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ABSTRACT

The quadratic complexity of softmax attention poses a major bottleneck for long-
context modeling, motivating a surge of linear attention variants with linear com-
plexity. Unlike softmax attention, which benefits from optimized kernels, lin-
ear attention lacks general-purpose, hardware-efficient support and scalable dis-
tributed implementations. We introduce Forge, a domain-specific compiler that
automates the generation of high-performance, scalable kernels for a wide range
of linear attention models directly from high-level PyTorch code. At its core,
Forge employs an intuitive programming abstraction that decomposes any linear
attention algorithm into three canonical phases: intra-chunk computation, inter-
chunk state propagation, and output merging. This unified abstraction enables
Forge to perform domain-specific optimizations, automatically generating kernels
that fuse computation and communication at a fine-grained tile level and elim-
inating host synchronization. Our evaluation demonstrates that Forge combines
programmability with performance: a wide range of linear attention variants can
be implemented in just a few dozen lines of code, while the generated kernels
deliver 1.01x-4.9x the performance of sate-of-the-art expert-optimized library and
scale with near-linear efficiency on scalar gated linear attention to 16 million to-
kens on 128 GPUs, surpassing the state-of-the-art distributed baseline by up to
7.2x.

1 INTRODUCTION

Transformer models rely on self-attention, which has quadratic time and memory complexity with
respect to sequence length. As models handle increasingly long contexts, this quadratic bottleneck
severely limits scalability. In response, many efficient-attention mechanisms have been proposed.
In particular, linear attention methods remove the softmax nonlinearity and reorder computations to
achieve linear computation complexity and constant-memory inference. This has led to a prolifera-
tion of innovative architectures, such as Mamba (Gu & Daol 2023} Dao & Gu, [2024), RetNet (Sun
et al.}2023), RWKYV (Peng et al., [2023), GLA (Yang et al.; |2023), HGRN (Qin et al., |b) and Gated
DeltaNet (Yang et al [2024a). These architectures demonstrate capabilities competitive with, or
even superior to, standard transformers.

Unlike softmax attention, which has benefited from highly optimized and now-standardized kernels
like Flash-Attention (Dao et al., [2022)) and Ring-Attention (Liu et al., [2023) that efficiently map
its computation and communication to modern Al infrastructure, the landscape for linear attention
is far more fragmented. Flash-Linear-Attention (FLA) (Yang & Zhang| [2024) provide a valuable
collection of triton kernels for a series of linear attention variants. But it essentially relies on ex-
pert developers to provide manual implementation for each variants. The rapid evolution of linear
attention variants means that a one-size-fits-all solution does not exist. This forces researchers into
a costly and inefficient cycle of manual kernel development for each new variant, a process fraught
with two major challenges.

First, the implementation of high-performance kernels is an arduous task requiring deep hardware
expertise. While many linear attention models share a conceptual similarity, their specific state
update rules and memory access patterns can differ substantially. Achieving hardware efficiency
necessitates not only fusing the state update rule into a single kernel but also manually tuning
hardware-specific parameters like pipeline schedules and tile sizes. Even with high-level DSLs like



Under review as a conference paper at ICLR 2026

PyTorch Implementation Our DSL Performance

_______________________ L Scalar GLA: 256K Sequence Length
34569.7

et scalar_gla(a, k, v, g s, o0, scale):

def chunk_mode(k, v, g):
# q/k/v: [BHTD]. g: [BHT]. s: [BHDD]

g_cumsum, g_sum = g.cumsum(@), g.sum(@)
g_cumsum (g_sum - g_cumsum[None, :]).exp()
k_decay
return k_decay @ v

for bh in range(B * H):
b, h =bh // H, bh %H
state = s[b, h, :, :].clone()
for chunk_idx in range(@, T, CHUNK_SIZE):
c_q, c_k, c_v, c_g, c_o = get_chunk(..)
# 1. compute intra-chunk decay
g_cumsum, g_sum = c_g.cumsum(@), c_g.sum(@)
decay_sum,decay_vec=g_sum.exp(), g_cumsum.exp()

(k.T * g_cumsum.exp())

def decay_mode(old_s, s, g):
return old_s * g.sum(8).exp() + s
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def merge_mode(q, k, v, g, s, scale): ]
decay_k = (g_local_sum-g_cumsum).exp()[None, :] decay_vec = g.cumsum(0).exp() |
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c_k_decay = (c_k * decay k) ak = (q @ k.T).tril(e) 1
curr_state = (c_k_decay @ c_v) - (ak * decay_p)

# 3. compute output of current chunk

decay_p = decay_vec[:, None]-decay_vec[None, :]
p = ((chunk_q @ c_k.T).tril(e) * decay_p)
curr_state_ = curr_state * decay_vec[:, None]

P
return (p @ v + q @ s * decay_vec[:, None]) * scale

LinearAttention(
SP_GROUP,
chunk_mode,
decay_mode,
merge_mode,

co=(p@c_v)+(c_q @ curr_state_) * scale

# 4. update state

state = state * decay_sum + curr_state
return o
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Figure 1: Comparison between PyTorch and our proposed DSL in writing scalar gated linear atten-
tion (data type conversion is omitted for simplicity). And the performance comparison of different
approaches. Test shape: 32 heads with 128 head dimension. Torch-Eager fails to parallelize the
computation, while Torch-Compile also performs poorly. FLA provides expert optimized triton ker-
nels, while program generated by Forge offers comparable performance to handwritten kernels with
the scalability to distributed environments.

Triton (Tillet & Coxl 2019)), developers must often delve into low-level hardware details, such as
managing barriers or dealing with shared memory capacity limitation, to extract maximum perfor-
mance for each variant. This creates a high barrier to entry and slows down the pace of innovation.

Second, existing solutions lack robust support for distributed execution, which is non-negotiable
for scaling to contexts of hundreds of thousands or millions of tokens. FLA offers a bunch of
single-device kernels but do not address the distributed scaling problem. When sequence lengths
exceed the memory capacity of a single accelerator, distributed sequence parallelism becomes es-
sential. However, enabling sequence-parallel linear attention is non-trivial: it typically requires
custom communication schedules tailored to each variant’s state update rule. Existing sequence
parallel schemes, such as LASP and LASP-2 (Sun et al., [2024a}, |2025) are designed for specific
architectures and employ generic communication primitives (e.g., A11-Gather from NCCL). The
mismatch of existing communication primitive and dataflow of distributed linear attention leading
to significant network bandwidth underutilization(Chou et al., [2025).

Can we provide a solution to bridge the gap between the rapid evolution of linear attention
algorithms and the difficulty of developing scalable kernels? We observe that many of these
difficulties stem from not exploiting the common structure underlying linear-attention variants. Our
central insight is that most linear-attention variants share a small set of canonical operations and
data exchanges. Based on this, we introduce Forge, a compiler-driven framework that allows im-
plementing the majority of linear attention variants in a few lines of idiomatic PyTorch code and
scaling them to distributed system. As shown in [Figure 1 our DSL expresses linear attention in
three modular functions. The compiler translates the DSL into high performance kernels: reducing
latency from 34.6 seconds (PyTorch eager) to 9.2 ms, even better than SOTA hand-written kernel
from FLA. More importantly, the latency was further reduced to 2.7 ms when scaled to 4 GPUs
distributed system.

The frontend of Forge ingests a user-defined computation logic for a linear attention variant. Its
backend then intelligently maps this logic, along with potential communication operations, onto
hardware accelerators and network interfaces, applying domain-specific optimizations to gener-
ate high-performance, distributed-aware kernels. Forge is built around three key principles: @) A
Linear-Attention-Specific Programming Abstraction. We formulate our programming abstrac-
tion based on the canonical chunk-parallel representation of linear attention. This model decom-
poses the computation into three intuitive phases: a compute phase that processes local chunks of
the sequence in parallel, an update phase that communicates and updates the inter-chunk states, and
a merge phase that combines the global state with local chunk results. This abstraction aligns di-
rectly with the mathematical structure of chunk-wise parallel form, allowing researchers to translate
their algorithm’s formulation into our framework with minimal effort by providing simple PyTorch
callable. @ Native Compute-Communication Fusion. At compilation time, Forge lowers the
three user-provided callables into Triton code. We leverage Triton-Distributed (Zheng et al.| [2025al)
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as our compiler backend, which extends Triton with native communication primitives. This allows
our compiler to generate fine-grained, tile-level communication instructions that are fused directly
with computation. By creating custom communication patterns tailored to the algorithm, we by-
pass the overhead and limitations of standard libraries like NCCL, enabling a more efficient use of
the underlying network fabric and dramatically improving hardware utilization. Q Targeted Op-
timization of System Bottlenecks. Beyond kernel fusion, we identify and optimize other critical
system-level bottlenecks that affect real-world system performance. Forge employs a suite of tech-
niques, including Ahead-of-Time (AOT) compilation with static kernel dispatcher built on top of
Triton to reduce runtime overhead and an adaptive parallelism scheduler that dynamically explores
the optimal configuration of compute resources, further boosting the end-to-end efficiency of linear
attention execution.

To demonstrate its flexibility, we implement a broad range of linear attention variants using Forge,
each requiring only dozens of lines of code. This programmability does not come at the cost of
performance. On a single GPU, our generated kernels achieve 1.01x to 4.9x the performance of
the state-of-the-art FLA library of expert-tuned kernels. Furthermore, in distributed settings, Forge
demonstrates near-linear scalability on up to 128 GPUs, outperforming the leading open-source
baseline by up to 7.2x.

2 PRELIMINARY

2.1 LINEAR ATTENTION ARCHITECTURE

Given a sequence X = [x1,X2,...,xz] € REX4, the input of attention block: q;, ki, v; =
Waxi, Wix;, Wy x; where x;, q;, ki, vi, y; € R? and the weights W, Wi, W, € R%*?, Trans-
formers employ softmax attention as a token mixer (Vaswani et al., 2017):

" exp(q/ k;)
0; = ; \Z, ) O = softmax(QK ' ©® M)V ?2)
jz:; Zp:l exp(q; kp)

:Equation 2|is the matrix form of where Q = [aq1,...,qz]", K := [ki,...,kz] ",
vV

Vi=1[vy,...,vz]T € REX4and M € {—oo, 1}%F is a causal mask.

Such matrix form is well suited to modern accelerators, which excel at large matrix multiplications,
but it incurs O(L2d) complexity. If we remove the softmax operation, the computation becomes
associative: o; = q;(k;v;) which reduces the complexity to O(Ld?). The recurrence form is
expressed as:

S:=Si1+kiv,, o;=q:S:. 3)

Here S € R%*? is the state (or memory) updated in each time step. highlights the
key idea of linear attention: replacing the exponential kernel in softmax attention with a linear
recurrence. Although this formulation resembles RNNs (Hochreiter & Schmidhuber, [1997). The
critical difference is that dependencies across time steps remain linear, which makes parallel training
possible. Indeed, linear attention can be written in fully parallel form:

0=(QK'oM)V “4)

Modern linear attention often augments the recurrence with a decay or gating mechanism, e.g.,
S; = G ®S;_1 + ktvtT (Gu & Dao) [2023), or with more sophisticated update rules such as
the delta rule (Yang et al., 2024b): S; = S; (I — Bik:k, ) + Bivik, , which enhance memory
utilization.

2.2 CHUNK-WISE PARALLEL FORM OF LINEAR ATTENTIONS

The fully parallel form in [Equation 4] achieves maximum hardware utilization but retains quadratic
complexity. Conversely, the recurrent form in has linear complexity but is inherently
sequential and hardware-inefficient. In practice, linear attention strikes a balance by adopting chunk-
wise parallelization (Hua et al., [2022; [Sun et al., [2023} |Yang et al., 2023).
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Specifically, the sequence of length L is partitioned into % chunks of size C. Let Qp;), K51, Vi) €

RE>d denote the query, key, and value matrices of the i-th chunk, and let S[i] € R*4 pe the state
after processing chunk i. The chunk-wise formulation separates computation into intra-chunk and
inter-chunk two parts, and then merge both together to get the final output as shown in

Vi

iC
Sy =Si-y+ Y, kv, 5) v
Peite

Matrix: K[i] TV[i]

.
O = QpSji-1) + (Qme ®M> Vi
—

(6)

Figure 2: Chunk-wise parallel form demonstration for linear attention.

The inter chunk item can be viewed as readout memory from start of the sequence to the start of
current chunk while the intra chunk item is processing the information in current chunk. When
chunk size C'is set to sequence length L, it becomes the fully parallel form as in [Equation 4] The
chunk size is a tradeoff between parallelism and FLOPs.

2.3 DSLS AND DOMAIN SPECIFIC COMPILER

A domain-specific language (DSL) trades generality for performance by restricting program ex-
pressivity to a particular domain, creating opportunities for targeted optimization. Deep learning
compilers like TVM (Chen et al.| 2018), ThunderKitten (Spector et al., [2024), TileLang (Wang
et al.|[2025) and torch.compile (Ansel et al., [2024) exemplify this approach: by operating on a
constrained set of primitives (i.e. tir in TVM and aten operators in PyTorch), they can systematically
explore a focused design space to apply transformations like operator fusion and loop tiling, thereby
automatically generating high-performance code from high-level descriptions.

This paradigm is particularly effective for operations that possess rich computational structure but
high implementation complexity. By exposing domain-relevant abstractions, a DSL allows develop-
ers to specify what to compute, while delegating the complex details of how to execute it efficiently
to the compiler. This separation of concerns is key to enabling automated, domain-specific opti-
mizations without burdening the user with low-level hardware details.

Applied to the domain of linear attention, an effective DSL must therefore provide abstractions
that are expressive enough to capture the diverse patterns found in various state update rules and
parallel scan formulations. Simultaneously, its compiler must be able to recognize these common
patterns and systematically generate optimized kernels for them, bridging the gap between high-
level algorithmic design and performance, hardware-aware code. Because chunked parallel forms
are complex to implement and offer opportunities to fully exploit hardware, this work focuses on
the prefill phase of linear attention (used in inference or the forward pass of training). The backward
pass can be implemented in a similar manner (Qin et al.| ja).

3 FORGE

In this section, we propose a unified abstraction of diverse linear attention variants. This abstraction
enables programmers to easily express linear attention semantics without worrying about implemen-
tation details and kernel performance.

3.1 PROGRAMMING ABSTRACTION

Despite the numerous linear attention variants designed by researchers, we unify these variants into

three commonly shared phases based on chunk-wise parallel form introduced in (1)
Intra-Chunk Computation. The first phase computes a local state within each chunk of the input
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Table 1: A comparison of representative linear attention variants that can be easily mapped to our
three-phase abstraction, including HGRN (Qin et al.;,|2023), RetNet (Sun et al.,|2023)), Mamba2 (Dao
& Gu, 2024), GLA (Yang et al., [2023), and GDN (Yang et al., [2024a)). Despite diverse state
types (vector vs. matrix) and decay mechanisms (element-wise product vs. matrix multiplication).
vy, k¢, q; are value, key and query projections; o, B¢, ¢, 1 are gates; @ is the Hadamard product.

Model Update rule Read-out State + Decay type

HGRN hi=a:Ohi—1+ (1 —a:) Ov o, = h; ®q: vector + data-dependent vector
RetNet S:=~Si_1 + vk, o = Siqs matrix + data-independent scalar
Mamba2  S; = Si_1 + vik, o, = Siq: matrix + data-dependent scalar
GLA S =810 (1o¢tT )+ vk or = S:q: matrix + data-dependent vector
GDN S = St 1(I— Bikike)) + Brvik! 0 = Siq: matrix + data-dependent matrix

sequence. In this stage, computation across different chunks is embarrassingly parallel, as there are
no data dependencies between them. Each chunk is processed independently, transforming its se-
quence of inputs into a relative state summary. @) Inter-Chunk State Propagation. The second phase
addresses the dependencies between chunks. To compute the correct global state at the beginning of
each chunk, the state summaries from all preceding chunks must be accumulated. For instance, in
the case of vanilla linear attention, this propagation corresponds to a prefix sum (scan) operation, as
shown in[Equation 5] This phase is inherently sequential due to the temporal dependencies between
chunk states. And cross-device communication happen in this phase. @ Merging and Output Gen-
eration. The final phase merges the results of the intra-chunk and inter-chunk computations. Here,
operations are once again parallel across chunks. Each chunk utilizes the global state propagated
from Phase 2 and its local inputs to compute its final output sequence.

Based on these insights, we designed our programming abstraction around three corresponding
callable: chunk_mode, decay_mode and merge_mode correspond to three phases. This ab-
straction empowers users to implement a new linear attention variant by simply defining its chunk-
wise parallel logic in idiomatic PyTorch code, decoupling algorithmic expression from system op-
timization. Furthermore, this three-phase decomposition also helps us optimize the program: we
separate the parts of the entire program that can be executed in parallel and the parts that must be
executed serially and may involve cross-device communication. With this information, Forge can
perform more aggressive and accurate optimizations.

As shown in[Table 1] prominent linear attention variants employ vastly different state representations
and decay mechanisms. Nonetheless, all can be expressed using the chunk-wise parallel formulation.
For example, the chunk-wise parallel form for Mamba?2 can be specified as:

Sy =) © Sp-y+ VK" 0=Q"KoMoGV' +5Q 7

Under our framework, a user only needs to implement these equations within our three-phase pro-
gramming abstraction in native PyTorch code. Forge then automatically handles all subsequent code
generation, performance tuning, and scaling to distributed systems.

3.2 COMPILATION AND CODE GENERATION

Given the chunk-wise parallel form description in our DSL, Forge performs a series of graph-
level and system-level transformations to produce optimized program as illustrated in
The user-defined function is first captured as Torch.fx graph (Reed et all 2022)) via tracing. We
choose fx graph as our intermediate representation (IR) because it is the most powerful tool in
the PyTorch ecosystem, most torch operators can be directly captured, which makes our DSL
expressive enough to implement most of linear attention variants. We first replace special op
code in fx graph as custom instructions (e.g. placeholder is replaced with load instruction).
Domain-specific optimization passes are then applied. To enable fusion of non-trivial operators (e.g.
lower_triangular_inverse in GDN), we provide a bunch of custom triton kernels com-
monly used in linear attention domain and mapping them to corresponding torch operators. Once
the compiler see these operators, for instance, torch.inverse, they will be marked and subse-
quently substituted with custom triton source code in code generation phase. Common optimization
passes like transpose elimination are also applied in this phase. The IR is further rewritten with
system-resource awareness. Forge take the hardware information to generate hardware-specific in-
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Figure 3: An overview of the Forge compilation pipeline. Our compiler ingests a high-level de-
scription of a linear attention algorithm, specified using our DSL (chunk_mode, decay_mode,
merge_mode). This description is traced into a graph structure, which then undergoes a series of
domain-specific optimization passes. The optimized graph is then compiled to Triton with native
communication support, enabling fine-grained, tile-level overlap between computation and commu-
nication for better utilization of GPU and Network Interface Card (NIC).

structions. For instance, Tensor Memory Accelerator (TMA) availability is marked as an attribute
of load instruction.

Recent studies have demonstrated that fine-grained compute—communication fusion can more ef-
fectively hide latency in distributed settings (Chang et al., [2024; [Zheng et al., 2025b). We adopt
this technique in Forge by automatically fusing computation and communication at the tile level,
thereby reducing data dependency scope and eliminating the frequent GPU-host synchronizations
inherent to traditional overlap strategies (Jangda et al.,2022)). Within our programming abstraction,
all cross-device communication is confined to the second phase, i.e., inter-chunk state propagation.
Consequently, Forge first analyzes the data dependencies in this phase, then determines the corre-
sponding computational tiling and communication tiling strategies based on the network topology,
selects the appropriate communication mode, and generates computation and on-device communi-
cation instructions.

Finally, the IR is lowered into triton source code. Different with torch inductor (Ansel et al., [2024)
targeting on official triton, Forge targets on Triton-Distributed (Zheng et al., 2025a), who addtionaly
provide fine-grained communication control. On device computation is translated into computation
primitives provided by Triton while the communication logic is mapped to the OpenShmem-style
communication primitives provided exclusively by Triton-distributed, which are ultimately trans-
lated into GPU-initiated communication operations.

3.3 PERFORMANCE OPTIMIZATIONS

With domain-specific knowledge of linear attention, Forge can explore a compact yet effective opti-
mization space. In particular, the choice of whether to fuse different phases introduces an important
trade-off. For example, fusing chunk_mode with decay_mode avoids materializing intermediate
states in global memory, thereby reducing memory traffic. However, such fusion also limits avail-
able parallelism, since computations can no longer be scheduled independently at the chunk level.
There are many such trade-offs and Forge will handle all of these to get better performance. Forge
employs a parallelism scheduling algorithm that dynamically chooses an optimal parallelization
strategy based on input shapes and hardware information internally. The specifics of this parallelism

scheduler are detailed in[Appendix B}

Beyond the optimization for target program, we further incorporate a set of optimizations tailored
to the compilation system itself. In practice, the Triton runtime introduces overheads on the order
of hundreds of microseconds, often exceeding the actual most of linear attention kernel execution
time at short to medium sequence length (e.g. 2K or even 4K). While approaches like CUDA-Graph
can mitigate launch overhead for workloads with static input shapes, they often incur significant
memory costs and are unsuitable for the dynamic workloads in inference scenarios. To address these
limitations natively, we extend Triton compiler with a custom Ahead-of-Time (AOT) compilation
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Figure 4: Latency comparison of different linear attention variants under varying sequence lengths
on a single H100 GPU. Each subplot corresponds to one model, with the top row showing short to
medium sequences (1K-16K) and the bottom row showing long sequences (32K-256K).

module. Specifically, our module compiles Triton source code into pre-linked dynamic libraries
ahead of execution. At runtime, Forge employs a profile-guided static dispatcher that bypasses
the Triton runtime entirely, invoking the optimal pre-compiled binary directly through the CUDA
Driver API. The static dispatcher is automatically generated by Forge from an offline performance
database, ensuring that the empirically best-performing kernel is selected for any given workload
without incurring runtime overhead from hash lookups or dynamic compilation logic.

Another problem is redundant compilation. Since our system is specialized for linear attention, we
observe that certain input tensor dimensions (e.g., head dimension and number of heads) remain
relatively static across runs, while sequence length is typically dynamic. This property facilitates
efficient AOT compilation: Forge allows users to specify constant dimensions and their admissible
ranges via input metadata. Forge enumerates the Cartesian product of these ranges and generates
all potentially required kernels in advance. Furthermore, by leveraging PyTorch’s symbolic tracing,
our system supports tensors with symbolic shapes, ensuring that recompilation is unnecessary unless
static dim change.

4 EXPERIMENTS

We implement several high-performance linear attention kernels using Forge, including HGRN,
vanilla linear attention, scalar GLA, vector GLA, and Gated DeltaNet (Qin et al, 2023} [Dao & Gul,
2024} [Yang et al., 2023;[2024a)). While many linear attention models differ in their parameterization,
the computational patterns we implement cover over ten existing model designs (Appendix C).

4.1 SINGLE-DEVICE EVALUATION

reports the latency of kernels generated by Forge across sequence lengths ranging from
1K to 256K on a single H100 GPU. We compare with two baselines: Torch-Compile, repre-
senting a general-purpose compiler without domain-specific knowledge, and FLA (commit hash:
02766e71), the state-of-the-art library of providing expert-tuned Triton kernels for linear attention.
For all variants except HGRN, we fix BatchSize = 1, NumHeads = 32, and HeadDim = 128, and
vary sequence length. For HGRN, we follow its original single-head configuration. A batch size of
one is a standard and reasonable choice, as a single long sequence in linear attention is computation-
ally equivalent to a batch of packed shorter sequences.

Torch-Compile consistently exhibits poor performance, as it fails to apply the domain-specific fusion
strategies required for linear attention. FLA achieves strong performance by carefully hand-tuning
[O-aware tiling. Our work, Forge, automating this optimization process, consistently matches or
outperforms FLA. On HGRN, Forge achieves 1.64-2.02x speedup, highlighting its ability to dis-
cover optimization opportunities beyond expert tuning (We check the generated code and find Forge
use a more efficient threads allocation). On scalar and vector GLA as well as vanilla linear attention,
Forge provides stable improvements (1.1-2.0x) while for GDN, performance converges to FLA at
longer sequences. The speedup is most pronounced on short to medium sequence length. In this
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Figure 5: Weak scaling performance comparison for GDN and GLA models. Both figures show
latency breakdown across a varying number of GPUs with a fixed sequence length per GPU.

regime, system-level overheads and the choice of parallelism strategy are the dominant factors, and
Forge effectively eliminate these bottlenecks, as discussed in[subsection 3.3

4.2 SEQUENCE PARALLEL EVALUATION

We further evaluate weak scaling behavior under distributed training, comparing against
LASP2 [2025), the strongest open-source baseline at the time of writing. ZeCO
2025) reports improved scaling via pipelined communication, but its implementation is not
public. We benchmark two representative workloads: GDN and scalar GLA, which feature matrix-
multiplication and element-wise decay mechanisms, respectively. Experiments were conducted on
a cluster of up to 128 NVIDIA H20 GPUs, interconnected with NVSwitch within nodes and Infini-
Band between nodes. We fix BatchSize = 4, NumHeads = 32, HeadDim = 128, and maintain a
constant workload per GPU while scaling the total sequence length from 128K (on 4 GPUs) to 4
million tokens (on 128 GPUs). The ideal outcome for weak scaling is a constant execution time.

show that Forge exhibits near-ideal weak scaling for both workloads: latency remains flat
as GPU count increases. This is attributable to two core features of our compiler. First, it generates
communication patterns that avoid the data redundancy incurred by the All-Gather primitive used
in LASP2. Second, its ability to fuse computation and communication effectively hides the latency
of the local state update. This is particularly impactful for GDN, whose matrix-based update is
time consuming. In contrast, the communication and computation redundancy of LASP2 is ampli-
fied as the number of nodes increases, causing its performance to degrade significantly (e.g., from
49.2ms on 4 GPUs to 345ms on 128 GPUs for GDN). This confirms that Forge eliminates redundant
communication and achieves scalable performance on large GPU clusters.

4.3 ABLATION STUDY

AOT compilation with static dispatcher. We measure the end-to-end
latency of the execution of Scalar GLA kernel including both kernel ex- == foma e

ecution and to demonstrate Triton runtime overhead and the efficiency _ | & toroernn
of our solution as shown in At a sequence length of 1024,
this overhead (207us) is over 4.4 times the actual kernel execution time
(47us). Our static dispatcher mitigates this issue by reducing the over-

head by 46%, yielding a 1.6x end-to-end speedup on these latency-

.. . . . 1024 2048 4096 8192
sensitive inputs. As the sequence length grows and execution time be- Sequence Length

Figure 6: Execution time
decomposition.
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comes the dominant factor, our dispatcher consistently maintains a neg-
ligible overhead that is effectively eliminated at 8192 tokens (reducing
from 101ps to just 1ps).

Tile Level Compute-Communication Overlapping. We con-
duct a targeted study to isolate and quantify the benefits of our Tuple 2: State communication
tile-level compute-communication fusion. We set two baselines (ime on 8xH800 GPUs. State
for the inter-rank state propagation: @) Serial communication, size is 67MB.

where each rank ¢ waits to receive all state data from rank 2 — 1

before performing its local update and sending to rank ¢ + 1. Method | Time (us)
@ Pipelined baseline, which chunks the state and uses standard Serial 873
NCCL send/recv operations to overlap the computation of one Torch-Pipeline | 902
chunk with the communication of the next. Our method, in con- Ours 560

trast, generates a single kernel that fuses the state update com-
putation with communication primitives at the tile level. The re-
sults, presented in[Table 2|show the standard Pipelined (PyTorch) baseline is slightly slower than the
naive Serial implementation, demonstrating that host-managed pipelining can be counterproductive
due to the significant overhead of launching numerous small operations and the required host-device
synchronization. Conversely, our fused kernel substantially reduces the total time, achieving a 1.56x
speedup over the serial baseline.

5 RELATED WORK

There are a wide range of approaches to address the quadratic complexity of softmax attention.
Sparse attention mechanisms (Zaheer et al., |2020; Xiao et al. 2023} [Yuan et al.| 2025)) leverage
structured or un-structured sparsity in attention to skip computation. Quantized attention (Shah et al.,
2024;|Zhang et al.| [2024) use exploit low-precision arithmetic unit in modern hardware to get higher
throughput. There are also various techniques to reduce key—value (KV) cache overhead. KIVI (Liu
et al.,|2024b) and SKVQ (Duanmu et al.,[2024) directly compress KV cache using quantization while
grouped-query attention (GQA) (Ainslie et al., 2023), and multi-head latent attention (MLA) (Liu
et al.| 20244) alter the attention architecture to reduce memory overhead.

Another line of work proposes architectural alternatives with lower complexity, including linear at-
tention variants (Katharopoulos et al.,[2020; |Dao & Gul 2024} Peng et al., 2023} Yang et al.| [2024a)
as well as test-time-training approaches (Sun et al., |2024bj Behrouz et al., [2024). For linear at-
tention sequence parallelism, LASP (Sun et al., [2024a) first extend linear attention to distributed
environments with serial send-receive primitive. LASP2 (Sun et al., |2025) improves on this by
leveraging collective communication primitives, yet both approaches still incur significant band-
width under-utilization. ZeCO (Chou et al.l 2025) introduces a pipelined send-receive scheme to
hide send/receive latency but relies on manual chunk-size tuning and does not detail its implemen-
tation. Therefore, it was not included in our comparison.

Al compilers have been developed to optimize a broad range of workloads.
torch.compile (Ansel et al| [2024), TVM (Chen et al. 2018), and TASO (Jia et al.
2019) are effective for common operators but their optimization spaces do not cover linear attention.
Operator-level compilers such as Triton (Tillet & Coxl |2019), ThunderKitten [Spector et al.| (2024),
TileLang (Wang et al., 2025), and Triton-Distributed (Zheng et al.l 2025a)) provide expressive
abstractions for modern accelerators, but supporting the large and growing family of linear
attention variants still requires substantial manual development effort. The most closely related
work, FlexAttention (Dong et al., [2024), targets block-sparse softmax attention and is limited to
single-device settings.

6 CONCLUSION

We presented Forge, a domain-specific compiler for linear attention that unifies diverse algorithmic
variants under a common three-phase abstraction. By generating hardware-efficient kernels with
native distributed execution support, Forge bridges the gap between rapidly evolving linear attention
research and the complexity of hand-tuned implementations. Our evaluation demonstrates that Forge
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achieves both high performance and broad applicability across modern linear attention models. We
hope this work will accelerate the development of new architectures and inspire further research at
the intersection of deep learning algorithms and domain-specific compilation.

10
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7 REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our work. Most of algorithms, implementation details,
and experimental setups are described in the paper. Due to organizational policies requiring an
internal review prior to public release, the source code is not included with the submission. However,
we are committed to open-sourcing the code and will provide it to reviewers upon request for the
purpose of evaluation.
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A USAGE OF LLMs

For the preparation of this manuscript, we utilized LLM, as writing assistant to enhance the quality
of the prose. Our process was interactive: the authors provided initial drafts and specific sentences to
the LLM and used its suggestions to refine the text. Majority of prompts aimed at refining sentences
to improve conciseness, in addition to correcting grammar and improving overall clarity. The core
scientific ideas, methodology, and experimental results were developed exclusively by the human
authors, who bear full responsibility for all claims and content within this paper.

B PARALLISIM SCHEDULER

Forge automatically explore different parallel schemes for linear attention during compilation. With
the domain knowledge of linear attention, we can shrink the search space into two mainly used
schemes, which is partially explored in FLA (Yang & Zhang, |[2024).

In this section, we provide a theoretical analysis of two parallel execution strategies for linear at-
tention using vanilla linear attention on GPU as an example. Then we derive a heuristic scheduling
algorithm [T] that Forge used to build a parallelism scheduler, selecting the optimal strategy based on
the input tensor shapes and hardware characteristics.

B.1 NOTATION

The vanilla linear attention is defined by the recurrence:
St = St—l + ktvtT (8)
0y = q;Sy )
where k;,q; € RP* and v, € RPv are the key, query, and value vectors at timestep ¢, and
S; € RPxxDv ig the state matrix. We consider batched inputs Q, K € REXTXHXDk anq
V ¢ RBXTxHXD.  The sequence of length 7 is divided into N chunks of size C, such that

T = N¢ x C. Let Ngjs be the number of Streaming Multiprocessors (SMs) on the target GPU,
representing its parallel execution capacity.

B.2 STRATEGY 1: DECOUPLED THREE-PHASE EXECUTION

This strategy directly maps the chunk-wise parallel algorithm onto our three-phase programming
model. Each phase is a separate kernel launch.

Parallelism Analysis. The degree of parallelism varies significantly between phases.

* Phase 1 (Intra-Chunk State Computation): Computations for each chunk are indepen-
dent. The total number of parallel tasks is B x H x N¢. This phase exhibits the highest
degree of parallelism.

* Phase 2 (Inter-Chunk State Propagation): The prefix sum (scan) is sequential across the
N¢ dimension. Parallelism is limited to the batch (B) and head (H) dimensions. Further
parallelism, which we denote as Psq:c, can be achieved by partitioning the state matrix
S € RPxxPw and processing its partitions on different thread blocks. The total number of
parallel tasks is B X H X Pgyqte.

* Phase 3 (Merge): Similar to Phase 1, the merge operation is independent across chunks,
offering a high degree of parallelism with B x H x N¢ tasks.

Memory Access Analysis. The defining characteristic of this strategy is the materialization of
intermediate states in global memory (GMEM) between phases.

e Phase 1: Reads K and V from GMEM. Writes the intermediate, chunk-local states S’ €
REXHxNcxDrxDy pack to GMEM.

GMEM Trafficp; = BHT(Dy, + D,) + BHN¢Dy D, (10)

Reads Writes
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* Phase 2: Reads the B x H x N¢ chunk-local states from GMEM, performs the scan, and
writes the updated global states S jjopq € RE*HXNexDixDu hack to GMEM.

GMEM TI'afﬁCPQ = BHNchDv + BHNchDq, = ZBHNch-DU (11)

Reads Writes

The total GMEM traffic introduced between Phase 1 and Phase 2is 3 x B x H X N¢g X Dy D,,.

B.3 STRATEGY 2: FUSED INTRA- AND INTER-CHUNK EXECUTION

This strategy fuses Phase 1 and Phase 2, computing the local state of a chunk and immediately uses
it to update the global state, all within on-chip memory.

Parallelism Analysis. By fusing the phases, the execution is constrained by the most sequential
part, which is the inter-chunk scan. Therefore, the maximum number of parallel tasks is identical to
that of Phase 2 in the decoupled strategy: B X H X Pgtqte. The high parallelism across the chunk
dimension (N¢) is sacrificed.

Memory Access Analysis. The primary advantage of this strategy is the elimination of the inter-
mediate GMEM traffic.

* Fused Phase (1+2): Each of the B X H X Pg4. parallel tasks loads its corresponding
slice of K and V from GMEM chunk by chunk. The intermediate, chunk-local states are
generated and accumulated entirely within SMEM. The only state written to GMEM is the
final updated global state for each chunk, which is required by the Merge phase.

GMEM Trafficpi po = BHT(Dy, + D,)) + BHN¢ Dy, D, (12)

Reads Writes

Compared to Strategy 1, this approach saves 2 x B x H x N¢ x DD, worth of GMEM traffic,
which is the cost of one full read and one full write of the intermediate state tensor.

B.4 HEURISTIC SCHEDULING ALGORITHM

The choice between the Decoupled and Fused strategies presents a classic trade-off between paral-
lelism and memory locality.

* Strategy 1 (Decoupled) is favored when the GPU has a high degree of parallelism (Ngas
is large) that is not saturated by the task parallelism of Strategy 2 (B X H X Psqsc). The
performance gain from launching more parallel tasks in Phase 1 and 3 must outweigh the
latency incurred by the extra GMEM I/O.

 Strategy 2 (Fused) is favored when the task parallelism of the scan (B X H X Pgiate)
is already sufficient to saturate the GPU’s SMs, or when the cost of reading/writing the
intermediate states is the dominant performance bottleneck.

We can formulate a simple heuristic to guide this choice as shown in Algo([I}

In practice, we set Tiomp_chunk t0 O to reduce the runtime overhead and omit the micro-benchmark
effort. The insight is that most linear attention variants is memory bound instead of compute-
intensive.

C COMPUTATIONAL PATTERNS AND MODEL COVERAGE

This appendix elaborates on the claim that our implemented kernels for a few representative models
can support a much broader range of linear attention variants. The mapping from our representative
implementations to the computational patterns and the models they cover is detailed below and

summarized in [Table 3]
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Algorithm 1 Parallelism Scheduler)

Require: Shapes B, T, H, dy, d,,, chunk size C, tile sizes t, t,
Require: Device params: memory bandwidth BW (bytes/s), Ppax (hardware concurrency cap)
Require: Cost param: Toomp_chunk (Measured per-chunk compute time in seconds)
Require: Thresholds: P,,;, (saturation threshold, tasks), element size s (bytes)
Ensure: Return strategy € {FUSED, DECOUPLED}
. N« [T/C]
Pstate <~ [dk/tk] : [dv/t1)1
Pde(:(*B'H’Nc'-Pstate
Pfused «~B-H- Pstate
GMEMuc. < (2C(dy, + dy) + 5didy,) - s
GMEMyyeq < (QC(dk +dy,) + 4dkdv) -8
> Fast path: if fused already provides enough parallelism, prefer fused to save GMEM 10
7. if Pfused > Pmin then
return FUSED
9: end if

AN A

o]

R > Otherwise estimate per-chunk runtime under each mapping

10: Pyec < min(Pec, Prax)
11: Prysed < min(Pfused7 Pmax)

Mdec Tcomp,chunk
BW - P dec p dec
GMEMfused 71(:omp,(:hunk
R B W : H’used 1Dfused
14: if Tfused S Tdec then
15: return FUSED
16: else
17: return DECOUPLED
18: end if

12: Tee

13: Tfused —

Vector-State Linear RNNs (represented by HGRN) Our HGRN kernel embodies the compu-
tational pattern of linear recurrent networks where the state is a vector, updated via element-wise
operations with gated inputs. This is a common pattern for models aiming for high efficiency with
a compact state. Models sharing this fundamental structure include the original HGRN (Qin et al.,
2023)) and Hawk (RG-LRU) (De et al., [2024).

Matrix-State with Scalar Decay (represented by scalar-GLA) The scalar-GLA kernel repre-
sents the widely adopted matrix-state linear attention pattern. In this formulation, the state is a matrix
updated via an outer product of key and value vectors, combined with a simple data-dependent or
data-independent scalar decay. This pattern is foundational to many prominent and powerful models
such as RetNet (Sun et al.,|2023)), Mamba-2 (Dao & Gul 2024), and Lightning Attention (Qin et al.,
2024).

Matrix-State with Vector Decay (represented by vector-GLA) Our vector-GLA implementa-
tion captures the pattern of matrix-state models that employ a more expressive, data-dependent
vector decay. This allows for per-feature state transition dynamics, offering a richer representa-
tion than a single scalar decay. Models in this category include the original Gated Linear Attention
(GLA) (Yang et al.;2023), HGRN-2 (Qin et al., b)), and RWKV-6 (Peng et al., 2023).

Delta-Rule Updates (represented by GDN) Finally, our Gated DeltaNet (GDN) kernel is repre-
sentative of a family of models based on the delta rule for state updates. This update mechanism can
be interpreted as applying a series of Householder transformations to the state matrix, enabling more
complex state transitions. This pattern is central to the family of DeltaNets, including the original
DeltaNet (Yang et al., [2024b)), GatedDeltaNet (Yang et al.,|2024al), and DeltaProduct (Siems et al.,
2025).
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Table 3: Mapping of representative kernels implemented in to the broader set of
models they cover. This demonstrates the generality of our compiler.

Representative Kernel \ Covered Models (Examples)

HGRN \ HGRN (Qin et al.,[2023), Hawk (RG-LRU) (De et al., 2024)

Scalar-GLA RetNet (Sun et al., 2023), Mamba-2 (Dao & Gu, 2024), Lightning
Attention (Qin et al., [2024)

Vector-GLA GLA (Yang et al., 2023), HGRN-2 (Qin et al., b), RWKV-6 (Peng
et al., |2023)

GDN DeltaNet (Yang et al., |2024b), GatedDeltaNet (Yang et al., [2024a),
DeltaProduct (Siems et al., |[2025)

D DISCUSSION ON EXTENSIBILITY AND SUSTAINABILITY

The longevity and utility of a Domain-Specific Language (DSL) depend heavily on whether its ab-
straction captures the invariant properties of the target domain rather than transient heuristics. In this
section, we discuss the future-proofing of Forge from two perspectives: algorithmic expressiveness
and hardware sustainability.

D.1 ALGORITHMIC EXPRESSIVENESS: GROUNDED IN ASSOCIATIVITY

The universality of Forge’s three-phase abstraction (Intra-Chunk, Inter-Chunk, and Merge) derives
from the mathematical foundation of efficient sequence modeling: the associative property.

Mathematical Invariance. Virtually all Linear Attention and State Space Duality (SSD) models
aim to achieve O(N) computational complexity by formulating the attention mechanism as a recur-
rence or a parallel prefix scan. Mathematically, any algorithm that can be decomposed into a chunk
parallel form fits the Forge abstraction. This is not an ad-hoc design choice but a direct mapping of
the underlying algebraic structure required for parallelization.

Handling Complex Dependencies. Forge is expressive enough to handle complex state updates
found in modern architectures, provided they satisfy chunk-wise associativity. For instance:

* The Delta Rule: Despite involving data-dependent updates (e.g., hy = hi—1 + Si(vy —
hi—1)), the Delta Rule preserves the associative structure within local chunks, allowing
Forge to effectively fuse operations.

* Element-wise Decay: Varying decay rates (as seen in Vector-Gated GLA) are fully sup-
ported, as the element-wise multiplication distributes over addition, maintaining the scan

property.

Theoretical Limitations and Edge Cases. The boundary of Forge’s applicability is strictly de-
fined by non-associative recurrences. If an architecture introduces a dependency where the state
update hy = f(hi—1,x¢) involves a non-linear function f that prevents parallel(e.g., passing the
hidden state through a complex MLP at every step before the next update), it cannot be expressed in
Forge.

A notable example is the Test-Time Training (TTT) layer (Sun et al.l 2024b). While TTT can be
viewed through the lens of linear attention or fast weights, its gradient-based updates involve non-
linearities that break associativity. Consequently, TTT cannot be accelerated via the parallel prefix
scans used in Forge. However, it is worth noting that this limitation is mutual: by abandoning
associativity, such models fundamentally forego the massively parallel efficiency that characterizes
the linear attention regime targeted by Forge.

D.2 HARDWARE SUSTAINABILITY: HIERARCHICAL DECOUPLING

To ensure sustainability amidst rapid hardware evolution, Forge employs a strict hierarchical decou-
pling between the algorithmic description and hardware-specific instructions.
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Layered Compilation. Forge operates as a high-level graph compiler rather than a low-level as-
sembler. It does not directly emit hardware-specific assembly (ISA). Instead, it lowers the PyTorch-
based algorithmic description into an intermediate kernel DSL. In our current implementation, we
target Triton, effectively delegating low-level complexities such as register allocation, instruction
scheduling, and tensor core management (e.g., WGMMA on Hopper) to the Triton compiler.

Backend Agnosticism. This layered design makes Forge inherently adaptable. While the current
backend is Triton, the architecture allows for retargeting the mapping layer to other emerging DSLs
(e.g., ThunderKitten (Spector et al., 2024) or TileLang (Wang et al., |2025)). These DSLs provide
better performance with the cost of hardware overfit (e.g. ThunderKittens target on NVidia GPU,
HipKittens (Hu et al., [2025) target solely on AMD GPU while Triton support multiple hardware
backend). Triton allows us to minimize the use of inline assembly (e.g. PTX on NVGPU), reserving
it only for specific extensions not yet exposed by the intermediate representation.

Forward Compatibility. Consequently, as hardware architectures evolve (e.g., the transition to
NVIDIA Blackwell), Forge benefits automatically from updates made by the community to the in-
termediate compiler stack. This ensures that user-level code remains stable and performant without
requiring modification, solving the maintenance bottleneck often associated with hand-written ker-
nels.

E DISCUSSION ON GENERALIZABILITY TO SOFTMAX ATTENTION

While Forge is explicitly designed for Linear Attention, the underlying mathematical associativity,
which enables our optimization is shared by Softmax attention (exploited via the online softmax
trick (Dao et al.l[2022))). In this section, we analyze the theoretical feasibility of extending Forge to
support Softmax attention, and the design rationale behind our decision to specialize in the Linear
Attention domain.

Extending the Forge abstraction to support Softmax-based mechanisms is theoretically feasible but
would necessitate two primary modifications to the current three-phase abstraction:

* Generalizing the Inter-Chunk State. In Linear Attention, the state propagated between
chunks is typically a feature map (e.g., S € R?*?) governed by a linear recurrence. In con-
trast, Softmax attention requires the propagation of normalization statistics, specifically the
running maximum m and the running sum [ to stabilize the computation of exponentials.
Extending Forge would require modifying the decay_mode phase to support the propa-
gation of these scalar or vector statistics alongside, or instead of, the matrix state.

* Introducing a Rescaling Primitive. The merge_mode in Forge is currently designed for
linear combinations (accumulation). Softmax attention, however, mandates a renormaliza-
tion step when merging partial results. Specifically, the output of a preceding block Oy
must be scaled down based on the difference between its local maximum m; and the new
global maximum 72,

Onew = O1 X €17 Mnew 4 Oy x M2 Mnew (13)

Supporting this would require introducing a native rescale (output, old.stats,
new_stats) primitive into the Forge DSL.I

Despite the feasibility of these extensions, we deliberately narrowed the scope of Forge to Lin-
ear Attention to maximize expressiveness.

The Tension between Universality and Specificity. Constructing a “universal” DSL often neces-
sitates a rigid abstraction that compromises the ability to model complex, domain-specific patterns.
A recent framework, AttentionEngine (Chen et al.||2025)), attempts to unify both Softmax and Linear
Attention. However, to maintain this broad generality, its abstraction struggles to express advanced
Linear Attention variants that feature intricate dependencies, such as the Delta Rule or Vector-
Gated GLA. By specializing in Linear Attention, Forge avoids these constraints, supporting these
complex patterns effortlessly.
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From an ecosystem perspective, Softmax attention is already well-served by highly optimized li-
braries and compilers (e.g., FlexAttention (Dong et al., [2024)). In contrast, the Linear Attention
landscape is characterized by rapid algorithmic fragmentation, where new variants are proposed fre-
quently but lack efficient kernel support. Forge addresses this specific ”N-to-1" compiler challenge,
solving a critical bottleneck that is currently more pressing for the research community than further
optimizing Softmax kernels.

Finally, while the abstraction of Forge is specialized, the system-level optimizations are broadly
applicable. For example, our Ahead-of-Time (AOT) compilation pipeline and static dispatcher,
designed to eliminate runtime Python overheads, are universal optimizations. These techniques
can be directly adopted by Softmax-focused DSLs (such as FlexAttention) to significantly improve
performance, particularly in short-sequence regimes where dispatch latency is a dominant factor.

F EXPERIMENTS: DISTRIBUTED EVALUATION ON H100 CLUSTER

To verify the robustness of our distributed scaling strategy, we conducted additional experiments on
an 8x H100 node connected via NVLink.

presents the latency comparison between Ring-Attention (a standard distributed softmax
attention baseline) (Liu et al., [2023)) with FlashAttention-3 which exploit advanced hardware feature
on Hopper GPU, LASP-2, and Forge (both LASP2 and Forge using the Scalar GLA variant). The
experiments were conducted with a batch size of 1, NumHeads = 32, and HeadDim = 128. The
SeqLen in table means sequence length per GPU(global sequence length is equal to SeqLen X
NumberOfGPUs).

The result shows Forge consistently outperforms the LASP-2 baseline across all sequence lengths.
For instance, at a sequence length of 16k on 4 GPUs, Forge achieves a 1.17 x speedup over LASP-2
(0.96ms vs. 1.13ms). Even with the high bandwidth of NVLink on H100s, Forge maintains its
efficiency advantage. This confirms that our fine-grained compute-communication overlap strategy
is effective not only on bandwidth-constrained hardware (like the H20 used in the main result) but
also on high-performance flagship clusters. As expected, Linear Attention methods (both LASP-2
and Forge) are orders of magnitude faster than Ring-Attention, especially at longer sequences (e.g.,
at 512k global sequence length, Forge is over 160 x faster than Ring-Attention).

These results validate that the performance gains reported in the main paper are not artifacts of
the H20 hardware or larger batch sizes, but rather stem from the fundamental efficiency of Forge’s
generated kernels and scheduling logic.

Table 4: Distributed Latency Comparison on H100 GPUs (Batch Size = 1). We compare the
end-to-end latency of Forge (Scalar GLA) against Ring-Attention (Softmax) and LASP-2 (State-
of-the-art Linear Attention Sequence Parallelism). Forge consistently achieves the lowest latency
across all sequence lengths and GPU configurations.

Latency (ms)
Ring-Attn LASP-2 Forge (Ours)

# GPUs SeqLen Per GPU

8192 8.40 1.02 0.79
4 16384 17.77 1.13 0.96
32768 61.65 1.66 1.57
65536 229.43 2.90 2.76
8192 19.32 1.00 0.77
8 16384 38.09 1.15 0.97
32768 133.14 1.67 1.62
65536 462.30 2.92 2.84

G CODE EXAMPLE

In this section we provide code examples to implement different linear attention variants and the
code generate by Forge. Firt we show the Scalar GLA in and the generated code in
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Forge enable pre-compiled kernel (AOT) and static dispatch at runtime. In this example, we
tune the kernel on H=[1,4,8,16,32] and D=[64, 128], so there are a lot of auto-generated code en-
coded pre-tuned information for dispatcher (our AOT optimization). Using Forge to implement this
kernel only involves 50+ lines of code (LOC), which the generated triton code and host launcher is
around 1200 LOC. Even without including the static dispatcher and host launcher in count, the gen-
erated Triton kernel alone has over 400 LOC. And this is only partially generated content, because
Forge also generates code for other parallel strategies.

Then we demonstrate the implementation of DeltaNet using Forge in Note that
DeltaNet involves complex data dependencies where intermediate results computed in the chunk
phase (specifically U and W) are required in the merge phase. Forge introduces a primitive
forge.cache_result to explicit mark these tensors. The compiler then automatically handles
the memory layout and data movement to ensure these values are efficiently reused across phases
without redundant re-computation or manual memory management.

G.1 IMPLEMENTATION AND CODE GENERATION FOR SCALAR GLA

def chunk_mode_scalar_gla(k: Tensor, v: Tensor, g: Tensor) —-> Tensor:
wwny . [C, K}, v [C, V], g: [C}nuu
g_cumsum = g.cumsum (dim=0)
g_cumsum_last = g.sum(dim=0)
g_cumsum = (g_cumsum_last - g_cumsum) .unsqueeze (0) .exp ()
k_fp32 = k.permute([1l, 0]).to(g.dtype)
k_decay = (k_fp32 % g_cumsum) .to (v.dtype)
chunk_state = k_decay @ v
return chunk_state

def decay_mode_scalar_gla(prev_s: Tensor, chunk_state: Tensor, g: Tensor)
—> Tensor:
"llllg: [CJH"H
g_sum = g.sum(dim=0) .exp ()
return prev_s * g_sum + chunk_state

def merge_mode_scalar_gla(
g: Tensor,
k: Tensor,
v: Tensor,
g: Tensor,
chunk_state: Tensor,
scale: Tensor,
) —> Tensor:
"""gq: [C, K], k: [C, K], v: [C, V], chunk_ state: [K, v]"""
g_cumsum = g.cumsum(0)
chunk_state = chunk_state.to(g.dtype)

p = (g@k.T).tril (0)

p = (p » (g_cumsum[..., None] - g_cumsum[None, ...]).exp()).to(v.
dtype)

return (p @ v + g @ chunk_state * g_cumsum.exp()[..., None]) =* scale

CONST_H = ConstExpr ("H", H)
CONST_K ConstExpr ("K", K)
CONST_V = ConstExpr ("V", V)
meta = {
"g": SymbTensor (["T", CONST_H, CONST_K], dtype=dtype),
"k": SymbTensor (["T", CONST_H, CONST_K], dtype=dtype),
"v": SymbTensor (["T", CONST_H, CONST_V], dtype=dtype),
"g": SymbTensor (["T", CONST_H], dtype=torch.float32),
"prev_s": SymbTensor (["NS", CONST_H, CONST_K, CONST_V], dtype=torch.
float32),
"chunk_state": SymbTensor (["NC", CONST_H, CONST_K, CONST_V], dtype=
dtype),
"scale": 1 / math.sqgrt (K),
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13| LinearAttention (

44 input_meta=meta,

45 sp_group=pg if args.sp else None,
46 enable_aot=args.aot,

47 code_dir=args.dir,

48 chunk_mode=chunk_mode_scalar_gla,
49 decay_mode=decay_mode_scalar_gla,
50 merge_mode=merge_mode_scalar_gla,

Listing 1: Implementation of Scalar GLA in Forge

1| fuse_chunk_decay_kernel_signature = (

2 "xbfl6:16, "
3 "xbfl6:16, "
4 "xfp32, "

5 "xbfl6:16, "
6 "xbfl6:16, "
7 "*fp32, n

8 "xi32, "

9 "i32, n

10 "i32, "

1 "xi32, "

12 "SUSE_INITIAL_STATE, "
1} "% "

14 "SK, "

15 "% "

16 "$CHUNK, "
17 "$BLK_K, "
18 "$BLK_V, "
19 "SUSE_TMA"

3l def get_fuse_chunk_decay_kernel_info(B: int, T: int, H: int, K: int, V:

int) :
24 """Static dispatcher for fuse_chunk_decay_kernel. Auto—generated."""
25 D = [K, V]
26 key = (B, T, H, D)
27 if key in (
28 (1, 4096, 4, [64, 64]),
29 (2, 1024, 4, [64, 641),
30 ) 8
31 BLK_K = 32
32 BLK_V = 32
33 num_warps = 8
34 num_ctas = 1
35 num_stages = 3
36 maxnreg = None
37 elif key in (
38 (1, 1024, 1, [64, 64]),
39 (1, 1024, 1, [128, 1281),
10 (1, 1024, 4, [64, 64]),
41 (1, 1024, 4, [128, 1281),
42 (1, 1024, 8, [64, 641),
43 (1, 1024, 8, [128, 1281),
44 (1, 1024, 16, [64, 641]),
45 (1, 1024, 32, [64, 64]),
46 (1, 2048, 1, [64, 64]),
47 (1, 2048, 1, [128, 1281),
48 (1, 2048, 4, [64, 64]),
49 (1, 2048, 4, [128, 1281),
50 (1, 2048, 8, [64, 64]),
51 (1, 2048, 8, [128, 1281),
52 (1, 2048, 16, [64, 64]),
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53 (1, 2048, 32, [64, 641),
54 (1, 4096, 1, [6 641)

55 (1, 4096, 1, [128 1281),
56 (1, 4096, 4, [1 8, 1281),
57 (1, 4096, 8, [6 641),

58 (1, 4096, 8, [128 1281]),
59 (1, 4096, 16, [64, 641]),
60 (1, 4096, 32, [64, 641),

61 (1, 8192, 1, [6 641),

62 (1, 8192, 1, [128 1281]),
63 (1, 8192, 4, |[6 641),

64 (1, 8192, 4, [128 1281]),
65 (1, 8192, 8, [6 641),

66 (1, 8192, 8, [128 128]),
67 (1, 8192, 16, [64 6471),
68 (1, 8192, 32, [6 641),
69 (1, 16384, 1, [6 641),
70 (1, 16384, 1, [128 128]),
71 (1, 16384, 4, [6 641),
72 (1, 16384, 4, [128 128]),
73 (1, 16384, 8, [6 641),
74 (1, 16384, 8, [128 128]),
75 (1, 16384, 16, [64, 64]),
76 (1, 16384, 32, [64, 641),
77 (1, 32768, 1, [6 641),
78 (1, 32768, 1, [128 1281]),
79 (1, 32768, 4, [6 641),
80 (1, 32768, 4, [128 128]),
81 (1, 32768, 8, [6 641),
82 (1, 32768, 8, [128 128]),
83 (1, 32768, 16, [64, 641),
84 (1, 32768, 32, [64, 641),
85 (1, 65536, 1, [6 641),
86 (1, 65536, 1, [128 1281),
87 (1, 65536, 4, [6 641),
88 (1, 65536, 4, [128 1281),
89 (1, 65536, 8, [6 641),
90 (1, 65536, 8, [128 1281),
91 (1, 65536, 16, [64 641),
92 (1, 65536, 32, [6 641),
93 (1, 131072, 1, [6 641]),
94 (1, 131072, 1, [128 1281),
95 (1, 131072, 4, [6 641),
9% (1, 131072, 4, [128 1281),
97 (1, 131072, 8, [6 641),
98 (1, 131072, 8, [128 128])
99 (1, 131072, 16, [64, 641),
100 (1, 131072, 32, [64, 41),
101 (1, 262144, 1, [6 64]),
102 (1, 262144, 1, [128 1281),
103 (1, 262144, 4, [6 641),
104 (1, 262144, 4, [128 1287]),
105 (1, 262144, 8, [6 641),
106 (1, 262144, 8, [128 128])
107 (1, 262144, 1o, [64, 641),
108 (1, 262144, 32, [64, 641),
109 (2, 1024, 1, [64, 64]),

110 (2, 1024, 1, [128, 128]),
11 (2, 1024, 4, [128, 1281),
112 (2, 1024, 8, [64, 64]),

113 (2, 1024, 16, [64, 641]),
114 (2, 2048, 1, [64, 64]),

115 (2, 2048, 1, [128, 1281),
116 (2, 2048, 4, [64, 64]),

117 (2, 2048, 4, [128, 1281),
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(2, 2048, 8, [64, 64]1),
(2, 2048, 16, [64, 641),
(2, 4096, 1, [64, 64]),
(2, 4096, 1, [128 1281),
(2, 4096, 4, [64, 64]),
(2, 4096, 4, [128 1281),
(2, 4096, 8, [6 647),
(2, 4096, 16, [64 641),
(2, 8192, 1, I[6 647),
(2, 8192, 1, [128 1281),
(2, 8192, 4, [6 647),
(2, 8192, 4, [128 1281),
(2, 8192, 8, [6 647),
(2, BlL92, 16, [64 641),
(2, 16384, 1, [6 641),
(2, 16384, 1, [128 1281),
(2, 16384, 4, [6 641),
(2, 16384, 4, [128 1281),
(2, 16384, 8, [6 641),
(2, 16384, 16, [64, 641),
(2, 32768, 1, [6 641),
(2, 32768, 1, [128 1281),
(2, 32768, 4, [6 641),
(2, 32768, 4, [128 1281),
(2, 32768, 8, [6 641),
(2, 32768, 16, [64, 641),
(2, 65536, 1, [6 641),
(2, 65536, 1, [128 128]),
(2, 65536, 4, [6 641),
(2, 65536, 4, [128 128]),
(2, 65536, 8, [6 641),
(2, 65536, 16, [64 641),
(2, 131072, 1, [6 641),
(2, 131072, 1, [128 128]),
(2, 131072, 4, [6 641),
(2, 131072, 4, [128 128]),
(2, 131072, 8, [6 641),
(2, 131072, 1le, [64, 641),
) 8
BLK_K = 32
BLK_V = 32
num_warps = 8
num_ctas = 1
num_stages = 4
maxnreg = None
elif key in (
(1, 1024, 32, [128, 128]),
(1, 2048, 32, [128, 1281]),
(1, 4096, 32, [128, 1281]),
(1, 8192, 32, [128, 1281]),
(1, 16384, 32, [128, 128]),
(1, 32768, 32, [128, 1281),
(1, 65536, 32, [128, 128]),
(1, 131072, 32, [128, 128]),
(1, 262144, 32, [128, 128]),
(2, 1024, 32, [128, 128]),
(2, 2048, 16, [128, 1281]),
(2, 2048, 32, [128, 1281]),
(2, 4096, 16, [128, 1281]),
(2, 4096, 32, [128, 1281]),
(2, 8192, 32, [128, 128]),
(2, 16384, 16, [128, 1281),
(2, 16384, 32, [128, 128]),
(2, 32768, 32, [128, 128]),
(2, 131072, 16, [128, 128]),
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183 )3

184 BLK_K = 32

185 BLK_V = 64

186 num_warps = 4

187 num_ctas = 1

188 num_stages = 3

189 maxnreg = None

190 elif key in (

191 (2, 1024, 16, [128, 1281),

192 ) 3

193 BLK_K = 32

194 BLK_V = 64

195 num_warps = 8

196 num_ctas = 1

197 num_stages = 3

198 maxnreg = None

199 elif key in (

200 (1, 1024, 16, [128, 1281]),

201 (1, 2048, 16, [128, 1281),

202 (1, 4096, 16, [128, 128]),

203 (1, 8192, 16, [128, 1281]),

204 (1, 16384, 16, [128, 128]),

205 (1, 32768, 16, [128, 128]),

206 (1, 65536, 16, [128, 128]),

207 (1, 131072, 16, [128, 128]),

208 (1, 262144, 16, [128, 128]),

209 (2, 1024, 8, [128, 1281),

210 (2, 1024, 32, [64, 64]),

211 (2, 2048, 8, [128, 1281),

212 (2, 2048, 32, [64, 64]),

213 (2, 4096, 8, [128, 1281),

214 (2, 4096, 32, [64, 64]),

215 (2, 8192, 8, [128, 1281),

216 (2, 8192, 16, [128, 128]),

217 (2, 8192, 32, [64, 64]),

218 (2, 16384, 8, [128, 1281]),

219 (2, 16384, 32, [64, 641),

220 (2, 32768, 8, [128, 128]),

221 (2, 32768, le6, [128, 128]),

222 (2, 32768, 32, [64, 641),

223 (2, 65536, 8, [128, 1281]),

224 (2, 65536, 16, [128, 128]),

225 (2, 65536, 32, [64, 641),

226 (2, 131072, 8, [128, 1281),

227 (2, 131072, 32, [64, 641),

228 )3

229 BLK_K = 32

230 BLK_V = 64

231 num_warps = 8

232 num_ctas = 1

233 num_stages = 4

234 maxnreg = None

235 elif key in (

236 (2, 65536, 32, [128, 1281),

237 (2, 131072, 32, [128, 128]),

238 )t

239 BLK_K = 64

240 BLK_V = 128

241 num_warps = 8

242 num_ctas = 1

243 num_stages = 4

244 maxnreg = None

245 else:

246 raise ValueError (f"Unsupported config for fuse_chunk_decay_kernel
BTHD={key}")
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247

248 return {

249 "CHUNK": 64,

250 "USE_INITIAL_STATE": True,
251 "H": H,

252 "K": D[O],

253 "v": D[1],

254 "BLK_K": BLK_K,

255 "BLK_V": BLK_V,

256 "num_warps":

"num_stages":

num_warps,
257 num_stages,
258 }

259
260
261
262

263

@aot_compile_spaces ({

264 "fuse_chunk_decay_kernel": {

265 "signature": fuse_chunk_decay_kernel_signature,

266 "grid": [" (%K + $BLK_K - 1) / $BLK_K", "(%V + $BLK.V - 1) / %
BLK_V", "H MUL_NS"],

267 "triton_algo_infos": [

268 get_fuse_chunk_decay_kernel_info (B, T, H, K, V)

269 for B,T,H, (K,V) in]

270 (1, 262144, 32, [64, 64]),

271 (1, 262144, 8, [128, 1281),

272 (2, 1024, 16, [128, 1281]),

273 (2, 1024, 4, [64, 64]),

274 (2, 131072, 1, [128, 1281),

275 (2, 131072, 1, [64, 64]),

276 (2, 131072, 16, [128, 128]),

277 (2, 131072, 16, [64, 641),

278 (2, 131072, 32, [128, 128]),

279 (2, 131072, 32, [64, 641),

280 (2, 131072, 4, [128, 1281),

281 (2, 131072, 4, [64, 64]),

282 (2, 131072, 8, [128, 1281),

283 (2, 131072, 8, [64, 64]),

284 (2, 32768, 32, [128, 1281),

285 (2, 65536, 16, [128, 128])

286 ]

287 1,

288 }

2891 1)

290| @triton.autotune (

291 configs=|[

292 triton.Config ({"BLK_K": BLK K, "BLK_V": BLK_V, "USE_TMA": USE_TMA
}, num_warps=num_warps, num_stages=num_stages)

293 for num_warps in [4, 8]

294 for num_stages in [3, 4]

295 for BLK_K in [128, 64, 32]

296 for BLK_V in [128, 64, 32]

297 for USE_TMA in [True, False]

298 1,

299 key=1[1,

300
301
302

)
@triton. jit
def fuse_chunk_decay_kernel (

303 k,

304 v,

305 g,

306 prev_s,
307 out_0,
308 out_1,

309

cu_seqglens,
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310 NS,

311 H_MUL_NS,

312 chunk_offsets_with_ini,

313 USE_INITIAL_STATE: tl.constexpr,
314 H: tl.constexpr,

315 K: tl.constexpr,

316 V: tl.constexpr,

317 CHUNK: tl.constexpr,

318 BLK_K: tl.constexpr,

319 BLK_V: tl.constexpr,
320 USE_TMA: tl.constexpr,

322 NUM_BLK_K = (K + BLK_K - 1) // BLK_K

323 NUM_BLK_V = (V + BLK_V - 1) // BLK_V

324 NUM_BLK_KV = NUM_BLK_K * NUM_BLK_V

326 ik, i_v, i_sh = tl.program_id(0), tl.program_id(l), tl.program_ id(2)

327 i_s, i_h = i_sh // H, i_sh % H

328 bos, eos = tl.load(cu_seqglens + i_s).to(tl.int32), tl.load(cu_seqglens
+ i s + 1).to(tl.int32)

329 T = eos — bos

330 NC = tl.cdiv (T, CHUNK)

331 boh = tl.load(chunk_offsets_with_ini + i_s).to(tl.int32)

332

333 out_0 = out_0 + (boh  H + i_h).to(tl.int64) * K % V

334 prev_s = prev_s + (i_s # H + i_h) x K « V

335 initial decay = 1.0

336 # out_1: [NC + NS, H]. NOTE: xxnot*+* in log space

337 ptr_out_1 = out_1 + boh * H + i_h

338 # store initial decay

339 tl.store(ptr_out_1, initial_decay)

340 ptr_out_1 += H

341 # [BK, BV]

342 blk_prev_s = tl.zeros ([BLK_K, BLK V], dtype=tl.float32)

343 if USE_INITIAL_STATE:

344 ptr_prev_s = tl.make_block_ptr(prev_s, (K, V), (V, 1), (i_k =
BLK K, i v % BLK_V), (BLK_ K, BLK V), (1, 0))

345 blk_prev_s = tl.load(ptr_prev_s, boundary_check=(0, 1)).to(tl.
float32)

346 ptr_out_0 = tl.make_block_ptr(out_0, (K, V), (V, 1), (i_k+BLK_K, i_vx*
BLK_V), (BLK_K, BLK_V), (1, 0)) # fmt: skip

347 tl.store(ptr_out_0, blk_prev_s.to(ptr_out_0.dtype.element_ty))

348 out_0 += H = K %= V

349

350 if USE_TMA:

351 k_desc = tl.make_tensor_descriptor (

352 k + bos * H + K+ i_h x K,

353 shape=[T, K],

354 strides=[H * K, 1],

355 block_shape=[CHUNK, BLK_K],

356 )

357 v_desc = tl.make_tensor_descriptor (

358 v + bos * H » V + i_h % V,

359 shape=[T, V],

360 strides=[H * VvV, 1],
361 block_shape=[CHUNK, BLK_V],
362 )

363 out_0_desc = tl.make_tensor_descriptor (
364 out_0,
365 shape=[NC, K, V],

366 strides=[H » K » V, Vv, 1],
367 block_shape=[1, BLK_K, BLK_V],
368 )

370 for i_c in range (NC) :
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371 # load (trans) ‘k‘: (T, H, K,) => (BLK_K, CHUNK,)

372 if not USE_TMA:

373 cur_k = k + bos * H * K+ i_h » K # fmt: skip

374 ptr_k_0 = tl.make_block_ptr(cur_k, (K, T,), (1, H x K,), (i_k
* BLK_K, i_c » CHUNK,), (BLK_K, CHUNK,), (0, 1,)) # fmt: skip

375 blk_k_0 = tl.load(ptr_k_0, boundary_check=(0, 1,)) # fmt:
skip

376 else:

377 blk_k_0 = k_desc.load([i_c » CHUNK, i_k * BLK_K]) .trans/()

378

379 # load ‘v‘: (T, H, V,) => (CHUNK, BLK V,)

380 if not USE_TMA:

381 cur_ v = v + bos * H * V + i_h « V # fmt: skip

382 ptr_v_1 = tl.make_block_ptr(cur_v, (T, V,), (H x Vv, 1,), (i_c
* CHUNK, i_v * BLK_V,), (CHUNK, BLK_V,), (1, 0,)) # fmt: skip

383 blk_v_1 = tl.load(ptr_v_1, boundary_check=(1, 0,)) # fmt:
skip

384 else:

385 blk_v_1 = v_desc.load([i_c * CHUNK, i_v * BLK_V])

386

387

388

389 # call_external_ func: ‘chunk_local_ cumsum‘' to pre-compute g

390

391 # load ‘g‘: (T, H,) => (CHUNK,)

392 cur_g = g + bos * H+ i_h » 1 # fmt: skip

393 ptr_g 2 = tl.make_block_ptr(cur_g, (T,), (H,), (i_c = CHUNK,), (
CHUNK,), (0,)) # fmt: skip

394 blk_g 2 = tl.load(ptr_g_2, boundary_check=(0,)) # fmt: skip

395 # load_last_g: => ()

396 # load ‘g' [(CHUNK - 1)]: (T, H,) => (,)

397 cur_g = g + bos * H+ i_h 1 + (CHUNK - 1) « H # fmt: skip

398 ptr_last_g_3 = cur_g + i_c » CHUNK » H # fmt: skip

399 last_g 3 = tl.load(ptr_last_g_3)

400 # sub: torch.Size([]), (’CHUNK’,) => (’CHUNK’,)

401 sub_4 = last_g 3 - blk _g 2

402 # unsqueeze: (’CHUNK’,) => (1, ’CHUNK’)

403 unsqueeze_5 = sub_4[None, :]

404 # exp: (1, 'CHUNK’) => (1, ’CHUNK’)

405 exp_6 = tl.exp(unsqueeze_5)

406 # to: ('BLK_K’, ’CHUNK’) => (’BLK_K’, ’CHUNK’)

407 blk_k 0 _float32_7 = blk_k O.to(tl.float32)

408 # mul: (/BLK_K’, ’CHUNK’), (1, ’CHUNK’) => (/BLK_K’, ’CHUNK’)

409 mul_8 = blk_k 0_float32_7 » exp_6

410 # to: ('BLK_K’, ’CHUNK’) => (’BLK_K’, ’CHUNK’)

411 mul_ 8 bfloatl6_9 = mul_8.to(tl.bfloatl6)

412 # matmul: (/’BLK_K’, ’CHUNK’), (’CHUNK’, ’'BLK_V’) => ('BLK_K’, '
BLK_V')

413 matmul_10 = tl.dot (mul_8_bfloatl6_9, blk_v_1).to(mul_8_bfloatl6_9
.dtype)

414 # exp: () => ()

415 exp_1_11 = tl.exp(last_g_3)

416 # mul: (/BLK_K’, 'BLK V'), () => (BLK_K’, ’BLK V')

417 mul_1 12 = blk_prev_s * exp_1_11

418 # add: (/BLK_K’, ’'BLK V'), (’BLK_K’, 'BLK_V’) => (/BLK_K’, 'BLK_V
")

419 add_13 = mul_1_12 + matmul_10

420 # mul: ("s3’,), () => ("s3’,)

421 mul_tensor_14 = initial_decay » exp_1_11

422 # store => ('BLK_K’, ’"BLK_V')

423 # assume output layout: [NC_WITH_INI, H, K, V]

424 out_0_ty = out_0.dtype.element_ty

425 if not USE_TMA:

426 ptr_out_0 = tl.make_block_ptr(out_0, (X, V,), (V, 1,), (i_k =«

BLK_K, i_v * BLK_V,), (BLK_K, BLK_V,), (1, 0)) # fmt: skip
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)

tl.store(ptr_out_0, add_13.to(out_0_ty), boundary_check=(1,

out_0 += H * K = V
else:
out_0_desc.store([i_c, i_k * BLK_K, i1i_v x BLK_V], add_13.to(
out_0_ty) [None, :, :1)
blk_prev_s = add_13.to(blk_prev_s.dtype)
# store => (’s3’,)
# output layout: [NC_WITH_INI, H, s3]
out_1_ty = out_l.dtype.element_ty
tl.store(ptr_out_1 + i_c * H, mul_tensor_l4.to(out_1_ty))
initial decay = mul_tensor_14

3| def launch_fuse_chunk_decay (

g: torch.Tensor,
prev_s: torch.Tensor,
v: torch.Tensor,
k: torch.Tensor,
cu_seqglens: torch.IntTensor,
cached_results: dict,
dist_scan: DistScanContext = None,
lazy_update: bool = True,
—> dict[str, torch.Tensor]:

rrr

perform "decayed scan" on ‘chunked_states’®
# state_dtype = chunk_state.dtype
chunk_decay = None

prev_rank_state_sum = None

# TODO: now fix chunk_size to 64

CHUNK = 64

chunk_indices = prepare_chunk_indices (cu_seglens, CHUNK)
chunk_offsets = prepare_chunk_offsets (cu_seglens, CHUNK)
chunk_offsets_with_ini = prepare_chunk_offsets_with_ini (cu_seqglens,
CHUNK)

NS, NC = len(cu_seqglens) - 1, chunk_indices.shape[0]

NC_WITH_INI = NC + NS

use_aot = os.environ.get (' FORGE_USE_AQT’, ’'0')

FORGE_USE_AOT = True if use_aot.lower () in [’"1’, ’"true’, ’'yes’] else
None

T, H, K, V = xk.shape, v.shape[-1]

updated_states = k.new_empty ([NC_WITH_INI, H, K, V])

def alloc_fn(size: int, alignment: int, stream: int):
return torch.empty(size, device=’cuda’, dtype=torch.int8)

triton.set_allocator(alloc_fn)

def grid(meta) :
BLK_K = metal[’/BLK_K’']
BLK_V = meta[’BLK_V’]
NUM BLK K = (K + BLK.XK - 1) // BLK K
NUM_BLK_V = (V + BLK_V - 1) // BLK_V
NUM_BLK_KV = NUM_BLK_K % NUM_BLK_V
H_MUL_NS = H x NS
return (NUM_BLK_K, NUM_BLK_V, H_MUL_NS,)

chunk_decay = torch.empty ([NC_WITH_INI, H], dtype=torch.float32)
if FORGE_USE_AQOT is None:
fuse_chunk_decay_kernel [grid] (
g9=g,
prev_s=prev_s,
v=v,
k=k,
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488 out_1l=chunk_decay,

489 cu_seqglens=cu_seqglens,

490 H=H,

491 NS=NS,

492 K=K,

493 V=V,

494 CHUNK=CHUNK,

495 H_MUL_NS=H *x NS,

496 out_0O=updated_states,

497 chunk_offsets_with_ini=chunk_offsets_with_ini,

498 USE_INITIAL_STATE=True,

499 )

500

501 else:

502

503 from foge.aot_utils import forge_aot_ops

504

505 algo_info = forge_aot_ops.
fuse_chunk_decay_kernel triton_algo_info_t ()

506 for _k, _v in get_fuse_chunk_decay_kernel_info (NS, T, H, K, V).
items () :

507 setattr (algo_info, _k, _v)

508 forge_aot_ops.fuse_chunk_decay_kernel (

509 0, # torch.cuda.current_stream() .cuda_stream,

510 k.data_ptr (), # k

511 v.data_ptr(), # v

512 g.data_ptr(), # g

513 prev_s.data_ptr(), # prev_s

514 updated_states.data_ptr(), # out_0O

515 chunk_decay.data_ptr (), # out_1

516 cu_seqglens.data_ptr(), # cu_seglens

517 NS, # NS

518 H » NS, # H_MUL_NS

519 chunk_offsets_with_ini.data_ptr(), # chunk_offsets_with ini

520 algo_info,

521 )

523

524 final_chunk_indices = chunk_offsets_with_ini[l:] - 1

525 final_state_local = updated_states[final_chunk_indices, ...]

526 final_decay_local = chunk_decay[final_chunk_indices, ...]

527

528 if dist_scan.pg.size() > 1:

529 prev_rank_state_sum = dist_scan.forward(

530 final_state_local=final_state_local,

531 final_decay_local=final_decay_local,

532 decay_type=DecayType.SCALAR,

533 lazy_update=True,

534 )

535

536 cached_results.update ({})

537 if prev_rank_state_sum is not None:

538 return {

539 "chunk_state": updated_states,

540 "chunk_decay": chunk_decay,

541 "prev_rank_state_sum": prev_rank_state_sum,

542 }

543 else:

544 return {

545 "chunk_state": updated_states,

546 "chunk_decay": None,

547 "prev_rank_state_sum": None,

548 }

5499| merge_mode_kernel_signature = (

550 "xbfl6:16, "
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def

"xbfl6:16, "
"xbfl6:16, "
"*fp32, n
"xbfl6:16, "
"fp32, "
"xbfl6:16, "
"i32:16, "
"xbfl6:16, "
"i32:16, "
"xbfl6:16, "
'l*i32, "
"i32, "
"i32’ n
"xi32, "
'li32 n
"$FUSE_SP_STATE_UPDATE, "

"o "

AL %K, "
no n

CRA
"$CHUNK, "
"SBLK_K, "
no BLK v n
"SUSE_TMA"

get_merge_mode_kernel_info(B: int, T: int,

"""Static dispatcher for merge_mode_kernel.

D [K, V]
key = (B, T, H, D)
if key in (

(1, 4096, 4,
1, 131072,
1, 262144,
2, 1024, 8,
2, 4096, 1,
2, 8192, 1,

[128, 128]),
32, [128, 128]),
32, [128, 128]),
[128, 128]),
[128, 128]),

[

128, 1281),

128

128

=4
1

BLK_K =
BLK_V
num_warps
num_ctas
num_stages
maxnreg

elif key in (

4096,

16384,

16384,

32768,

32768,

32768,

65536,

65536,

131072,

131072,

131072,

262144,

3
None

32,
8,
32,
8,
16,
32,
8,
32,
4,
8,
16,
4,

(128,
[128,
(128,
(128,
(128,
[128,
[128, ’
[128, )
[128, 128])
(128, 128])
[128, 128]),

)

)

]

1287),
128])
128]
1281),
1287),
128])
128])
128]
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~

[128, 128
262144, 8, [128, 128
262144, 16, [128, 128
4096, 16, [128, 128]
4096, 32, [128, 128]
16384, 8, [128, 128]
16384, 32, [128, 128
32768, 16, [128, 128
32768, 32, [128, 128
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619
620
621
622
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624
625
626
627
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630

632
633
634
635
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640
641

642
643
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646
647
648
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650
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(2, 65536, 8, [128, 1281]),
(2, 65536, 16, [128, 1281]),
(2, 131072, 4, [128, 1281),
(2, 131072, 8, [128, 1281),
(2, 131072, 16, [128, 128]),
) :
BLK_K = 128
BLK_V = 128
num_warps = 8
num_ctas = 1
num_stages = 3
maxnreg = None
elif key in (
(1, 1024, 16, [128, 128]),
(1, 1024, 32, [128, 1281]),
(1, 2048, 8, [128, 1281),
(1, 2048, 16, [128, 1281]),
(1, 16384, 1, [128, 128]),
(1, 32768, 1, [128, 1281]),
(2, 2048, 4, [128, 1281),
(2, 65536, 32, [128, 1281),
(2, 131072, 32, [128, 128]),
)3
BLK_K = 128
BLK V = 128
num_warps = 4
num_ctas = 1
num_stages = 4
maxnreg = None
elif key in (
(1, 2048, 32, [128, 1281]),
(1, 4096, 16, [128, 1281]),
(1, 8192, 16, [128, 1281]),
(1, 8192, 32, [128, 128]),
(1, 16384, 16, [128, 1281),
(1, 65536, 4, [128, 128]),
(1, 65536, 16, [128, 1281),
(2, 1024, 32, [128, 128]),
(2, 2048, 32, [128, 1281]),
(2, 8192, 8, [128, 1281),
(2, 8192, 16, [128, 1281]),
(2, 8192, 32, [128, 128])
(2, 16384, 1o, [128, 1281),
(2, 32768, 4, [128, 128]),
(2, 32768, 8, [128, 1281]),
(2, 65536, 4, [128, 1281]),
)3
BLK_K = 128
BLK_V = 128
num_warps = 8
num_ctas = 1
num_stages = 4
maxnreg = None
elif key in (
(1, 1024, 1, [64, 641),
(1, 4096, 1, [64, 641),
)3
BLK_K = 128
BLK_V = 32
num_warps = 4
num_ctas = 1
num_stages = 3
maxnreg = None
elif key in (
(1, 1024, 1, [128, 1281),
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(1, 1024, 4, [6 641),
(1, 1024, 8, [6 641),
(1, 2048, 1, [6 641),
(1, 2048, 1, [128 128]),
(1, 2048, 4, [6 641),
(2, 1024, 1, [6 641),
(2, 2048, 1, [6 647),

) :
BLK_K = 128
BLK_V = 32
num_warps = 4
num_ctas = 1
num_stages = 4
maxnreg = None

elif key in (
(1, 1024, 8, [128, 128]),
(1, 1024, 32, [64, 64]),
(1, 2048, 4, [128 128]),
(1, 4096, 4, [6 647),
(1, 4096, 8, [6 641),
(1, 4096, 8, [128 128]),
(1, 8192, 1, [ 8 128]),
(1, 8192, 8, [6 64171)
(L, 8192, B, [128 128]),
(1, 8192, 32, [64, 64])
(1, 16384, 1, [64, 64]),
(1, 16384, 32, [64, 64]),
(1, 32768, 1, [64 41),
(1, 32768, 4, [64 41),
(1, 32768, 8, [64, 64]),
(1, 32768, 16, [64, 64]),
(1, 65536, 1, [128, 128])
(1, 131072, 1, [128, 1281),
(1, 131072, 32, [64, 641),
(1, 262144, 1, [64, 64]),
(1, 262144, 32, [64, 641),
(2, 1024, 4, [64, 64]),
(2, 1024, 4, [128, 1281),
(2, 1024, 8, [64, 641),
(2, 1024, 16, [64, 64]),
(2, 1024, 32 [64, 64]),
(2, 2048, 4, [64, 641),
(2, 2048, 8, [64, 64])
(2, 2048, 8, [128, 1281),
(2, 2048, 16, [64, 64]),
(2, 2048, 16, [128, 1281),
(2, 2048, 32, [64, 641),
(2, 4096, 4, [6 641),
(2, 4096, 4, [128 128]),
(2, 4096, 8, [6 641),
(2, 4096, 8, [128 1281]),
(2, 4096, 16, [64, 64]),
(2, 4096, 32, [64, 64]),
(2, 8192, 1, [64, 641),
(2, 8192, 4, [128, 128]),
(2, 16384, 1, [64, 64]),
(2, 16384, 1, [128, 128]),
(2, 16384, 4 [128 128]),
(2, 16384, 8 [64, 64]),
(2, 16384, 32, [64, 641),
(2, 32768, 16, [64, 641),
(2, 32768, 32, [64, 641),
(2, 65536, 1, [64, 64]),
(2, 65536, 1, [128, 1281]),
(2, 65536, 16, [64, 641),
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BLK_K = 128
BLK_V = 64
num_warps = 4
num_ctas = 1
num_stages = 3
maxnreg = None

elif key in (
(1, 4096, 1, [128, 1281]),

) :
BLK_K = 128
BLK_V = 64
num_warps = 8
num_ctas = 1
num_stages = 3
maxnreg = None

elif key in (
(1, 1024, 4, [128, 1281),
(1, 1024, 16, [64, 641),
(1, 2048, 8, [64, 641]),
(1, 2048, 1o, [64, 641),
(1, 2048, 32, [64, 64]),
(1, 4096, 16, [64, 641),
(1, 4096, 32, [64, 641]),
(1, 8192, 1, [64, 64]),
(1, 8192, 4, [64, 641),
(1, 8192, 4, [128, 1281),
(1, 8192, 16, [64, 64]),
(1, 16384, 4, [64, 64]),
(1, 16384, 4, [128, 128]),
(1, 16384, 8, [64, 64]),
(1, 16384, 16, [64, 641),
(1, 32768, 4, [128, 128]),
(1, 32768, 32, [64, 64]1),
(1, 65536, 1, [64, 64]),
(1, 65536, 4, [64, 64]),
(1, 65536, 8, [64, 64]),
(1, 65536, 16, [64, 641),
(1, 65536, 32, [64, 641),
(1, 131072, 1, [64, 641),
(1, 131072, 4, [64, 641),
(1, 131072, 8, [64, 641),
(1, 131072, 16, [64, 641),
(1, 262144, 1, [128, 1281),
(1, 262144, 4, [64, 641),
(1, 262144, 8, [64, 64]1),
(1, 262144, 1o, [64, 641),
(2, 1024, 16, [128, 1281),
(2, 8192, 4, [64, 641),
(2, 8192, 8, [64, 641),
(2, 8192, 16, [64, 64]),
(2, 8192, 32, [64, 64]),
(2, 16384, 4, [64, 64]),
(2, 16384, 16, [64, 64]1),
(2, 32768, 1, [64, 64]),
(2, 32768, 1, [128, 128]),
(2, 32768, 4, [64, 64]),
(2, 32768, 8, [64, 64]1),
(2, 65536, 4, [64, 64]),
(2, 65536, 8, [64, 64]),
(2, 65536, 32, [64, 641),
(2, 131072, 1, [64, 641),
(2, 131072, 1, [128, 1281),
(2, 131072, 4, [64, 641),
(2, 131072, 8, [64, 641),

33




Under review as a conference paper at ICLR 2026

811 (2, 131072, 16, [64, 641),

812 (2, 131072, 32, [64, 641),

813 )

814 BLK_K = 128

815 BLK_V = 64

816 num_warps = 4

817 num_ctas = 1

818 num_stages = 4

819 maxnreg = None

820 elif key in (

821 (2, 1024, 1, [128, 128]),

822 (2, 2048, 1, [128, 1281),

823 (2, 4096, 1, [64, 64]),

824 )

825 BLK_K = 128

826 BLK_V = 64

827 num_warps = 8

828 num_ctas = 1

829 num_stages = 4

830 maxnreg = None

831 else:

832 raise ValueError (f"Unsupported config for merge_mode_kernel: BTHD
={keyl}")

833

834 return {

835 "CHUNK": 64,

836 "FUSE_SP_STATE_UPDATE": True,

837 "H": H,

838 "K": D[O],

839 "v": D[1],

840 "BLK_K": BLK_K,

841 "BLK_V": BLK_V,

842 "num_warps": num_warps,

843 "num_stages": num_stages,

@aot_compile_spaces ({
"merge_mode_kernel": {

856

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

"signature":

merge_mode_kernel_signature,

"grid": [" ((%K +
BLK_V) n, vv%Hu, HNC"] ,
"triton_algo_infos":

get_merge_mode_kernel_info (B,

for B,T,H, (K,V)
1024, 8,
2048, 1,
2048, 16
2048, 4,
2048, 8,
262144,
32768, 1
32768, 4
4096,
4096,
4096, o
1024, 6
1024, 8,
131072,
131072,
131072,
131072,
131072,

[EE,
N N S SN SN S N~ O~

~

r

~

1
1,
4
1

N~ S N SN N~ N

S S S I I R R N e N O e e = =
N

~

$SBLK_K — 1) /

$BLK_K) * ((%V +

[

T, H, K, V)

in[
[64, 64]),
[128, 128])

, [128, 128]
[64, 64]1),
[128, 128]),

32, [128, 128]),

, [128, 1281),

, [128, 128]),
[128, 128]),
[64, 64]1),
[128, 128]),

, [128, 128]),
[128, 128]),

1, [128, 128]),

1, [64, 64]),

16, [128, 128]),

16, [64, 64]),

32, [128, 128]),

)y

34

$SBLK_V — 1)




874
875
876
877
878
879
880
881

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

905
906
907
908

Under review as a conference paper at ICLR 2026

~

~

~

~

~

16384,
16384,
16384,
2048,
2048,
2048,
2048,
32768,
32768,
32768,
4096,
4096,
4096,
65536,
65536,
65536,
65536,
8192,
8192,

~ N S~ 0~ 0~

~

N N NS SN S S S S~ o~ O~

~

NN DNDNDNNDNDNDNNDNNDNDNDNDNDDNDNDNDNDNDDNDDNDDNDDNDDNDDN
~

~

1,
}
H)
@triton.autotune (
configs=|[

triton.Config ({"BLK_K":
num_warpsS=num_warps,

}y

131072,
131072,
131072,
131072,
131072,

4,

ISy

4
8,
8,

16,

4,

8,

1,

1,

16,

4,
32,
32,
8,

1,

4,

8

’

4
1
1,
16,
4,

1,
32,

32,

(64,

[128,

(64,

(128,

[128,
(64,

[128,
[64, 6

[128,

[128,

[128,
(64,
[128,

[64, 6
[64, 6
[128,

[128,

[64,
[64,

[128,

[128,

[128,

(64,
[128,

BLK_K,

64]),
1281])
647),

647),

1281),
41),
1281]),
41) .,
1281),
128]),
281),
])r
128]),
41),
41),
1281])
128]
J),
4])
128]
)
]

)y

)y
128]

128])

’

1281),

1281),

"BLK_V":
num_stages=num_stages)

BLK_V,

for
for
for
for
for

[4,
[3,

8]
4]

num_warps in
num_stages in
BLK_K in [128]

BLK_V in [128, 64, 32]

"USE_TMA":

USE_TMA

USE_TMA in [True, False]
10 1,

1 key=1[1,
12])

13| @triton. jit

14| def merge_mode_kernel (
1

1

1

1

915 dr

916 k,

917 v,

918 g/

919 chunk_state,
920 scale,

prev_rank_state_sum,
stride_dO_ns_prev_rank_state_sum,
chunk_decay,
stride_dO_nc_with_ini_chunk_decay,
out_0,

cu_seqglens,

NS,

H_MUL_NS,
chunk_indices,

NC,
FUSE_SP_STATE_UPDATE:
932 H: tl.constexpr,

K: tl.constexpr,

934 V: tl.constexpr,
CHUNK: tl.constexpr,
BLK_K: tl.constexpr,
BLK_V: tl.constexpr,

tl.constexpr,
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938 USE_TMA: tl.constexpr,

939] ) :

940 NUM_BLK_K = (K + BLK_K - 1) // BLK_K

941 NUM BLK V = (V + BLK.V — 1) // BLK V

942 NUM_BLK_KV = NUM_BLK_K * NUM_BLK_V

943

944 i_v, i_h, i_gc = tl.program_id(0), tl.program_id(l), tl.program_ id(2)

945 i_s, i_c = tl.load(chunk_indices + i_gc x 2).to(tl.int32), tl.load(
chunk_indices + i_gc « 2 + 1).to(tl.int32)

946 bos, eos = tl.load(cu_seglens + i_s).to(tl.int32), tl.load(cu_seqglens

+ i s + 1).to(tl.int32)

947 T = eos - bos

948 # NC = tl.cdiv (T, CHUNK)

949

950 # FIXME: set ‘i_k‘ temporarily

951 i_k =0

952 out_0 = out_0 + (bos  H + i_h) % V

953

954 if USE_TMA:

955 g _desc = tl.make_tensor_descriptor (

956 g + bos * H «x K+ i_h * K,

957 shape=[T, K],

958 strides=[H * K, 1],

959 block_shape=[CHUNK, BLK_K],

960 )

961 k_desc = tl.make_tensor_descriptor (

962 k + bos * H « K+ i_h x K,

963 shape=[T, K],

964 strides=[H * K, 1],

965 block_shape=[CHUNK, BLK_K],

966 )

967 v_desc = tl.make_tensor_descriptor (

968 v + bos * H » V + i_h * V,

969 shape=[T, V],

970 strides=[H * V, 1],

971 block_shape=[CHUNK, BLK_V],

972 )

973 chunk_state_desc = tl.make_tensor_descriptor (

974 chunk_state + (i_gc + i_s).to(tl.int64) » H « K » V + i_h * K

* V,

975 shape=[K, V],

976 strides=[V, 1],

977 block_shape=[BLK_K, BLK V],

978 )

979

980 if FUSE_SP_STATE_UPDATE:

981 prev_rank_state_sum_desc = tl.make_tensor_descriptor (

982 prev_rank_state_sum + i_s * stride_dO_ns_prev_rank_state_sum
+ i_h * K x V,

983 shape=[K, V],

984 strides=[V, 1],

985 block_shape=[BLK_K, BLK_ V],

986 )

\)x7

088 # load ‘q‘: (T, H, K,) => (CHUNK, BLK_K,)

989 if not USE_TMA:

990 cur_qg = g + bos * H » K + i_h » K # fmt: skip

991 ptr_ag 0 = tl.make_block_ptr(cur_g, (T, K,), (H « K, 1,), (i_c =
CHUNK, i_k = BLK_K,), (CHUNK, BLK_K,), (1, 0,)) # fmt: skip

992 blk_gq 0 = tl.load(ptr_g 0, boundary_check=(1, 0,)) # fmt: skip

993 else:

994 blk_g 0 = g_desc.load([i_c = CHUNK, i_k % BLK_K])

995

996 # load (trans) ‘k‘: (T, H, K,) => (BLK_K, CHUNK,)

997 if not USE_TMA:
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998 cur_k = k + bos * H + K + i_h « K # fmt: skip

999 ptr_k_1 = tl.make_block_ptr(cur_k, (X, T,), (1, H ~ K,), (i_k =
BLK_K, i_c » CHUNK,), (BLK_K, CHUNK,), (0, 1,)) # fmt: skip

1000 blk_k_1 = tl.load(ptr_k_1, boundary_check=(0, 1,)) # fmt: skip

1001 else:

1002 blk_k_1 = k_desc.load([i_c = CHUNK, i_k % BLK_K]) .trans()

1003

1004 # load ‘v‘: (T, H, V,) => (CHUNK, BLK_V,)

1005 if not USE_TMA:

1006 cur_v = v + bos * H » V + i_h » V # fmt: skip

1007 ptr_v_2 = tl.make_block_ptr(cur_v, (T, V,), (H ~ VvV, 1,), (i_c =
CHUNK, i_v % BLK_V,), (CHUNK, BLK_V,), (1, 0,)) # fmt: skip

1008 blk_v_2 = tl.load(ptr_v_2, boundary_check=(1, 0,)) # fmt: skip

1009 else:

1010 blk_v_2 = v_desc.load([i_c * CHUNK, i_v * BLK_V])
1011

1012 # call external_ func: ‘chunk_local_ cumsum‘' to pre-compute g
1013

1014 # load ‘g‘: (T, H,) => (CHUNK, )

1015 cur_g = g + bos * H + i_h » 1 # fmt: skip

1016 ptr_g_3 = tl.make_block_ptr(cur_g, (T,), (H,), (i_c = CHUNK,), (CHUNK
r)r (O/)) # fmt: Sklp

1017 blk_g_3 = tl.load(ptr_g_3, boundary_check=(0,)) # fmt: skip

’
1018 # load ‘chunk_state‘: (NC_WITH_INI, H, K, V,) => (BLK_K, BLK_V,)
1019 if not USE_TMA:
1020 cur_chunk_state = chunk_state + (i_gc + i_s).to(tl.int64) » H * K
* V+ i _h » K « V # fmt: skip
1021 ptr_chunk_state_4 = tl.make_block_ptr (cur_chunk_state, (K, V,), (
v, 1,), (i_k * BLK K, i_v = BLK_V,), (BLK K, BLK V,), (1, 0,)) # fmt
skip
1022 blk_chunk_state_4 = tl.load(ptr_chunk_state_4, boundary_check=(1,
0,)) # fmt: skip
1023 else:
1024 blk_chunk_state_4 = chunk_state_desc.load([i_k * BLK_K, i_v =
BLK_V])
1025
1026 # comments not available for op ‘if_beg®
1027 if FUSE_SP_STATE_UPDATE:
1028 # load ‘prev_rank_state_sum‘: (NS, H, K, V,) => (BLK_K, BLK_V,)
1029 if not USE_TMA:

1030 cur_prev_rank_state_sum = prev_rank_state_sum + i_s =*
stride_dO_ns_prev_rank_state_sum + i_h » K » V # fmt: skip

1031 ptr_prev_rank_state_sum 5 = tl.make_block_ptr(
cur_prev_rank_state_sum, (K, V,), (v, 1,), (i_k = BLK K, i_v % BLK_V

+), (BLK_K, BLK V,), (1, 0,)) # fmt: skip

1032 blk_prev_rank_state_sum 5 = tl.load(ptr_prev_rank_state_sum_5
, boundary_check=(1, 0,)) # fmt: skip

1033 else:

1034 blk_prev_rank_state_sum_ 5 = prev_rank_state_sum_desc.load ([

i_k * BLK_K, i_v x= BLK_V])

1035

1036 # load ‘chunk_decay‘': (NC_WITH_INI, H,) => (,)

1037 cur_chunk_decay = chunk_decay + (i_gc + 1i_s).to(tl.int64) =
stride_dO0_nc_with_ini_chunk_decay + i_h % 1 # fmt: skip

1038 ptr_chunk_decay_6 = cur_chunk_decay # fmt: skip

1039 blk_chunk_decay_6 = tl.load(ptr_chunk_decay_56)

1040 # to: (BLK_K’, ’'BLK V') => (/BLK_K’, ’'BLK_V’)

1041 blk_prev_rank_state_sum_5_float32_7 = blk_prev_rank_state_sum_5.
to(tl.float32)

1042 # mul: (), ("BLK_K’, ’"BLK_V’) => ('BLK_K’, ’"BLK_V')

1043 mul_tensor_8 = blk_chunk_decay_6 =*
blk_prev_rank_state_sum 5_float32_7

1044 # to: ('BLK_K’, ’'BLK V') => ('BLK_K’, ’'BLK_V’)

1045 mul_tensor_ 8_bfloatl6_9 = mul_tensor_8.to(tl.bfloatl6)

37




1046

1047
1048
1049
1050
1051
1052

1053

1054
1055

1056

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069

1070

1071

1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

Under review as a conference paper at ICLR 2026

# add: ('BLK_K’, 'BLK_V’), ('BLK_K’, 'BLK_V’) => (’BLK_K’, ’BLK_V

add_tensor_10 = mul_tensor_8_bfloatl6_9 + blk_chunk_state_4

# comments not available for op ‘bind var®

blk_chunk_state_4 = add_tensor_10

# comments not available for op ‘end_if‘
# to: ('BLK_K’, '"BLK_V’) => ('BLK_K’, ’"BLK_V’)
blk_chunk_state_4_bfloatl6_11 = blk_chunk_state_4.to(tl.bfloatl6)

# matmul: (’CHUNK’, ’BLK_K’), (’CHUNK’, ’'BLK_K’) => (’/CHUNK’, ’CHUNK

")
matmul_12 = tl.dot (blk_qg 0, blk_k_1).to(blk_g 0.dtype)
# tril: (/CHUNK’, ’CHUNK’) => (’/CHUNK’, ’CHUNK’)

tril 13 = tl.where(tl.arange (0, CHUNK) [:, None] >= tl.arange (0, CHUNK

) [None, :], matmul_12, 0)

# unsqueeze: (’CHUNK’,) => (’/CHUNK’, 1)

unsqueeze_14 = blk_g_3[:, None]

# unsqueeze: (’CHUNK’,) => (1, ’CHUNK’)

unsqueeze_1_15 = blk_g_3[None, :]

# sub: (’CHUNK’, 1), (1, 'CHUNK’) => (/CHUNK’, ’CHUNK’)
sub_16 = unsqueeze_14 - unsqueeze_1_15

# exp: (/CHUNK’, ’'CHUNK’) => (’/CHUNK’, ’CHUNK’)

exp_17 = tl.exp(sub_16)

# mul: (/CHUNK’, ’'CHUNK’), (’CHUNK’, ’'CHUNK’) => (/CHUNK’, ’CHUNK’)
mul_18 = tril_13 » exp_17

# to: (’CHUNK’, ’CHUNK’) => (/CHUNK’, ’CHUNK’)
mul_18_bfloatl6_19 = mul_18.to(tl.bfloatlo6)

# matmul: (’CHUNK’, ’CHUNK’), (’CHUNK’, ’BLK_V’) => (’CHUNK’, ’BLK_V

")
matmul_1_20 = tl.dot (mul_18_bfloatle_19, blk_v_2).to(
mul_18_bfloatl6_19.dtype)

# matmul: (’CHUNK’, ’BLK _K’), (’BLK_K’, ’BLK_V’) => (’CHUNK’, ’BLK_V

")

matmul_2_21 = tl.dot (blk_g 0, blk_chunk_state_4_bfloatl6_11) .to(
blk_qg 0.dtype)

# exp: (/CHUNK’,) => (/CHUNK’,)

exp_1_22 = tl.exp(blk_g_3)

# unsqueeze: (’CHUNK’,) => (/CHUNK’, 1)

unsqueeze_2_23 = exp_1l_22[:, None]

# mul: (/CHUNK’, 'BLK_V’), ('’CHUNK’, 1) => (/CHUNK’, ’'BLK_V’)
mul_1 24 = matmul_2_21 x unsqueeze_2_23

# add: (’CHUNK’, ’'BLK_V’), ('CHUNK’, ’'BLK_V’) => (/CHUNK’, ’'BLK_V’)
add_25 = matmul_1_20 + mul_1_24

# mul: (/CHUNK’, 'BLK V’), () => (/CHUNK’, ’'BLK V')

mul_2 26 = add_25 % scale

# store => (/CHUNK’, ’'BLK_V’)

# assume output layout: [T, H, V]

out_0_ty = out_0.dtype.element_ty

ptr_out_0 = tl.make_block_ptr(out_0, (T, V,), (H ~ VvV, 1,), (i_c =
CHUNK, i_v % BLK_V,), (CHUNK, BLK_V,), (1, 0)) # fmt: skip
tl.store(ptr_out_0, mul_2_26.to(out_0_ty), boundary_check=(1, 0))

def launch_merge_mode (
chunk_decay: torch.Tensor,
v: torch.Tensor,
k: torch.Tensor,
g: torch.Tensor,
g: torch.Tensor,
prev_rank_state_sum: torch.Tensor,
chunk_state: torch.Tensor,
scale,
cu_seqglens: torch.IntTensor,
cached_results: dict,
fuse_sp_update: bool,

) —> torch.Tensor:
T, H, K, V = xk.shape, v.shape[-1]
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if scale is None:
scale = k.shape[-1] %% -0.5

# TODO: now fix chunk_size to 64

CHUNK = 64

chunk_indices = prepare_chunk_indices (cu_seglens, CHUNK)
chunk_offsets = prepare_chunk_offsets (cu_seglens, CHUNK)
chunk_offsets_ini = prepare_chunk_offsets_with_ini (cu_seglens, CHUNK)
NS, NC = len(cu_seqglens) - 1, chunk_indices.shape[0]

NC_WITH_INI = NC + NS

out = torch.empty_like (v)

use_aot = os.environ.get (' FORGE_USE_AOT’, '0')

FORGE_USE_AOT = True if use_aot.lower () in [’"1l’, ’"true’, ’'yes’] else
None

def alloc_fn(size: int, alignment: int, stream: int):
return torch.empty(size, device=’cuda’, dtype=torch.int8)

triton.set_allocator(alloc_fn)

def grid(meta) :

BLK_K = meta[’BLK_K’]
BLK_V = meta[’BLK_V’']
NUM_BLK_K = (K + BLK_K - 1) // BLK_K
NUM_BLK_V = (V + BLK.V - 1) // BLK_V

NUM_BLK_KV = NUM_BLK_K * NUM_BLK_V
H_MUL_NS = H x NS
return (NUM_BLK_KV, H, NC,)

if FORGE_USE_AOT is None:
merge_mode_kernel [grid] (

chunk_decay=chunk_decay,
stride_dO_nc_with_ini_chunk_decay=H,
v=v,
k=k,
q=d,
g=g,
prev_rank_state_sum=prev_rank_state_sum,
stride_dO_ns_prev_rank_state_sum=HxK«*V,
chunk_state=chunk_state,
scale=scale,
cu_seqglens=cu_seqglens,

CHUNK=CHUNK,

H_MUL_NS=H % NS,

out_0O=out,

chunk_indices=chunk_indices,

NC=NC,

FUSE_SP_STATE_UPDATE=fuse_sp_update,
)

else:
from forge.aot_utils import forge_aot_ops

algo_info = forge_aot_ops.merge_mode_kernel_ triton_algo_info_t ()
for _k, _v in get_merge_mode_kernel_info (NS, T, H, K, V).items():
setattr(algo_info, _k, _v)
forge_aot_ops.merge_mode_kernel (
0, # torch.cuda.current_stream() .cuda_stream,
g.data_ptr(), # g
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def

k.data_ptr(), #

v.data_ptr (), #

g.data_ptr (), #

chunk_state.data

scale, # scale

prev_rank_state_sum.data_ptr() if prev_rank_state_sum else 0,
# prev_rank_state_sum

H*xK+*V, # stride_dO_ns_prev_rank_state_sum

chunk_decay.data_ptr() if chunk_decay else 0, # chunk_decay

H, # stride_dO_nc_with_ini_chunk_decay

out.data_ptr (), # out_0

cu_seqglens.data_ptr(), # cu_seqglens

NS, # NS

H % NS, # H_MUL_NS

chunk_indices.data_ptr (), # chunk_indices

NC, # NC

algo_info,

k
v
g
_ptr(), # chunk_state

)

cached_results.update ({})
return out

fused_op () :

cached_results = {}

# AUTO: precompute decay outside

g_cumsum = chunk_local_cumsum(g[None, ...], 64, cu_seqglens=cu_seqglens
) .squeeze (0)

updated_states = launch_fuse_chunk_decay (

)

g=g_cumsum,
prev_s=prev_s,

v=v,

k=k,

cu_seqglens=cu_seqglens,
cached_results=cached_results,
dist_scan=dist_scan,
lazy_update=lazy_update,

chunk_state = updated_states[’chunk_state’]
prev_rank_state_sum = updated_states.get ('prev_rank_state_sum’, None)
chunk_decay = updated_states.get (' chunk_decay’, None)

o

)

= launch_merge_mode (
chunk_decay=chunk_decay,
v=v,
k=k,
q=9d,
g=g_cumsum,
prev_rank_state_sum=prev_rank_state_sum,
chunk_state=chunk_state,
scale=scale,
cu_seqglens=cu_seqlens,
cached_results=cached_results,
fuse_sp_update=fuse_sp_update,

return o, chunk_state

G.2

Listing 2: Generated Scalar GLA kernel by Forge

IMPLEMENTATION FOR DELTANET

def

chunk_mode_deltanet (k: Tensor, v: Tensor, b: Tensor) —-> Tensor:

I
#
T

= forge.identity(k, k.size(0))
Note: forge handles the specific fp32 accumulation
= (I + forge.matmul_out_fp32(k » b[..., None], k.T).tril(-1)).

inverse () .to(k.dtype)
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def

def

U=T@@ (v « b[..., Nonel)

W=T®@ (k » b[..., Nonel)

# Explicitly cache results for reuse in other phases
forge.cache_result (U, "u")

forge.cache_result (W, "w")

S =%k.T @ U

return S

decay_mode_deltanet (prev_s: Tensor, k: Tensor, w: Tensor, chunk_state
Tensor) -> Tensor:

wnn

Inter-Chunk State Propagation

nmmwn

# Calculate decay matrix based on cached W

decay = forge.identity(k, k.size(l)) - k.T @ w
return decay @ prev_s.to(decay.dtype) + chunk_state

merge_mode_deltanet (q: Tensor, k: Tensor, u: Tensor, w: Tensor,
chunk_state: Tensor, scale: Tensor) -> Tensor:

Output Merging

Note: 'u’ and ’'w’ are automatically injected from the cached results
mwn

new_v = u - w @ chunk_state

return ((q @ k.T).tril(0) @ new_v + g @ chunk_state) x scale

Listing 3: Forge Implementation of DeltaNet with Intermediate Result Caching
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