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Abstract

Nowadays, one of the main problems our soci-001
ety struggles with is fighting online hate. In002
other words, as social media explodes with003
multimodal hate speech content, we require004
scalable multimodal hate speech detection sys-005
tems. Thus, we present MULTILATE, a MUL-006
TImodaL hATE 2.6 million sample dataset for007
cross-modal hate speech classification and ad-008
ditional explanation through 3W Question An-009
swering. Key features of the dataset include (1)010
textual utterances, (2) synthesized pictures pro-011
duced by Stable Diffusion, (3) pixel-level tem-012
perature maps meant for explaining a picture-013
text interface, (4) question-answer triples ad-014
dressing “who”, “what”, and “why” compo-015
nents of the statement,(5) Adversarial exam-016
ples of both text and images. MULTILATE is017
aimed at creating and assessing interpretable018
multimodal hate speech classifiers.019

1 Introduction020

A prevalent sociological problem currently is on-021

line hate speech that Facebook has reported re-022

moved 18 million hate content articles 1 in the023

second quarter of 2023 which is more than the 10.7024

million ones it deleted during the first quarter of025

2023. Between April and June 2021, Facebook026

took down more than 31 million posts containing027

hate speech. The spread of this hateful speech028

results in considerable emotional anguish, partic-029

ularly within vulnerable minority groups, thereby030

normalising prejudice (Wachs et al., 2022). Nowa-031

days, we can find many forms of multimedia com-032

munication on social networks, such as mixing text,033

photos, and video. For example, most prior work034

on hate speech detection has concentrated only on035

text despite the abundance of multimodal hate con-036

tent on the internet (Kumar et al., 2018).037

1https://www.statista.com/statistics/1013804/
facebook-hate-speech-content-deletion-quarter/

Researchers have recently emphasized the cre- 038

ation of multi-modal hate speech detection sys- 039

tems that can perform at large scales, especially on 040

platforms such as Facebook, Twitter, and Youtube 041

(Gomez et al., 2020). Nevertheless, develop- 042

ment of this domain has experienced limited due 043

to the absence of large-scale cross-modal hate 044

speech datasets. To circumvent this weakness, 045

we propose to present a novel multimodal dataset 046

named “MULTILATE” to facilitate mass-scale as- 047

sessment of multimodal hate speech classifica- 048

tion. The project MULTILATE consists of 2.6 049

million instances, including text-based statements 050

and machine-produced visually appealing pictures 051

created utilizing Stable Diffusion (SD) (Rombach 052

et al., 2021). Further, every instance includes 053

Pixel-Level HeatMaps for visual interpretability 054

and Question-Answer (QA) pairs, which address 055

“who”, “what”, and “why”. Adversarial examples 056

of text (Morris et al., 2020) and images (Deng and 057

Karam, 2020) are also included to promote more 058

robust multimodal hate speech detection. 059

A new, unique source of research data about 060

interpretable multimodal hate speech classifiers is 061

provided by the MULTILATE. It enables a mixed- 062

mode model that integrates text, images, visual 063

descriptions, and QA into systems where they can 064

give understandable reasons for their forecasts. The 065

dataset and benchmark for our study will spark 066

innovations in the field of growing significance at 067

the interface of computer vision, natural language 068

processing, and ethics. 069

• First large-scale multimodal hate speech 070

dataset with 2.6 million examples: How- 071

ever, previous hate speech datasets were small 072

in size and modality-limited, thus stifling 073

progress in multimodal detection. This work 074

is based on an unprecedentedly huge dataset 075

of 2.6 million samples with supporting docu- 076

mentation as in heat maps for the Images and 077
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QA pairs for the Text.078

• Contains textual statements and syntheti-079

cally generated hateful images: We gener-080

ated images paired with various hate-speech081

statements using Stable Diffusion models.082

Thus, it is possible to study the interaction083

between linguistic and visual modes of hate084

speech involving multi-modal perception.085

• Incorporates Question-Answering for ex-086

plainability: For instance, we extend the087

case with relevant information relating to who,088

what, and why. The model should also be in-089

terpretive and able to explain its predictions.090

This is what makes QA a model of rationality.091

• Includes adversarial examples for robust-092

ness: We also give adversarial text and images093

to make the system resilient towards real ex-094

amples. This allows for testing model limits095

and increases generality because it uncovers096

“blind spots” for more robust detection of mul-097

timodal hate speech.098

To conclude, these contributions position our099

dataset as the one that could be used as a basis to100

progress on interpretable and reliable multimodal101

hate speech detection with its unparalleled scope,102

multimodality, justification, and adversarial. These103

data will significantly help address one of the most104

paramount social problems.105

2 Realted Work106

Hate speech refers to discrimination due to race,107

ethnic background, religion, gender, and sexual ori-108

entation. It has severe consequences, which include109

prejudice and violence in society. The classification110

of hate speech has mainly involved machine learn-111

ing models such as Support Vector Machine (SVM)112

and Random Forest (Chhabra and Vishwakarma,113

2023; MacAvaney et al., 2019). However, these114

challenges remain like conflict or overlapping def-115

initions of emotions, availability of datasets, and116

algorithmic methodology (Chiril et al., 2022).117

The widespread nature of online sexism has118

made researchers interested in sexism classifica-119

tion and has subsequently led to the emergence120

of automated recognition technologies. In studies,121

sexism is identified using deep learning architec-122

tures such as convolutional neural network (CNN)123

and Bidirectional Encoder Representations from124

Transformers (BERT) applied in social media con- 125

versations (Sharifirad and Jacovi, 2019; Rodríguez- 126

Sánchez et al., 2020; Chiril et al., 2021; Vetagiri 127

et al., 2023b) Generation of sets like TOXIGEN 128

helps in the improvement of toxic language de- 129

tection calling for massive and uniform datasets. 130

Moreover, there are developments on sexism detec- 131

tion in machine learning using data augmentation 132

methods and ensembles of state-of-the-art language 133

embeddings like BERT or Roberta (Ahuir et al., 134

2022). 135

Furthermore, the research explores the applica- 136

tion of deep learning models such as BiLSTMs, 137

BERT, and GPT-2 in sexism classification, demon- 138

strating promising results (Abburi et al., 2021; 139

Rodríguez-Sánchez et al., 2020; Vetagiri et al., 140

2023a). Challenges of resource-constrained lan- 141

guages such as Urdu hate speech for detection; 142

traditional models outperform DL-based approach 143

owing to class imbalance and data scarcity, a case 144

study (Saeed et al., 2023). However, the conclud- 145

ing remarks emphasize the need for future work 146

that addresses the challenges of improving current 147

models’ discrimination capabilities and exploring 148

user-based features (Ahuir et al., 2022; Huang et al., 149

2022). 150

(Gomez et al., 2019) proposed the new problem 151

of multi-modal hate speech detection with text and 152

image. They constructed the huge MMHS150k 153

dataset for annotated tweet images. They try out 154

textual kernel-based fusion approaches such as 155

(Gao et al., 2018) among other unimodal and multi- 156

modal models and showcase that images are helpful 157

sources of information. Nevertheless, it is incred- 158

ibly challenging in terms of data as well as the 159

multimodal nature of the problem. However, con- 160

current modelling of the textual and visual informa- 161

tion presents a potential for detecting hate speech 162

as a critical open area for supporting content mod- 163

eration. They generally create the beginnings of 164

multimodal hatred utterance research on the study 165

grounds. 166

Lastly (Rani et al., 2023) describes a five-factor, 167

issue-based, question-answering system for a more 168

intelligible explanation of automated fact-checking 169

machines2. Using this method, the authors develop 170

the FACTIFY-5WQA dataset of more than 390,000 171

textual claims in which they label each sentence’s 172

five semantics roles and pair them with appropriate 173

questions that can be used as queries. Validated 174

2https://huggingface.co/spaces/Towhidul/5WQA
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QA pairs are employed to check some elements of175

specific evidentiary documents for precise identifi-176

cation of falsity in claims.177

In conclusion, the literature survey provides a178

nuanced understanding of the multifaceted chal-179

lenges and advancements in hate speech and sex-180

ism classification, emphasizing the role of ma-181

chine learning models in addressing these issues.182

From language-specific approaches to creating spe-183

cialised datasets and exploring novel frameworks,184

the research showcased in the survey contributes185

to a growing body of knowledge aimed at mitigat-186

ing the harmful effects of hate speech in various187

contexts.188

3 Data189

In this section, we have discussed the creation of a190

dataset called MULTILATE. As the name suggests,191

this dataset has been specifically designed to iden-192

tify instances of hate speech, particularly sexism193

and racism, in online content. MULTILATE is a194

unique dataset we created that contains a total of195

2.6 million examples extracted from 11 different196

datasets on sexism and racism. The labels used in197

this dataset are “Hate" and “Not Hate" for binary198

classification and “Sexist", “Racist", and “Neither”199

for Multiclass classification. This dataset can serve200

as a valuable resource for researchers and develop-201

ers working on automated techniques for identify-202

ing and addressing instances of hate speech online.203

In the following sections, we will provide more204

details on creating and curating this dataset.205

3.1 Data Sourcing206

Data availability is one major thing that any model207

can benefit from. The classification job includes208

labelled data, which trains the model to obtain de-209

pendable accuracy. How correctly the characteris-210

tics are identified or retrieved directly affects how211

well the machine learning algorithms function. Af-212

ter the normalising text, detection tasks are carried213

out using classification algorithms. The efficacy214

of a model on a mixture of numerous datasets is215

always better than training on a specific dataset216

(Chiril et al., 2022). While creating the MULTI-217

LATE dataset, we extensively searched for pub-218

lished, public, and privately available datasets that219

contained instances of hate speech, as shown in220

Figure 1, which represents the flow of the process221

for creating the dataset. Tables 1, 2, and 3 pro-222

vide valuable insights into the composition of the223

Figure 1: Flow diagram and pipeline of the MULTI-
LATE creation.

datasets from which text was extracted. 224

Additionally, we contacted the authors of pri- 225

vately available datasets to request access to their 226

data. In total, we were able to collect 69 datasets 227

that contained examples of hate speech. To ensure 228

that our dataset covered both sexism and racism, we 229

only included datasets labelled and classified based 230

on gender, race, ethnicity, sexist-racist slurs, stereo- 231

types, and related features. Datasets that did not 232

meet these criteria were excluded from our analysis. 233

Through this rigorous approach, we aimed to cre- 234

ate a comprehensive and representative dataset that 235

could serve as a valuable resource for researchers. 236

3.2 Data Creation, Annotation, & Validation 237

Creating appropriate images constitutes a crucial 238

part of the data pipeline for illustrating textured 239

statements. Stable Diffusion, a current-generation 240

text-conditioned image synthesis model, achieves 241

this. Using multiple candidate images generated 242

using Stable Diffusion for every textual claim gives 243

different visual interpretations of the claims’ text. 244
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Table 1: Datasets for Sexist Classification

Dataset Sexist Not Sexist
CMSD (Samory et al., 2021) 1809 11822
EDOS (Kirk et al., 2023) 15330 44670

Table 2: Dataset for Racist Classification

Dataset Racist Not Racist
WSF (de Gibert et al., 2018) 1196 9507

Table 3: Datasets for both Sexist and Racist Classification with Adversarial Samples

Datasets Sexist Racist Neither Extracted
ConvAbuse (Cercas Curry et al., 2021) 285 27 671 983
Measuring Hate Speech (Kennedy et al., 2020) 17230 28360 86283 131873
DGHD v0.2.3 (Vidgen et al., 2021b) 3786 5375 18969 28130
HateCheck (Röttger et al., 2021) 1145 757 1242 3144
Nuanced (Borkan et al., 2019) 133152 138966 1264764 1536882
MMHS150K (Gomez et al., 2019) 16243 49906 81074 147223
CAD (Vidgen et al., 2021a) 1352 963 20903 23218
Toxigen (Hartvigsen et al., 2022) 19073 88780 108940 216793
Adversarial Samples 41881 62866 329769 434516

Our Dataset (MULTILATE) 251286 377196 1978614 2607096

The ranking of the candidates is done by using Con-245

trastive Language–Image Pre-training (CLIP) (Rad-246

ford et al., 2021) that scores the images in terms of247

their suitability for the textual claim. Furthermore,248

for fine-grained visual explainability, Diffusion At-249

tention Attribution Maps (DAAM) (Tang et al.,250

2022) are used to produce pixel-level heatmaps251

pointing out the parts of the made picture related to252

the words mentioned in the text. Combining these253

steps will supplement textual claims with appro-254

priate Stable Diffusion images and fine-grained255

heatmaps that link textual concepts with visual256

parts.257

A question-generating module is used to provide258

automatic textual “who”, “what”, and “why” QA259

pairs as complements to visual explainability for260

each claim. To begin with, semantic role labelling261

identifies pertaining textual spans that cover the ma-262

jor topics of the query. ProphetNet (Qi et al., 2020a)263

is a transformer-based QA model that generates nat-264

ural language questions that can be answered from265

the claim text using these extractions. These ques-266

tions will be answered automatically by employing267

another QA model, providing fine-grain textual ex-268

planations of the main actors, circumstances, and269

motivations to support each case.270

The dataset introduces adversarial samples that271

exploit weaknesses to enhance model robustness.272

Through the backpropagation of tiny perturbations273

for images causing misclassification. Specific para-274

phrasing of the content and edits using character275

level for texts occur to ensure that semantics and 276

fluency are maintained. This is achieved when they 277

are combined because they are purposely designed 278

to simulate real-world noise and distortions. Re- 279

silience to errors and ambiguities is built into such 280

models through training on such adversarial cases. 281

In terms of validation, a subset containing 1004 282

samples between textual and image data was used 283

to test the accuracy level and reliability consistency 284

for integrity provided by the MULTILATE dataset. 285

The validation step includes the study of how well 286

this model works on that basis, measuring its accu- 287

racy and generalizing characteristics. The results of 288

the validation set used here are carefully evaluated 289

and will be described in detail below under Results. 290

This specialized subsample allows for a targeted 291

assessment of the dataset’s performance in detect- 292

ing cases of hate speech, particularly with regard 293

to sexism and racism online. By including both 294

the textual and image levels as part of this valida- 295

tion process, our assessment contributes to a more 296

complete understanding of whether or not data is 297

suitable for use in training and testing techniques 298

that rely on automation. 299

4 Image - Stable Diffusion 300

While textual diversity in hateful statements is 301

shared, the associated visual aspects also exhibit 302

variability. To capture this, we utilize Stable Dif- 303

fusion 2.1 (Rombach et al., 2021) to generate hate- 304

ful images paired with textual statements. Stable 305
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Figure 2: An image created for an example text “how
can you be chinese with blond hair and blue eyes -
Hate”, using Stable Diffusion.

Figure 3: Heat maps generated for the Figure 2.

Diffusion’s AI-based text-to-image generation ca-306

pabilities allow the synthesis of diverse visual in-307

terpretations of hate speech.308

Stable Diffusion is an open-source text-to-image309

model that can generate high-quality images con-310

ditioned on textual prompts. The latent diffusion311

process induces randomness, producing different312

results across generations. We generate three im-313

ages per text statement and rank them to select the314

best pairing, as detailed next. Figures 2 and 4 are315

examples of images SD created for the respective316

text.317

4.1 Re-ranking of Generated Images318

To assess the generated images quantitatively,319

we use Contrastive Language–Image Pre-training320

(CLIP) (Radford et al., 2021) to score each image321

based on the textual prompt. This CLIP score indi-322

cates the match between text encoding and image323

encoding. Based on the CLIP score, we re-rank the324

images per prompt and select the top-ranked image325

as the best visual interpretation of the given hate326

speech statement.327

4.2 Pixel-level Image Heatmap328

We utilize Diffusion Attention Attribution Maps329

(DAAM) (Tang et al., 2022) to generate pixel-level330

attribution maps highlighting which image regions331

correspond to the words in the associated hate332

speech prompt. This provides visual explainability333

into the generated multimodal pairing as shown in334

figure 6. The heatmaps are obtained by aggregating335

and upsampling cross-attention activations in Sta-336

ble Diffusion’s latent diffusion denoising model.337

Figure 4: Another image created for an example text
“Native Americans - a primitive people who want to live
the way they did hundreds of years ago, - Hate”.

Figure 5: Heat maps generated for the Figure 4.

5 3W QA 338

The MULTILATE dataset provides a fine-grain ex- 339

planation of the model outcome by supporting text 340

justification. We develop a QA pipeline that asks 341

multiple questions about each hate speech sentence 342

and gets responses directly from the input data such 343

as (Rani et al., 2023). We develop “Who”, “What”, 344

and “Why” QA pairs pertaining to core semantics 345

and protagonists of the statement. 346

5.1 3W Semantic Role Labelling (SRL) 347

QA generation is done in multiple stages and takes 348

advantage of the latest neural semantic parsing and 349

generative language model developments. Our first 350

approach is to train an off-the-shelf neural SRL 351

system that identifies spans from the input text to 352

match predefined frame elements. Our targeted tax- 353

onomy uses ontology mapping to transform these 354

semantic frames into Who, What, and Why roles. 355

5.2 Automatic 3W QA Pair Generation 356

These SRL extracted spans are fused with the in- 357

put text and fed to a generative QA model called 358

ProphetNet (Qi et al., 2020b). The unique n-stream 359

self-attention mechanism helps deliberate planning 360

ahead of predicting future tokens in ProphetNet, an 361

encoder-decoder architecture. Language models 362

are pre-trained on big corpora. ProphetNet gener- 363

ates well-formed and coherent questions that di- 364

rectly inquire about either who, what, or why (el- 365

ement) in terms of aspect extractions condition in 366

the input text. 367
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5.3 QA Pair Answering368

We use the fine-tuned QA version of the T5 (Raf-369

fel et al., 2020) text-to-text transformer model for370

populating relevant solutions to these queries. T5371

uses input statements and the Prophetnet’s gener-372

ated questions to answer by choosing the relevant373

extracted text with the solution. Quantified evalu-374

ation of multiple answers revealed that model T5375

was the most accurate when extracting answers.376

Lastly, we verify QA responses with evidence377

documents to ascertain whether input statements378

are logical. T5 models are then used to produce the379

final answer by combining the questions with the380

extracted evidence snippets into one input string.381

These responses and the original answers give high-382

resolution clues about which semantics of the state-383

ment are and which are not, backed by external384

data sources.385

6 Adversarial Samples386

Figure 6: Overview of MULTILATE Framework - Inte-
gration of Stable Diffusion, SRL and T5 Models, and
Adversarial Attack Setup for generating synthetic multi-
modal Hate Speech data.

We augment MULTILATE with adversarial ex-387

amples for both text and images to improve model388

robustness and generalisation.389

6.1 Adversarial Text390

We generate adversarial text for 20% of MULTI-391

LATE using a TextAttack (Morris et al., 2020)392

model. The attack model inserts minimal pertur-393

bations into the original text that cause classifier394

errors but do not significantly alter human percep- 395

tion. For example, character manipulations like 396

swaps, insertions, and deletions fool the model but 397

look innocuous. The perturbed text retains seman- 398

tics and fluency but fools hate speech classifiers. 399

6.2 Adversarial Images 400

We generate adversarial images for 20% of MUL- 401

TILATE using projected gradient descent (PGD) 402

(Deng and Karam, 2020) targeted attack on CLIP. 403

PGD iteratively adjusts the image to maximize pre- 404

diction error under an imperceptibility constraint. 405

This finds small noise patterns that alter CLIP’s 406

prediction when added to the image. The noise 407

is imperceptible but fools CLIP’s multimodal hate 408

speech judgments. 409

Training on these adversarial examples improves 410

model resilience to semantic and visual perturba- 411

tions. The adversarial augmentations in MULTI- 412

LATE expose blindspots in current models, provid- 413

ing a challenging benchmark for developing robust 414

multimodal hate speech detection. 415

7 Baseline Classification Models 416

7.1 CNN-BiLSTM 417

This research utilizes the CNN-BiLSTM (Fazil 418

et al., 2023) model, combining convolutional and 419

recurrent layers to improve feature extraction and 420

sequencing. The model is implemented using the 421

Keras library, and it accepts an ordered series of 422

words converted into dense vector representations 423

created from the GLOVE vector learnt on the MUL- 424

TILATE dataset. After that, embedded words go 425

through several convolutional layers that capture 426

local features. The bidirectional LSTM layer is 427

then used to obtain complete sequencing informa- 428

tion. After that, the data from the second layer of 429

LSTM is forwarded to the dense layer for binary 430

classification. 431

During the experiment setup, several amend- 432

ments were included to improve the model’s ef- 433

ficiency. Secondly, a dropout mechanism was ap- 434

plied with a dropout rate of 0.2 to reduce the over- 435

fitting. Finally, the batch size of 128 was chosen for 436

optimal processing speed. The 5-fold cross-section 437

validation method was used to avoid the risk of 438

overfitting and get unbiased estimations about the 439

model’s generalization accuracy. Each time, the 440

dataset is split into five parts, with the model being 441

trained on four of these parts and validated against 442

the final part. This is done five times, with each 443
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fold serving as the validation set precisely once.444

Finally, the average of all folds’ final performance445

metrics is computed.446

7.2 ResNet50447

Using the MULTILATE dataset, the ResNet50448

(Macrayo et al., 2023) architecture served as the449

baseline for image classification. The image inputs450

were processed using a pre-trained ResNet50 net-451

work and initialized with ImageNet weights in this452

Keras implementation. This enabled the model, to453

offer vital information necessary, especially when454

extracting image features. After that, the base-455

line ResNet50 was trained to fit the MULTILATE456

dataset’s specific characteristics.457

The ResNet50 model was upgraded by adding458

two more dense layers to improve its discriminant459

abilities. In this case, the first dense layer was fed460

128 samples, ensuring the model could learn com-461

plicated patterns. This layer included a dropout rate462

of 0.2, whereby some neurons were randomly de-463

activated during training to avoid overfitting. This464

was followed by another thicker layer of density465

having a size of 64 and a slightly reduced dropout466

ratio of 0.1. The objective of this configuration was467

to provide a balance between model complexity468

and regularization that would lead to better general-469

ization to fresh images in the MULTILATE dataset.470

A compelling image classifier could be achieved471

through extensive architecture whereby ResNet50472

was used as the foundation with additional dense473

layers and suitable regularization.474

7.3 Baseline Multimodal475

The baseline multimodal classifier uses the CNN-476

BiLSTM model combined with ResNet50 to pro-477

cess text and images. The CNN-BiLSTM works478

well on sequential data and gives context informa-479

tion along a sequence of words based on GloVe em-480

beddings. At the same time, ResNet50 pre-trained481

on ImageNet provides substantial image feature ex-482

traction to a multimodal architecture. Thus, the out-483

put from these two modalities is combined through484

the weighted Product fusion technique, providing485

an optimal unified representation that optimally486

complements the advantages of each of these mod-487

els. Classifiers with two dense layers at 128 and488

64 batches and dropouts of 0.2 and 0.1 that pre-489

vent overfitting improve discriminating power. The490

main goal is to utilize this combined multimodal491

approach. In particular, it provides an initial insight492

into how this dataset can be used to improve future493

multimodal classification techniques. 494

8 Results 495

A subset of the MULTILATE dataset consisting 496

of 1004 pieces of text as a basis for creating and 497

evaluating a baseline classification model. The first 498

subset included 853 samples for training and val- 499

idation, whereas another subset of 151 samples 500

was reserved for testing and the baseline results are 501

shown in the table 4. The CNN-biLSTM was used 502

for the categorization function in text information 503

concerning category descriptors. This model offers 504

an open baseline using available data before the full 505

release of the MULTILATE corpus. These prelimi- 506

nary results show that the classification task can be 507

carried out on the currently available data, which 508

serves as a basis for more precise evaluations once 509

larger volumes of the data sets from the MULTI- 510

LATE project become available. The source codes 511

and the train-test splits will be available for the pub- 512

lic to compare with other research that can improve 513

the models. 514

Figure 7: Training Accuracy and Loss on Binaryclass
Text Classification.

Figure 8: Training Accuracy and Loss on Multiclass
Text Classification.

8.1 Results Analysis 515

On the subset of the MULTILATE dataset utilized 516

in these pilot studies, the results show encour- 517

aging performance for hate speech identification 518

with 0.84 accuracies on binary classification using 519

BERT & RoBERTa and 0.69 accuracy for multi- 520

class labelling; the CNN-BiLSTM text classifica- 521

tion model obtained good metrics on multimodal 522

classification, the model’s accuracy and loss graphs 523

are shown in the figures 7 and 8. The confusion 524

matrices show how to distinguish between infor- 525
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Table 4: Baseline models Precision (P), Recall (R), F1 Scores (F1) and Accuracy (Acc) on Binary Classification and
Multiclass Classification.

Class Modality Model P R F1 Acc
Binary Text CNN-BiLSTM 0.77 0.79 0.79 0.79
Binary Text BERT 0.90 0.58 0.70 0.84
Binary Text RoBERTa 0.82 0.66 0.73 0.84
Binary Image VGG16 0.61 0.60 0.61 0.60
Binary Image ResNet50 0.60 0.60 0.61 0.60
Binary Image CNN 0.64 0.63 0.63 0.64
Binary Multimodal (Text+Image) CNN-BiLSTM+VGG16 0.67 0.67 0.68 0.68
Binary Multimodal (Text+Image) CNN-BiLSTM+ResNet50 0.69 0.69 0.68 0.70

Multiclass Text CNN-BiLSTM 0.69 0.68 0.69 0.69
Multiclass Text BERT 0.70 0.68 0.67 0.68
Multiclass Text RoBERTa 0.71 0.69 0.70 0.69
Multiclass Image VGG16 0.40 0.40 0.41 0.40
Multiclass Image ResNet50 0.41 0.40 0.41 0.41
Multiclass Image CNN 0.39 0.39 0.40 0.39
Multiclass Multimodal (Text + Image) CNN-BiLSTM+VGG16 0.52 0.51 0.52 0.54
Multiclass Multimodal (Text + Image) CNN-BiLSTM+ResNet50 0.53 0.54 0.52 0.55

Figure 9: Confusion Matrix on Binary Text Classifica-
tion in the first row, and Multiclass Text Classification in
the second row, CNN-BiLSTM (left), BERT (middle),
and RoBERTa (right).

mation that is sexist, racist, or neither, as well as526

how to discriminate between the hate and non-hate527

classifications effectively, as shown in figure 9.528

Less skill is shown by the ResNet50 image classi-529

fier, suggesting that more customized architectures530

are required and that visual hate speech identifica-531

tion is a more difficult task but performs better than532

the unimodal variation, demonstrating the impor-533

tance of integrating visual and textual information.534

These models will be further optimized and eval-535

uated at scale using more extensive MULTILATE536

data in future studies. However, these initial results537

validate the feasibility of the hate speech detection538

task on this novel multimodal dataset.539

9 Limitations540

In the context of image synthesis, Stable Diffu-541

sion demonstrates impressive results but appears542

to have certain weaknesses in processing particular543

text inputs. Notably, the model faces challenges544

with extremely long texts – more than 65 words or545

consisting of a few sentences. Additionally, issues 546

are often encountered while dealing with metaphor- 547

ically altered text in terms of processing difficult 548

linguistic formations. An interesting note to men- 549

tion is that the model silently ignores tokens above 550

77, whereby tokens represent words or text equiva- 551

lent groups. Yet, this behaviour can be regarded as 552

a possible limitation of the maximum input length 553

that the model can handle effectively in terms of 554

computational and memory limitations. Such prob- 555

lems can be mitigated with the proposed approach 556

of dividing input text into smaller segments that 557

may allow a model to process longer and more 558

complex descriptions. 559

10 Conclution 560

This study presents MULTILATE, an unprece- 561

dented large-scale dataset that uses produced vi- 562

sual and various textual assertions to further mul- 563

timodal hate speech analysis. Adding adversarial 564

examples and fine-grained explainability annota- 565

tions provides unique capabilities for resilient and 566

interpretable models. We outline the rigorous data- 567

gathering methods that went into creating MULTI- 568

LATE and benchmark categorization performance. 569

The most excellent resource currently accessi- 570

ble for increasing our understanding of multimodal 571

hate speech is the 2.6 million sample MULTILATE 572

corpus. It encourages crucial advances in computer 573

vision, natural language processing, and ethics. 574

The scale, diversity, interpretability, and integrity 575

of MULTILATE enable this study to lay the ground- 576

work for significant future endeavours. We believe 577

that this dataset’s baseline and ongoing advance- 578

ments will help find answers to the problem of 579

online animosity. 580
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