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ABSTRACT

Graph Neural Networks (GNNs) have shown great potential in the field of graph
representation learning. Standard GNNs define a local message-passing mecha-
nism which propagates information over the whole graph domain by stacking mul-
tiple layers. This paradigm suffers from two major limitations, over-squashing and
poor long-range dependencies, that can be solved using global attention but sig-
nificantly increases the computational cost to quadratic complexity. In this work,
we consider an alternative approach to overcome these structural limitations while
keeping a low complexity cost. Motivated by the recent MLP-Mixer architecture
introduced in computer vision, we propose to generalize this network to graphs.
This GNN model, namely Graph MLP-Mixer, can make long-range connections
without over-squashing or high complexity due to the mixer layer applied to the
graph patches extracted from the original graph. As a result, this architecture ex-
hibits promising results when comparing standard GNNs vs. Graph MLP-Mixers
on benchmark graph datasets.

1 BACKGROUND AND MOTIVATION

In this section, we review the main classes of GNNs with their advantages and their limitations.
Then, we introduce the ViT/MLP-Mixer architectures from computer vision which have motivated
us to design a new graph network architecture.

Message-Passing GNNs (MP-GNNs). GNNs have become the standard learning architectures for
graphs based on their flexibility to work with complex data domains s.a. recommendation (Monti
et al., 2017; van den Berg et al., 2018), chemistry (Duvenaud et al., 2015; Gilmer et al., 2017),
physics (Cranmer et al., 2019; Bapst et al., 2020), transportation (Derrow-Pinion et al., 2021), vi-
sion (Han et al., 2022), NLP (Wu et al., 2021a), knowledge graphs (Schlichtkrull et al., 2018), drug
design (Stokes et al., 2020; Gaudelet et al., 2020) and medical domain (Li et al., 2020b; 2021). Most
GNNs are designed to have two core components. First, a structural message-passing mechanism
s.a. Defferrard et al. (2016); Kipf & Welling (2017); Hamilton et al. (2017); Monti et al. (2017);
Bresson & Laurent (2017); Gilmer et al. (2017); Veličković et al. (2018) that computes node rep-
resentations by aggregating the local 1-hop neighborhood information. Second, a stack of L layers
that aggregates L-hop neighborhood nodes to increase the expressivity of the network and transmit
information between nodes that are L-hops apart.

Weisfeiler-Leman GNNs (WL-GNNs). One of the major limitations of MP-GNNs is their inability
to distinguish (simple) non-isomorphic graphs. This limited expressivity can be formally analyzed
with the Weisfeiler-Leman graph isomorphism test (Weisfeiler & Leman, 1968), as first proposed
in Xu et al. (2019); Morris et al. (2019). Later on, Maron et al. (2018) introduced a general class
of k-order WL-GNNs that can be proved to universally represent any class of k-WL graphs (Maron
et al., 2019; Chen et al., 2019). But to achieve such expressivity, this class of GNNs requires using
k-tuples of nodes with memory and speed complexities of O(Nk), with N being the number of
nodes and k ≥ 3. Although the complexity can be reduced to O(N2) and O(N3) respectively
(Maron et al., 2019; Chen et al., 2019; Azizian & Lelarge, 2020), it is still computationally costly
compared to the linear complexity O(E) of MP-GNNs, which often reduces to O(N) for real-world
graphs that exhibit sparse structures s.a. molecules, knowledge graphs, transportation networks,
gene regulatory networks, to name a few. In order to reduce memory and speed complexities of WL-
GNNs while keeping high expressivity, several works have focused on designing graph networks
from their sub-structures s.a. sub-graph isomorphism (Bouritsas et al., 2022), sub-graph routing
mechanism (Alsentzer et al., 2020), cellular WL sub-graphs (Bodnar et al., 2021), expressive sub-

1



Under review as a conference paper at ICLR 2023

graphs (Bevilacqua et al., 2021; Frasca et al., 2022), rooted sub-graphs (Zhang & Li, 2021) and
k-hop egonet sub-graphs (Zhao et al., 2021a).

Graph Positional Encoding (PE). Another aspect of the limited expressivity of GNNs is their
inability to recognize simple graph structures s.a. cycles or cliques, which are often present in
molecules and social graphs (Chen et al., 2020). We can consider k-order WL-GNNs with value k
to be the length of cycle/clique, but with high complexity O(Nk). An alternative approach is to add
positional encoding to the graph nodes. It was proved in Murphy et al. (2019); Loukas (2020) that
unique and equivariant PE increases the representation power of any MP-GNN while keeping the
linear complexity. This theoretical result was applied with great empirical success by Murphy et al.
(2019) with index PE, Dwivedi et al. (2020); Dwivedi & Bresson (2021); Kreuzer et al. (2021); Lim
et al. (2022) with Laplacian eigenvectors and Li et al. (2020a); Dwivedi et al. (2021) with k-step
Random Walk. All these graph PEs lead to GNNs strictly more powerful than the 1-WL test, which
seems to be enough expressivity in practice (Zopf, 2022). However, none of the PE proposed for
graphs can provide a global position of the nodes that is unique, equivariant and distance sensitive.
This is due to the fact that a canonical positioning of nodes does not exist for arbitrary graphs, as
there is no notion of up, down, left and right on graphs. For example, any embedding coordinate
system like graph Laplacian eigenvectors (Belkin & Niyogi, 2003) can flip up-down directions,
right-left directions, and would still be a valid PE. This introduces ambiguities for the GNNs that
require to (learn to) be invariant with respect to the graph or PE symmetries. A well-known example
is given by the eigenvectors: there exist 2k number of possible sign flips for k eigenvectors that
require to be learned by the network.

Over-Squashing. Standard MP-GNNs require L layers to propagate the information from one node
to their L-hop neighborhood. This implies that the receptive field size for GNNs can grow exponen-
tially, for example with O(2L) for binary tree graphs. This causes over-squashing; information from
the exponentially-growing receptive field is compressed into a fixed-length vector by the aggregation
mechanism (Alon & Yahav, 2020; Topping et al., 2022). Consequences of over-squashing are over-
fitting and poor long-range node interactions as relevant information cannot travel without being
disturbed. Over-squashing is well-known since recurrent neural networks (Hochreiter & Schmidhu-
ber, 1997), which have led to the development of the (self- and cross-)attention mechanisms for the
translation task (Bahdanau et al., 2014; Vaswani et al., 2017) first, and then for more general natural
language processing (NLP) tasks (Devlin et al., 2018; Brown et al., 2020). Transformer architectures
are the most elaborated networks that leverage attention. Attention is a simple but powerful mecha-
nism that solves over-squashing and long-range dependencies by making ”everything connected to
everything” but it also requires to trade linear complexity for quadratic complexity. Inspired by the
great successes of Transformers in NLP and computer vision (CV), several works have proposed to
generalize the transformer architecture for graphs , achieving competitive or superior performance
against standard MP-GNNs. We highlight the most recent research works in the next paragraph.

Graph Transformers. GraphTransformers (Dwivedi & Bresson, 2021) generalize Transformers
to graphs, with graph Laplacian eigenvectors as node PE, and incorporating graph structure into
the permutation-invariant attention function. SAN and LSPE (Kreuzer et al., 2021; Dwivedi et al.,
2021) further improve with PE learned from Laplacian and random walk operators. GraphiT (Mi-
alon et al., 2021) encodes relative PE derived from diffusion kernels into the attention mechanism.
GraphTrans (Wu et al., 2021b) and SAT (Chen et al., 2022) add Transformers on the top of standard
GNN layers. Graphormer (Ying et al., 2021) introduce three structural encodings, with great suc-
cess on large molecular benchmarks. GPS (Rampášek et al., 2022) categorizes the different types
of PE and puts forward a hybrid MPNN+Transformer architecture. We refer to Min et al. (2022)
for an overview of graph-structured Transformers. Generally, most Graph Transformer architectures
address the problems of over-squashing and limited long-range dependencies in GNNs but they also
increase significantly the complexity from O(E) to O(N2), resulting in a computational bottleneck.

ViT and MLP-Mixer. Transformers have gained remarkable success in CV and NLP, most notably
with architectures like ViT (Dosovitskiy et al., 2020) and BERT (Devlin et al., 2018). The success
of transformers has been long attributed to the attention mechanism (Vaswani et al., 2017), which is
able to model long-range dependencies as it does not suffer from over-squashing. But recently, this
prominent line of networks has been challenged by more cost efficient alternatives. A novel family
of models based on the MLP-Mixer introduced by Tolstikhin et al. (2021) has emerged and gained
recognition for its simplicity and its efficient implementation. Overall, MLP-Mixer replaces the at-
tention module with multi-layer perceptrons (MLPs) which are also not affected by over-squashing
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and poor long-range dependencies. The original architecture is simple (Tolstikhin et al., 2021); it
takes image patches (or tokens) as inputs, encodes them with a linear layer (equivalent to a convolu-
tional layer over the image patches), and updates their representations with a series of feed-forward
layers applied alternatively to image patches (or tokens) and features. The follow-up variants inves-
tigate different mixing operations, such as ResMLP (Touvron et al., 2021), gMLP (Liu et al., 2021),
and DynaMixer (Wang et al., 2022). These plain networks can perform competitively with state-of-
the-art vision Transformers, which tends to indicate that attention is not the only important inductive
bias, but other elements like the general architecture of Transformers with patch embedding, resid-
ual connection and layer normalization, and carefully-curated data augmentation techniques seem
to play essential roles as well (Yu et al., 2022).

Main Objective. Motivated by the MLP-Mixer introduced in CV, our goal is to investigate a gen-
eralization of this architecture from grids to graphs. The motivation is clear; MLP-Mixer offers a
low-cost alternative to ViT for images, avoiding the quadratic complexity of the attention mecha-
nism while keeping long-range interactions. We wish to transfer these advantages to GNNs. Our
contributions are as follows.

• We identify the key challenges to generalize MLP-Mixer from images to graphs.
• We design a new GNN, namely Graph MLP-Mixer, that is not limited by over-squashing

and poor long-distance dependencies while keeping the linear complexity of MP-GNNs.
• We report extensive experiments to analyze the proposed GNN architecture with several

datasets from the Benchmarking GNNs (Dwivedi et al., 2020) and the Open Graph Bench-
mark (OGB) (Hu et al., 2020).

• Our approach forms a bridge between CV, NLP and graphs under a unified architecture,
that can potentially benefit cross-over domain collaborations to design better networks.

2 GENERALIZATION CHALLENGES

In the following, we list the main questions when adapting MLP-Mixer from images to graphs.

(1) How to define and extract graph patches/tokens? One notable geometrical property that
distinguishes graph-structured data from regular structured data, such as images and sequences, is
that there does not exist in general a canonical grid to embed graphs. As shown in Table 1, images
are supported by a regular lattice, which can be easily split into multiple grid-like patches (also
referred to as tokens) of the same size via fast pixel reordering. However, graph data is irregular:
the number of nodes and edges in different graphs is typically different. Hence, graphs cannot be
uniformly divided into similar patches across all examples in the dataset. Finally, the extraction
process for graph patches cannot be uniquely defined given the lack of canonical graph embedding.
This raises the questions of how we identify meaningful graph tokens, and quickly extract them.

(2) How to encode graph patches into a vectorial representation? Since images can be reshaped
into patches of the same size, they can be linearly encoded with an MLP, or equivalently with a con-
volutional layer with kernel size and stride values equal to the patch size. However, graph patches
are not all the same size: they have variable topological structure with different number of nodes,
edges and connectivity. Another important difference is the absence of a unique node ordering for
graphs, which constrains the process to be invariant to node re-indexing for generalization purposes.
In summary, we need a process that can transform graph patches into a fixed-length vectorial rep-
resentation for arbitrary subgraph structures while being permutation invariant. GNNs are naturally
designed to perform such transformations, and as such will be used to encode graph patches.

(3) How to preserve positional information for nodes and graph patches? As shown in Table 1,
image patches in the sequence have implicit positions since image data is always ordered the same
way due to its unique embedding in the Euclidean space. For instance, the image patch at the upper-
left corner is always the first one in the sequence and the image patch at the bottom-right corner
is the last one. On this basis, the token mixing operation of the MLP-Mixer is able to fuse the
same patch information. However, graphs are naturally not-aligned and the set of graph patches
are therefore unordered. We face a similar issue when we consider the positions of nodes within
each graph patch. In images, the pixels in each patch are always ordered the same way; in contrast,
nodes in graph tokens are naturally unordered. Thus, how do we preserve local and global positional
consistency for graph patches, and nodes in each patch?
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Images Graphs

Input
Regular grid Irregular domain
Same data resolution Variable data structure

(Height, Width) (# Nodes and # Edges)

Patch Extraction
Via pixel reordering Via graph clustering algorithm
Non-overlapping patches Overlapping patches
Same patches at each epoch Different patches at each epoch

Patch Encoder
Same patch resolution Variable patch structure

(Patch Height, Patch Width) (# Nodes and # Edges)
MLP (equivalently CNN) GNN (e.g. GCN, GAT, GT)

Positional Information
Implicitly ordered No universal ordering

(No need for explicit PE) Node PE for patch encoder
Patch PE for token mixer

MLP-Mixer Channel mixer Channel mixer
Token mixer Token mixer with patch PE

Table 1: Differences between MLP-Mixer components for images and graphs.

(4) How to reduce over-fitting for Graph MLP-Mixer? Most MLP-variants (Tolstikhin et al.,
2021; Touvron et al., 2021; Wang et al., 2022) first pre-train on large-scale datasets, and then
fine-tune on downstream tasks, coupled with a rich set of data augmentation and regulariza-
tion techniques, e.g. cropping, random horizontal flipping, RandAugment (Cubuk et al., 2020),
mixup (Zhang et al., 2017), etc. While data augmentation has drawn much attention in CV and
NLP, graph data augmentation methods are not yet as effective, albeit interest and works on this
topic (Zhao et al., 2021b). Variable number of nodes, edges and connectivity make graph augmen-
tation challenging. Thus, how do we augment graph-structured data given this nature of graphs?

We summarize the differences between standard MLP-Mixer and Graph MLP-Mixer in Table 1.

3 PROPOSED ARCHITECTURE

3.1 OVERVIEW

The basic architecture is illustrated in Figure 1. The goal of this section is to detail the choices we
made to implement each component of the architecture. On the whole, these choices lead to a simple
framework that provides good practice performance.

Notation. Let G = (V, E) be a graph with V being the set of nodes and E the set of edges. The
graph has N = |V| nodes and E = |E| edges. The connectivity of the graph is represented by the
adjacency matrix A ∈ RN×N . The node features of node i are denoted by hi, while the features for
an edge between nodes i and j are indicated by eij . Let {V1, ...,VP } be the nodes partition, P be the
pre-defined number of patches, and Gi = (Vi, Ei) be the induced subgraph of G with all the nodes in
Vi and all the edges whose endpoints belong to Vi. Let hG be the graph-level vectorial representation
and yG be the graph-level target, which can be a discrete variable for graph classification problem,
or a scalar for graph regression task.
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Figure 1: The basic architecture of the proposed Graph MLP-Mixer. Graph MLP-Mixer consists of
a patch extraction module, a patch embedding module, a mixer layer, a global average pooling, and
a classifier head. The patch extraction module partitions graphs into overlapping patches. The patch
embedding module transforms these graph patches into corresponding token representations, which
are fed into a sequence of mixer layers to generate the output tokens. A global average pooling layer
followed by a fully-connected layer is finally used for prediction. Each Mixer Layer is a residual
network that alternates between a Token Mixer applied to all patches, and a Channel Mixer applied
to each patch independently.

3.2 PATCH EXTRACTION

When generalizing MLP-Mixer to graphs, the first step is to extract patches. This extraction is
straightforward for images. Indeed, all image data x ∈ RH×W×C are defined on a regular grid with
the same fixed resolution (H,W ), where H and W are respectively the height and the width, and
C is the number of channels. Hence, all images can be easily reshaped into a sequence of flattened
patches xp ∈ RP×(R2C), where (R,R) is the resolution of each image patch, and P = HW/R2 is
the resulting number of patches, see Table 1.

Unlike images with fixed resolution, extracting graph patches is more challenging. Generally, graphs
have different sizes, i.e. number of nodes, and therefore cannot be uniformly divided like image data.
Additionally, meaningful sub-graphs must be identified in the sense that nodes and edges composing
a patch must share similar semantic or information, s.a. a community of friends sharing biking
interest in a social network. As such, a graph patch extraction process must satisfy the following
conditions: (1) The same extraction algorithm can be applied to any arbitrary graph, (2) The nodes
in the sub-graph patch must be more closely connected than for those outside the patch, and (3) The
extraction complexity must be fast, that is at most linear w.r.t. the number of edges, i.e. O(E).

Graph partitioning algorithms have been studied for decades (Buluç et al., 2016) given their im-
portance in identifying meaningful clusters. Mathematically, graph partitioning is known to be
NP-hard (Chung, 1997). Approximations are thus required. A graph clustering algorithm with one
of the best trade-off accuracy and speed is METIS (Karypis & Kumar, 1998), which partitions a
graph into a pre-defined number of clusters/patches such that the number of within-cluster links is
much higher than between-cluster links in order to better capture good community structure. For
these fine properties, we select METIS as our graph patch extraction algorithm.

However, METIS is limited to finding non-overlapping clusters, as visualized in Figure 1. In this ex-
ample, METIS partitions the graph into four non-overlapping parts, i.e. {1, 2, 3}, {4, 5, 6}, {7, 8, 9}
and {10, 11, 12}, resulting in 5 edge cuts. Unlike images, extracting non-overlapping patches could
imply losing important edge information, i.e. the cutting edges, and thus decreasing the predictive
performance, as we will observe experimentally. To overcome this issue and to retain all original
edges, we allow graph patches to overlap with each other. For example in Figure 1, if the source
and destination nodes of an edge are not in the same patch, we assign both nodes to the patches they
belong to. As such, node 3 and node 4 are in two different patches, here the blue and red one, but
are connected with each other. After our overlapping adjustment, these two nodes belong to both
the blue and red patches. This practice is equivalent to expanding the graph patches to the one-hop
neighbourhood of all nodes in that patch. Formally, METIS is first applied to partition a graph into
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P non-overlapping patches: {V1, ...,VP } such that V = V1 ∪ ... ∪ VP and Vi ∩ Vj = ∅, ∀i ̸= j.
Then, patches are expanded to their one-hop neighbourhood in order to preserve the information of
between-patch links and make use of all graph edges: Vi ← Vi ∪ { N1(j) | j ∈ Vi }, whereNk(j)
defines the k-hop neighbourhood of node j.

3.3 PATCH ENCODER

For images, patch encoding can be done with a simple linear transformation given the fixed reso-
lution of all image patches. This operation is fast and well-defined. For graphs, the patch encoder
network must be able to handle complex data structure such as invariance to index permutation,
heterogeneous neighborhood, variable patch sizes, convolution on graphs, and expressive to differ-
entiate graph isomorphisms. As a result, the graph patch encoder is a GNN, whose architecture is
designed to best transform a graph token Gp into a fixed-size representation xGp ∈ Rd into 3 steps.

Step 1. Raw node and edge linear embedding. The input node features αi ∈ Rdn×1 and edge
features βij ∈ Rde×1 are linearly projected into d-dimensional hidden features:

h0
i = U0αi + u0 ∈ Rd; e0ij = V 0βij + v0 ∈ Rd (1)

where U0 ∈ Rd×dn , V 0 ∈ Rd×de and u0, v0 ∈ Rd are learnable parameters.

Step 2. Graph convolutional layers with (favorite) GNN. We apply a series of L convolutions to
improve the patch representation of node and edge features:

hℓ+1
i = fh(h

ℓ
i , {hℓ

j |j ∈ N (i)}, eℓij) hℓ+1
i , hℓ

i ∈ Rd,

eℓ+1
ij = fe(h

ℓ
i , h

ℓ
j , e

ℓ
ij) eℓ+1

ij , eℓij ∈ Rd,
(2)

where ℓ is the layer index, functions fh and fe (with learnable parameters) define the specific GNN
architecture, and N (i) is the neighborhood of the node i.

Step 3. Pooling and readout. The final step produces a fixed-size vector representation by mean
pooling all node vectors in Gp and applying a small MLP to get the patch embedding xGp .

The patch encoder is a GNN, and thus has the same potential limitations of over-squashing and poor
long-range dependencies. However, these problems become prominent only for large graphs. But
for small patch graphs, such problems do not really exist (or are negligible). Indeed, in practice, the
mean number of nodes and the mean diameter for graph patches are around 3.2 and 1.8 respectively
for molecular datasets and around 12.0 and 2.7 for image datasets, see Table 9.

3.4 POSITIONAL INFORMATION

Regular grids offer a natural implicit arrangement for the sequence of image patches and for the
pixels inside the image patches. However, such ordering of nodes and patches do not exist for
general graphs. This lack of positional information reduces the expressivity of the network. Hence,
we use explicitly one absolute PE for the patch nodes and one relative PE for the graph patches.
Node PE. Input node features in Eq 1 are augmented with pi ∈ RK :

h0
i = T 0pi + U0αi + u0 ∈ Rd, (3)

where T 0 ∈ Rd×K is a learnable matrix. The benefits of different PEs are dataset dependent. We
follow the strategy in Rampášek et al. (2022) that uses random-walk structural encoding (RWSE)
(Dwivedi et al., 2021) for molecular data and Laplacian eigenvectors encodings (Dwivedi et al.,
2020) for image superpixels. Since Laplacian eigenvectors are defined up to sign flips, the sign of
the eigenvectors is randomly flipped during training.

Patch PE. Relative positional information between the graph patches can be computed from the
original graph adjacency matrix A ∈ RN×N and the clusters {V1, ...,VP } extracted by METIS in
Section 3.2. Specifically, we capture relative positional information via the ‘coarsened adjacency
matrix’ AP ∈ RP×P over the patch graphs:

AP
ij = |Vi ∩ Vj | = Cut(Vi,Vj), (4)

where Cut(Vi,Vj) =
∑

k∈Vi

∑
l∈Vj

Akl is the standard graph cut operator which counts the number
of connecting edges between cluster Vi and cluster Vj . We observe that matrix AP is sparse as it
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only connects patches that are neighbors on the original graph. This can cause poor long-distance
interactions. To avoid this situation, we can simply smooth out the adjacency matrix AP with any
graph diffusion process. In this work, we select the n-step random walk diffusion process:

AP
D =

(
D−1AP

)n ∈ RP×P (5)

3.5 MIXER LAYER

For images, the original mixer layer in Tolstikhin et al. (2021) is a simple network that alternates
channel and token mixing steps. The token mixing step is performed over the token dimension,
while the channel mixing step is carried out over the channel dimension. These two interleaved
steps enable information fusion among tokens and channels. The simplicity of the mixer layer has
been of great importance to understand that the self-attention mechanism in ViT is not the only
critical component to get good performance on visual classification tasks. This has also led to a
significant reduction in computational cost with little or no sacrifice in performance. Indeed, the
self-attention mechanism in ViT requires O(P 2) memory and O(P 2) computation, while the mixer
layer in MLP-Mixer needs O(P ) memory and O(P ) computation.

We modify the original mixer layer to introduce positional information between graph tokens. Let
X ∈ RP×d be the patch embedding {xG1

, ..., xGP
}. The graph mixer layer can be expressed as

U = X + (W2 σ(W1 LayerNorm(AP
DX))) ∈ RP×d Token mixer,

Y = U + (W4 σ(W3 LayerNorm(U)T ))T ∈ RP×d Channel mixer,
(6)

where AP
D ∈ RP×P is the patch PE from Eq.5, σ is a GELU nonlinearity (Hendrycks & Gimpel,

2016), LayerNorm(·) is layer normalization (Ba et al., 2016), and matrices W1 ∈ Rds×P ,W2 ∈
RP×ds , W3 ∈ Rdc×d,W4 ∈ Rd×dc , where ds and dc are the tunable hidden widths in the token-
mixing and channel-mixing MLPs, and are set following Tolstikhin et al. (2021).

We generate the final graph-level representation by mean pooling all the non-empty patches:

hG =
∑
p

mp · xGp/
∑
p

mp ∈ Rd, (7)

where mp is a binary variable with value 1 for non-empty patches and value 0 for empty patches
(since graphs have variable sizes, and thus small graphs can produce empty patches). Finally, we
apply a small MLP to get the graph-level target:

yG = MLP(hG) (8)

3.6 DATA AUGMENTATION

MLP-Mixer architectures are known to be strong over-fitters (Liu et al., 2021). In order to reduce
this effect, we perform data augmentation of graph patches. At each epoch, we randomly drop
a few edges before running METIS partitioning, to produce more diverse partitions. This data
augmentation process is very fast as METIS graph clustering only amounts to a small portion of
the data preparation time, therefore adding little extra cost during the training processes.

4 EXPERIMENTS

Graph Benchmark Datasets. We conduct extensive experiments to investigate the proposed
method. From the Benchmarking GNNs (Dwivedi et al., 2020), we test on ZINC, MNIST and CI-
FAR10. From the open graph benchmark (OGB) (Hu et al., 2020), we test on MolHIV, MolTOX21,
and MolPCBA. Summary statistics of datasets are reported in Table 6 and Appendix A.1.

Extraction Step: Study of # patches. We observe in Figure 5 that increasing the number of patches
generally improves performance, which is consistent with computer vision (Dosovitskiy et al., 2020;
Tolstikhin et al., 2021). We set the number of patches to 16/32 by default. The resulting graph
patches are of small size; they typically contain 3-12 nodes with a value diameter of 2-3, see Table 9.

Extraction Step: Study of k-hop extension. In Figure 2 and Table 10, we observe a clear per-
formance increase when graph patches are overlapping with each other (0-hop vs 1-hop), which is
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Figure 2: Effect of the k-hop extension. We expand graph patches extracted by METIS to the k-hop
neighbourhood of all nodes in that patch. 0-hop means non-overlapping patches without extension.

Model ZINC MNIST CIFAR10 MolTOX21 MolHIV MolPCBA Peptide-func Peptide-struct

MAE ↓ Accuracy ↑ Accuracy ↑ ROCAUC ↑ ROCAUC ↑ Avg. Precision ↑ Avg. Precision ↑ MAE ↓

GCN 0.1956 ± 0.0030 0.9574 ± 0.0016 0.5876 ± 0.0028 0.7644 ± 0.0076 0.7665 ± 0.0093 0.2549 ± 0.0044 0.6376 ± 0.0044 0.2745 ± 0.0010
GCN-MLP-Mixer 0.1880 ± 0.0067 0.9606 ± 0.0019 0.5892 ± 0.0024 0.7737 ± 0.0062 0.7865 ± 0.0130 0.2525 ± 0.0015 0.6545 ± 0.0075 0.2509 ± 0.0011
GCN-MLP-Mixer* 0.1352 ± 0.0056 0.9773 ± 0.0007 0.6579 ± 0.0042 0.7824 ± 0.0041 0.7849 ± 0.0043 0.2486 ± 0.0046 0.6736 ± 0.0040 0.2488 ± 0.0012

GatedGCN 0.1565 ± 0.0023 0.9815 ± 0.0010 0.6703 ± 0.0024 0.7659 ± 0.0061 0.7673 ± 0.0123 0.2721 ± 0.0036 0.6452 ± 0.0111 0.2812 ± 0.0023
GatedGCN-MLP-Mixer 0.1540 ± 0.0046 0.9823 ± 0.0011 0.6804 ± 0.0043 0.7783 ± 0.0041 0.7824 ± 0.0062 0.2669 ± 0.0022 0.6636 ± 0.0039 0.2519 ± 0.0016
GatedGCN-MLP-Mixer* 0.1251 ± 0.0080 0.9831 ± 0.0010 0.6896 ± 0.0021 0.7828 ± 0.0050 0.7912 ± 0.0133 0.2649 ± 0.0015 0.6790 ± 0.0073 0.2481 ± 0.0013

GINE 0.1183 ± 0.0027 0.9740 ± 0.0013 0.6031 ± 0.0030 0.7669 ± 0.0052 0.7660 ± 0.0156 0.2749 ± 0.0021 0.6616 ± 0.0091 0.2768 ± 0.0014
GINE-MLP-Mixer 0.1171 ± 0.0029 0.9778 ± 0.0014 0.6053 ± 0.0082 0.7780 ± 0.0079 0.7824 ± 0.0131 0.2613 ± 0.0015 0.6627 ± 0.0106 0.2498 ± 0.0028
GINE-MLP-Mixer* 0.0794 ± 0.0028 0.9787 ± 0.0012 0.6625 ± 0.0044 0.7839 ± 0.0035 0.7844 ± 0.0033 0.2666 ± 0.0029 0.6846 ± 0.0068 0.2478 ± 0.0010

GraphTrans 0.1286 ± 0.0029 0.9732 ± 0.0014 0.6876 ± 0.0077 0.7672 ± 0.0065 0.7786 ± 0.0089 0.2098 ± 0.0032 0.6548 ± 0.0031 0.2768 ± 0.0014
GraphTrans-MLP-Mixer 0.1190 ± 0.0016 0.9798 ± 0.0008 0.7010 ± 0.0041 0.7748 ± 0.0079 0.7805 ± 0.0182 0.2433 ± 0.0037 0.6585 ± 0.0040 0.2522 ± 0.0025
GraphTrans-MLP-Mixer* 0.0831 ± 0.0032 0.9827 ± 0.0008 0.7023 ± 0.0046 0.7827 ± 0.0065 0.7823 ± 0.0217 0.2214 ± 0.0055 0.6814 ± 0.0072 0.2483 ± 0.0013

GNN-free MLP-Mixer 0.1290 ± 0.0045 0.9717 ± 0.0008 0.5917 ± 0.0009 0.7738 ± 0.0048 0.7852 ± 0.0131 0.2199 ± 0.0061 – –

Table 2: Performance on Benchmarking datasets (Dwivedi et al., 2020), OGB (Hu et al., 2020) and
LRGB (Dwivedi et al., 2022). Shown is the mean ± s.d. of 4 runs.

consistent with our intuition that extracting non-overlapping patches implies losing important edge
information. We further expand graph patches to their k-hop neighbourhood. Performance increases
first and then flattens out or begins to decrease when k = 3 for ZINC and k = 1/2 for MolHIV.

Encoder Step: GNN-based patch encoder. We evaluate the effect of various GNN models as
patch encoder in Table 2, which includes GCN (Kipf & Welling, 2017), GatedGCN (Bresson &
Laurent, 2017), GINE (Hu et al., 2019) and Graph Transformer (Shi et al., 2020). We find that
our GNN-MLP-Mixer architecture matches or outperforms existing GNNs across different datasets
and patch encoders. These promising results demonstrate the generic nature of the proposed Graph
MLP-Mixer architecture which can be applied to any MP-GNNs in practice.

Encoder Step: GNN-free patch encoder. We also investigate a GNN-free patch encoder. For
each patch, we embed all node and edge features as bags of nodes and edges, then average and
readout, where all transformations are based exclusively on MLPs, see Eq.9. Interestingly, this
GNN-free MLP-Mixer produces good results (last row of Table 2), which seems to imply that the
GNN-encoder is not critical in this architecture. Even more excitingly, further development of Graph
MLP-Mixer may not need to use specialized GNN libraries like DGL (Wang et al., 2019) or PyG
(Fey & Lenssen, 2019a) to achieve competitive performance with standard MP-GNNs.

Encoder Step: Updated node encoding. We consider a more expressive GNN-MLP-Mixer by
updating the node representation with the patch representation coming from the mixer layer. We
call this improved version GNN-MLP-Mixer∗ and we present the details in Appendix A.9.

Positional Information. We show the effects of two kinds of positional encoding in Figure 3. First,
we observe a significant drop in performance when either node PE or patch PE is removed. Besides,
it can be observed that the extent of poor performance of models without node PE against using node
PE is greater for ZINC than MolHIV. This difference can be explained by the fact that ZINC features
are purely atom and bond descriptors whereas MolHIV features consist additional information that
is informative of e.g. if an atom is in ring, among others.

Data Augmentation. Then proposed data augmentation (DA) corresponds to newly generated graph
patches with METIS at each epoch, while no DA means patches are only generated at the initial
epoch and then reused during training. Table 3 presents different results. First, it is clear that DA
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Methods GCN-MLP-Mixer GatedGCN-MLP-Mixer GINE-MLP-Mixer GraphTrans-MLP-Mixer
Ours 0.1880 0.1540 0.1190 0.1190
w/o node PE 0.4704 0.4484 0.3983 0.4611
w/o patch PE 0.1906 0.1634 0.1193 0.1243

100   Best
Methods GCN-MLP-Mixer GatedGCN-MLP-Mixer GINE-MLP-Mixer GraphTrans-MLP-Mixer 80

Ours 0.7865 0.7824 0.7824 0.7805 60
w/o node PE 0.7700 0.7776 0.7786 0.7773 40
w/o patch PE 0.7731 0.7661 0.7679 0.7631 20

0   Worst
Methods GCN-MLP-Mixer GatedGCN-MLP-Mixer GINE-MLP-Mixer GraphTrans-MLP-Mixer

Ours 0.6736 0.6790 0.6846 0.6814
w/o node PE 0.6563 0.6665 0.6801 0.6699
w/o patch PE 0.6650 0.6703 0.6672 0.6642Pe
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Figure 3: Effect of positional information. We study the effects of node PE and patch PE by remov-
ing one of them in turn from our model while keeping the other components unchanged.

Dataset DA MAE↓ / ROCAUC↑ Time(S/Epoch)

ZINC ✗ 0.1266 ± 0.0051 5.9216
✓ 0.1171 ± 0.0029 5.9922

MolHIV ✗ 0.7569 ± 0.0281 14.8949
✓ 0.7824 ± 0.0131 15.5889

Table 3: Effect of data augmentation (DA):
✗ means no DA and ✓uses DA.

Dataset Model MAE↓ / ROCAUC↑

ZINC GINE-MLP-Mixer* 0.0794 ± 0.0028
GINE-ViT 0.1060 ± 0.0014

MolHIV GINE-MLP-Mixer* 0.7844 ± 0.0033
GINE-ViT 0.7694 ± 0.0158

Table 4: Mixer Layer vs. Transformer Layer.

brings an increase in performance. Second, re-generating graph patches only add to a small amount
of training time. Full results are reported in Table 12.

Model ZINC MolHIV MolPCBA Peptides-func Peptides-struct

MAE ↓ ROCAUC ↑ ROCAUC ↑ Avg. Precision ↑ MAE ↓

GT (Dwivedi & Bresson, 2021) 0.226 ± 0.014 – – – –
GraphiT (Mialon et al., 2021) 0.202 ± 0.011 – – – –
Graphormer (Ying et al., 2021) 0.122 ± 0.006 – – – –
GPS (Rampášek et al., 2022) 0.070 ± 0.004 0.7880 ± 0.0101 0.2907 ± 0.0028 0.6562 ± 0.0115 0.2515 ± 0.0012
SAN (Chen et al., 2022) 0.139 ± 0.006 0.7775 ± 0.0061 0.2765 ± 0.0042 0.6439 ± 0.0075 0.2545 ± 0.0012
GraphTrans (Kreuzer et al., 2021) – – 0.2761 ± 0.0029 – –

GNN-AK+ (Alsentzer et al., 2020) 0.080 ± 0.001 0.7961 ± 0.0119 0.2930 ± 0.0044 0.6480 ± 0.0089 0.2736 ± 0.0007
SUN (Frasca et al., 2022) 0.084 ± 0.002 0.8003 ± 0.0055 0.2616 ± 0.0049 0.6730 ± 0.0078 0.2498 ± 0.0008

Graph MLP-Mixer* (Ours) 0.0794 ± 0.003 0.7912 ± 0.0133 0.2749 ± 0.0021 0.6846 ± 0.0068 0.2478 ± 0.0010

Table 5: Comparison of our best results from Table 2 with the state-of-the-art GTs (missing values
from literature are indicated with ‘-’). For ZINC, all models have approximately∼ 500k parameters.

Mixer Layer: MLP vs. Attention. In Table 4, we replace MLP-Mixer layers with standard Trans-
former layers while keeping the rest of the components the same. The performance of MLP-Mixer
is surprisingly better than the latter despite a lower complexity. Full results are reported in Table 13.

State-Of-The-Art. Table 5 presents the SOTA GraphTransformer (GT) models. To ensure fair
comparison, we did not include Graphormer (Ying et al., 2021) that achieved top score on MolHIV
after pre-training on a large dataset of 3.8M graphs. Overall, we observe that our Graph MLP-Mixer
model achieves competitive performance without making use of the fully-connected attention mech-
anism, solely using low-cost mixer operations. Besides, we are more efficient in model parameters
and training time. Full comparison with number of training parameters, memory and training time
is provided Table 14 and Table 15 in the appendix.

Expressivity. We experimentally show that Graph MLP-Mixer is strictly more powerful than 1-WL,
and not less powerful than 3-WL. Although graph PEs s.a. Laplacian eigenvectors (Belkin & Niyogi,
2003) or k-step Random Walk PE (Li et al., 2020a; Dwivedi et al., 2021) cannot guarantee two
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graphs are generally isomorphic, it was shown in Dwivedi et al. (2021) that they can distinguish non-
isomorphic graphs for which the 1-WL test fails. As a consequence, Graph MLP-Mixer is strictly
more powerful than 1-WL. We experimentally validate this property by running Graph MLP-Mixer
on the highly symmetric Circulant Skip Link (CSL) dataset of Murphy et al. (2019) in Table 16,
which requires GNNs to be strictly more expressive than the 1-WL test to succeed. Besides, Graph
MLP-Mixer reaches perfect accuracy on SR25 (Balcilar et al., 2021). The SR25 dataset contains 15
strongly regular graphs with 25 nodes each, where no model less or as powerful as 3-WL test can
distinguish the pairs in SR25 dataset.

Long Range Graph Benchmark (LRGB). We evaluate our models and compare with the baselines
on the LRGB (Dwivedi et al., 2022) with 2 graph-level datasets, i.e., Peptides-func and Peptides-
struct, that arguably require long-range information reasoning to achieve strong performance in the
given tasks. As shown in Table 2 and Table 5, Graph MLP-Mixer performs significantly better than
the baselines, especially on Peptides-struct. The improvement can be explained by the nature of
these datasets, which is consistent with the empirical findings in (Dwivedi et al., 2022) that simple
instances of local MP-GNNs perform poorly on the proposed datasets. More information is provided
in Table 15.

5 CONCLUSION

In this work, we have proposed a novel GNN model directly inspired from ViT/MLP-Mixer archi-
tectures in computer vision and presented promising results on benchmark graph datasets. Future
work will focus on further exploring graph networks with the inductive biases of graph tokens and
Transformer-like architectures in order to solve fundamental node and link prediction tasks, and
potentially without the need of specialized GNN libraries.
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Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, 2016.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Peter W Battaglia, Vishal Gupta, Ang Li, Zhongwen
Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Veličković. Traffic Prediction with Graph
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A EXPERIMENTAL DETAILS

A.1 DATASETS DESCRIPTION

CSL is a synthetic dataset introduced in Murphy et al. (2019) to test the expressivity of GNNs. CSL
has 150 graphs. Each CSL graph is a 4-regular graph with edges connected to form a cycle and
containing skip-links between nodes.

SR25 is another synthetic dataset used to empirically verify the expressive power of Graph MLP-
Mixer. SR25 (Balcilar et al., 2021) has 15 strongly regular graphs (3-WL failed) with 25 nodes each.
SR25 is translated to a 15 way classification problem with the goal of mapping each graph into a
different class.

ZINC (Dwivedi et al., 2020) is a subset (12K) of molecular graphs (250K) from a free database
of commercially-available compounds (Irwin et al., 2012). These molecular graphs are between 9
and 37 nodes large. Each node represents a heavy atom (28 possible atom types) and each edge
represents a bond (3 possible types). The task is to regress a molecular property known as the
constrained solubility. The dataset comes with a predefined 10K/1K/1K train/validation/test split.

MNIST and CIFAR10 (Dwivedi et al., 2020) are derived from classical image classification
datasets by constructing an 8 nearest-neighbor graph of SLIC superpixels for each image. The
resultant graphs are of sizes 40-75 nodes for MNIST and 85-150 nodes for CIFAR10. The 10-class
classification tasks and standard dataset splits follow the original image classification datasets, i.e.,
for MNIST 55K/5K/10K and for CIFAR10 45K/5K/10K train/validation/test graphs. These datasets
are sanity-checks, as we expect most GNNs to perform close to 100% for MNIST and well enough
for CIFAR10.

MolTOX21 and MolHIV (Hu et al., 2020) are molecular property prediction datasets adopted from
the MoleculeNet (Szklarczyk et al., 2019). All the molecules are pre-processed using RDKit (Lan-
drum et al., 2006). Each graph represents a molecule, where nodes are atoms, and edges are chemical
bonds. Input node features are 9-dimensional, containing atomic number and chirality, as well as
other additional atom features such as formal charge and whether the atom is in the ring or not. The
datasets come with a predefined scaffold splits based on their two-dimensional structural frame-
works, i.e. for MolTOX21 6K/0.78K/0.78K and for MolHIV 32K/4K/4K train/validation/test.

MolPCBA (Hu et al., 2020) is another real-world molecular graph classification benchmark.
MOLTOX21 and MolHIV are of small and medium scale with 7.8K and 41.1k graphs respectively,
whereas MOLPCBA is of large scale with 437.9K graphs, and applies a similar scaffold spliting
procedure. It consists of multiple, extremely skewed (only 1.4% positivity) molecular classification
tasks, and employs Average Precision (AP) over them as a metric.

Peptides-func and Peptides-struct (Dwivedi et al., 2022) are derived from 15,535 peptides with a
total of 2.3 million nodes retrieved from SAT-Pdb (Singh et al., 2016). Both datasets use the same set
of graphs but differ in their prediction tasks. These graphs are constructed in such a way that requires
long-range interactions (LRI) reasoning to achieve strong performance in a given task. In concrete
terms, they are larger graphs: on average 150.94 nodes per graph, and on average 56.99 graph
diameter. Thus, they are better suited to benchmarking of graph Transformers or other expressive
GNNs that are intended to capture LRI.

Distributions of the graph sizes. We plot of the distributions of the graph sizes (i.e. the number of
nodes in each data sample) of these datasets in Figure 4.

A.2 HYPERPARAMETERS

We follow the benchmarking protocol introduced in Dwivedi et al. (2020) based on PyTorch (Paszke
et al., 2019) and PyG (Fey & Lenssen, 2019b). We use Adam (Kingma & Ba, 2014) optimizer, with
the default settings of β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. The learning rate is reduced by half if
the validation loss does not improve after 10 epochs. The training stops at a point when the learning
rate reaches to a value of 1 × 10−5. We use 4 layers of GNN layers for patch encoder and 4 layers
of Mixer layers by default. For benchmarking datasets from Dwivedi et al. (2020), the dropout is
set to 0. For OGB datasets from Hu et al. (2020), we tune the dropout ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}
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Dataset #Graphs #Nodes Avg. #Nodes Avg. #Edges Task Metric

CSL 150 41 41 164 10-class classif. Accuracy
SR25 15 25 25 300 15-class classif. Accuracy

ZINC 12,000 9-37 23.2 24.9 regression MAE
MNIST 70,000 40-75 70.6 564.5 10-class classif. Accuracy
CIFAR10 60,000 85-150 117.6 941.1 10-class classif. Accuracy

MolTOX21 7831 1-132 18.57 38.6 12-task classif. ROCAUC
MolHIV 41,127 2-222 25.5 27.5 binary classif. ROCAUC
MolPCBA 437,929 1–332 26.0 28.1 28-task classif. Avg. Precision

Peptides-func 15,535 2,344,859 150.94 307.30 10-clas classif. Avg. Precision
Peptides-struct 15,535 2,344,859 150.94 307.30 regression MAE

Table 6: Summary statistics of datasets used in this study
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Figure 4: Distributions of the graph sizes.

for both the baseline and our methods. We run each experiment 4 times, and report the mean ± s.d.
performance. Detailed hyperparameters are provided in Table 7 and Table 8.

A.3 PATCH EXTRACTION

Study of # patches. We observe in Figure 5 that increasing the number of patches generally im-
proves performance.

Patch Size and Diameter. We set the number of patches to 16/32 by default. The resulting graph
patches are of small size, as shown in Table 9.
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Hyperparameter ZINC MNIST CIFAR10 CSL SR25

# Patch 32 16 16 32 16

# GNN layer 4 4 4 4 4
# MLP-Mixer layer 4 4 4 4 4
Hidden size 128 128 128 128 128

Learning rate 0.001 0.001 0.001 5e-4 0.002
Batch size 128 128 128 5 15

Node PE RWSE-20 LapPE-8 LapPE-8 LapPE-20/RWSE-20 LapPE-8

Table 7: Model hyperparameters for four datasets from Dwivedi et al. (2020)

Hyperparameter MolTOX21 MolHIV MolPCBA

# Patch 32 32 32

# GNN layer 4 4 4
# MLP-Mixer layer 4 4 4
Hidden size 128 128 400

Learning rate 0.001 0.001 0.005
Batch size 128 128 512

Node PE – RWSE-16 RWSE-16

Table 8: Model hyper-parameters for three datasets from OGB (Hu et al., 2020)
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Figure 5: Effect of the number of patches.

Dataset # Patch # Node Diameter

Mean Min Max Mean Min Max

ZINC 32 3.1495 2 5 1.8151 2 1
MNIST 16 10.85 6 18 2.1240 2 4
CIFAR10 16 11.9163 7 20 2.6413 2 6
MolTox21 32 3.0272 1 7 1.7293 0 4
MolHIV 32 3.1822 1 11 1.8362 0 6
MolPCBA 32 3.1905 1 12 1.8640 0 9
Peptides-func/struct 32 5.3943 1 17 3.4407 1 13

Table 9: Summary statistics of graph patches for different datasets.

Effect of k-hop extension. Table 10 is the full result of Figure 2. For other experiments, we set
k = 1 by default.

Study of Graph Partitioning Algorithm. We select METIS (Karypis & Kumar, 1998) as the
graph partitioning algorithm. In table 11, we provide the ablation study for how many benefits
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# Hop GCN-MLP-Mixer GatedGCN-MLP-Mixer GINE-MLP-Mixer GraphTrans-MLP-Mixer

Z
IN

C
0 0.2568 ± 0.0034 0.2642 ± 0.0037 0.2462 ± 0.0018 0.2602 ± 0.0085
1 0.1880 ± 0.0067 0.1540 ± 0.0046 0.1171 ± 0.0029 0.1190 ± 0.0016
2 0.1780 ± 0.0041 0.1468 ± 0.0016 0.1046 ± 0.0039 0.1126 ± 0.0036
3 0.1820 ± 0.0074 0.1443 ± 0.0061 0.1009 ± 0.0032 0.1072 ± 0.0032
4 0.2022 ± 0.0038 0.1473 ± 0.0046 0.1072 ± 0.0011 0.1174 ± 0.0083

M
ol

H
IV

0 0.7736 ± 0.0106 0.7706 ± 0.0162 0.7636 ± 0.0118 0.7684 ± 0.0176
1 0.7788 ± 0.0191 0.7772 ± 0.0118 0.7711 ± 0.0124 0.7805 ± 0.0182
2 0.7885 ± 0.0103 0.7668 ± 0.0125 0.7797 ± 0.0062 0.7665 ± 0.0125
3 0.7716 ± 0.0015 0.7586 ± 0.0162 0.7734 ± 0.0096 0.7425 ± 0.0086

Table 10: Study of k-hop neighbour on ZINC and MolHIV, corresponding to Fig. 2

the METIS can provide against random graph partitioning. For random graph partition, nodes are
randomly assigned to a pre-defined number of patches. For both METIS and random partition, we
re-generate graph patches at each epoch. Table 11 shows that using METIS as the graph partition
algorithm consistently gives better performance than random node partition, which corresponds to
our intuition that nodes and edges composing a patch should share similar semantic or information.
Nevertheless, it is interesting to see that random graph partitioning is still able to achieve reasonable
results, which shows that the performance of the model is not solely supported by the quality of the
patches.

Model ZINC MolHIV

METIS Random METIS Random

GCN-MLP-Mixer* 0.1352 ± 0.0056 0.1846 ± 0.0042 0.7849 ± 0.0043 0.7791 ± 0.0252
GatedGCN-MLP-Mixer* 0.1251 ± 0.0080 0.1619 ± 0.0071 0.7912 ± 0.0133 0.7721 ± 0.0117
GINE-MLP-Mixer* 0.0794 ± 0.0028 0.1057 ± 0.0048 0.7844 ± 0.0033 0.7676 ± 0.0101
GraphTrans-MLP-Mixer* 0.0831 ± 0.0032 0.1166 ± 0.0051 0.7823 ± 0.0217 0.7772 ± 0.0099

Table 11: Comparison of METIS vs. random graph partitioning.

A.4 PATCH ENCODER

Baselines and GNN-based patch encoder. We use GCN (Kipf & Welling, 2017), GatedGCN (Bres-
son & Laurent, 2017), GINE (Hu et al., 2019) and Graph Transformer (Shi et al., 2020) directly,
which also server as the patch encoder of Graph MLP-Mixer to see its general uplift effect. Hyper-
parameter and model configuration are described in Table 7 and Table 8.

GNN-free patch encoder. The GNN-free patch encoder reported in Table 2, is an all-MLP archi-
tecture. For each graph patches, we embed all node features (bag of nodes), all edge features (bag
of edges), then average and readout, based exclusively on MLPs.

hGp = MLP3

( ∑
i∈Vp

MLP1(hi) +
∑

eij∈Ep

MLP2(eij)
)

(9)

A.5 DATA AUGMENTATION

Table 12 provides the full results of Table 3.

A.6 MIXER LAYER

In table 13, GNN-Trans-Encoder is the model whose MLP-Mixer layers are replaced with the same
number of standard transformer encoder layers. The rest architecture is the same.
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Model DA ZINC MolHIV

MAE Time(s/epoch) ROCAUC Time(s/epoch)

GCN-MLP-Mixer ✗ 0.1983 ± 0.0026 5.6249 0.7765 ± 0.0158 13.9986
✓ 0.1880 ± 0.0067 5.7604 0.7865 ± 0.0130 14.5451

GatedGCN-MLP-Mixer ✗ 0.1625 ± 0.0022 5.9534 0.7642 ± 0.0188 16.5646
✓ 0.1565 ± 0.0023 6.1519 0.7824 ± 0.0062 16.9663

GINE-MLP-Mixer ✗ 0.1266 ± 0.0051 5.9216 0.7569 ± 0.0281 14.8949
✓ 0.1171 ± 0.0029 5.9922 0.7824 ± 0.0131 15.5889

GraphTrans-MLP-Mixer ✗ 0.1316 ± 0.0043 6.3519 0.7566 ± 0.0260 16.8957
✓ 0.1190 ± 0.0016 6.4986 0.7805 ± 0.0182 17.2023

Table 12: Effect of data augmentation (DA): ✗ means no DA and ✓uses DA.

Model ZINC MolHIV

Graph MLP-Mixer* Graph ViT Graph MLP-Mixer* Graph ViT

GCN- 0.1352 ± 0.0056 0.1743 ± 0.0016 0.7849 ± 0.0043 0.7580 ± 0.0247
GatedGCN- 0.1251 ± 0.0080 0.1546 ± 0.0024 0.7912 ± 0.0133 0.7707 ± 0.0067
GINE- 0.0794 ± 0.0028 0.1060 ± 0.0014 0.7844 ± 0.0033 0.7694 ± 0.0158
GraphTrans- 0.0831 ± 0.0032 0.1160 ± 0.0053 0.7823 ± 0.0217 0.7750 ± 0.0224

Table 13: Mixer Layer vs. Transformer Layer.

A.7 STATE-OF-THE-ART

For ZINC from Dwivedi et al. (2020), all models have approximately ∼ 500k parameters. For
MolHIV and MolPCBA, there is no upper limit on the number of parameters. To enable a fair
comparison, we set the batch size to 128 for ZINC and MolHIV, and 256 for MolPCBA for all the
SOTA GT models and ours, and run all experiments using the same machine.

For SUN (Frasca et al., 2022), due to the huge memory consumption, we use a small batch size of
8 with gradient accumulation. Otherwise, any batch size larger than 8 will lead to out of memory
(OOM).

Model ZINC MolHIV MolPCBA

MAE ↓ S/Epoch ROCAUC ↑ # Param S/Epoch ROCAUC ↑ # Param S/Epoch

GT 0.226 ± 0.014 9.45 – – – – – –
GraphiT 0.202 ± 0.011 8.69 – – – – – –
Graphormer 0.122 ± 0.006 105.10 – – – –
GPS 0.070 ± 0.004 6.30 0.7880 ± 0.0101 558k 27.03 0.2907 ± 0.0028 9,744k 156.28
SAN 0.139 ± 0.006 17.58 0.7775 ± 0.0061 714k 61.94 0.2765 ± 0.0042 6,062k 843.02
SAT 0.094 ± 0.008 19.38 – – – – – –
GraphTrans – – – – – 0.2761 ± 0.0029 4,223k 360.36

GNN-AK+ 0.080 ± 0.001 8.67 0.7961 ± 0.0119 414k 15.20 0.2930 ± 0.0044 8,693k 366.04
SUN 0.084 ± 0.002 12.41 0.8003 ± 0.0055 218k 32.50 0.2616 ± 0.0049 14,883k 1776.96

GNN-MLP-Mixer* (Ours) 0.0794 ± 0.0028 5.88 0.7912 ± 0.0133 412k 14.82 0.2669 ± 0.0022 2,971k 222.72

Table 14: Comparison of our best results from Table 2 with the state-of-the-art Models (missing
values from literature are indicated with ‘-’). For ZINC, all models have approximately ∼ 500k
parameters.

A.8 EXPRESSIVITY

We experimentally validate that Graph MLP-Mixer is strictly more powerful than 3-WL by run-
ning it on the highly symmetric Circulant Skip Link (CSL) dataset from Murphy et al. (2019) and
SR25 (Balcilar et al., 2021), which required GNNs to be strictly more expressive than the 1-WL test
and 3-WL respectively to succeed, see Table 16.
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Model # Params Peptide-func Peptide-struct

Avg. Precision ↑ Time(S/Epoch) Memory(MB) MAE ↓ Time(S/Epoch) Memory(MB)

GCN 508k 0.5930±0.0023 – – 0.3496±0.0013 – –
GINE 476k 0.5498±0.0079 – – 0.3547±0.0045 – –
GatedGCN 509k 0.5864±0.0077 – – 0.3420±0.0013 – –
GatedGCN + RWSE 506k 0.6069±0.0035 – – 0.3357±0.0006 – –

Transformer + LapPE 488k 0.6326±0.0126 – – 0.2529±0.0016 – –
SAN + LapPE 493k 0.6384±0.0121 – – 0.2683±0.0043 – –
SAN + RWSE 500k 0.6439±0.0075 – – 0.2545±0.0012 – –
GPS 504k 0.6562 ± 0.0115 11.83 – 0.2515 ± 0.0012 11.74 –

GNN-AK+ 631k 0.6480 ± 0.0089 22.5207 7,855 0.2736 ± 0.0007 22.1169 7,634
SUN 508k 0.6730 ± 0.0078 376.6632 18,941 0.2498 ± 0.0008 384.2698 17,215

GCN-MLP-Mixer* 447k 0.6736 ± 0.0040 18.8352 338 0.2488 ± 0.0012 16.6935 332
GatedGCN-MLP-Mixer* 595k 0.6790 ± 0.0073 19.6521 471 0.2481 ± 0.0013 16.5547 478
GINE-MLP-Mixer* 497k 0.6846 ± 0.0068 19.5324 488 0.2478 ± 0.0010 15.9089 482
GraphTrans-MLP-Mixer* 645k 0.6814 ± 0.0072 18.8322 519 0.2483 ± 0.0013 16.3987 513

Table 15: Performance on Peptides-func and Peptides-struct (Dwivedi et al., 2022).

Model CSL SR25

Accuracy ↑ Accuracy ↑
GCN-MLP-Mixer* 1.0000 ± 0.0000 1.0000 ± 0.0000
GatedGCN-MLP-Mixer* 1.0000 ± 0.0000 1.0000 ± 0.0000
GINE-MLP-Mixer* 0.9800 ± 0.0183 1.0000 ± 0.0000
GraphTrans-MLP-Mixer* 1.0000 ± 0.0000 1.0000 ± 0.0000

Table 16: Results for the CSL (Murphy et al., 2019) dataset and SR25 (Balcilar et al., 2021) dataset.

A.9 GNN-MLP-MIXER*

Like MLP-Mixer in Computer Vision, GNN-MLP-Mixer is a sequential two-step process. The first
step embeds the nodes contained in the graph patches with a MP-GNN and pools the node embed-
ding together to generate a patch representation. The second step combines the patch representations
with a mixer layer. However, unlike the original MLP-Mixer, meaningful node representations are
difficult to produce due to the high variability of graphs. To improve the expressiveness of GNN-
MLP-Mixer, we propose an iterative two-step process by updating alternatively the representation
of nodes and patches as follows.

First, the node and edge representations are updated with a MP-GNN applied to each graph patch
Gp(Vp, Ep) separately and independently:

hℓ+1
i,p = fh(h

ℓ
i,p, {hℓ

j,p|j ∈ N (i)}, eℓij,p) hℓ+1
i,p , hℓ

i,p ∈ Rd,

eℓ+1
ij,p = fe(h

ℓ
i,p, h

ℓ
i,p, e

ℓ
ij,p) eℓ+1

ij,p , e
ℓ
ij,p ∈ Rd,

(10)

where ℓ is the layer index, p is the patch index, i, j denotes the nodes, N (i) is the neighborhood
of the node i and functions fh and fe (with learnable parameters) define the specific MP-GNN
architecture.

Second, a fixed-size vector representation of the patch Gp is produced by mean pooling all node
vectors in the patch followed by a MLP:

zl+1
p =

∑
i∈Vp

hl+1
i ∈ Rd,

xl+1
p = MLP(zl+1

p ) ∈ Rd.

(11)

Third, the patches represented by X l+1 = {xl+1
1 , ..., xl+1

P } ∈ RP×d are processed with a MLP-
Mixer layer:

U l+1 = X l+1 + (W l+1
2 σ(W l+1

1 LayerNorm(AP
DX

l+1))) ∈ RP×d Token mixer,

Y l+1 = U l+1 + (W l+1
4 σ(W l+1

3 LayerNorm(U l+1)T ))T ∈ RP×d Channel mixer,
(12)
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Finally, the node representations are updated using both the outputs of the MP-GNN layer and the
MLP-Mixer layer:

ĥl+1
i,p = M l+1hl+1

i,p +N l+1Y l+1
p ∈ Rd,

ĥl+1
i = Mean

{p | i∈Gp}
ĥl+1
i,p ∈ Rd,

hl+1
i,p ← ĥl+1

i ∈ Rd,

(13)

These node embeddings serve as the input of the next layer and the iterative process goes back to
the first step above.

A.10 COMPLEXITY ANALYSIS

For each graph G = (V, E), with N = |V| being the number of nodes and E = |E| being the number
of edges, the METIS patch extraction takes O(E) runtime complexity, and outputs graph patches
{G1, ..., GP }, with P being the pre-defined number of patches. Accordingly, we denote each graph
patch as Gp = (Vp, Ep), with Np = |Vp| being the number of nodes and Ep = |Ep| being the number
of edges in Gp. After our one-hop overlapping adjustment, the total number of nodes and edges of
all the patches are (NU =

∑
p Np) ≤ 2N and (EU =

∑
p Ep) ≤ 2E, respectively. Assuming base

GNN has O(E) runtime complexity, our patch embedding module has O(EU ) runtime complexity.
For the Mixer Layer, the complexity is O(P ).

A.11 OVER-SQUASHING

We illustrate experimentally the over-fitting property that can be produced by over-squashing with
the synthetic TreeNeighbour dataset from (Alon & Yahav, 2020) and a real-world long-range dataset
borrowed from (Dwivedi et al., 2022) in Figure 6 and Table 17.

For the synthetic TreeNeighbour dataset, we run the experiments with GCN, GGCN and Graph
MLP-Mixer with the number of layers being the double size as the tree depth and a hidden size of
128, and it can be observed that there is no issue for the GNNs to overfit this dataset. In (Alon &
Yahav, 2020), the authors use a number of layers equal to the tree depth+1 and a small hidden size of
32, which does not provide enough learning capacity to the networks and thus under-fits the dataset.
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Figure 6: Train Accuracy across problem radius (tree depth) in the NEIGHBORSMATCH prob-
lem (Alon & Yahav, 2020).

We confirmed this observation with the real-world long-range graph dataset, peptide-func taken
from (Dwivedi et al., 2022) with a mean value of 57 for the graph diameter of these large graphs.
The same result occurs, the GCN, GGCN and Graph MLP-Mixer are able to over-fit the dataset at
almost 100%.

Figure 7 presents the generalization performance of GNNs on the TreeNeighbour dataset specifically
designed to analyze synthetically the property of datasets with long-range dependencies.
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Model Training Accurary

GGCN 0.9991
GCN 0.9993
Graph MLP-Mixer 0.9993

Table 17: Training Accuracy in the Peptides-func problem (Dwivedi et al., 2022).
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Figure 7: Test Accuracy across problem radius (tree depth) in the NEIGHBORSMATCH prob-
lem (Alon & Yahav, 2020).
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