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Abstract

In this work, we cast Bayesian optimization as a multi-armed bandit problem, where the payoff
function is sampled from a Gaussian process (GP). Further, we focus on action selections via the
GP upper confidence bound (UCB). While numerous prior works use GPs in bandit settings, they
do not apply to settings where the total number of iterations 7" may be large-scale, as the complex-
ity of computing the posterior parameters scales cubically with the number of past observations.
To circumvent this computational burden, we propose a simple statistical test: only incorporate an
action into the GP posterior when its conditional entropy exceeds an e threshold. Doing so per-
mits us to derive sublinear regret bounds of GP bandit algorithms up to factors depending on the
compression parameter € for both discrete and continuous action sets. Moreover, the complexity of
the GP posterior remains provably finite. Experimentally, we observe state of the art accuracy and
complexity tradeoffs for GP bandit algorithms on various hyper-parameter tuning tasks, suggesting
the merits of managing the complexity of GPs in bandit settings.

Keywords: multi-armed bandits, Bayesian optimization, Gaussian Processes, adaptive control.

1. Introduction

Bayesian optimization is a framework for global optimization of a black box function via noisy
evaluations (Frazier, 2018), and provides an alternative to simulated annealing (Kirkpatrick et al.,
1983; Bertsimas and Tsitsiklis, 1993) or exhaustive search (Davis, 1991). These methods have
proven adept at hyper-parameter tuning of machine learning models (Snoek et al., 2012; Li et al.,
2017), nonlinear system identification (Srivastava et al., 2013), experimental design (Chaloner and
Verdinelli, 1995; Press, 2009), and semantic mapping (Shotton et al., 2008). More specifically,
denote function f : X — R we seek to optimize via noisy samples, i.e., for a given x; € X,
we observe y; = f(x:) + € sequentially. Our goal is to select a sequence of actions {x;} that
are competitive in performance with respect to the optimal selection x* = argmax, .y f(x). For
sequential decision making, a canonical performance metric is regret:

T
Regy := > f(x") = f(x1). )
t=1
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which quantifies the performance of a sequence of decisions {x;} as compared with the optimal x*.
We make no assumptions for now on the properties of f, other than each function evaluation must
be selected judiciously. Regret in (1) is natural because at each time we quantify how far decision
x; was from optimal through the difference r, := f(x*) — f(x;). An algorithm eventually learns
the optimal strategy if it is no-regret: Reg; /T — 0 as T' — oo.

In this work, we focus on Bayesian optimization, which hypothesizes a likelihood on the rela-
tionship between the unknown function f(x) and action selection x € X. Then upon selecting an
action x, one tracks a posterior distribution, or belief model (Powell and Ryzhov, 2012), over pos-
sible outcomes y = f(x) + € which informs how the next action is selected. In classical Bayesian
inference, posterior distributions do not influence which samples (x, y) are observed next (Ghosal
et al., 2000). In contrast, in multi-armed bandits, action selection x determines which observations
form the posterior, which is why it is also referred to as active learning (Jamieson et al., 2015). The
key distinguishing questions in this setting are the specification of a (i) likelihood and (ii) action
selection strategy. These choices come with their own merits and drawbacks in terms of optimal-
ity and computational efficiency. Regarding (i) the likelihood model, when the action space & is
discrete and of moderate size X = |X|, one may track a probability for each element of X, as in
Thompson (posterior) sampling (Russo et al., 2018), Gittins indices (Gittins et al., 2011), and the
Upper Confidence Bound (UCB) (Auer et al., 2002). These methods differ in their manner of action
selection, but not distributional representation.

However, when the range of possibilities X is large, computational challenges arise. This is be-
cause the number of parameters one needs to define a posterior distribution over X" is proportional
to X, an instance of the curse of dimensionality in nonparametric statistics. One way to circum-
vent this issue for continuous spaces is to discretize the action space according to a pre-defined
time-horizon that determines the total number of selected actions (Bubeck et al., 2011; Magureanu
et al., 2014), and carefully tune the discretization to the time-horizon 7". The drawback of these
approaches is that as 7' — oo, the number of parameters in the posterior grows intractably large.

An alternative is to define a history-dependent distribution directly over the large (possibly con-
tinuous) space using, e.g., Gaussian Processes (GPs) (Rasmussen, 2004) or Monte Carlo (MC)
methods (Smith, 2013). Bandit action selection strategies based on such distributional representa-
tions have been shown to be no-regret in recent years — see (Srinivas et al., 2012; Gopalan et al.,
2014). While MC methods permit the most general priors on the unknown function f, computa-
tional and technical challenges arise when the prior/posterior no longer posses conjugacy properties
(Gopalan et al., 2014). By contrast, GPs, stochastic processes any finite collection of realizations
of which are jointly Gaussian (Krige, 1951), have a conjugate prior and posterior, and thus their
parametric updates admit a closed form — see (Rasmussen, 2004)[Ch. 2].

This attribute of GPs has driven the development of bandit strategies of various kinds, such as
the upper-confidence bound (UCB) (Srinivas et al., 2012; De Freitas et al., 2012), expected improve-
ment (EI) (Wang and de Freitas, 2014; Nguyen et al., 2017), and step-wise uncertainty reduction
(SUR) (Villemonteix et al., 2009), including knowledge gradient (Frazier et al., 2008), whose con-
vergence in terms of regret or statistical consistency (Bect et al., 2019) may be established.

However, these convergence results hinge upon requiring use of the dense GP whose posterior
distribution, through the mean and covariance (4), has complexity cubic in 7" due to the inversion
of a Gram (kernel) matrix formed from the entire training set. This is an instance of the curse of
dimensionality in nonparametric statistics. Numerous efforts to reduce the complexity of GPs exist
in the literature — see (Csaté and Opper, 2002; Bauer et al., 2016; Bui et al., 2017). These methods
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Algorithm 1 Compressed GP-Bandits (COB)
fort=1,2...do

Select action x; via UCB (3) or EI (3): x; = arg maxyxex «(x)

Sample: y; = f(x;) + €

If conditional entropy exceeds e threshold H(y,|y;—1) = 3 log (2me(0? + op, ,(x1))) > €
Augment dictionary D; = [Dy;_1;x¢]
Append y; to target vector yp, = [yp,_,; ¥t]
Update posterior mean up, (x) & variance op, (x)

HD, (X) = th (X)T(KDt + O-ZI)ilyDt
0']2:)t(X) = H(X7X/) _th (X)T(KDtyDt—i—OjI)_lth (xl)

else Fix dict. D; = D;_,, target yp, = yp,_,, & GP.
(NDt (X)a oD, (X)v Dt) = (:L"Dt—1 (X)a OD;_4 (X)v Dt—l)

end for

all fix the complexity of the posterior and “project” all additional points onto a fixed likelihood
“subspace.” Doing so, however, may cause uncontrollable statistical bias and divergence.

By contrast, in this work, we propose a statistical test for the GP that explicitly trades off mem-
ory and regret (1), motivated by compression routines permit flexible representational complexity
of nonparametric models (Koppel, 2019; Koppel et al., 2019; Elvira et al., 2016). Specifically, we
propose a simple statistical test that operates inside GP-UCB which incorporates actions into the
posterior only when conditional entropy exceeds an e threshold (Sec. 2). We call this method
Compressed GP-UCB, or CUB (Algorithm 1). Next, derive sublinear regret bounds of GP bandit
algorithms up to factors depending on the compression parameter € for both discrete and continuous
action sets (Sec. 3). We further establish that the complexity of the GP posterior remains provably
finite (Sec. 3). In the end, we experimentally employ these approaches for optimizing some simple
non-convex functions and tuning the regularizer and step-size of a logistic regressor, which obtains
a state of the art trade off in regret versus computational efficiency (Sec. 4).

2. Gaussian Process Bandits

Information Gain and Upper-Confidence Bound To find x* = argmax,cy f(x) when f is
unknown, one may first globally approximate f well, and then evaluate it at the maximizer. In order
to formalize this approach, we propose to quantify how informative a collection of points {x, } C X’
is through information gain (Cover and Thomas, 2012), a standard quantity that tracks the mutual
information between f and observations y,, = f(x,,)+¢€, all indices u in some sampling set, defined
as I({yu}; f) = H({yu}) — H({yu} | f) where H({y,}) denotes the entropy of observations {y }
and H ({y,} { f) denotes the entropy conditional on f. For a Gaussian N (i, ) with mean p and
covariance Y., the entropy is given as H (N (u, X)) = % log |2meX:| and the information gain is given
in closed form as I ({yu}; f) = 3 log |2 + 072K,/

Suppose we are tasked with finding a subset of K points {x, },<7 that maximize the infor-
mation gain. This amounts to a challenging subset selection problem whose exact solution cannot
be found in polynomial time (Ko et al., 1995). However, near-optimal solutions may be obtained
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via greedy maximization, as information gain is submodular (Krause et al., 2008). Maximizing
information gain, i.e., selecting x; = argmax,cy I ({yu}; f), is equivalent to (Srinivas et al., 2012)

X; = argmax ox, ,(X) (2)
xXeX

where ox,_, (x) is the empirical standard deviation associated with a matrix X;_; of data points
X1 = [x1 -x1] € R¥*(=1) " We note that (2) may be shown to obtain the near-optimal
selection of points in the sense that after T' rounds, executing (2) guarantees I({y,}i_;f) >
(1—1/e)I({yu} ; f) for some K < T points using the theory of submodular functions discussed
in (Nemhauser et al., 1978). Indeed, selecting points based upon (2) permits one to efficiently
explore f globally. However, it dictates that action selection does not move towards the actual
maximizer x* of f. For this, x; should be chosen according to prior knowledge about the function
f, exploiting information about where f is large. To balance between these two extremes, a number
of different acquisition functions a(x) are possible based on the Gaussian Process posterior — see
(Powell and Ryzhov, 2012; Nguyen et al., 2017). Here we propose an upper-confidence bound
(UCB) based action selection with exploration parameter 3; as

x; = argmax ux,_, (x) + /Biox,_, (X) 3)
xeX

where the mean and standard deviation are given by a GP to be defined next.
Gaussian Processes A Gaussian Process (GP) is a stochastic process for which every finite collec-
tion of realizations is jointly Gaussian. We hypothesize a Gaussian Process prior for f(x), which
is specified by a mean function p(x) = E[f(x)] and covariance kernel defined as x(x,x’) =
E [(f(x) — pn(x))T(f(x') — n(x'))]. Subsequently, we assume the prior is zero-mean p(x) = 0.

GPs play multiple roles in this work: as a way of specifying smoothness and a prior for unknown
function f, as well as characterizing regret when f is a sample from a known GP GP(0; k(x;x")).
GPs exhibit the ability to admit a closed form for their maximum a posteriori conditional mean and
covariance given training set S; = {Xy, yu fu<t as (Rasmussen, 2004)[Ch. 2].

pux, (x) = kt(x)T(Kt + 0?1y, U%(t (x) = K(x,x") — kt(X)T(Kt + 0'21)_1kt(X/)T (D)

where k;(x) = [k(x1,%), -, k(x¢, X)] denotes the empirical kernel map and K denotes the gram
matrix of kernel evaluations whose entries are x(x,x’) for x,x’ € {x,}u<t. The X; subscript
underscores its role in parameterizing the mean and covariance. Further, note that (4) depends upon
a linear observation model y; = f(x;)+¢; with Gaussian noise prior ¢, ~ A'(0, 0%). The parametric
updates (4) depend on past actions {Xy }{,<¢}, Which causes the kernel dictionary X; to grow by
one at each iteration, i.e., Xy 11 = [X;; x¢41] € Rt and that the posterior at time ¢ + 1 uses
all past observations {x, },<¢. Subsequently, we refer to the number of columns in the dictionary
matrix as the model order. The GP posterior at time ¢ + 1 has model order .

The resulting action selection strategy (3) using the GP (4) is called GP-UCB, and its regret (1)
is established in (Srinivas et al., 2012)[Theorem 1 and 2] as sublinear with high probability up to
factors depending on the maximum information gain 7 over T points, which is defined as

1 1= ma (g b ) such that [} = 7 5)
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Compression Statistic The fundamental role of information gain in the regret of GP-UCB provides
a conceptual basis for finding a parsimonious GP posterior that nearly preserves no-regret prop-
erties of (3) - (4). To define our compression rule, first we define some key quantities related to
approximate GPs. Suppose we select some other kernel dictionary D € R?*M rather than X; at
time ¢, where M is the model order of the Gaussian Process. Then, the only difference is that the
kernel matrix K; in (4) and the empirical kernel map k(-) are substituted by Kpp and kp(+),
respectively, where the entries of [Kpp]mn = #(dm,d,) and {d,,, }M_; C {xy }u<t. Further, yp
denotes the sub-vector of y; associated with only the indices of training points in matrix D. We
denote the training subset associated with these indices as Sp = {xy, yu}i\/le If we rewrite (4)
with D as the dictionary rather than X, ;, we obtain

[JD(X):kD(Xt+1)[KD7D+O'ZI]71yD, O’%(X):H(X,X/)—kD<X)T(KD7D+021)71KD(X/). (6)

The question, then, is how to select a sequence of dictionaries D; € RP*M: whose M; columns
comprise a subset of those of X; in such a way to approximately preserve the regret bounds of
(Srinivas et al., 2012)[Theorem 1 and 2] while ensuring the model order is moderate M; < t.

We propose using conditional entropy as a statistic to compress against, i.e., a new data point
should be appended to the Gaussian process posterior only when its conditional entropy is at least
¢, which results in the following update rule for the dictionary D; € RP*M::

. 1
D; = [Dy_1; x¢] whenever H(y|y:—1) = 3 log (271'6(0’2 + O']%)til(Xt))) > €
D;=D;_ otherwise @)

where we define € as the compression budget. This amounts to a statistical test of whether the action
x; yielded an informative sample y; in the sense that its conditional entropy exceeds an e threshold.
Therefore, uninformative past decisions are dropped from belief formation about the present. The
modification of GP-UCB, called Compressed GP-UCB, or CUB for short, uses (3) with the lazy
GP belief model (6) defined by dictionary updates (7), and is summarized as Algorithm 1. Next,
we rigorously establish how Algorithm 1 trades off regret and memory through the € threshold on
conditional entropy for whether a point (x;, y;) should be included in the GP.

3. Balancing Regret and Complexity

In this section, we establish that Algorithm 1 attains comparable regret (1) to the standard GP-
UCB approach to bandit optimization under the canonical settings of the action space X being a
discrete finite set and a continuous compact Euclidean subset. We build upon techniques pioneered
in (Srinivas et al., 2012). The points of departure in our analysis are: (i) the characterization of
statistical bias induced by the compression rule (7) in the regret bounds, and (ii) the relating of
properties of the posterior (7) and action selections (3) to topological properties of the action space
X to ensure the model order of the GP defined by (6) is at-worst finite for all . Next we present our
main convergence result regarding Algorithm 1.

Theorem 1 (Regret of Compressed GP-UCB) Fix 6 € (0, 1) and suppose the Gaussian Process
prior for f has zero mean with covariance kernel k(x,x'). Define constant C := 8/log(1 + o~ 2)
Then under the following parameter selections and conditions on the data domain X, we have:
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i. (Finite decision set) For finite cardinality |X| = X, with exploration parameter [3; selected as
B = 2log(X 1272 /60), the accumulated regret is sublinear regret with probability 1 — 8. This
implies that P {Reg < /C1TBrAr + \/€I'} > 1 — 6 where ¢ is the compression budget.

ii. (General decision set) For continuous set X C [0,7]%, assume the derivative of the GP sample
paths are bounded with high probability, i.e., for constants a,b, P {sup,cy [0f/0x;| > L} <
ae~ (LY for j = 1,...d. Then, under exploration parameter B; = 2 log(Xt?m2/35) +

2d log(t2dbr/log(4da/d)), we have P {Reng/clTﬁT@T+\/ET+ %2} >1-4.

Theorem 1, whose proof is detailed in (Bedi et al., 2020), establishes that Algorithm 1 attains
sublinear regret with high probability when the action space X’ is discrete and finite, as well as when
it is a continuous compact subset of Euclidean space, up to factors depending on the maximum infor-
mation gain (5) and the compression budget € in (7). The sublinear dependence of the information
gain on 7" in terms of the parameter dimension d is derived in (Srinivas et al., 2012)[Sec. V-B] for
common kernels such as the linear, Gaussian, and Matérn.

The proof follows a path charted in (Srinivas et al., 2012)[Appendix I], except that we must
contend with the compression-induced error. Specifically, we begin by computing the confidence
interval for each action x; taken by the proposed algorithm at time . Then, we bound the in-
stantaneous regret 7, := f(x*) — f(X¢) in terms of the problem parameters such as f;, J, C,
compression budget €, and information gain 7 using the fact that the upper-confidence bound over-
shoots the maximizer. By summing over time with Cauchy-Schwartz, we build an upper-estimate
of cumulative regret based on instantaneous regret r;. Unsurprisingly, an additional term appears
due to our compression budget € in the final regret bounds, which for ¢ = 0 reduces to (Srinivas
et al., 2012)[Theorem 1 and 2]. However, rather than permitting the complexity of the GP to grow
unbounded with 7T, instead it grows only when informative actions are taken, and preserves the
sublinear growth of regret for any € such that \/eT' = o(T) suchase =T 2(r=1) for any p < 1.

Next, we establish the main merit of doing this statistical test inside a bandit algorithm is that it
controls the complexity of the belief model that decides action selections. In particular, Theorem 2
formalizes that the dictionary D; defined by (7) in Algorithm 1 will always have finite number of
elements Mp(e) even if T — oo, which is stated next.

Theorem 2 Suppose that the conditional entropy H ({y} } f) is bounded for all t. Then, the num-
ber of elements in the dictionary Dy denoted by My (€) in the GP posterior of Algorithm 1 is finite
as T — oo for fixed compression threshold e.

The implications of Theorem 2 (see (Bedi et al., 2020) for proof) are that the algorithm only
the stores important actions in the belief model and drops extraneous points. Interestingly, this
result states that despite infinitely many actions being taken in the limit, only finite many of them
are e-informative. In principle, one could make e adaptive with ¢ to improve performance, but
analyzing such a choice becomes complicated as relating the worst-cast model complexity to the
covering number of the space X would then depend on variable sets whose conditional entropy is
at least e. In the next section, we evaluate the merit of these conceptual results on experimental
settings involving black box non-convex optimization and hyper-parameter tuning of linear logistic
regressors.
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Figure 1: Figure shows mean average regret vs iteration performance comparison for the proposed
algorithm under different experimental settings.

4. Experiments

In this section, we evaluate the performance of the proposed statistical compression method under
a few different action selections (acquisition functions). Specifically, Algorithm 1 employs the Up-
per Confidence Bound (UCB) acquisition function, but the key insight here is a modification of the
GP posterior, not the action selection. Thus, we validate its use for Most Probable Improvement
(MPI) (Wang and de Freitas, 2014) as well, defined as a™M?'(x) = oy _10(2) + [111—1(x) — £]®(2)
and £ = argmax, f;—1(x), where ¢(z) and ®(z) denote the standard Gaussian density and dis-
tribution functions, and z = (u¢—1(x) — &) /o¢—1(x) is the centered z-score. We further compare
the compression scheme against Budgeted Kernel Bandits (BKB) proposed by (Calandriello et al.,
2019) which proposes to randomly add or drop points according to a distribution that is inversely
proportional to the posterior variance, also on the aforementioned acquisition functions.

Unless otherwise specified, the squared exponential kernel is used to represent the correlation
between the input, the lengthscale is set to # = 1.0, the noise prior is set to 2 = 0.001, the com-
pression budget ¢ = 10™*, and the confidence bounds hold with probability of at least § = 0.9. As a
common practice across all three problems, we initialize the Gaussian priors with 2¢ training data
randomly collected from the input domain, where d is the input dimension. We quantify the per-
formance using Mean Average Regret over the iterations. In addition, the model order, or number
of points defining the GP posterior, is visualized over time to characterize the compression of the
training dictionary. To ensure fair evaluations, all the listed simulations were performed on a PC
with 1.8 GHz Intel Core i7 CPU and 16 GB memory. The details about the different experimental
settings is provided below.

1) Example Function: First, we evaluate our proposed method on an example function given
by f(z) = sin(x) 4 cos(z) + 0.1z. A zero mean unit variance random Gaussian noise is induced
at every observation of f, to emulate the black box scenarios.

2) Rosenbrock Function: For the second simulation, we compare the compressed variants with
their baseline algorithm on a 2 dimensional non-convex function popularly known as the Rosen-
brock function, given by f(x,y) = (a — x)? + b(y — 22)?, with @ = 1 and b = 10.

3) Hyperparameter Tuning in Logistic Regression: We propose to use bandit algorithms
to automate the hyper-parameter tuning of machine learning algorithms. More specifically, we
propose using Algorithm 1 and variants with different acquisition functions to tune the following
hyper-parameters of a supervised learning scheme, whose concatenation forms the action space:
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Figure 2: Figure shows model order vs iteration performance comparison for the proposed algo-
rithm under different experimental settings. We note the significant performance benefit
in terms of the model order.

the learning rate, batch size, dropout of the inputs, and the ¢ regularization constant. The specific

supervised learning problem we focus on is the training of a multi-class logistic regressors over the

MNIST training set (LeCun and Cortes, 2010) for classifying hand written digits. The instantaneous

reward here is the statistical accuracy on a hold-out validation set.

The results of this implementation are given in Figure 1 and Figure 2. Observe that the compres-
sion technique (7) yields algorithms whose regret is comparable to the dense GP, with a significant
reduction in model complexity that eventually settles to a constant. This constant is a fundamen-
tal measure of the complexity of the action space required for finding a no-regret policy. Overall,
then, one can run Algorithm 1 on the back-end of any training scheme for supervised learning in
order to automate the selection of hyper-parameters in perpetuity without worrying about eventual
slowdown.

5. Conclusions

We considered bandit problems whose action spaces are discrete but have large cardinality, or are
continuous. Following a number of previous works for bandits with large action spaces, we parame-
terized the action distribution as a Gaussian Process in order to have a closed form expression for the
a posteriori variance. Unfortunately, Gaussian Processes exhibit complexity challenges when oper-
ating ad infinitum: the complexity of computing posterior parameters grows cubically with the time
index. While numerous previous memory-reduction methods exist for GPs, designing compression
for bandit optimization is relatively unexplored. Within this gap, we proposed a compression rule
for the GP posterior explicitly derived by information-theoretic regret bounds, where the conditional
entropy encapsulates the per-step progress of the bandit algorithm. This compression only includes
past actions whose conditional entropy exceeds an e-threshold to enter into the posterior.

As a result, we derived explicit tradeoffs between model complexity and information-theoretic
regret. Moreover, the complexity of the resulting GP posterior is at worst finite and depends on the
covering number (metric entropy) of the action space, a fundamental constant that determines the
bandit problem’s difficulty. In experiments, we observed a favorable tradeoff between regret, model
complexity, and iteration index/clock time for a couple toy non-convex optimization problems as
well as the actual problem of how to tune hyper-parameters of a supervised machine learning model.
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