0.6077˘0.0282

Multi-hop GNNs
DRew-GCN -2.3692˘0.1054 -1.5905˘0.0034 -2.1004˘0.0256

+ delay -2.4018˘0.1097 -1.6023˘0.0078 -2.0291˘0.0240

Our
GCN-SSM -2.4312˘0.0329 -2.8206˘0.5654 -2.2446˘0.0027

+ eigpΛq « 1 -2.4442˘0.0984 -3.5928˘0.1026 -2.2583˘0.0085

+ k-hop -3.0748˘0.0545 -3.6044˘0.0291 -4.2652˘0.1776

D.4 Additional comments on LRGB tasks

In our experiments with the LRGB tasks, we observe that the peptides-func task exhibits signifi-
cantly longer-range dependencies than the peptides-struct task. Notably, the peptides-struct
task performs best when the model is not initialized at the edge of chaos and requires fewer layers.
Conversely, on peptides-func the model performs best when it is set to be at the edge of chaos,
and shows a monotonic performance increase with additional layers, with optimal results achieved
when using forty layers.

Furthermore, we highlight that while our experiments with a small hidden dimension adhere to
the parameter budget established in [36], increasing the hidden dimension (d Ò) to 256 causes us
to exceed the 500k parameter budget limit, even though our model maintains the same number of
parameters as a regular GCN. While this budget is a useful tool to benchmark different models, we
highlight that this restriction results in models running with fewer layers and small hidden dimensions.
However, a large number of layers is crucial for effective long-range learning in graphs that are not
highly connected, while increasing the hidden dimension also directly affects the bound in Theorem
5.1. As such, we believe that this parameter budget indirectly benefits models with higher connectivity
graphs, inadvertently hindering models that do not perform edge addition.

To further strengthen the comparison on real-world tasks, in Table 5 we report results against GRED
[32], a method inspired by state-space models (SSMs). We note that our model achieves superior
performance on peptides-func, while GRED performs better on peptide-struct. Although GRED
shares a few conceptual similarities with our approach, we emphasize several key differences: (i)
GRED aggregates information from multiple neighborhoods at each layer, whereas our model
aggregates from a single-hop neighborhood per layer. (ii) GRED’s SSM update operates inward,
beginning with distant nodes and moving toward the root node, whereas in our model each additional
layer aggregates from progressively more distant neighbors, moving outward. This propagation
pattern is more consistent with the standard MPNN framework. (iii) Our model employs a fixed
and non-learned state matrix, removing the need for additional constraints to guarantee stable
learning dynamics. (iv) Unlike GRED, we do not perform weight sharing when applying k-hop
aggregation. Finally, we stress that the primary goal of our model design is not to achieve state-of-

33

the-art performance (as is the case with GRED) but rather to construct a minimal and controllable
framework that allows us to isolate and study specific phenomena of interest.

Table 5: Comparison with GRED on the LRGB dataset. d Ò adds latent dims.

Model Pept-func Pept-struct
APÒ MAEÓ (ˆ10´2)

kGCN-SSM 69.02˘0.22 28.98˘0.32

`d Ò 72.12˘0.27 27.01˘0.07

GRED 70.85˘0.27 25.03˘0.19

D.5 Scalability Results

In terms of runtime, GNN-SSM was deliberately designed to retain the simplicity and efficiency of its
backbone (e.g., GCN). Our formulation introduces only two additional (fixed) matrices to store w.r.t.
its backbone, and involves one element-wise addition and two extra matrix multiplications per layer.
These additions have a negligible impact on memory and runtime. Consequently, our model retains
the complexity of its backbone while substantially improving performance, see Tables 6 and 7 below.

Table 6: Epoch Time (sec.) for GCN and GCN-SSM when performing node classification of the Cora
dataset.

Layers GCN GCN-SSM
5 0.009 0.009

10 0.015 0.017
20 0.025 0.031
30 0.041 0.046
40 0.053 0.051
50 0.066 0.075
60 0.078 0.089

Table 7: Accuracy on ogbn-arxiv[62].
Model ogbn-arxiv

MPNNs
GAT 72.01˘0.20

GCN 70.84˘0.23

GraphSAGE 71.49˘0.27

Graph Transformers
NodeFormer 59.90˘0.42

GraphGPS 70.92˘0.04

GOAT 72.41˘0.40

EXPHORMER + GCN 72.44˘0.28

SPEXPHORMER 70.82˘0.24

Our
GCN-SSM 72.49˘0.16

D.6 State-Space Matrices Sensitivity

Empirically, we have that sharing Λ across layers did not alter performance: using a single fixed Λ
yielded the same accuracy as training each Λi with identical dynamics. Fixing Λ ensures the system
remains at the edge of chaos during training. Preserving this prior under a trainable Λ would require
additional constraints, in line with stabilization techniques used in RNN architectures, see Table 8
below.

34

Table 8: Performance comparison for different design choices when performing node classification
of the Cora dataset.

Layers GCN-SSM (shared) GCN-SSM (no sharing) GCN-SSM (trained Λ)
5 76.3 78.3 71.3

10 78.5 78.5 71.1
20 81.2 77.8 49.9
30 78.1 79.6 33.8
40 77.5 78.5 31.9
50 76.4 74.6 31.9
60 77.8 77.4 31.9

D.7 Preliminary Results on Heterophilic benchmarks

To further complement the empirical evaluation of our method, we conducted experiments on three
heterophilic tasks from [85]: Amazon Ratings, Roman Empire, and Minesweeper. We compared
GCN-SSM against the original GCN results reported in [85], as well as a GCN with the same depth
as our model (denoted GCN (Optimal L)). The depth for each task was tuned based on validation
performance, resulting in optimal layer counts of 4 for Amazon Ratings, 9 for Roman Empire, and
12 for Minesweeper. Results, averaged over three random seeds, are reported in Table 9 and show
that GCN-SSM outperforms the original GCN by approximately 8 accuracy points on average, and
exceeds GCN (Optimal L) by 31 accuracy points.

Table 9: Performance comparison of our GCN-SSM with respect to the original GCN results reported
in [85], as well as a GCN with the same depth as our model (denoted GCN (Optimal L)) on the
heterophilic datasets from [85].

Model Amazon Ratings Roman Empire Minesweeper
AccÒ AccÒ AUCÒ

GCN ([85]) 47.70˘0.63 73.69˘0.74 89.75˘0.52

GCN (Optimal L) 47.57˘0.67 33.83˘0.41 60.84˘0.89

GCN-SSM (Optimal L) 51.72˘0.33 88.37˘0.60 96.02˘0.52

E Additional Details and Comments on Over-Smoothing

E.1 Choice of Feature Distance Measure

Throughout the paper we adopt the unnormalized Dirichlet energy

EpHq “ tr
`

HJLH
˘

“
ÿ

pu,vqPE

}hu ´ hv}22,

This choice aligns with several well cited papers in the over-smoothing literature [91, 90]. Moreover,
the connection we unravel between vanishing gradients and over-smoothing also explains why
techniques borrowed from recurrent architectures [91, 47] are expected to mitigate feature collapse in
GNNs.

While our theoretical analysis focuses on EpHq for mathematical simplicity, we will now also evaluate
an alternative smoothness measure to ensure our insights generalize beyond this choice. In particular,
we use the smoothness measure employed in other over-smoothing works [105, 95]

µpHq “
›

›H ´ 1γH

›

›

F
, γH “

1JH

N
,

We report in Figure 15 empirical experiments on this measure, which empirically shows that the
qualitative trends predicted by our unnormalized-energy theory also manifest under this alternative
metric. Although formal equivalence between these energies and our collapse proofs is not explored,

35

this empirical alignment provides strong justification for the broader applicability of our analysis to
the broader literature on oversmoothing.

1 2 4 8 16 32 64
Layer

10¡16

10¡11

10¡6

10¡1

||X
−

1γ
X
|| F

GCN

λmax=0.25

λmax=0.5

λmax=0.75

λmax=1

λmax=1.05

Figure 15: GCN-SSM on Cora with µpHq smoothing measure.

E.2 The effect of the Jacobian spectrum on node classification performance

In order to assess how the spectral properties of the layer-wise Jacobian influence node-classification
performance, we carried out the following two experiments on the Cora citation network.

First, we systematically varied the spectrum of the diagonal Λ matrix in our GCN-SSM backbone.
For each number of layers n P t5, 10, 20, 30, 40, 50, 60u, we set the maximal eigenvalue of Λ to
one of t1, 0.66, 0.33u, retrained the model, and recorded the best test accuracy. As shown in
Table 10, moving the spectrum of Λ away from unity leads to a pronounced degradation in accuracy,
indicating that keeping the Jacobian eigenvalues near one is crucial for stable and effective information
propagation across many layers.

Second, to isolate the contribution of the SSM backbone itself, we performed an analogous spectrum-
shaping experiment directly on the weight matrix W of a vanilla GCN (i.e. without any SSM
components). We scaled W so that its spectral radius lay near the edge of stability (spectral norm
« 1), but otherwise left the model architecture and training unchanged. Despite matching the Jacobian
stability regime, these “spectrally tuned” vanilla GCNs failed to achieve the accuracy improvements
seen with the full GCN-SSM backbone (first column of Table 10). This confirms that merely tuning
W’s spectrum is insufficient: the structured state-space dynamics provided by the SSM backbone are
essential for the observed performance gains.

Table 10: Node-classification accuracy on Cora when varying the spectrum of the backbone Jacobian
(Λ) and comparing to vanilla GCN models whose weight matrix W is spectrally tuned near the edge
of stability.

nlayers eigpΛq “ 1 eigpΛq “ 0.66 eigpΛq “ 0.33 eigpW q “ 1 (GCN)

5 81.30 78.10 74.00 71.90
10 78.70 61.90 56.00 33.80
20 78.90 48.00 30.20 31.80
30 80.00 39.70 18.00 22.30
40 77.90 34.60 20.30 25.60
50 77.70 29.10 24.90 23.80
60 77.70 20.50 20.40 29.10

E.3 On Residual Connections and Gating

Several prior works have employed residual connections in GNNs to counteract over-smoothing,
for example, see [69]. In fact, these residual-GNN designs can be viewed as a special case of our
approach, corresponding to the choice Λ “ I. Under this constraint, the model outperforms a
standard, memoryless GCN (see Fig. 3), but only by accumulating node features in an unstructured
way.

In order to guarantee stable propagation dynamics, the spectral properties of the propagation matrix B
play an important role: by appropriately “damping” incoming signals, one can stabilize the system’s
behavior and prevent feature collapse or explosion.

36

To highlight the role of B, we conducted an ablation study on the Cora dataset in which the
propagation matrix was removed from our method. Table 11 reports the results, showing that for
deeper networks, the inclusion of B consistently improves performance. This behavior can be
understood theoretically from the perspective of the Jacobian. While the eigenvalue structure induced
by places the system near the edge of stability (with eigenvalues close to 1 in modulus), it is B that
controls how much these dynamics "disperse" around the critical point (1,0) shown in Figure 2. In
this setting, too much dispersion can lead to instability.

Table 11: Node-classification accuracy on Cora with and without the propagation matrix B across
different number of layers.

nlayers Without B With B

2 80.2 79.6
4 77.8 80.4
8 80.0 79.8

16 74.1 79.8
32 31.9 79.9
64 31.9 79.9
128 14.9 77.9
256 13.0 80.2

F Supplementary Related Work and Limitations

Long-range propagation and depth GNNs. Learning long-range dependencies on graphs involves
effectively propagating and preserving information across distant nodes. Despite recent advancements,
ensuring effective long-range communication between nodes remains an open problem [96]. Several
techniques have been proposed to address this issue, including graph rewiring methods, such as
[42, 100, 65, 8, 55, 13], which modify the graph topology to enhance connectivity and facilitate
information flow. Similarly, Graph Transformers enhance the connectivity to capture both local and
global interactions, as demonstrated by [109, 35, 97, 68, 87, 104]. Other approaches incorporate
non-local dynamics by using a fractional power of the graph shift operator [74], leverage quantum
diffusion kernels [73], regularize the model’s weight space [47, 48, 49], exploit port-hamiltonian
dynamics [59], or use a graph adaptive method based on a learnable ARMA framework [37]. Some
methods which have increased the depth of GNNs include [69, 71]. Alternative methods combine the
spatial and spectral perspective of graph propagation to enable long-range communication between
nodes, either by using spatially and spectrally parametrized graph filters [43] or spectral filters based
on Chebyshev polynomials [57]. Recent work has also proposed new datasets to test long range
dependencies [70], as well as ways to theoretically measure them [4].

Despite the effectiveness of these methods in learning long-range dependencies on graphs , they
primarily introduce solutions to mitigate the problem rather than establishing a unified theoretical
framework that defines its underlying cause.

Vanishing gradients in sequence modelling and deep learning. One of the primary challenges in
training recurrent neural networks lies in the vanishing (and sometimes exploding) gradient problem,
which can hinder the model’s ability to learn and retain information over long sequences. In response,
researchers have proposed numerous architectures aimed at preserving or enhancing gradients through
time. Examples include Unitary RNNs [2], Orthogonal RNNs [60], Linear Recurrent Units [81], and
Structured State Space Models [53, 52]. By leveraging properties such as orthogonality, carefully
designed parameterizations, or alternative update mechanisms, these models seek to alleviate gradient
decay and capture longer-range temporal relationships more effectively. We highlight recent work
that also extends these insights to transformer based architectures [6].

Dynamical systems and physics inspired neural networks. Since the introduction of Neural
ODEs in [27], there have been various methods that employ ideas of dynamical systems within neural
networks, including continuous-time methods [89, 78, 19, 20, 12, 77, 21] or state-space approaches
[25, 33, 34, 37]. Within graph neural networks, we highlight PDE-GCN [38], GRAND [23], BLEND
[22] and Neural Sheaf Diffusion [14] in the static graph domain, while CTAN [50] and TG-ODE [51]

37

in the temporal graph domain [46]. Other approaches which leverage other type of physics-inspired
inductive biases such as topological latent space modelling include [24, 54, 15, 92].

Broader Impact, Limitations and Future Work. We believe our work opens up a number of
interesting directions that aim to bridge the gap between graph and sequence modeling. In particular,
we hope that this work will encourage researchers to adapt vanishing gradient mitigation methods
from the sequence modeling community to GNNs, and conversely explore how graph learning ideas
can be brought to recurrent models. In our work, we mostly focused on GCN and GAT type updates,
but we believe that our analysis can be extended to understand how different choices of updates and
non-linearities affect training dynamics, which we leave for future work.

38

	Introduction
	Background and Related Work
	Message Passing Neural Networks
	Recurrent Neural Networks
	The Vanishing and Exploding Gradient Problem
	Over-smoothing, Over-squashing, and Vanishing Gradients in GNNs

	Connecting Sequence and Graph Learning through State-Space Models
	Similarities and differences between learning on sequences and graphs
	Graph convolutional and attentional models are prone to extreme gradient vanishing
	GNN-SSM: Improving the training dynamics of GNNs through state-space models

	How does Extreme Gradient Vanishing affect Over-smoothing?
	A contractive GNN leads to node feature collapse
	Empirical validation of theoretical results

	The Impact of Vanishing Gradients on Over-squashing
	Mitigating over-squashing by combining increased connectivity and non-dissipativity
	Empirical validation of claims

	Conclusion
	Theoretical Results
	Proofs of Jacobian Theorems
	Proofs to Smoothing Theorems

	kGNN-SSM: A simple method to combine high connectivity and non-dissipativity.
	Experimental Details
	Additional empirical results
	Additional Over-Smoothing Results
	Link between delay and vanishing gradients
	Graph Property Prediction
	Additional comments on LRGB tasks
	Scalability Results
	State-Space Matrices Sensitivity
	Preliminary Results on Heterophilic benchmarks

	Additional Details and Comments on Over-Smoothing
	Choice of Feature Distance Measure
	The effect of the Jacobian spectrum on node classification performance
	On Residual Connections and Gating

	Supplementary Related Work and Limitations

