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Abstract

Described object detection (DOD) is a promising direction for fine-grained and
human-interactive visual recognition, where the goal is to detect target objects based
on given language descriptions. Despite significant advancements in language-
based object detection, current models still struggle with complex descriptions
due to limited compositional understanding. To address this issue, we propose a
novel multimodal chain-of-tools (MCoTs) framework that seamlessly integrates
specialized tools to handle the two core functionalities of the DOD task: localization
and compositional reasoning. Specifically, we decompose the complex DOD task
into a series of subtasks, with each subtask handled by specialized tools, including
detector and multimodal large language model (MLLM). This simple yet effective
MCoTs framework demonstrates significant performance improvements on the
challenging D3 benchmark without additional training overhead.

1 Introduction

Detecting objects of interest has long been a central problem. Among the various task formulations,
Described Object Detection (DOD) (Xie et al., 2024) has recently emerged as a particularly chal-
lenging problem, where the goal is to detect a target object based on complex language descriptions.
This nuanced form of object detection is crucial for facilitating detailed human interaction in various
downstream applications, such as robotics, interactive image/video editing, and image retrieval. This
task involves two critical functionalities: (1) compositionality, where the model must faithfully
understand complex expressions of visual objects given language queries, and (2) localization, where
the model must precisely localize the target object in the form of a bounding box.

In recent years, a tremendous number of language-based object detection models (Liu et al., 2023)
have been developed, utilizing language queries to specify target objects for tasks such as open-
vocabulary object detection (Minderer et al., 2022), visual grounding (Li et al., 2022), and referring
expression comprehension (Yu et al., 2016). However, these models have shown limited performance
in the specific task of described object detection. Generally, they perform well on short and concise
language queries (e.g., category names), but their performance drops significantly when faced with
complex descriptions, exhibiting a limited compositional understanding.

To address this issue, recent works (Park et al., 2024; Zhao et al., 2024; Li et al., 2024b) have leveraged
generative foundation models (Brown et al., 2020; Achiam et al., 2023) to produce synthetic data,
aiming to enhance the compositional understanding of language-based detectors. Among these
approaches, WSCL (Park et al., 2024) has proposed generating synthetic triplets consisting of images,
descriptions, and bounding boxes using large language models (LLMs)(Brown et al., 2020; Achiam
et al., 2023) and diffusion models(Chen et al., 2023; Podell et al., 2023). By combining synthetic
data with a tailored learning framework, this approach has significantly improved performance on
tasks involving complex and lengthy descriptions.
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Figure 1: Overview of Proposed Multimodal Chain-of-Tools for Described Object Detection.

Despite these advancements, there is still room for improvement in the compositional understanding
of language-based object detection models. These models still struggle more with lengthy descrip-
tions than with concise ones. In contrast, the newly emerging multimodal large language models
(MLLMs) (Liu et al., 2024; Li et al., 2024a) demonstrate unprecedented compositional understanding
in language due to their equipped LLMs. They not only comprehend detailed language instructions
but also exhibit high-level reasoning capabilities across the vision and language domains. This is also
crucial for the task of described object detection. However, general-purpose MLLMs often fail to
precisely localize objects within images. Moreover, fine-tuning these large models to achieve precise
localization without compromising other aspects of performance remains a practical challenge.

To address this gap, we propose a novel unified framework that combines the strengths of both object
detectors and MLLMs, achieving accurate localization and in-depth compositional understanding.
To this end, we decompose the complex DOD task into a sequence of simpler and more tractable
problems leveraging detectors and MLLMs. Each sub-task is then tackled by these models, which
function as specialized tools. Specifically, we use detectors for obtaining several bounding boxes
and then feed the candidate boxes into MLLM for reasoning whether the detected candidates meet
the detailed conditions specified in the language query. We refer to this innovative approach as
the “Multimodal Chain-of-Tools (MCoTs)”. On the challenging D3 benchmark (Xie et al., 2024),
MCoTs outperforms all baselines, whether based on object detectors or MLLMs. Additionally, our
method shows the most robust in handling the complexity of language queries. Notably, this MCoTs
framework demonstrates both accurate localization and advanced compositional understanding in a
training-free manner.

2 A Multimodal Chain of Tools for Described Object Detection

We introduce a novel multimodal chain-of-tools framework that decomposes complex described
object detection tasks into several sub-tasks and addresses each one through a sequence of diverse
specialized tools (i.e., chain-of-tools), including object detectors and multimodal large language
models. First, we provide an overview of the proposed multimodal chain-of-tools framework in
Section 2.1, followed by a detailed explanation of how the subtasks are defined and handled by the
specialized tools in Section 2.2.

2.1 Overview

To design an efficient chain of tools for the DoD task, it is essential to thoroughly understand the
challenges of the task as well as the strengths and weaknesses of the specialized tools involved.

The goal of described object detection is to detect target objects based on complex language queries,
such as “person right next to a dog.” To accomplish this, the system must demonstrate (1) accurate
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localization (e.g., providing precise bounding boxes for the target “person”) and (2) precise compo-
sitional reasoning (e.g., distinguishing the correct “person” from others in the image based on the
given description).

From the perspective of these two capabilities, language-based object detectors (Liu et al., 2023) excel
in localization but fall short in compositional reasoning. Specifically, these detectors often function
like “bags-of-words,” detecting all objects mentioned in the description (e.g., “person” and “dog”)
without considering the relationships or context described. In contrast, multimodal models excel
at compositional reasoning but struggle to accurately localize target objects. General MLLMs (Liu
et al., 2024; Li et al., 2024a), for instance, can provide reasonable reasoning in the form of language
but fail to output precise bounding box coordinates.

With a deep understanding of the tasks and the specialized tools, our high-level approach is simple
yet effective: “Let each tool focus on what it does best.” First, the detector focuses solely on
localization, without considering detailed descriptions (e.g., detecting all “persons” in the image).
Then, the MLLM handles the reasoning by checking whether the detected candidates meet the
detailed conditions specified in the language query. To implement this high-level concept, we design
several subtasks for the DOD task. We explain these subtasks and the effective solutions for each in
the following sections.

2.2 Detailed Process

The detailed process of the proposed multimodal chain of tools is illustrated in Figure 1.

Chain 1: Candidate Word Extraction. To ensure that the detector focuses on the subtask of
localization, we need to provide a concise language query. For this purpose, we extract the essential
word from the complex description that precisely represents the target objects. Specifically, we
extract the subject noun from the given description. To accomplish this, we utilize an open-source
large language model, Llama3 (Touvron et al., 2023), by querying it like, “Please extract the
subject noun in the following phrase.”.

Chain 2: Localize Candidate Objects. Once the subject noun is extracted, the detector’s role is
to locate all candidate objects in the image. By narrowing the detector’s task to focus solely on
detecting objects based on a single word (similar to understanding category names in open-vocabulary
detection), we significantly simplify the task. It is important to note that the primary goal of this step
is not to uniquely detect the target object but to ensure that the target object is included among the
detected candidates.

Chain 3: Visual Prompting for MLLMs. The next subtask is to identify the correct target objects
from the pool of detected candidates. For this, we leverage the compositional reasoning capabilities
of MLLMs across the visual and language domains. One challenge is how to integrate these reasoning
capabilities into the context of the DoD task. Inspired by set-of-mark prompting (Yang et al., 2023),
we overlay bounding box on the image and mark them with number. This allows MLLMs, with
their visual representation and OCR capabilities, to easily reference specific objects in the image. To
reduce ambiguity and complexity in subsequent steps, we overlay one box at a time, marking it with
"1". Examples of this visual prompting process are shown in Figure 1.

Chain 4: Target Objects Identification with MLLMs. Given the image with the marked
candidate object, we prompt the MLLMs by asking whether the marked object corresponds
to the original description. For this step, we use a rationalizing reasoning (Camburu et al.,
2018) prompt, such as, “Please begin by responding with yes or no, followed by a
detailed explanation.” We parse the MLLMs’ answers to determine whether the marked object
matches the given description. Only the candidates that correspond to the description are output
as the final detection results. For this process, we leverage LLaVA-Onevision (Li et al., 2024a), a
state-of-the-art open-source MLLM.

3 Experiments

Baselines. We compare our MCoTs framework with the following methods: (1) A multimodal large
language model (MLLM), SPHINX (Lin et al., 2023), a recently proposed MLLM designed for
region-level understanding; (2) language-based object detectors (Detector) originally designed for
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Table 1: Performance comparison with state-of-the-art methods on D3 (Xie et al., 2024) benchmark.
Method Type Full Pres Abs AP-S AP-M AP-L AP-XL
SPHINX-7B MLLM 10.6 11.4 7.9 - - - -

OWL-ViT-L

Detector

9.6 10.7 6.4 20.7 9.4 6.0 5.3
Grounding-DINO 20.7 20.1 22.5 22.6 22.5 18.9 16.5
OFA-DOD 21.6 23.7 15.4 23.6 22.6 20.5 18.4
FIBER-B 22.7 21.5 26.0 30.1 25.9 17.9 13.1

GENNEG-FIBER
Det+Syn

26.0 25.2 28.1 35.5 29.7 20.5 14.2
DESCO-FIBER 28.1 27.2 30.5 35.3 30.2 24.8 19.5
WSCL-FIBER 30.8 31.0 30.4 33.9 33.7 27.8 22.8

MCoTs (Ours) MCoTs 39.8 39.6 40.1 35.2 43.5 38.4 35.7

open-vocabulary detection or referring expression comprehension, including OWL-ViT (Minderer
et al., 2022), Grounding-DINO (Liu et al., 2023), OFA-DOD (Xie et al., 2024), and FIBER (Dou et al.,
2022); and (3) synthetic data-based frameworks (Det+Syn) that enhance compositional understanding
in detectors through the use of generated synthetic data, including GENNEG (Zhao et al., 2024),
DESCO (Li et al., 2024b), and WSCL (Park et al., 2024). For synthetic data-based methods, we
benchmark their best model, which fine-tunes a language-based detector, FIBER.

Evaluation Benchmark. We compare our proposed framework with baseline methods on the
D3 (Xie et al., 2024) dataset, which provides an in-depth evaluation for detecting objects specified by
complex descriptions. Unlike traditional referring expression benchmarks, D3 introduces scenarios
where descriptions either refer to no object or multiple instances in an image, allowing for a more
comprehensive assessment of the models’ compositional understanding. D3 also offers a suite of sub-
metrics for detailed analysis. Descriptions are classified into ABS (“absence”) and PRES (“presence”)
categories, based on whether the description includes expressions of absence (e.g., “without”). In
addition to the overall evaluation metric, which covers all descriptions (referred to as FULL), D3

provides distinct metrics for ABS and PRES. The AP-S/M/L/XL sub-metrics categorize performance
based on the length of descriptions (short, medium, long, and very long), offering insights into
detection performance relative to the complexity of the descriptions.

Experimental Results. The quantitative results are summarized in Table 1. Our MCoTs framework
significantly outperforms all existing baselines by a large margin, demonstrating the effectiveness
of our approach in both localization and compositional understanding. The performance improve-
ments are consistent, regardless of whether the descriptions include expressions of absence (as
seen in the PRES and ABS scores). More importantly, MCoTs excels in handling both concise
and complex, lengthy descriptions, as indicated by the AP-S/M/L/XL scores. In contrast, all pre-
vious methods showed a monotonic degradation in performance as the length and complexity of
descriptions increased. These results highlight the unique advantage of MCoTs by seamlessly com-
bining the strengths of both detector and MLLM: precise localization and advanced compositional
understanding.

4 Conclusion

In this paper, we introduce a novel multimodal chain-of-tools framework for described object
detection (DOD). We first identify two key functionalities essential for the task: precise localization
and advanced compositional understanding. To address these, we leverage specialized tools, including
object detectors and multimodal large language models (MLLMs), for each functionality. Specifically,
we break down complex DOD tasks into a chain of subtasks and allow specialized tools to focus on
individual tasks. This simple yet effective multimodal chain-of-tools framework achieves impressive
performance without additional training overhead. In future work, we will focus on automating the
multimodal chain-of-tools framework for a wider range of real-world applications.
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