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ABSTRACT

Optimization in the Bures–Wasserstein space has been gaining popularity in the
machine learning community since it draws connections between variational infer-
ence and Wasserstein gradient flows. The variational inference objective function
of Kullback–Leibler divergence can be written as the sum of the negative entropy
and the potential energy, making forward-backward Euler the method of choice.
Notably, the backward step admits a closed-form solution in this case, facilitating
the practicality of the scheme. However, the forward step is no longer exact since
the Bures–Wasserstein gradient of the potential energy involves “intractable” ex-
pectations. Recent approaches propose using the Monte Carlo method – in prac-
tice a single-sample estimator – to approximate these terms, resulting in high vari-
ance and poor performance. We propose a novel variance-reduced estimator based
on the principle of control variates. We theoretically show that this estimator has
a smaller variance than the Monte-Carlo estimator in scenarios of interest. We
also prove that variance reduction helps improve the optimization bounds of the
current analysis. We empirically demonstrate that the proposed estimator gains
order-of-magnitude improvements over previous Bures–Wasserstein methods.

1 INTRODUCTION

Variational inference (VI) (Wainwright et al., 2008; Blei et al., 2017) provides a fast and scalable al-
ternative to Markov chain Monte Carlo (MCMC), especially for inference tasks in high dimensions.
The main principle of VI is to approximate a complicated distribution π, e.g., posterior distribution
in Bayesian inference, by a simpler tractable family of distributions. The approximation µ within
the family is obtained by solving an optimization problem, providing a closed-form representation
and e.g. efficient sampling by construction. The choice of the optimization method is heavily in-
fluenced by the assumptions made on the approximation family and the information about π that
can be obtained, ranging from classical coordinate ascent algorithms for mean-field approxima-
tions for targets with conditional conjugacy structure (Blei et al., 2017) to gradient methods using
score-function approximations to avoid assumptions on the target density (Ranganath et al., 2014)
or flexible approximations parameterized with neural networks (Rezende & Mohamed, 2015).

We focus on Gaussian approximations (Honkela & Valpola, 2004; Opper & Archambeau, 2009; Xu
& Campbell, 2022; Quiroz et al., 2023) but with a particular emphasis on the recent research line
in the Wasserstein geometric viewpoint of this family (Lambert et al., 2022; Diao et al., 2023). Re-
garding the target π, we assume access to second order gradients, typically computed by automatic
differentiation, similar to the above works. Gaussian VI offers strong statistical guarantees at the
optimal solution (Katsevich & Rigollet, 2023), offers an easy way of modelling dependencies be-
tween the variables and, thanks to the Bernstein-von Mises theorem (Van der Vaart, 2000), becomes
asymptotically exact for Bayesian inference at the limit of infinite observations.

Recently, there has been emerging interest in Gaussian VI with a new geometric Riemannian op-
timization perspective (Lambert et al., 2022; Diao et al., 2023). The family of non-degenerative
Gaussian distributions can be parameterized by its mean and covariance matrix, µθ with θ = (m,Σ),
henceforth denoted as Θ = Rd × Sd++ where Sd++ is the set of d × d symmetric, positive definite
matrices. Classical VI employs conventional optimization algorithms (Paisley et al., 2012; Titsias &
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Figure 1: Left: Optimization trajectories of our method compared to SGVI (Diao et al., 2023) and
BWGD (Lambert et al., 2022). The target is a 50-dimensional Gaussian distribution, visualized
here via the marginal distributions of the first two coordinates. Each ellipse represents a contour of
a Gaussian: the black is the initial distribution, the red is the target, and the greys are intermediate
steps. Our method is dramatically more stable and finds a more accurate final approximation. Right:
the corresponding KL divergence, confirming our method is orders of magnitude more accurate.

Lázaro-Gredilla, 2014; Kucukelbir et al., 2017) to minimize the Kullback-Leibler (KL) divergence
DKL(µθ∥π) over the parameter space Θ equipped with the Euclidean geometry. Lambert et al.
(2022) argue that because the optimization problem is over the space distributions, it is more natural
to use the geometry of this space rather than the geometry of the parameter space. The space of
Gaussian distributions has a rich, meaningful and tractable geometry known as Bures–Wasserstein
(BW) geometry that benefits optimization. Lambert et al. (2022) subsequently established a theoret-
ical framework for performing VI using the BW geometry, which we adopt in this paper.

Let π(x) ∝ exp(−V (x)) be the target distribution and consider the VI problem

π̂ ∈ argmin
µ∈BW(Rd)

DKL(µ∥π), (1)

where BW(Rd) is the Bures–Wasserstein space of Gaussian distributions with non-generative co-
variance matrix. The BW space is a Riemannian manifold whose geodesic distance is the Bures–
Wasserstein distance. This setting nicely interplays the theory of optimal transport, Wasserstein
gradient flows, and variational inference. The optimization problem (1) can be reformulated as

π̂ ∈ argmin
µ∈BW(Rd)

F(µ), where F(µ) := EV (µ) + H (µ). (2)

Here, EV (µ) =
∫
V (x)dµ(x) is the potential function and H (µ) =

∫
log(µ(x))dµ(x) is the neg-

ative entropy. A conceptual and established idea to minimize a functional F is to perform gradi-
ent flow on F with respect to the geometry of BW(Rd). To be implementable, the flow must be
discretized. Lambert et al. (2022) use forward Euler discretization, resulting in a scheme named
Bures–Wasserstein stochastic gradient descent (BWGD).

Diao et al. (2023) remark that forward-backward (FB) Euler (Bauschke & Combettes, 2011) should
be used instead due to the objective’s composite nature and the entropy’s non-smoothness. This
method iteratively applies a forward step to the potential energy EV and a backward step (proximal
operator) to the negative entropy H . They also observe that the backward step in the BW space has
a closed-form solution (Wibisono, 2018). This is crucial because this step is known to be intractable
(or computationally expensive) in the full Wasserstein space (Wibisono, 2018; Salim et al., 2020;
Mokrov et al., 2021; Luu et al., 2024). Although the bottleneck of the FB Euler, which is the
backward step, has been resolved in this case, the forward step becomes problematic where one
has to compute the Bures–Wasserstein gradient of EV instead of the “friendly” Wasserstein gradient
that is just ∇V . The Bures–Wasserstein gradient is not always available in closed form, i.e., at
µ ∈ BW(Rd), it is given only implicitly by the map x 7→ Eµ∇V + (Eµ∇2V )(x−mµ) where mµ

is the mean of µ (Lambert et al., 2022). This is the orthogonal projection of the Wasserstein gradient
onto a tangent space of the Bures–Wasserstein manifold (Chewi et al., 2024). For general V , these
expectations are intractable even though the underlying distribution is a Gaussian. Diao et al. (2023)
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proposed using the Monte Carlo (MC) method with one sample to estimate these expectations at
each iteration: sample X ∼ µ and use∇V (X) and∇2V (X) as unbiased estimators for Eµ∇V and
Eµ∇2V , respectively. This scheme is called Stochastic Gaussian VI (SGVI).

The problem with SGVI building on this principle is that the Monte Carlo estimates needed for
the BW gradient are typically too noisy, particularly in high dimensions, as shown in our experi-
ments (Sect. 5). In practice, high-variance estimators require small step sizes, leading to slow and
inefficient convergence. We resolve this fundamental limitation by proposing a variance-reduced es-
timator with minimal computational overhead while providing robust theoretical guarantees. Fig. 1
shows the improvement over SGVI and BWGD in practice. Bures–Wasserstein geometry offers a
meaningful transition from the initial distribution to the target distribution, and our method follows
the path smoothly and is particularly stable around the optimum.

Contributions. We propose a novel variance-reduced estimator for Eµ∇V that does not use any
extra samples, with minimal per-iteration computational overhead, using the control variates ap-
proach (Owen, 2013). Our idea is that the variational distribution µ should be similar to the target
distribution π(x) ∝ exp(−V (x)) as µ gets closer and closer to π, so the density of µ can be used
to construct a correlated control variate for the Monte-Carlo estimator∇V (X). Sect. 3 presents the
detailed construction and its rationale.

On the theoretical side, we derive the following insights:

Thm. 1 Under a mild smoothness assumption, we prove that there is a region around the optimal
solution π̂ where our estimator has guaranteed smaller variance than the MC estimator.

Thm. 2 If V is strongly convex, we prove that the proposed estimator has a smaller variance than
the MC estimator at every µ ∈ BW(Rd) whenever µ has sufficiently large (greater than a
controllable threshold) variance.

We further show in Thm. 3 and Thm. 4 that whenever variance reduction happens along the algo-
rithm’s iterates, the effect will enter the convergence analysis and improve the optimization bounds
derived in (Diao et al., 2023). These theorems solidly back our proposed method.

On the practical side, we show that reusing the Cholesky decomposition of the covariance matrix
(needed to sample from a multivariate Gaussian) keeps the computational overhead of the control
variable negligible. Despite being only a minimal modification to the Monte Carlo estimator, the
proposed estimator achieves significant improvements in our experiments.

2 BACKGROUND

A function f : Rd → R is called L-smooth (or Lipschitz smooth) if ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥
for all x, y ∈ Rd. If f is twice continuously differentiable, we define the Laplacian operator of f as
∆f =

∑d
i=1 (∂

2/∂x2
i )f . Note that the Laplacian is the trace of the Hessian, ∆ = Tr(∇2).

2.1 BURES–WASSERSTEIN GEOMETRY

We denote by P2(Rd) the space of probability measures µ over Rd with finite second-moment, i.e.,∫
∥x∥2dµ(x) < +∞. Equipped with the Wasserstein distance

W 2
2 (µ, ν) = inf

γ∈Γ(µ,ν)

∫
X×X

∥x− y∥2dγ(x, y) (3)

where Γ(µ, ν) is the set of probability measures over X×X whose marginals are µ and ν, the space
P2(Rd) becomes the metric space called the Wasserstein space (Ambrosio et al., 2005). We call
γ ∈ Γ(µ, ν) a (transport) plan and any γ that achieves the optimal value in (3) an optimal plan. A
pair of random variables whose joint distribution is an optimal plan is called an optimal coupling
(between µ and ν). When µ is absolutely continuous with respect to the Lebesgue measure, Brenier
theorem (Brenier, 1991) asserts that the optimal plan is unique and is given by (I, T ν

µ )#µ where
T ν
µ = ∇g for some convex function g. We call T ν

µ the optimal transport map from µ to ν. Apart
from being a metric space, the Wasserstein space also enjoys some nice properties of Riemannian
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geometry. Otto’s calculus (Otto, 2001) endows the Wasserstein space with a formal Riemannian
structure, facilitating gradient flows and optimization.

We denote by BW(Rd) the space of Gaussian distributions with non-degenerate covariance ma-
trices. The Wasserstein distance between two Gaussian distributions p0 = N (m0,Σ0) and
p1 = N (m1,Σ1) is given in the closed-form formula W2

2 (p0, p1) = ∥m0 −m1∥2 + B2(Σ0,Σ1)

where B2(Σ0,Σ1) = Tr(Σ0 +Σ1− 2(Σ
1
2
0 Σ1Σ

1
2
0 )

1
2 ) is the Bures metric. The optimal transport map

is also given in a closed form in this case: T p1
p0
(x) = m1 +Σ0

− 1
2

(
Σ0

1
2Σ1Σ0

1
2

) 1
2

Σ0
− 1

2 (x−m0).

The BW space is a geodesically convex subset of the Wasserstein space, meaning that a geodesic
curve joining two Gaussians lies entirely inside the BW space. The BW space is a Riemannian
manifold in its own right. Let µ = N (m,Σ) ∈ BW(Rd), the tangent space of BW(Rd) at µ
is the space of symmetric affine maps denoted as Tµ BW(Rd) = {x 7→ S(x − m) + a | a ∈
Rd, S ∈ Sd} where Sd is the space of symmetric d × d matrices. The Riemannian metric defined
using the inner product of elements in this tangent space is identified as the L2(µ) inner product
restricted to this space. Given U, V ∈ Tµ BW(Rd), the metric is ⟨U, V ⟩µ :=

∫
⟨U(x), V (x)⟩dµ(x).

This Riemannian metric induces the geodesic distance in BW(Rd) that is given by the Wasserstein
distance. We refer to (Altschuler et al., 2021) for further discussions on BW geometry.

2.2 STOCHASTIC GAUSSIAN VI

We refer to (Diao et al., 2023) for a detailed discussion and relevant terminologies. We briefly
explain the stochastic Gaussian VI here to motivate our proposed variance reduction version in Sect.
3. Recall from (2) that we aim to minimize F(µ) = H (µ)+EV (µ) over BW(Rd). At the optimum
of F , π̂ = N (m̂, Σ̂), first-order optimality condition reads (Opper & Archambeau, 2009; Lambert
et al., 2022; Diao et al., 2023)

Eπ̂∇V = 0 and Eπ̂∇2V = Σ̂−1 (4)

which is derived by zeroing the Bures–Wasserstein gradient of the objective function.

A natural idea to minimize F over BW(Rd) is to perform gradient flow on F using the BW ge-
ometry of BW(Rd). When the gradient flow is applied over the entire Wasserstein space P2(Rd),
it corresponds to the Langevin diffusion (Jordan et al., 1998), with one of its discretizations being
an MCMC method called the unadjusted Langevin algorithm (Roberts & Tweedie, 1996). When
restricted to BW(Rd), the gradient flow can be formulated using Riemannian geometry (Do Carmo,
1992), as BW(Rd) forms a true Riemannian manifold. This flow is a curve of Gaussian distribu-
tions, characterized by the time-dependent evolution of their mean and covariance matrix. Recently,
Lambert et al. (2022) showed that this evolution is governed by Särkkä’s ODEs developed in the
context of variational Kalman filtering (Särkkä, 2007).

The negative entropy H is convex along generalized geodesics but it is a nonsmooth functional. If
V is smooth, it induces the smoothness of EV . Therefore, it is natural to apply forward-backward
Euler that alternates between two steps: at iteration k,

µk+ 1
2
= (I − η∇BWEV (µk))#µk ◁ forward step

µk+1 = argmin
µ∈BW(Rd)

{
H (µ) +

1

2η
W 2

2

(
µ, µk+ 1

2

)}
◁ backward step

where∇BW denotes the Bures–Wasserstein gradient. The backward step is also known as the proxi-
mal step in the optimization literature or the JKO (Jordan, Kinderlehrer, and Otto) step (with restric-
tion in BW(Rd)) in the context of Wasserstein gradient flow (Jordan et al., 1998). The backward
step is intractable in the full Wasserstein space and hence requires (oftentimes expensive) numer-
ical approximations (Mokrov et al., 2021; Luu et al., 2024). On the other hand, if restricted to
BW(Rd), this step admits a closed-form solution (Wibisono, 2018): let µk+ 1

2
= N (mk+ 1

2
,Σk+ 1

2
),

then µk+1 is a Gaussian distribution with mean mk+1 = mk+ 1
2

and variance matrix Σk+1 =

1
2

(
Σk+ 1

2
+ 2ηI + [Σk+ 1

2
(Σk+ 1

2
+ 4ηI)]

1
2

)
. This tractability of the backward is the main moti-

vation for (Diao et al., 2023) to study and develop FB Euler in this scenario. The forward step,
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however, is not always analytically available since the BW gradient of EV , at iterate k,
∇BWEV (µk) : x 7→ Eµk

∇V + (Eµk
∇2V )(x−mk),

involves intractable expectations. Diao et al. (2023) propose using Monte Carlo approximation for
these expectations: sample Xk ∼ µk and use bk := ∇V (Xk) and Sk := ∇2V (Xk) as unbiased
estimators for Eµk

∇V and Eµk
∇2V , respectively.

3 STOCHASTIC VARIANCE-REDUCED GAUSSIAN VI

We present our ideas on constructing stochastic variance-reduced estimators from first principles.
We recall from Sect. 2.2 that stochastic Gaussian VI approximates, at iteration k,

Eµk
∇V ≈ bk := ∇V (Xk) and Eµk

∇2V ≈ Sk := ∇2V (Xk) where Xk ∼ µk. (5)
These estimators are typically noisy. Any number of MC samples can be used, but already one is
unbiased and proposed by earlier works; we also focus on the single-sample case for computational
efficiency. We aim to design better unbiased estimators for either Eµk

∇V or Eµk
∇2V in the sense

that their variances are smaller than those of bk and Sk, building on the control variates approach
(Owen, 2013); Also see the discussions in Defazio et al. (2014); Luu (2022).

Let us first describe briefly the core idea of control variates in helping reduce the variance. Let θ
be the quantity of interest and X be an unbiased estimator for θ, i.e., EX = θ. A control variate
is a random variable Y with a known mean so that Y is correlated with X . The random variable
Z = X + c(EY − Y ), where c ∈ R, is then an unbiased estimator for θ. The variance of Z is

VarZ = VarX + c2VarY − 2cCov(X,Y ). (6)
If X,Y are highly correlated in the sense that 2Cov(X,Y ) > VarY , we immediately get VarZ <
VarX for any c ∈ (0, 1]. So, we achieve a reduction in variance by using Z. On the other hand,
if X,Y are correlated (Cov(X,Y ) > 0) but not highly correlated, we can also obtain variance
reduction effects whenever c is positive and small enough. Furthermore, given the parabolic form
with respect to c in (6), one can pinpoint the optimal value of c is c∗ := Cov(X,Y )/Var(Y ),
resulting in the maximal variance reduction VarZ = (1 − Corr(X,Y )2)VarX < VarX where
Corr(X,Y ) denotes correlation between X and Y .

We now return to our problem and seek variance-reduced estimators of the forms

b̃k := ∇V (Xk) + c(E(Zk)− Zk) and S̃k := ∇2V (Xk) + d(E(Wk)−Wk)

where c, d > 0 and Zk,Wk are a random vector and a random matrix, respectively. Let us first
focus on b̃k. As discussed, Zk should be (element-wise) highly correlated with ∇V (Xk) while
E(Zk) remains efficiently computable. We look for Zk = ∇U(Xk) so that ∇U is as close to ∇V
as possible. We are in the context of approximating π(x) by the VI distribution µk = N (mk,Σk),
so it is natural to expect that

−∇V (x) = ∇ log π(x) ≈ ∇ log f(x;mk,Σk) = −Σ−1
k (x−mk).

where f(x;mk,Σk) ∝ exp
(
− 1

2 (x−mk)
⊤Σ−1

k (x−mk)
)

is the PDF of µk. Therefore, we pro-
pose using Zk = Σ−1

k (Xk−mk) as a control variate. We have E(Zk) = 0 since E(Xk) = mk. It is
worth noting that Zk is known as the Stein/Hyvärinen score (Hyvärinen, 2005) of µk. The estimator
b̃k then becomes b̃k := ∇V (Xk)− cΣ−1

k (Xk−mk). By applying the same reasoning to S̃k, we can
immediately conclude that Wk is deterministic and equals Σ−1

k . Consequently, the control variate
does not affect Sk; we keep the standard estimator. We derive Stochastic variance-reduced Gaussian
VI (SVRGVI) as in Alg. 1 (we will discuss more about the choice of ck in Sect. 4). Note that the
only difference between Alg. 1 and the SGVI in (Diao et al., 2023) is the estimator b̃k, where the
difference is highlighted in blue.

Fig. 2 (left) demonstrates that our proposed estimator (with c = 0.9) achieves lower variance com-
pared to the standard MC estimator, while both remain unbiased estimators of Eµ∇V . In Fig. 2
(right), we vary c from 0 to 2 and calculate the empirical variance of our estimator, revealing a
parabolic pattern. Note that when c = 0, the estimator reduces to the standard estiator, and for all
values of c ∈ (0, 2), our proposed estimator consistently exhibits lower variance, with an optimal
value of c around 1. At this optimal c, the variance is reduced roughly by a factor of 10. We provide
theoretical justification for these empirical observations in Sect. 4.
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Figure 2: Left: π is a Gaussian, VI distribution µ is in the neighborhood of π. In this case, the
true gradient, i.e., the expectation Eµ∇V , can be computed exactly (in navy blue). Our proposed
estimator with c = 0.9 (light blue) has a smaller variance than the Monte Carlo estimator (grey).
These are 1,000 samples for each estimator, generated by drawing from µ and substituting the values
into the respective estimator formulas. Right: The empirical variance of our proposed estimator
when c varies from 0 to 2. Note that c = 0 corresponds to the Monte Carlo estimator.

Minimal extra computational cost Despite involving calculating the inverse of the covariance
matrix, the computational overhead is small. Sampling from multivariate normal in step 1 in Alg. 1
typically requires obtaining the Cholesky factor of the covariance matrix, which is O(d3) (Ras-
mussen & Williams, 2006) . With the Cholesky factor, obtaining the solution of the inverse of the
matrix times a vector is O(d2) (Rasmussen & Williams, 2006). As such, we can reuse this obtained
Cholesky factor in step 1 to compute the inverse in step 2, which implies that the estimator adds an
overhead of O(d2), which is naturally dominated by the O(d3) complexity of the original algorithm.

Algorithm 1 Stochastic variance-reduced Gaussian Variational Inference (SVRGVI)

Input: Target distribution π(x) ∝ exp(−V (x)), initial distribution µ0 = N (m0,Σ0), step
size η > 0, number of steps N , sequence of control variate parameters {ck}N−1

k=0 where ck ∈
(0, 1],∀k ∈ {0, 1, . . . , N − 1}
for k = 0 to N − 1 do

1. Draw one sample Xk ∼ N (mk,Σk)

2. Compute estimators: b̃k ← ∇V (Xk) − ckΣ
−1
k (Xk −mk) and Sk ← ∇2V (Xk)

3. Update mean and covariance matrix:
mk+1 ← mk − ηb̃k
Mk+1 ← I − ηSk

Σk+ 1
2
←Mk+1ΣkMk+1

Σk+1 = 1
2

(
Σk+ 1

2
+ 2ηI +

[
Σk+ 1

2
(Σk+ 1

2
+ 4ηI)

] 1
2

)
end for
Output: µN = N (mN ,ΣN )

4 THEORY

In Sect. 3, we argued that, in the context of variational inference, as µk iteratively gets closer π,
∇V (Xk) is then (highly) correlated to Σ−1

k (Xk −mk), and hence we obtain a variance reduction
effect. This argument leads to the construction of the control variate in Alg. 1. One might question
whether this approach remains effective when the target distribution π is significantly distant from
the BW space. Because we are constrained to the BW space, the best we can do is to get closer to
π̂ which is the optimal solution to the problem (1). However, π̂ might still look very different from
π. Notably, in Thm. 1, we rigorously show that within a certain neighbourhood of π̂ (to be defined
later), our proposed estimator consistently reduces variance, regardless of how different π is to a
Gaussian distribution. Let us first introduce Lem. 1 to pave the way for Thm. 1 and also to discuss

6
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the optimal c in the control variate. In Lem. 1, we compute the variance of the proposed estimator
by leveraging multidimensional Stein’s lemma (Lin et al., 2019).

Lemma 1 Assume that V is continuously differentiable. Let µ = N (m,Σ) ∈ BW(Rd). Then,

E∥∇V (X)− cΣ−1(X −m)− E∇V (X)∥2︸ ︷︷ ︸
variance of our estimator

= E∥∇V (X)− E∇V (X)∥2︸ ︷︷ ︸
variance of the Monte-Carlo estimator

+ c2 Tr(Σ−1)− 2cTr(E∇2V (X))︸ ︷︷ ︸
extra term

, where X ∼ µ.

Proof of Lem. 1 is given in Appendix A.1. Lem. 1 compares the variance of the proposed estimator
and the Monte Carlo estimator at a given µ ∈ BW(Rd). Recall that the first-order optimality
condition (4) of π̂ reads Eπ̂∇2V = Σ̂−1. Consequently, at π̂, the extra term in Lem. 1 is simplified
as c(c− 2)Tr(Σ̂−1) which is negative whenever c ∈ (0, 2) and minimized for c = 1. Therefore, at
π̂, our estimator is always better than the Monte Carlo estimator for c ∈ (0, 2).

Remark 1 A practical merit of Lem. 1 is that it implies the optimal value for c to get maximum
variance reduction at µ is c∗ = Tr(Eµ∇2V )/Tr(Σ−1). Applying this to Alg. 1, we can pick the
adaptive sequence {ck} as

c∗k =
Tr(Eµk

∇2V )

Tr(Σ−1
k )

≈ Tr(Sk)

Tr(Σ−1
k )

:= ck. (7)

Again, this computation of ck incurs a negligible extra cost to Alg. 1. We also remark that around
π̂, optimality condition (4) implies the optimal value c∗ indeed is around 1.

In Thm. 1, we further show that when the Laplacian ∆V is smooth, the proposed estimator has a
smaller variance than the Monte Carlo estimator in a region around π̂.

Theorem 1 (Variance reduction around the optimal solution) Assume that the Laplacian ∆V is
ℓ-smooth. For any control variate coefficient c ∈ (0, 2), define the region around π̂ = N (m̂, Σ̂):

V(π̂, r) = {µ = N (m,Σ) : 2ℓW2(µ, π̂) + c|Tr(Σ−1)− Tr(Σ̂−1)| < r}

where r = (2− c) Tr(Σ̂−1) > 0 is the region’s radius. For any µ ∈ V(π̂, r), the proposed estimator
has a smaller variance than the Monte Carlo estimator.

Proof of Thm. 1 is given in Appendix A.2 with the main idea being that the smoothness of the
Laplacian ∆V propagates the improvement of the proposed estimator at π̂ to its neighbourhood. We
additionally observe that, for small c > 0, the region V(π̂, r) effectively reduces to the Wasserstein
ball B(π̂, ℓ−1 Tr(Σ̂−1)).

Thm. 1 applies to arbitrary π, only requiring a mild smoothness condition of its second derivative.
In the next theorem, we show that when π is strongly log-concave (π is now more similar to a
Gaussian), variance reduction happens not only around π̂ but also in many regions of interest.

Theorem 2 (Variance reduction at large-variance distributions) If V is α-strongly convex for
some α > 0, for any control variate c > 0, the proposed estimator has a smaller variance than
the Monte Carlo estimator at every µ = N (m,Σ) whenever Tr(Σ−1) < 2αd

c .

Proof of Thm. 2 is given in Appendix A.3.

Remark 2 A consequence of Thm. 2 is that we obtain variance reduction at µ = N (m,Σ) when-
ever λmin(Σ) > c

2α regardless of the mean m. Here λmin(Σ) is the smallest eigenvalue of Σ.
Note that as c is the user-specified parameter, we can gain control over the region where this effect
happens. Thm. 2 indeed provides a strong variance reduction guarantee in the context of strongly
log-concave sampling.

We further show in Thm. 3 and Thm. 4 that whenever variance reduction happens along the al-
gorithm’s iterates, the effect will propagate to the convergence analyses of (Diao et al., 2023) and
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improve their theoretical bounds. Therefore, combining with Thm. 1 and Thm. 2, the overall theory
strongly favours SVRGVI over SGVI.

Let Pk denote the information up to the beginning of iteration k, i.e., it is the σ-algebra given by
Pk = σ(X0, X1, . . . , Xk−1) for k ∈ {1, 2, . . . , N − 1} and P0 is, by convention, the trivial σ-
algebra with no information. Assuming variance reduction occurs along the algorithm’s iterates,
i.e., for k = 0, 1, . . . , N − 1, it holds

E
(
∥∇V (Xk)− ckΣ

−1
k (Xk −mk)− Eµk

∇V ∥2|Pk

)
≤ τkE

(
∥∇V (Xk)− Eµk

∇V ∥2|Pk

)
(8)

where τk ∈ [0, 1]. We also note that by conditioning on Pk we discard irrelevant past information
and the above conditional expectations are the variances at the current iteration.

We require (8) to hold along the iterates k = 0, 1, . . . , N − 1. We can, in principle, relax this by
assuming that (8) holds for all k ≥ K0 for some K0, ensuring that we are within the vicinity of π̂
(Thm. 1) and can begin analysis after this initial warm-up period.

Under condition 8, we now show the improved bounds. Similar to (Diao et al., 2023), we con-
sider log-concave and strongly-log-concave sampling, meaning that V is assumed to be convex and
strongly convex, respectively.

Theorem 3 (Convex case) Suppose that V is convex and β-smooth and the step size 0 < η ≤ 1
2β .

If variance reduction happens, i.e., τk < 1 in (8) for k = 0, 1, . . . , N − 1, then,

E
(

min
k=1,2,...,N

F(µk)

)
−F(π̂) ≲ e

1 + Cη2(1−τmax)
2

(
1

2ηN
+

Cη

2

)
W 2

2 (µ0, π̂) + 3ηβd(1 + τmax)

where τmax := max{τ0, τ1, . . . , τN−1} < 1, e ≈ 2.718 is the Euler’s number, C = 24β3λmax(Σ̂),
and ≲ is asymptotically at the limit of small η.

Proof of Thm. 3 is given in Appendix A.4.

Theorem 4 (Strongly convex case) Suppose that V is α-strongly-convex with α > 0, and 0 < η ≤
α2

48β3 . If variance reduction happens, i.e., τk < 1 in (8) for k = 0, 1, . . . , N − 1, then

EW 2
2 (µN , π̂) ≲ exp

(
−N(3− τmax)ηα

4

)
W 2

2 (µ0, π̂) +
24(1 + τmax)βηd

(3− τmax)α
(9)

where τmax := max{τ0, τ1, . . . , τN−1} < 1, and ≲ is asymptotically at the limit of small η.

Proof of Thm. 4 is given in Appendix A.5.

Remark 3 We recall the corresponding bounds for SGVI in (Diao et al., 2023, Thm 5.7, Thm. 5.8)

• Convex. E (mink=1,2,...,N F(µk))−F(π̂) ≲ eW 2
2 (µ0,π̂)
2Nη + eCη

2 W 2
2 (µ0, π̂) + 6βηd.1

• Strongly convex. EW 2
2 (µN , π̂) ≲ exp

(
−αNη

2

)
W 2

2 (µ0, π̂) +
24βηd

α .

Putting side-by-side, we see that Thm. 3 and Thm. 4 improve all coefficients of these bounds. In
particular, the scale-down involving d is expected to help in high dimensions. It is also worth noting
that even when we set τmax = 0, the noise terms in the bounds of Thm. 3 and Thm. 4 would not
disappear because of another source of randomness coming from Sk.

5 EXPERIMENTS

We demonstrate the method in a collection of controlled problems, comparing it against the recent
methods for VI in the BW manifold, namely BWGD (Lambert et al., 2022) and SGVI (Diao et al.,

1With a minor correction to the coefficients in SGVI’s bound.
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(c) d = 200

Figure 3: KL divergence for Gaussian targets of varying dimensionality.

2023). We set the step size to 1 for all algorithms, fix the covariate coefficient c = 0.9, and show
results for 10 runs, with bold line showing the average performance. The comparisons are shown as
convergence curves, as the per-iteration cost of all methods is almost identical.

We also compare against a full-rank Gaussian approximation optimised in the Euclidean geome-
try (denoted as EVI), using low-variance reparameterization gradients of Roeder et al. (2017) with
ADAM optimizer, and Laplace approximation that does not optimize the KL divergence but fits a
Gaussian distribution at the target mode; see Appendix B for details. As the per-iteration cost of
these methods is different from the BW methods, we only report the final accuracy for carefully op-
timized approximations to show how the BW methods compare against commonly used algorithms.
The Laplace approximation is omitted for the Gaussian target as it would be optimal by definition.

Gaussian targets We randomly generate the means and covariances for a multivariate Gaussian
target distribution π, considering dimensions of {10, 50, 200}. Fig. 3 demonstrates consistent sig-
nificant improvement over SGVI and BWGD. For example, for d = 200, the the difference between
SVRGVI and SGVI/BWGD is 5 orders of magnitude, 10−2 versus 103. Fig. 1 shows visually the
marginals for d = 50, providing an interpretation of the improvement seen in KL-divergence. We
also clearly outperform EVI in higher dimensions, unlike previous BW methods.

Student’s t targets We consider a multivariate Student’s t target with a degree of freedom of 4 in
200 dimensions. Fig. 4 (a) shows that our algorithm is again clearly the best. BWGD is not stable
and, on average, performs worse than even the Laplace approximation.

Bayesian logistic regression We consider a Bayesian logistic regression with a flat prior as in
(Diao et al., 2023): given a set of covariates Xi ∼ N (0, Id) for i = 1, 2, . . . , n, consider

Yi|Xi, θ ∼ Bernoulli(σ(⟨θ,Xi⟩)), where σ is the sigmoid function.

The negative log posterior is V (θ) =
∑n

i=1

[
ln(1 + e⟨θ,Xi⟩)− Yi⟨θ,Xi⟩

]
. The model consists of

n = 1000 data points (Xi, Yi) with dimension d = 200. The optimal solution is unknown in this
case, so we cannot plot the KL divergence along the iterations. Instead, we estimate the objective
function of the problem (2),F(µk), by drawing samples from µk. We denote by µbest the distribution
that obtains the smallest F among all iterations of all algorithms, comparing against that. Fig 4 (b)
shows the proposed method is again the most accurate.

6 DISCUSSION

Various variance reduction techniques have been broadly studied in the VI literature, but mainly
for methods operating in the Euclidean parameter space. Our work resembles in nature the seminal
work of Roeder et al. (2017) that demonstrated how the variance of gradient estimators for VI can
be dramatically reduced by a single-line change in the algorithm: We also propose a minor modifi-
cation that dramatically improves the accuracy, and should always be used. A high-level similarity
lies in the heuristic that the VI distribution resembles the target distribution, allowing it to be used to
construct control variates for the quantities of interest: in our case, the BW gradient of the potential
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Figure 4: Performance of algorithms for Student’s t target and Bayesian logistic regression.

energy, and in theirs, the Euclidean gradient of the ELBO (Evidence Lower BOund). This difference
leads us to use the Hyvärinen score (Hyvärinen, 2005) as a control variate, while they rely on the
Fisher score (Bishop & Nasrabadi, 2006). Recent works (Kim et al., 2023; Domke et al., 2024) have
advanced our understanding of variance reduction in Euclidean VI, demonstrating strong conver-
gence and extending beyond traditional control variate approaches. Adopting these new techniques
in the BW setting is a promising future research direction.

In the BW space, Diao (2023) considers variance reduction for large-sum structures based on the
nested-loop idea by Johnson & Zhang (2013) to reduce the stochasticity of the minibatch sampling.
In contrast, our method addresses the stochasticity arising from Gaussian sampling from the VI.

Even though our experiments focused on synthetic targets and did not thoroughly study the effect of
the step lengths, they expanded on the previous experimentation of VI optimized in the BW space.
We confirm the finding of Diao et al. (2023) that BWGD and SGVI are effectively identical except
for the instability of the former, but now show how their performance degrades in higher dimen-
sions. We also showed how the previous methods do not always reach the accuracy of Euclidean
optimization in the parameter space, whereas our improved method was consistently the best.

With the exception of the vastly improved accuracy due to the significantly lower variance of the
gradient estimators, our method retains all qualitative characteristics of the previous BW methods,
both positive and negative. That is, we retain the theoretical convergence guarantees and asymptotic
optimality for posterior inference, but also the cubic computational cost due to requiring the Hessian
of the log-target and the limitation to Gaussian approximations by construction. As highlighted by
Xu & Campbell (2022) and Quiroz et al. (2023), there are tasks for which Gaussian approximations
are highly relevant due to efficiently capturing the correlations.

7 CONCLUSION

Our main result is showing that the methods learning a variational approximation by direct op-
timization of the approximating distribution in the Bures–Wasserstein space of Gaussians can be
made practical. The previous works by Lambert et al. (2022) and Diao et al. (2023) introduced the
key idea and the algorithms with strong theoretical guarantees. However, as shown here they do not
necessarily find as good approximation as simpler parameter-space methods, limiting the impact.
Our variance reduction technique that requires only a minor modification for the SVGI algorithm
completely resolves this issue, resulting in extremely stable learning.

We demonstrated substantial variance reduction, quantified to be an order of magnitude in one ex-
ample task, and showed that this reduction results in orders of magnitude improvement in final
approximation accuracy, over both the previous BW methods and examples of parameter-space al-
gorithms. This improvement comes with provable variance reduction in the neighborhood of the
optimal solution and for all distributions with sufficiently large variance in the case of strong log-
concave targets, and hence the proposed variance reduction technique should always be used.
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A THEORY

A.1 PROOF OF LEMMA 1

For each µ = N (m,Σ) ∈ BW(Rd) and c > 0, we denote
Q(µ) = E∥∇V (X)− E∇V (X)∥2 − E∥∇V (X)− cΣ−1(X −m)− E∇V (X)∥2, X ∼ µ,

which is the difference between the variances of the Monte Carlo estimator and our proposed esti-
mator. We want Q(µ) > 0. Simple algebras simplify Q as

Q(µ) = 2cE⟨∇V (X)− E∇V (X),Σ−1(X −m)⟩ − c2E∥Σ−1(X −m)∥2.

Recall a standard result: if X ∼ N (m,Σ), then its affine transformation W = AX + b has the
distributionN (Am+b, AΣA⊤). Applying this result, W := Σ−1(X−m) ∼ N (0,Σ−1). Therefore

E∥W∥2 =

d∑
i=1

EW 2
i = Tr(Σ−1).

On the other hand,
E⟨∇V (X)− E∇V (X),Σ−1(X −m)⟩
= E⟨∇V (X),Σ−1(X −m)⟩ − E⟨E∇V (X),Σ−1(X −m)⟩
= E⟨∇V (X),Σ−1(X −m)⟩ − ⟨E∇V (X),EΣ−1(X −m)⟩
= E⟨∇V (X),Σ−1(X −m)⟩ − ⟨E∇V (X),Σ−1(EX −m)⟩
= E⟨∇V (X),Σ−1(X −m)⟩.

Let us denote A = Σ−1 and compute E⟨∇V (X), A(X −m)⟩ as follows

E⟨∇V (X), A(X −m)⟩ = E

(
d∑

i=1

∂V

∂xi
(X)[A(X −m)]i

)

= E

 d∑
i=1

∂V

∂xi
(X)

d∑
j=1

[A]ij(Xj −mj)


=

d∑
i=1

d∑
j=1

[A]ijE
(
∂V

∂xi
(X)(Xj −mj)

)
. (10)
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We compute E
(
∂V

∂xi
(X)(Xj −mj)

)
by leveraging the following Stein’s lemma (Lin et al., 2019).

Lemma 2 (Stein’s lemma) Let X ∼ N (m,Σ) be an d-dimensional Gaussian random variable and
g : Rd → R be continuously differentiable, then

E (g(X)(X −m)) = ΣE(∇g(X)).

Applying Stein’s lemma with g = (∂/∂xi)V ,

E
(
∂V

∂xi
(X)(X −m)

)
= ΣE

(
∇ ∂V

∂xi
(X)

)
= ΣE

([
∂2V

∂x1∂xi
(X),

∂2V

∂x2∂xi
(X), . . . ,

∂2V

∂xd∂xi
(X)

]⊤)
.

By comparing the j-th element of both sides, we get

E
(
∂V

∂xi
(X)(Xj −mj)

)
=

d∑
k=1

ΣjkE
(

∂2V

∂xk∂xi
(X)

)
.

Plugging this expression into (10),

E⟨∇V (X), A(X −m)⟩ =
d∑

i=1

d∑
j=1

[A]ij

d∑
k=1

ΣjkE
(

∂2V

∂xk∂xi
(X)

)

=

d∑
i=1

d∑
j=1

d∑
k=1

[A]ijΣjkE
(

∂2V

∂xk∂xi
(X)

)

=

d∑
i=1

d∑
k=1

E
(

∂2V

∂xk∂xi
(X)

) d∑
j=1

[A]ijΣjk

=

d∑
i=1

d∑
k=1

E
(

∂2V

∂xk∂xi
(X)

)
[AΣ]ik

=

d∑
i=1

d∑
k=1

E
(

∂2V

∂xk∂xi
(X)

)
[I]ik

=

d∑
i=1

E
(
∂2V

∂x2
i

(X)

)
= Tr(E∇2V (X)).

Therefore,

Q(µ) = 2cTr(E∇2V (X))− c2 Tr(Σ−1), where X ∼ µ.

A.2 PROOF OF THEOREM 1

Recall that Lem. 1 and the optimality condition (4) imply Q(π̂) = c(2− c) Tr(Σ̂−1).
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Now let µ = N (m,Σ) ∈ BW(Rd), and let (X, X̂) be the optimal coupling between µ and π̂,

|Q(µ)−Q(π̂)| ≤ 2c|Tr(E∇2V (X))− Tr(Σ̂−1)|+ c2|Tr(Σ−1)− Tr(Σ̂−1)|
= 2c|Tr(E∇2V (X))− Tr(E∇2V (X̂))|+ c2|Tr(Σ−1)− Tr(Σ̂−1)|
≤ 2cE|Tr(∇2V (X))− Tr(∇2V (X̂))|+ c2|Tr(Σ−1)− Tr(Σ̂−1)|
= 2cE|∆V (X)−∆V (X̂)|+ c2|Tr(Σ−1)− Tr(Σ̂−1)|
≤ 2cℓE∥X − X̂∥+ c2|Tr(Σ−1)− Tr(Σ̂−1)|

≤ 2cℓ(E∥X − X̂∥2) 1
2 + c2|Tr(Σ−1)− Tr(Σ̂−1)|

= 2cℓW2(µ, π̂) + c2|Tr(Σ−1)− Tr(Σ̂−1)|.

Therefore

Q(µ) ≥ Q(π̂)− 2cℓW2(µ, π̂)− c2|Tr(Σ−1)− Tr(Σ̂−1)|.

So Q(µ) > 0 if

2cℓW2(µ, π̂) + c2|Tr(Σ−1)− Tr(Σ̂−1)| < Q(π̂)

or

2ℓW2(µ, π̂) + c|Tr(Σ−1)− Tr(Σ̂−1)| < (2− c) Tr(Σ̂−1).

A.3 PROOF OF THEOREM 2

Recall from Lem. 1: for any µ = N (m,Σ) ∈ BW(Rd),

Q(µ) = 2cTr(E∇2V (X))− c2 Tr(Σ−1), where X ∼ µ.

Since V is α-strongly convex, ∇2V (x) ≽ αI for all x ∈ Rd. Therefore, E∇2V (X) ≽ αI . It
follows that Tr(E∇2V (X)) ≥ dα. Therefore, whenever Tr(Σ−1) < (2dα)/c, Q(µ) > 0 and we
get reduced variance.

A.4 PROOF OF THEOREM 3

Since Alg. 1 differs from SGVI (Diao et al., 2023) only at b̃k, we will largely leverage the con-
vergence analysis of (Diao et al., 2023) but will pay extra attention to the transition of the variance
reduction effect to the final bounds.

At the iteration k, the (deterministic) Bures–Wasserstein gradient of EV at µk is

∇BWEV (µk) : x 7→ Eµk
∇V + (Eµk

∇2V )(x−mk)

and in Alg. 1 we approximate this gradient by

x 7→ b̃k + Sk(x−mk)

where b̃k = ∇V (Xk)− ckΣ
−1
k (Xk −mk), Sk = ∇2V (Xk), and Xk ∼ µk.

The error of this approximation is

ẽk : x 7→ (Sk − Eµk
∇2V )(x−mk) + (b̃k − Eµk

∇V ).

Let Pk denote σ-algebra containing the information up to the beginning of iteration k, Pk =
σ(X0, X1, . . . , Xk−1) for k ∈ {1, 2, . . . , N − 1} and P0 is, by convention, the trivial σ-algebra.
Let us denote

σ̃2
k := E(∥ẽk∥2µk

|Pk) = E(Ex∼µk
∥(Sk − Eµk

∇2V )(x−mk) + (b̃k − Eµk
∇V )∥2|Pk). (11)

Bounding σ̃k: we show that

σ̃2
k ≤ 3dβ(1 + τk) + 6(1 + τk)β

3λmax(Σ̂)W
2
2 (µk, π̂), (12)
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The proof of (12) is a direct extension of (Diao et al., 2023, Lem. 5.6), but let us partly include it
here for completeness.

First, let µ = N (m,Σ) and X ∼ µ, applying Stein’s lemma we get

E
(
∂V

∂xi
(X)(Xi −mi)

)
=

d∑
k=1

ΣikE
(

∂2V

∂xk∂xi
(X)

)
.

Summing up for i = 1, 2, . . . , d

d∑
i=1

E
(
∂V

∂xi
(X)(Xi −mi)

)
=

d∑
i=1

d∑
k=1

ΣikE
(

∂2V

∂xk∂xi
(X)

)
,

which can be rewritten as

E⟨∇V (X), X −m⟩ = E⟨∇2V (X),Σ⟩.

We now recall the Brascamp-Lieb inequality: let µ ∝ exp(−W ) where W is strictly convex and
twice continuously differentiable, then

Varµ(f) ≤ Eµ⟨∇f, (∇2W )−1∇f⟩

for any smooth f . By using f = (∂/∂xi)V and µ = µk, we obtain

Varµk
((∂/∂xi

)V ) ≤ Eµk
[∇2V Σk∇2V ]ii. (13)

Summing (13) for i from 1 to d

Eµk
∥∇V − Eµk

∇V ∥2 ≤ Tr
(
Eµk

(∇2V Σk∇2V )
)
= Eµk

⟨∇2V,Σk∇2V ⟩.

Since Xk is the only source of randomness in ẽk given Pk, the conditional expectation in (11)
becomes the expectation over the randomness of Xk, we can write

σ̃2
k = E∥(∇2V (Xk)− Eµk

∇2V )(X −mk) +∇V (Xk)− ckΣ
−1
k (Xk −mk)− Eµk

∇V ∥2

where X,Xk ∼ µk and X,Xk are independent. We evaluate

1

2
σ̃2
k ≤ E∥(∇2V (Xk)− Eµk

∇2V )(X −mk)∥2 + E∥∇V (Xk)− ckΣ
−1
k (Xk −mk)− Eµk

∇V ∥2

≤ E((X −mk)
⊤(∇2V (Xk)− Eµk

∇2V )2(X −mk)) + τkEµk
∥∇V − Eµk

∇V ∥2

= E⟨(∇2V (Xk)− Eµk
∇2V )2, (X −mk)(X −mk)

⊤⟩+ τkEµk
∥∇V − Eµk

∇V ∥2

= ⟨Eµk
(∇2V − Eµk

∇2V )2,Σk⟩+ τkEµk
∥∇V − Eµk

∇V ∥2

= Eµk
⟨∇2V,Σk∇2V ⟩ − ⟨(Eµk

∇2V )2,Σk⟩+ τkEµk
∥∇V − Eµk

∇V ∥2

≤ Eµk
⟨∇2V,Σk∇2V ⟩+ τkEµk

∥∇V − Eµk
∇V ∥2

≤ (1 + τk)Eµk
⟨∇2V,Σk∇2V ⟩

≤ β(1 + τk)Eµk
⟨∇2V,Σk⟩

= β(1 + τk)E⟨∇V (Xk), Xk −mk⟩.

Now by using optimal coupling between µk and π̂, one can obtain (Diao et al., 2023, P.27, P.28)

E⟨∇V (Xk), Xk −m⟩ ≤ 3d

2
+

(
2β +

β2 Tr(Σ̂)

d

)
W 2

2 (µk, π̂)

Therefore,

σ̃2
k ≤ 3dβ(1 + τk) + (1 + τk)

(
4β2 +

2β3 Tr(Σ̂)

d

)
W 2

2 (µk, π̂)

≤ 3dβ(1 + τk) + 6(1 + τk)β
3λmax(Σ̂)W

2
2 (µk, π̂).
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Bound E(mink=1,N F(µk))−F(π̂):

Lem. 5.1 in (Diao et al., 2023) implies that

EW 2
2 (µk+1, π̂) ≤ (1− αη)EW 2

2 (µk, π̂)− 2η(EF(µk+1)−F(π̂)) + 2η2Eσ̃2
k (14)

where α ≥ 0 is the strong convexity modulus of V .

Now using the bound (12) for σ̃k,

EW 2
2 (µk+1, π̂) ≤ (1− αη + 12(1 + τk)η

2β3λmax(Σ̂))EW 2
2 (µk, π̂)

− 2η(EF(µk+1)−F(π̂)) + 6(1 + τk)η
2βd

≤ exp
(
−αη + 12(1 + τk)η

2β3λmax(Σ̂)
)
EW 2

2 (µk, π̂)

− 2η(EF(µk+1)−F(π̂)) + 6(1 + τk)η
2βd.

Therefore

2η(EF(µk+1)−F(π̂)) ≤ exp
(
−αη + 12(1 + τk)η

2β3λmax(Σ̂)
)
EW 2

2 (µk, π̂)

− EW 2
2 (µk+1, π̂) + 6(1 + τk)η

2βd (15)

Since we are considering the convex case, let us set α = 0 and denote Ck = 12(1 + τk)β
3λmax(Σ̂)

and D−1 = 0, Dk = −C0−C1− . . .−Ck for k = 0, 1, . . . , N−1. By definition, Dk+Ck = Dk−1

for all k = 0, 1, . . . , N − 1. Rewrite (15) as

2η(EF(µk+1)−F(π̂)) ≤ exp
(
Ckη

2
)
EW 2

2 (µk, π̂)− EW 2
2 (µk+1, π̂) + 6(1 + τk)η

2βd.

Multiply both sides with exp(Dkη
2) we get

2η exp(Dkη
2)(EF(µk+1)−F(π̂))

≤ exp
(
(Dk + Ck)η

2
)
EW 2

2 (µk, π̂)− exp(Dkη
2)EW 2

2 (µk+1, π̂) + 6(1 + τk)η
2βd exp(Dkη

2)

and, by using the backward recursion Dk + Ck = Dk−1, can be rewritten as

2η exp(Dkη
2)(EF(µk+1)−F(π̂))

≤ exp
(
Dk−1η

2
)
EW 2

2 (µk, π̂)− exp(Dkη
2)EW 2

2 (µk+1, π̂) + 6(1 + τk)η
2βd exp(Dkη

2)

Telescope for k from 0 to N − 1

2η

N−1∑
k=0

exp(Dkη
2)(EF(µk+1)−F(π̂))

≤W 2
2 (µ0, π̂)− exp(DN−1η

2)EW 2
2 (µN , π̂) + 6η2βd

N−1∑
k=0

(1 + τk) exp(Dkη
2)

≤W 2
2 (µ0, π̂) + 6η2βd

N−1∑
k=0

(1 + τk) exp(Dkη
2).

We see that

Dk = −C

2

(
k + 1 +

k∑
i=0

τi

)

where C = 24β3λmax(Σ̂).

Let us denote S̃N (η) =
∑N−1

k=0 exp(Dkη
2). It holds

E
(

min
k=1,2,...,N

F(µk)

)
−F(π̂) ≤ W 2

2 (µ0, π̂)

2ηS̃N (η)
+ 3ηβd

N−1∑
k=0

(1 + τk)
exp(Dkη

2)

S̃N (η)
.
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It holds
N−1∑
k=0

(1 + τk)
exp(Dkη

2)

S̃N (η)
≤ 1 + τmax (16)

and

S̃N (η) =

N−1∑
k=0

exp(Dkη
2)

=

N−1∑
k=0

exp

(
−C

2
(k + 1 +

k∑
i=0

τi)η
2

)

≥
N−1∑
k=0

exp

(
−C

2
(k + 1 + (k + 1)τmax)η

2

)

=

N−1∑
k=0

[
exp

(
−C(k + 1)η2

)] τmax+1
2 .

On the other hand, for any b > 0, the function f(s) = bs is convex. By tangent inequality f(s) ≥
f(1) + f ′(1)(s− 1), we get

bs ≥ b+ b ln(b)(s− 1). (17)

Applying the inequality (17) with b = exp
(
−C(k + 1)η2

)
and s = (τmax + 1)/2[

exp
(
−C(k + 1)η2

)] τmax+1
2 ≥ exp

(
−C(k + 1)η2

)
+ C(k + 1)η2 exp

(
−C(k + 1)η2

)(1− τmax

2

)
= exp

(
−C(k + 1)η2

)(
1 + Cη2(k + 1)

(
1− τmax

2

))
≥ exp

(
−C(k + 1)η2

)(
1 + Cη2

(
1− τmax

2

))
.

Therefore,

S̃N (η) ≥
(
1 +

Cη2(1− τmax)

2

) N∑
k=1

exp(−Ckη2)

≥
(
1 +

Cη2(1− τmax)

2

)min{N,⌊(Cη2)−1⌋}∑
k=1

exp(−Ckη2)

≥
(
1 +

Cη2(1− τmax)

2

)min{N,⌊(Cη2)−1⌋}∑
k=1

1

e

=
1

e

(
1 +

Cη2(1− τmax)

2

)
min{N, ⌊(Cη2)−1⌋}.

By using the basic inequality 1/min(a, b) ≤ 1/a+ 1/b, we get
1

S̃N (η)
≤ e

1 +
Cη2(1− τmax)

2

(
1

N
+

1

⌊(Cη2)−1⌋

)

≲
e

1 +
Cη2(1− τmax)

2

(
1

N
+ Cη2

)
asymptotically at small η > 0.

Therefore,

E
(

min
k=1,2,...,N

F(µk)

)
−F(π̂) ≤ e

1 +
Cη2(1− τmax)

2

(
1

2ηN
+

Cη

2

)
W 2

2 (µ0, π̂) + 3ηβd(1 + τmax).
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A.5 PROOF OF THEOREM 4

Since V is α-strongly convex with α > 0, Eπ̂(∇2V ) ≽ αI , so λmin(Eπ̂(∇2V )) ≥ α.

It follows that

λmax(Σ̂) =
1

λmin(Σ̂−1)
=

1

λmin(Eπ̂(∇2V ))
≤ 1

α
.

Using this inequality in the bound for σ̃k in (12), we get

σ̃2
k ≤ 3dβ(1 + τk) +

6(1 + τk)β
3

α
W 2

2 (µk, π̂).

Using this bound for (14),

EW 2
2 (µk+1, π̂) ≤ (1− αη)EW 2

2 (µk, π̂)− 2η(EF(µk+1)−F(π̂))

+ 2η2E
(
3dβ(1 + τk) +

6(1 + τk)β
3

α
W 2

2 (µk, π̂)

)
=

(
1− αη +

12(1 + τk)η
2β3

α

)
EW 2

2 (µk, π̂) + 6dβη2(1 + τk)

≤ exp

(
−αη +

12(1 + τk)η
2β3

α

)
EW 2

2 (µk, π̂) + 6dβη2(1 + τk).

Now with η ≤ α2/(48β3),

12(1 + τk)η
2β3

α
≤ (1 + τk)ηα

4
.

Therefore

EW 2
2 (µk+1, π̂) ≤ exp

((
−3 + τk

4

)
ηα

)
EW 2

2 (µk, π̂) + 6dβη2(1 + τk)

≤ exp

((
−3 + τmax

4

)
ηα

)
EW 2

2 (µk, π̂) + 6dβη2(1 + τmax).

Telescope this inequality, we get

EW 2
2 (µN , π̂) ≤ exp

(
−N

(
3− τmax

4

)
ηα

)
W 2

2 (µ0, π̂) +
6(1 + τmax)η

2βd

1− exp

(
− (3− τmax)ηα

4

)
≲ exp

(
−N(3− τmax)ηα

4

)
W 2

2 (µ0, π̂) +
24(1 + τmax)βηd

(3− τmax)α

asymptotically at small η > 0.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 LAPLACE APPROXIMATION

Laplace approximation fits a Gaussian approximation by finding the mode of the target (MAP esti-
mate for infernece) and forming a second order approximation at that point. The approximation is
given by

N
(
xMAP,

(
∇2V (xMAP)

)−1
)
.

We use BFGS optimizer (Nocedal & Wright, 2006) as implemented in SciPy (Virtanen et al., 2020)
to find the (numerical) MAP estimate, and form the approximation according to the local curvature
around the point. Convergence of the estimate was validated manually.
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B.2 VARIATIONAL INFERENCE IN THE EUCLIDEAN GEOMETRY

The baseline method EVI optimizes for the approximation over its parameters m and Σ in the Eu-
clidean geometry of the parameter space, using Cholesky factorization for parameterizing the co-
variance. This is done by maximizing the Evidence Lower BOund (ELBO)

L(m,Σ) = Eqm,Σ(z) [log p(x, z)− log qm,Σ(z)] ,

which is equivalent to minimizing the KL divergence. We use single-sample reparameterization
estimates for the gradient. Furthermore, by stopping the gradient after sampling z, we remove the
Fisher score from the gradient computation, giving an unbiased estimator of the gradient of the
ELBO with potentially lower variance (Roeder et al., 2017). We use Adam (Kingma & Ba, 2015)
optimizer and the learning rates and number of iterations found in Table 1, found to achieve good
convergence. Our implementation is based on the code provided by Modi et al. (2024).

Experiment Dimension Learning Rate Iterations
Gaussian 10 0.01 5,000
Gaussian 50 0.01 5,000
Gaussian 200 0.001 10,000
Student-t 200 0.001 8,000
Logistic Regression 200 0.01 3,000

Table 1: Optimization details for EVI.

B.3 STUDENT’S T DISTRIBUTION

Consider a d-dimensional Student-t distribution with location µ, scale matrix Σ and ν degrees of
freedom. Its negative log density (up to a constant), gradient and Hessian are given by:

V (x) =
1

2
(ν + d) log

(
1 +

1

ν
(x− µ)⊤Σ−1(x− µ)

)
,

∇V (x) =
(ν + d)

ν + (x− µ)⊤Σ−1(x− µ)
Σ−1(x− µ),

∇2V (x) =
ν + d

ν + (x− µ)⊤Σ−1(x− µ)
Σ−1 − 2(ν + d)

(ν + (x− µ)⊤Σ−1(x− µ))2
Σ−1(x− µ)(x− µ)⊤Σ−1.

B.4 VARIANCE ALONG ITERATIONS

We further report in Figures 5 and 6 the variance of our proposed estimator and the Monte Carlo
estimator along the SVRGVI’s iterates. The variance is computed empirically using 5000 i.i.d. sam-
ples at each iteration. The results demonstrate that our estimator consistently achieves a significantly
smaller variance compared to the Monte Carlo estimator.
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Figure 5: Gaussian experiment: variance along iterations.
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Figure 6: Student’t experiment: variance along iterations

B.5 COMPARISONS AGAINST THE MINIBATCH APPROACH

A straightforward approach to reduce the variance is to use more MC samples per iteration. In
this experiment, we use m samples for SGVI at each iteration, where m ∈ {1, 10, 100}. Fig. 7
illustrates that SGVI requires approximately 100 samples per iteration to achieve a performance
level comparable to SVRGVI using only one sample per iteration.
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Figure 7: Minibatch-SGVI with MC samples versus SVRGVI in the Gaussian experiment

In Euclidean VI, Buchholz et al. (2018) showed that quasi-MC samples can result in a better es-
timator (with smaller variances) than standard MC samples. Since the idea is universal, we can
use quasi-MC samples to improve the performance of SGVI as well. Fig. 8 confirms that using
quasi-MC samples indeed leads to better performance in practice 2. SGVI now needs around 50
quasi-MC samples to reach our performance, and with 100 quasi-MC samples, SGVI surpasses our
performance.

B.6 EFFECT OF c

In this experiment, we study the impact of c on the performance of SVRGVI. In Figures 9, 10, 11,
we report the performance of SVRGVI in the Gaussian, Student’t, and Bayesian logistic regression
experiments when c varies in {0.0, 0.5, 0.8, 1.0, 1.2, 1.5, 2.0}. The results indicate that performance
improves as c increases from 0 to 1, peaking around c = 1, and then degrades as c continues
increasing to 2.0. Furthermore, the performance is somewhat symmetric around c = 1, e.g., c = 0.8
and c = 1.2 yield similar results. We therefore confirm that c being around 1 works best in practice.

2We exclude the case of using a single quasi-MC sample, as it coincides with the mean of the Gaussian
variational distribution when employing a Scrambled Sobol sequence. In this specific experiment, this leads to
an optimal—but misleading—result purely by coincidence.
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Figure 8: Minibatch-SGVI with quasi-MC samples versus SVRGVI in the Gaussian experiment
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Figure 9: Gaussian experiments: Upper row. KL divergence along iterations; Lower row: final KL
divergence.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
time elapsed ( × #iters)

101

102

103

104

105

DKL( k ) (empirical)
c=0.0
c=0.5
c=0.8
c=1.0
c=1.2
c=1.5
c=2.0

(a) KL divergence along iters

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
c

101

102

D
KL

(
k

) (
em

pi
ric

al
)

(b) Last KL divergence

Figure 10: Student’s t experiment
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Figure 11: Bayesian linear regression experiment

B.7 EFFECT OF STEP SIZE

We conduct an experiment to compare the performances of different algorithms with varying step
sizes. We consider Gaussian targets with D = 100. We fix the number of steps to 300, and vary the
step size between [0.125, 0.25, 0.5, 1.0]. The results, as shown in Figure 12, indicates that while the
previous method requires a relatively small step size to work relatively well, our algorithm is able to
work robustly with large step sizes and achieves the best performances under all step sizes.
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Figure 12: Results of different algorithms with varying step sizes in the Gaussian experiment
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