
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENOUGH IS AS GOOD AS A FEAST:
A COMPREHENSIVE ANALYSIS OF HOW REINFORCE-
MENT LEARNING MITIGATES TASK CONFLICTS IN
LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging plays a crucial role in consolidating multiple specialized mod-
els into a single, unified model, especially in the era of large language models
(LLMs). Recent research has primarily focused on developing strategies to en-
hance merging performance with the trained models, while the impact of train-
ing paradigms, such as supervised fine-tuning (SFT) and reinforcement learning
(RL), on the effectiveness of model merging remains underexplored. In this study,
we systematically explore the merging behavior of RL-trained LLMs compared to
those trained with traditional SFT. Through comprehensive evaluations across five
representative tasks, we find that RL significantly reduces task conflicts and results
in less performance degradation after merging, making RL-trained models partic-
ularly well-suited for this process. To unearth the reasons behind the superior
suitability of RL for model merging, we conduct extensive empirical experiments
and theoretical analyses. Our findings highlight three key factors: (1) On-policy
training data in RL control the gradient updates in a smaller magnitude, reducing
the risk of overwriting existing knowledge for other tasks in the model. (2) The
RL optimization objective, which favors “enough is as good as a feast”, progres-
sively reduces the magnitude and the number of conflict parameter updates as the
model converges. (3) Joint optimization of positive and negative examples in RL
steers the model towards an unbiased task-specific parameter subspace, ensuring
robust performance while further preventing parameter conflicts.

1 INTRODUCTION

Large language models (LLMs) have fundamentally reshaped the landscape of artificial intelli-
gence, capturing growing interest from both academia and industry (Team, 2024; Grattafiori et al.,
2024). Recent statistics show that there are now more than 270,000 models with over 3 billion
parameters available on HuggingFace1. These large models often exhibit diverse capabilities and
strengths (Shao et al., 2024; Ahmad et al., 2025; Toshniwal et al., 2025), prompting researchers to
investigate ensemble techniques that integrate the specialized abilities of different models (Li et al.,
2023; Chen et al., 2025; Ruan et al., 2025). Among these techniques, model merging—which di-
rectly fuses the parameters of independently fine-tuned models without requiring access to the orig-
inal training data, expensive retraining, or the maintenance of multiple checkpoints—has emerged
as a particularly promising solution (Lu et al., 2024; Yang et al., 2024b).

A central challenge in model merging is preserving performance when integrating different mod-
els, as interference between parameters can lead to performance degradation in the merged model,
a phenomenon commonly referred to as task conflicts. To mitigate this issue, prior research has
proposed a range of model-merging strategies (Ilharco et al., 2023; Yadav et al., 2023; Yu et al.,
2024), typically under the assumption that the models involved have already been trained on dif-
ferent tasks. Nonetheless, the approach used to train these task-specific models—which critically
impacts the ultimate effectiveness of the merged model—has been largely overlooked. In the era

1https://huggingface.co/models
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Figure 1: Comparison of performance changes between SFT and RFT in model merging.

of LLMs, training paradigms can be broadly classified into supervised fine-tuning (SFT) and rein-
forcement learning (RL) (Hu et al., 2025; DeepSeek-AI et al., 2025). Most existing works focus on
merging models trained via SFT, leaving differences between SFT and RL in the context of model
merging largely unexplored and deserving of further investigation.

In this work, we investigate the role of fine-tuning paradigms (SFT and RL) in model merging.
A series of controlled experiments are conducted across five representative tasks—mathematical
reasoning, code generation, instruction following, logical puzzles, and ranking. And we assess the
extent to which models fine-tuned with SFT or RL, respectively, preserve their original performance
after model merging. Figure 1 reveals that models trained with RL exhibit significantly better
performance preservation after merging than those trained with SFT. Extensive experiments
suggest that our finding holds regardless of different merging methods, various base models, or
distinct RL algorithms. Furthermore, we demonstrate that RL alleviates parameter conflicts, thereby
making it particularly well-suited for model merging.

To further investigate the reason behind the superiority of RL on model merging, we conduct a series
of theoretical and empirical analyses. Our results demonstrate three primary contributing factors: (1)
On-policy training data: unlike SFT, where training data are sampled from fixed datasets or human
annotations, RL relies on data sampled from the model itself. This substantially reduces gradient
magnitudes and thereby lowers the risk of overwriting knowledge acquired from other tasks. (2) The
intrinsic dynamics of RL: the training objective of RL algorithms naturally attenuate parameter
updates and avoiding the increase of parameter conflicts as the model converges, favoring a state
where “enough is as good as a feast”. In contrast, SFT applies update with fixed intensity regardless
of convergence. This intrinsic characteristics of RL alleviates task conflict during integration. (3)
The joint optimization over positive and negative samples: RL simultaneously optimizes over
both positive and negative examples, whereas SFT relies only on positive samples. This leads to
more unbiased updates, resulting in higher convergence stability and more robust task integration.

In summary, this work highlights a previously underappreciated advantage of RL: its natural supe-
riority for model merging. Our findings offer new insights into how different fine-tuning paradigms
shape the task conflicts of LLMs and point toward more robust and scalable strategies for building
generalist models without retraining from scratch.

Our key contributions are as follows:

• We investigate the effect of LLM post-training paradigms on model merging. Our empirical
results consistently demonstrate that RL-trained models are more suitable for merging,
irrespective of the employed merging methods, the selection of RL algorithms, or the choice
of base models. Further analysis suggests that the superiority of RL-trained models stems
from its ability to mitigate task conflicts.

• Through both empirical and theoretical analyses, we advance novel hypotheses and argue
that (1) the use of on-policy data, (2) the intrinsic characteristics of RL algorithms, and
(3) the joint optimization of positive and negative samples collectively contribute to the
enhanced suitability of RL-trained models for model merging.
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2 BACKGROUND

2.1 MODEL MERGING

Model merging aims to integrate the multiple independently trained models into a single unified
model. Assume there are T models with parameters θ1,θ2, · · · ,θT , each sharing the same archi-
tecture and initialized from a common base model θ0. The goal of merging is to obtain a new model
θmerge by applying a merging operator:

θmerge = merge(θ1,θ2, · · · ,θT ). (1)
Recent advances merging methods are typically based on the task-relevant parameter updates τi :=
θi − θ0, namely Task Vector (Ilharco et al., 2023). The direction of these Task Vectors often reveals
conflicts between different tasks. To mitigate such conflicts, recent studies have introduced pruning
processes to remove redundant or unimportant parameters, as seen in approaches like DARE (Yadav
et al., 2023; Yu et al., 2024; Wang et al., 2024).

2.2 SUPERVISED FINE-TUNING AND REINFORCE LEARNING

Supervised Fine-Tuning (SFT) Given a dataset DSFT = {(xi, yi)}Ni=1, consisting of prompts xi
and their ground-truth responses yi, SFT optimizes the model by minimizing the negative condi-
tional likelihood of generating the correct response:

LSFT(θ) = −E(x,y)∼DSFT

 |y|∑
t=1

log πθ(yt | x, y<t)

 , (2)

where πθ denotes the model policy parameterized by θ. This objective enforces strict adherence
to labeled data, enabling stable convergence but limiting the flexibility to incorporate reward-based
feedback beyond supervised signals.

Reinforce Learning (RL) provides an alternative optimization paradigm that aligns model behav-
ior with task-specific reward functions. Formally, the objective is to maximize the expected return:

JRL(θ) = Ex∼DRL, y∼πθ(·|x)
[
r(y, x)

]
, (3)

where r(y, x) is a scalar function that reflects the expected reward of the output y given the input
x. In the era of large language models, a widely used reinforcement learning algorithm is Proximal
Policy Optimization (PPO, Schulman et al. (2017)), which can be formulated as:

J ppo(θ) = Ex∼DRL

|y|∑
t=1

[
min

(
πθ(yt|y<t)

πθold(yt|y<t)
Ât, clip

(
πθ(yt|y<t)

πθold(yt|y<t)
, 1− ϵ, 1 + ϵ

)
Ât

)]
(4)

where Ât denotes the estimated advantage based on the reward r and the function clip(·) con-
strains the probability ratio to the interval [1 − ϵ, 1 + ϵ] to ensure training stability. Standard PPO
typically employs a critic model to estimate the advantage At. To further improve the training
efficiency, recent studies have proposed critic-free variants, such GRPO (Shao et al., 2024), and
REINFORCE++ (Ahmadian et al., 2024), which are also widely adopted in current research.

3 REINFORCEMENT LEARNING MITIGATES TASK CONFLICTS

In this section, we experimentally compare the performance preservation of SFT-trained and RL-
trained models after model merging.

3.1 EXPERIMENT SETUP

Models and Settings We adopt the open-source models Llama-3.2-3B (Grattafiori et al., 2024),
Llama-3.1-8B (Grattafiori et al., 2024), and Mistral-Small-3-24B2 as the base models. For training,
we employ three representative RL algorithms: PPO (Schulman et al., 2017), GRPO (Shao et al.,
2024), and REINFORCE++ (Ahmadian et al., 2024). Unless otherwise specified, all experiments and
analyses default to Llama-3.1-8B as the base model and GRPO as the optimization algorithm.

2https://mistral.ai/news/mistral-small-3
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Math Code IF Puzzle Rank Average
SFT 61.9 60.5 63.9 86.2 52.8 61.5
Averaging 52.0(-16%) 56.0(-7.4%) 49.2(-23%) 30.8(-65%) 51.6(-2.3%) 47.9(-22%)
TIEs 56.8(-8.3%) 58.0(-4.1%) 47.5(-25%) 35.8(-58%) 51.3(-2.7%) 49.9(-19%)
Arithmetic 52.4(-15%) 56.3(-7.0%) 48.2(-25%) 44.9(-48%) 51.1(-3.3%) 50.6(-18%)
DARE 58.2(-6.1%) 58.0(-4.1%) 46.7(-27%) 38.0(-56%) 49.3(-6.7%) 50.0(-19%)
RL (GRPO) 64.6 65.6 90.0 85.2 55.7 72.2
Averaging 62.1(-3.9%) 61.7(-5.9%) 84.4(-6.2%) 37.8(-56%) 54.4(-2.3%) 60.1(-17%)
TIEs 63.3(-2.0%) 64.3(-2.0%) 90.0(-0%) 64.6(-24%) 53.1(-4.7%) 67.1(-7.1%)
Arithmetic 62.6(-3.1%) 63.8(-2.7%) 89.2(-0.9%) 60.7(-29%) 54.6(-2.0%) 66.2(-8.3%)
DARE 63.5(-1.7%) 64.2(-2.1%) 89.9(-0.1%) 65.0(-24%) 53.1(-4.7%) 67.1(-7.1%)

Table 1: Performance comparison across five tasks using different merging strategies (Averaging,
TIEs, Arithmetic and DARE), applied to both SFT and RL (GRPO) models. The values in paren-
theses indicate the relative performance drop compared to the original unmerged model and less
performance drop.

Experiment Tasks and Data Our evaluation spans five tasks that permit automatic verification:
math, code, instruction following (IF), logical puzzles (puzzle), and ranking (rank). For math,
models are trained on a subset of OpenMathInstruct-2 (Ahmad et al., 2025) and evaluated on
GSM8K (Cobbe et al., 2021) and MATH-500 (Hendrycks et al., 2021; Lightman et al., 2023). For
code, models are trained on a subset of OpenCodeInstruct (Ahmad et al., 2025) and evaluated on the
HUMANEVAL (Chen et al., 2021) and MBPP (Austin et al., 2021) datasets. For instruction follow-
ing, models are trained on the instruction subset from Tulu-3-SFT (Lambert et al., 2025) and eval-
uated on IFEVAL (Zhou et al., 2023b) and the instruction-following subset of LIVEBENCH (White
et al., 2024). For logical puzzles, models are trained on task Knights and Knaves (Johnson-Laird &
Byrne, 1990) with synthetic data using templates implemented by Xie et al. (2024) and evaluated on
the same task. For rank, models are trained on the Rank1 dataset (Weller et al., 2025) and evaluated
on the pairwise ranking benchmark NEVIR. Further details are listed in appendix E.

Model Merging Settings We evaluate four model merging strategies: model averaging (Aver-
aging for short) (Choshen et al., 2022), TIEs (Yadav et al., 2023), Task-Arithmetic (Arithmetic for
short) (Ilharco et al., 2023) and DARE+TIEs (DARE for short) (Yu et al., 2024). In our experiments,
we focus on pairwise merging, where two models are merged at a time to investigate the robustness
and compatibility of different training paradigms. For each task, we report the average performance
of the pairwise-merged models from the specific task to any other tasks.

3.2 MAIN RESULTS

Table 1 compares the effects of four parameter-merging methods on models trained via SFT and
GRPO. A consistent, paradigm-dependent gap emerges: RL-trained models are substantially
more suitable for merging, largely preserving the performance of individual models after merging,
both in specific tasks and in overall averages. SFT-trained models suffer severe degradation—for
instance, Puzzle drops by up to 65% and the mean decline spans 18–22%. By contrast, RL-trained
models limit losses to under 10% for most strategies. Even on the most fragile task (Puzzle), RL-
based models degrade less sharply. This advantage holds across methods: with Averaging, SFT
shows a 22% mean decline versus 17% for RL; with TIEs, RL falls only 7.1% compared to 19% for
SFT. Arithmetic and DARE follow the same pattern, with RL consistently outperforming SFT by a
wide margin.

Generality of RL Algorithms in Model Merging To further assess the generality of RL algo-
rithms in the context of model merging, we extend our analysis beyond GRPO by incorporating two
additional algorithm-PPO and REINFORCE++-with TIEs merging. As shown in Figure 2, across
all RL algorithms, the merged models consistently exhibit significantly lower performance degra-
dation compared to those trained with SFT. After TIEs merging, SFT models exhibit a substantial
28.7% decrease in IF, whereas RL models experience only negligible performance losses (GRPO:
-0.3%, PPO: -2.5%, REINFORCE++: -2.6%). This reinforces our key observation: RL-trained
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Figure 2: Performance comparison across three tasks using TIEs merging, applied to both SFT
and RL models. The values in parentheses indicate the relative performance drop compared to the
original unmerged model.
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Figure 3: Performance comparison across three tasks using TIEs merging, applied to both SFT and
GRPO models with different base models. The values in parentheses indicate the relative perfor-
mance drop compared to the original unmerged model.

model bases are substantially more suitable for model merging than their SFT counterparts,
regardless of the specific RL algorithm employed. Detailed results with other merging methods are
provided in Table 4 in the Appendix.

RL Algorithms Benefit Model Merging with Different LLMs We further conduct experiments
on different base models, Llama-3.2-3B, Llama-3.1-8B and Mistral-Small-3-24B, across three tasks:
Math, Instruction Following, and Code. We evaluate merged models TIEs merging. As shown in
Figure 3, across all base models, GRPO-trained models consistently suffer substantially less per-
formance degradation than their SFT-trained counterparts. For instance, after TIEs merging, SFT
models drop by -35.6% to -17.7% on IF, whereas RL-trained models decline -4.6% to +0.4%. These
results reinforce our central observation: RL-trained models are substantially more suitable for
model merging, irrespective of the base models. Detailed results with other merging methods are
included in Table 5 in the appendix.

3.3 PERFORMANCE LANDSCAPE OF SFT- AND RL-TRAINED MODELS

To understand why RL-trained models are more suitable for model merging, we investigate the
source of this superiority from two aspects: “RL-trained models are more robust to parameter per-
mutation” and “RL mitigates the task conflict”. Specifically, given two models fine-tuned indepen-
dently on tasks t1 and t2, let their respective parameters be denoted as θt1 and θt2 . Model merging
aims to obtain a unified parameter set θmerge that integrates knowledge from both tasks. From the
perspective of model θt1 , the merged model can be expressed as a perturbation in parameter space:

θmerge = θt1 +∆θ, (5)

where ∆θ = θmerge − θt1 represents the update direction induced by merging with θt2 . This formu-
lation naturally raises the question: Is the performance loss of the model caused by simple parameter
perturbations, or by parameters that conflict with other tasks ∆θ?

To investigate this, we visualize the performance landscape (Li et al., 2018) around θt1 . For each
model, we compare two perturbation directions: (1) Task-induced direction: ∆θ = θmerge − θt1 ,
(2) Random direction: θrand ∼ N (0, σ2I), scaled such that ∥θrand∥2 = ∥∆θ∥2. We evaluate model

5
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performance over the two-dimensional surface defined by:
f(α, β) = L(θt1 + α∆θ + βθrand), (6)

where L(·) denotes the task-specific performance function, and (α, β) ∈ R2 parameterize the per-
turbation magnitude along each direction.
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Figure 4: Performance landscape visualization around θt1 for SFT and RL models. The α-axis
corresponds to the task-induced update ∆θ, and the β-axis corresponds to a random perturbation of
equal norm.

As illustrated in Figure 43, adding a random perturbation θrand has minimal impact on performance
in both SFT and RL models, indicating robustness to parameter noise. However, the task-induced
update ∆θ reveals a stark contrast: for SFT-trained models, increasing α along ∆θ leads to a no-
ticeable degradation in task performance, suggesting strong interference from task t2. In contrast,
RL-trained models maintain stable performance even when perturbed in the direction of ∆θ, im-
plying that parameters learned from task t2 do not conflict with task t1. These observations support
our key finding: parameter updates induced by SFT tend to be more entangled across tasks,
leading to interference, while RL encourages task-orthogonal updates that are less disruptive
when merged.

4 HOW RL MITIGATES THE TASK CONFLICT

Having established that RL-trained models exhibit significantly lower task interference than those
trained with SFT, we now delve deeper into the mechanisms underlying this advantage. In this
section, we systematically analyze how RL can mitigate task conflicts by examining three key dif-
ferences between RL and SFT, which specifically are on-policy data, different training objective and
joint use of positive and negative examples.

4.1 THE EFFECT OF ON-POLICY DATA

One main difference between SFT and RL is the training data. In RL, the training data are sampled
from the current model (on-policy) while in SFT, it is from a fixed dataset (off-policy). To quantify
this effect, we compute the norm of the whole model updates under the three training paradigm:
SFT, RL and Rejection-Fine Tuning (RFT, Dong et al. (2023)). Notably, RFT can be viewed as a
special case of SFT where the training data are sampled from the original model. Table 2 shows
that on-policy data consistently produce significantly lower parameter magnitudes than off-policy
SFT. For instance, in math task, the norm fo models trained with SFT is 6.5, much higher than that
of RFT- and RL-trained models, which are 2.36 and 0.78. These results demonstrate that on-policy
data help to regulate the magnitude of gradient updates and reduce parameter sensitivity.

A closer examination reveals that the reduced norm of RL and SFT updates stems from a broader
distribution of low-magnitude parameter changes. Considering the proportion of parameters with
update magnitudes exceeding 10−5, RL exhibits only 25.0%, 20.7%, and 24.1% for the math, code,
and IF tasks, respectively, in stark contrast to the substantially higher proportions of 79.9%, 78.0%,
and 73.9% observed under SFT. This pattern is consistent with recent findings (Mukherjee et al.,
2025), which suggests that the dominance of low-magnitude updates in RL-trained models helps
preserve the knowledge acquired from other tasks. Therefore, the use of on-policy data reduces the
likelihood of parameter conflicts and makes RL-trained models more suitable for model merging.

3Full content is shown in appendix D.1.
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4.2 THE INTRINSIC CHARACTERISTICS OF REINFORCEMENT LEARNING

Another difference of SFT and RL is the optimization targets. Through theoretical and empirical
analyses, we find that different optimization targets leading to a natural property of RL, which is
“RL optimization is inherently adaptive”. Specifically, it adjusts updates according to the model’s
current capacity and performance. As training progresses, this adaptivity reduces the effective up-
date magnitude, which in turn moderates parameter sensitivity and lowers the likelihood of harmful
cross-task interference.

Theorem 1. For a single query x ∈ DRL, the expected absolute advantage is upper bounded by

Ea∼πθ(·|x)
[
|A(a, x)|

]
≤

√
Var(r(a, x)), (7)

where A(a, x) := r(a, x)− b(x) denotes the advantage, computed as the deviation of the observed
reward r(a, x) from a baseline b(x).

Theorem 2. Based on theorem 1, the advantage estimate An(a, x) at the n-th step converges to
zero in expectation. Since rewards are bounded within a fixed interval and advantages have zero
mean for each state, we obtain

lim
n→∞

E(|An(a, x)|) = 0. (8)

Theorem 2 implies that as training stabilizes, the expected scaling factor A diminishes. Conse-
quently, RL progressively down-weights parameter updates, whereas SFT continues to apply up-
dates of similar magnitude even at convergence. We list the proof in the appendix B.1. For recently
widely used “normalized advantage”, A(a, x) := r(a,x)−E(r)

std(r) , the theorem 2 also works. We also
list the proof in the appendix B.2.

Update Magnitudes. For n sampled trajectories {s}ns=1, the cumulative parameter update magni-
tudes can be expressed as∥∥∆θSFT

ti

∥∥
2
=

∥∥∥ n∑
s=1

ηGs
ti

∥∥∥
2
,

∥∥∆θRL
ti

∥∥
2
=

∥∥∥ n∑
s=1

η As
tiG

s
ti

∥∥∥
2
≤ η

n∑
s=1

∣∣∣As
ti

∣∣∣∥∥∥Gs
ti

∥∥∥,
where Gs

ti = ∇θ log πθ(y
s|xs) denotes the stochastic gradient contribution of sample s. The key

difference is that RL scales each update by its corresponding advantage As
ti , which decays over

training (Theorem 2), while SFT applies uniform updates. Similar to the analysis in §4.1, the less
updates could reduce the influence of conflicted parameter.

Conflict norm One way to understand how RL reduces task interference is to measure the con-
sistency of parameter updates across tasks. Task conflicts occur when two tasks push parameters in
opposing directions, leading to destructive interference. To capture this effect, we define the conflict
indicator matrix as

C(∆θti ,∆θtj ) = ∆θti ⊙∆θtj (9)
where ⊙ denotes the Hadamard (element-wise) product. Negative entries of C indicate conflicting
updates, while positive entries correspond to aligned updates. We then define the conflict norm as:

∥C(∆θti ,∆θtj )∥conflict =
∥∥∥(C(∆θti ,∆θtj )ij · 1{Cij<0}

)
i,j

∥∥∥
2

(10)

where 1{Cij<0} is an indicator function that selects only the conflicting entries. This measure thus
quantifies the aggregate strength of parameter conflicts between two tasks.

Implications for Task Interference. Building on these results, we examine the conflict norm
between two tasks t1 and t2. Under SFT:

∥C(∆θt1 ,∆θt2)∥SFT
conflict = η2∥C(

n∑
k=1

Gk
t1 ,

n∑
k=1

Gk
t2)∥conflict,

whereas under RL:

∥C(∆θt1 ,∆θt2)∥RL
conflict = η2∥C(

n∑
k=1

Ak
1G

k
t1 ,

n∑
k=1

Ak
2G

k
t2)∥conflict.
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Math Code IF
SFT 6.50 7.75 4.83
RFT 2.36 2.17 1.70
RL 0.78 0.71 0.64

Table 2: The norm of ∆θ for
different tasks and settings.
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Figure 6: The conflict norm
of SFT and RL

In the verifiable setting where r ∈ {0, 1}, we have |A| ≤
√
Var(r) ≤ 1

2 , andAk → 0 in expectation
as training stabilizes. It follows that

E
[
∥C(∆θt1 ,∆θt2)∥RL

conflict

]
≪ E

[
∥C(∆θt1 ,∆θt2)∥SFT

conflict

]
(11)

which formalizes the intuition that RL reduces cross-task parameter conflicts by down-scaling gra-
dient magnitudes through the vanishing advantage.

We plot the norm of update parameter in Figure 5 and the conflict norm in Figure 6. As is shown
in the figures, the growth trend of norm and conflict norm of RL is obviously slower than SFT,
indicating that the advantages effect during the training process.

4.3 ANALYSIS OF OPTIMIZATION OVER BOTH POSITIVE AND NEGATIVE SAMPLES

The third difference between RL and SFT is that RL is optimized over both positive and negative
samples. In this section, we provide empirical analyses to elucidate the effects of optimization over
both positive and negative samples.

To further isolate the contribution of negative samples, we design a controlled experiment in which
their influence is selectively removed. Specifically, we construct an RL variant (RL-Pos) in which
the advantage values for all negative samples are set to zero, thereby excluding them from gradient
updates while retaining the KL regularization and on-policy sampling.

We test two hypotheses: H1 (Single-task performance). Models trained with both positive and
negative samples should converge to higher task-specific accuracy than models trained on positive
samples only. H2 (Cross-task conflict). Given the same training budget, models trained with both
types of samples should exhibit lower cross-task conflict (as measured by performance degradation
after model merging) compared to positive-only training.

To validate H1, we report the convergent accuracy of three models—SFT, RL, and RL-Pos—on
Math, Code, and IF tasks in Table 3. Results show that while RL-Pos improves over SFT, it still
underperforms full RL, confirming that negative samples facilitate better single-task optimization.
To test H2, we select RL and RL-Pos checkpoints trained for the same number of steps and apply
two merging strategies—parameter averaging and Task-Independent Experts (TIEs). As shown in
Figure 7, RL consistently suffers less performance degradation, reinforcing the claim that jointly
optimizing both positive and negative examples in RL guides the model toward an unbiased, task-
specific subspace and further reduces parameter conflicts.

5 RELATED WORKS

Model Merging of Large Language Models Model merging offers a practical alternative to
retraining by eliminating the need for access to raw training data or computationally expensive
fine-tuning procedures (Ilharco et al., 2022; Crisostomi et al., 2024; Yang et al., 2024a). In this
work, we focus on training-free model merging, where the merging process relies solely on the
weights of pre-trained and fine-tuned models. Recent advances have improved this approach through
heuristically guided merging strategies based on parameter statistics (e.g. value magnitudes or sign
alignment) (Yadav et al., 2023), task importance derived from the Fisher Information Matrix (Tam
et al., 2023), task-specific layer-wise attribution modeling (Wang et al., 2024), and trust region con-
straints (Sun et al., 2025). Several efforts have also aimed to explain the effectiveness of model
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Math Code IF Avg.
SFT 61.9 60.5 63.9 62.1
RL 64.6 65.6 90.0 73.4
RL-Pos 58.5 61.7 86.1 68.8

Table 3: Convergent performance across tasks.
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Figure 7: Performance drop in cross-task merg-
ing for RL and RL-Pos models under model av-
eraging and TIEs.

merging from a theoretical perspective, drawing on tools such as loss landscape geometry (Izmailov
et al., 2018; Gupta et al., 2020), bias-variance decomposition (Arpit et al., 2022; Rame et al., 2022),
and linear mode connectivity (LMC) in neural networks (Frankle et al., 2020; Zhou et al., 2024).
However, these analyses have been predominantly confined to models fine-tuned via SFT. To date,
little attention has been paid to how different fine-tuning paradigms—particularly reinforcement-
based methods—affect the model merging and interaction of models.

Analysis of LLM Post-Training Post-training has emerged as an effective approach for enhancing
the task-specific capabilities of large language models (LLMs) (Grattafiori et al., 2024; Team, 2024;
Shao et al., 2024). Among the most commonly used paradigms, SFT adapts pre-trained models to
downstream tasks by training them on task-specific datasets, often formatted as instructions (Wei
et al., 2021; Zhou et al., 2023a; Chung et al., 2024). In contrast, Reinforcement Learning (RL) is
typically employed to align models with human preferences or to optimize performance on specific
target tasks (Ouyang et al., 2022; Ahmadian et al., 2024; Guo et al., 2025). To deepen understanding
of the post-training stage, recent research has explored how different learning paradigms influence
model behavior. For instance, several studies investigate memorization and generalization dynamics
across knowledge-intensive and reasoning tasks (Allen-Zhu & Li, 2023; Ye et al., 2024; Qi et al.,
2024; Chu et al., 2025; Kang et al., 2025). Others have examined learning dynamics by contrasting
SFT and RL in terms of convergence behavior and sample efficiency (Ren & Sutherland, 2024;
Zeng et al., 2025; Kang et al., 2025). Recent research has also highlighted distinctive properties
of RL compared with SFT, showing that RL tends to produce sparser parameter updates (Shenfeld
et al., 2025) and can help mitigate catastrophic forgetting (Mukherjee et al., 2025). In this work, we
take a complementary perspective by analyzing how the choice of post-training paradigm impacts
task conflicts in model merging. Our findings demonstrate that models fine-tuned with RL exhibit
significantly reduced inter-task interference compared to those trained with SFT, thereby offering a
more robust foundation for multi-task integration.

6 CONCLUSION

This work provides a comprehensive investigation into the influence of post-training paradigms on
model merging in LLMs. Our central finding is that RL, as opposed to standard SFT, inherently
mitigates cross task conflicts, making it more substantially suitable for model merging. To further
understand the mechanism behind this advantage, we isolate and evaluate three components of the
RL training objective: (1) on-policy training data, (2) the intrinsic characteristics of RL algorithms,
and (3) optimization over both positive and negative samples. Both theoretical and empirical analy-
ses demonstrate that the three components play a critical role in conflict mitigation. Taken together,
our findings indicate that RL is not merely an alternative to SFT but constitutes a fundamentally
more suitable paradigm for multi-task post-training in foundation models. Beyond this, the results
provide new insights into how different fine-tuning paradigms shape task conflicts in LLMs and
highlight RL as a robust and scalable strategy for developing generalist models.
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the impact of different post-training paradigms—specifically, SFT and RL—on the model merging
of LLMs. All experimental components, including models, datasets, and benchmarks, are drawn
from publicly available sources and are well-established in the academic literature. Consequently,
the research employs no proprietary or sensitive data, involves no human subjects, and presents no
additional foreseeable risks beyond those associated with the broader field of LLM research.

REPRODUCIBILITY STATEMENT

Our experiments are built upon open-source models, datasets, and algorithms for both RL training
and model merging. We employ greedy decoding for all evaluations. Note that minor variations in
results may occur due to hardware differences or inference framework implementations.
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A THE USE OF LARGE LANGUAGE MODELS

In this study, LLMs are employed solely to assist with the refinement of written expression. Specifi-
cally, they were used to improve grammar, enhance clarity, and ensure fluency in academic writing.
The LLMs were not involved in data analysis, methodological design, or interpretation of results,
but served only as a linguistic polishing tool to improve readability and presentation.

B PROOF OF THE CONVERGENCE OF E(An)

B.1 UPPER BOUND ESTIMATION FOR ADVANTAGE WITH BASELINE

In the standard formulation of advantage estimation with a baseline b̂ (Williams, 1992),

A := r − b̂,

where b̂ = E[rn] is the expectation of the reward r. Then we obtain the following bound:

E(|A|) ≤
√
E(A2)

=
√
E((r − E(r))2)

=
√

E(r2)− 2E(r)E(r) + E2(r)

=
√
E(r2)− E2(r)

=
√
Var(r)

(12)

Recent work has established the global convergence of reinforcement learning algorithms (Zhang
et al., 2020). In particular, the expected reward at the n-th step, E(rn), converges to r⋆, the reward
of the optimal policy. Formally,

lim
n→∞

E(rn) = r⋆. (13)

Variance Decay. Since the reward is bounded in the interval [a, r⋆], we can apply the Bhatia–Davis
inequality:

Var(rn) = E(r2n)− E2(rn) ≤ (r⋆ − E(rn))
(
E(rn)− a

)
. (14)

As E(rn) → r⋆, the right-hand side tends to zero, which implies

lim
n→∞

Var(rn) = 0,

which leads to
lim
n→∞

E(|An|) = 0. (15)

B.2 CONVERGENCE FOR DISCRETE ADVANTAGE WITH BASELINE AND STANDARD
DEVIATION

A widely adopted variant of advantage estimation, used for example in GRPO and Reinforce++,
normalizes the centered reward by its standard deviation:

A :=
r − E(r)√
Var(r)

.

Theorem 3.1. For any bounded reward distribution Pr supported on [a, b], the expectation of the
absolute advantage is maximized when Pr is a Bernoulli distribution Pr⋆ with the same expectation,
i.e.,

EPr (|A|) ≤ EPr⋆
(|A|), with EPr (r) = EPr⋆

(r).

Proof. Define the centered random variable X := r − µ, where µ = E[r]. Then the normalized
advantage can be written as

E(|A(r)|) = E(|X|)√
E(X2)

.
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Consider the family of reward distributions with fixed expectation:

Sµ := {P | EP (r) = µ}.

This set is convex and compact under the topology of weak convergence (by Prokhorov’s theorem),
since all measures are supported on the compact interval [0, 1].

—

Supporting-Line Reduction. Define the linear functionals

U(P ) := EP (|X|), V (P ) := EP (X
2).

Maximizing the functional

ψ(U, V ) :=
U√
V

over Sµ can be reduced to maximizing a linear functional. Specifically, if (u⋆, v⋆) is an optimizer of
ψ, then set

c :=
u⋆√
v⋆
, λ :=

u⋆
2v⋆

.

By convex analysis, ψ admits the supporting-line inequality

c
√
v ≤ u⋆ + λ(v − v⋆), ∀v ≥ 0.

Hence, for any (u, v) ∈ Sµ,
u− λv ≤ u⋆ − λv⋆,

which shows that (u⋆, v⋆) also maximizes the linear functional

L(u, v) := u− λv

over Sµ. Thus, the nonlinear problem

sup
(u,v)∈Sµ

u√
v

and sup
(u,v)∈Sµ

(
u− λv

)
share the same maximizer (u⋆, v⋆).

—

Existence of Optimizer. Since Sµ is compact and L is continuous, the supremum is attained at
some (u⋆, v⋆) ∈ Sµ. By definition, there exists a distribution P⋆ such that

(u⋆, v⋆) = (U(P⋆), V (P⋆)).

Moreover, since L is linear in (u, v) and both U and V are linear functionals of P , maximizing L
over Sµ is equivalent to maximizing

P 7→
∫ (

|x| − λx2
)
P (dx),

over the convex, compact set Sµ. By the Krein–Milman theorem, the supremum is attained at an
extreme point of Sµ.

—

Extreme Points of Sµ. The extreme points of Sµ are precisely two-point distributions of the form

p(x) = c δ(x− x1) + (1− c) δ(x− x2),

satisfying the expectation constraint cx1 + (1− c)x2 = µ., in which δ is the dirac delta function.

Proof.
Sufficiency (two points ⇒ extreme). Let P = c δx1 +(1− c) δx2 with x1 ̸= x2 and c ∈ (0, 1) satisfy

c x1 + (1− c)x2 = µ. Suppose

P = λP1 + (1− λ)P2, 0 < λ < 1, P1, P2 ∈ Sµ.
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For any Borel set E ⊂ R we have P (E) = λP1(E) + (1 − λ)P2(E). Since P ({y}) = 0 for
every y /∈ {x1, x2}, it follows that P1({y}) = P2({y}) = 0 for all such y (otherwise the convex
combination would be positive), hence

supp(P1), supp(P2) ⊆ {x1, x2}.
Write Pi = αi δx1

+ (1 − αi) δx2
for i = 1, 2 with some αi ∈ [0, 1]. Because Pi ∈ Sµ, each must

satisfy the same mean constraint:

αix1 + (1− αi)x2 = µ ⇒ αi =
x2 − µ

x2 − x1
(i = 1, 2).

Thus α1 = α2 = c, and then the identity P = λP1 + (1 − λ)P2 forces P1 = P2 = P . Hence P
is extreme. The degenerate one–point case P = δx∗ also yields extremality: the mean constraint
implies x∗ = µ, and the same support argument shows any convex decomposition must be trivial.

Necessity (≥ 3 points ⇒ not extreme). Suppose the size of p’s support, |supp(p)| is greater than 2.
Assume P ∈ Sµ has at least three distinct atoms y1, y2, y3 with masses α1, α2, α3 > 0:

P =

3∑
i=1

αi δyi
+ Prest, α1 + α2 + α3 > 0,

.where Prest is the remainder (possibly zero). Consider the 2× 3 matrix

M =

(
1 1 1
y1 y2 y3

)
.

Since rank(M) = 2, there exists a nonzero vector β = (β1, β2, β3)
⊤ in the nullspace of M , i.e.

β1 + β2 + β3 = 0, β1y1 + β2y2 + β3y3 = 0, β ̸= 0.

Define the signed measure

ν :=

3∑
i=1

βi δyi .

Then
∫
1 dν = 0 and

∫
x dν = 0. Choose

t ∈
(
0, min

i: βi ̸=0

αi

|βi|

]
,

so that all coefficients αi ± tβi remain nonnegative. Set
P1 := P + tν, P2 := P − tν.

By construction, P1 and P2 are probability measures (
∫
1 dPj = 1), they satisfy the mean constraint

(
∫
x dPj = µ), and P = 1

2P1 + 1
2P2. Since ν ̸= 0, we have P1 ̸= P2, showing that P is not

extreme.

If P has infinite support or a non-atomic part, pick three disjoint Borel sets of positive mass and
perform the same construction after restricting to those sets (approximating each by a point via
conditional expectations), which yields a nontrivial ν with

∫
1 dν = 0 and

∫
x dν = 0. Hence any

P with |supp(P )| ≥ 3 fails to be extreme.

Combining the two parts, the extreme points of Sµ are precisely the probability measures supported
on at most two points, i.e. the two-point laws c δx1

+ (1 − c) δx2
satisfying c x1 + (1 − c)x2 = µ

(with the one-point Dirac at µ as a degenerate case).

—

Convergence of the Discrete Advantage. Let b = r∗, from the previous proof, we have
lim
n→∞

E(rn) = b

For the discrete rewards, which lives on a finite grid {a, i1, i2, · · · , iK , b}, the extremizer with fixed
mean µ ∈ [iK , b] is supported on {iK , b} and

lim
n→∞

E(|An|) = lim
µ→b

E(
2
√
(b− µ)(µ− iK)

b− iK
) = 0. (16)

Here µ is E(r). This result shows that, under convergence of the RL algorithm, the normalized
advantage vanishes asymptotically, ensuring that parameter updates diminish and training stabilizes.
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Math Code IF Average
SFT 61.9 60.5 63.9 62.1
Averaging 55.8(-10%) 55.7(-7.8%) 51.7(-19.1%) 54.4(-12.4%)
TIEs 57.1(-7.6%) 57.2(-5.5%) 47.7(-28.7%) 54.0(-13.0%)
GRPO 64.6 65.6 90.0 73.4
Averaging 60.9(-5.3%) 62.0(-5.4%) 83.7(-7.0%) 68.9(-6.2%)
TIEs 62.1(-3.9%) 64.0(-2.5%) 89.8(-0.3%) 72.0(-2.0%)
PPO 62.8 65.2 87.4 71.8
Averaging 60.9(-3.0%) 61.7(-5.4%) 80.0(-8.5%) 67.5(-5.9%)
TIEs 60.5(-3.6%) 62.3(-4.4%) 85.2(-2.5%) 69.3(-3.4%)
REINFORCE++ 62.3 63.7 83.8 70.0
Averaging 61.5(-1.3%) 61.0(-4.2%) 79.1(-5.6%) 67.2(-4.0%)
TIEs 60.4(-3.0%) 63.1(-1.0%) 81.6(-2.6%) 68.4(-2.3%)

Table 4: Performance comparison across three tasks using different merging strategies (Averaging
and TIEs), applied to both SFT and RL models. The values in parentheses indicate the relative
performance drop compared to the original unmerged model.

Math Code IF Average
Based on Llama-3.2-3B
SFT 42.7 42.8 42.2 42.6
Averaging 33.1(-22.5%) 38.3(-10.4%) 33.1(-21.6%) 34.8(-18.2%)
TIEs 38.3(-10.2%) 39.8(-7.1%) 27.2(-35.6%) 35.1(-17.6%)
GRPO 41.4 49.8 56.7 49.3
Averaging 40.4(-2.4%) 46.2(-7.2%) 50.0(-11.8%) 45.5(-7.6%)
TIEs 38.2(-7.7%) 47.7(-4.2%) 54.1(-4.6%) 46.7(-5.3%)
Based on Llama-3.1-8B
SFT 61.9 60.5 63.9 62.1
Averaging 55.8(-10%) 55.7(-7.8%) 51.7(-19.1%) 54.4(-12.4%)
TIEs 57.1(-7.6%) 57.2(-5.5%) 47.7(-28.7%) 54.0(-13.0%)
GRPO 64.6 65.6 90.0 73.4
Averaging 60.9(-5.3%) 62.0(-5.4%) 83.7(-7.0%) 68.9(-6.2%)
TIEs 62.1(-3.9%) 64.0(-2.5%) 89.8(-0.3%) 72.0(-2.0%)
Based on Mistral-Small-24B
SFT 73.9 71.7 76.5 74.0
Averaging 71.5(-3.3%) 71.6(-0%) 66.5(-13.0%) 69.9(-5.6%)
TIEs 68.9(-6.8%) 70.3(-2.0%) 62.9(-17.7%) 70.4(-4.3%)
GRPO 77.9 73.9 89.6 80.5
Averaging 77.0(-1.2%) 74.0(-0%) 86.4(-3.6%) 79.1(-1.7%)
TIEs 77.9(-0%) 73.4(-0.7%) 90.0(+0.4%) 80.4(-0%)

Table 5: Performance comparison across three tasks using different merging strategies (Averaging
and TIEs), applied to both SFT and GRPO models with different base models. The values in paren-
theses indicate the relative performance drop compared to the original unmerged model.

C DETAILED EXPERIMENTS RESULTS

D PARAMETER SIGN CONFLICTS

A direct way to assess task interference between large language models (LLMs) is to measure the
parameter sign conflict, i.e., the proportion of parameters for which the update directions (weight
differences) differ between models trained on different tasks. Prior work has shown that parameter
sign conflicts can substantially impact merged model performance, as inconsistent signs may lead to
destructive interference during parameter fusion (Yadav et al., 2023). To quantify this, we compute
the ratio of sign conflicts while varying the kept parameter rate, defined as the fraction of parameters
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Figure 8: Proportion of parameter sign conflicts under varying proportions of retained parameters.
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Figure 9: The full content of performance landscape

retained after selecting those with the largest absolute values. Figure 8 reports the conflict rate as a
function of the kept rate. As shown, RL-trained models consistently exhibit lower sign conflict rates
than their SFT-trained counterparts, particularly in the highest-importance parameter subset. This
suggests that RL optimization produces more compatible update directions across tasks, thereby
reducing destructive interference during merging.

D.1 PERFORMANCE LANDSCAPE

D.2 THE NUMBER OF MERGING MODEL

We examine how the number of merged models influences task conflicts under different post-training
paradigms. In this experiment, we employ the TIEs merging strategy to combine varying numbers of
independently fine-tuned models. As shown in Figure 1, the performance degradation patterns differ
markedly between paradigms. For RL-trained models, the average performance decreases only
gradually as the number of merged models increases. In contrast, SFT-trained models exhibit a much
steeper decline, suggesting that parameter conflicts accumulate more rapidly when merging multiple
SFT-based models. This result further supports our earlier findings that RL produces more task-
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orthogonal parameter updates, thereby mitigating cross-task interference in multi-model merging
scenarios.

E FUTHER DETAILS

E.1 EXPERIMENT SETUP DETAILS

Model and training datasets We adopt the open-source model LLaMA-3.1-8B (Grattafiori et al.,
2024) as the base model for experiments and analysis. Our evaluation covers five tasks that allow
for automatic verification: mathematics, code generation, logical puzzles, instruction following, and
ranking. For the puzzle task, we adopt the representative logical reasoning benchmark Knights and
Knaves (Johnson-Laird & Byrne, 1990). For the SFT setting, we prepare task-specific training data
as follows. For the math task, we use a subset of OpenMathInstruct-2 (Ahmad et al., 2025). For the
code generation task, we adopt a subset of OpenCodeInstruct (Ahmad et al., 2025). For the puzzle
task, we automatically generate synthetic data using templates implemented by Xie et al. (2024),
with the number of people ranging from 2 to 8. For the instruction-following task, we use the
instruction subset from Tulu-3-SFT (Lambert et al., 2025). For the ranking task, we use the Rank1
dataset (Weller et al., 2025). For the RL setting, we reuse the same query for the math, code, puzzle,
and ranking tasks. To enable verifiable supervision for the instruction-following task, we employ
the signal construction method proposed by Pyatkin et al. (2025). Before applying reinforcement
learning, we first fine-tune the base model on the math, code, and instruction-following datasets
to equip it with basic instruction-following capabilities. This initialization step ensures stable and
meaningful reward signals during the RL training stage.

Benchmarks and Evaluation Metrics To comprehensively assess model performance across di-
verse task domains, we employ a broad set of benchmarks. For mathematical reasoning, we adopt
GSM8K (Cobbe et al., 2021) and MATH-500 (Hendrycks et al., 2021; Lightman et al., 2023), and
report the accuracy on each benchmark. For code generation, we utilize the HUMANEVAL (Chen
et al., 2021) and MBPP (Austin et al., 2021) datasets, including both the base and plus versions. The
evaluation metric is pass@1, which measures the percentage of correct solutions in the first attempt.
For instruction following, we adopt IFEVAL (Zhou et al., 2023b) and the instruction-following
subset of LIVEBENCH (White et al., 2024). We report both the loose and strict accuracies for IFE-
VAL, and the overall LiveBench score as computed by the benchmark’s official evaluation script. For
the puzzle-solving task, we generate evaluation data using a templated prompt . Specifically, we
construct an in-domain test set involving scenarios with 2 to 8 people, and an out-of-domain (OOD)
test set with 9 to 13 people. Accuracy is reported separately for in-domain and OOD settings. Fi-
nally, for ranking, we evaluate on the pairwise ranking benchmark NEVIR, and report the accuracy
computed using the official MTEB evaluation protocol.

E.2 IMPLEMENTATION DETAILS

For SFT experiments, we train models using the OPENRLHF4 (Hu et al., 2024) framework. Most
hyperparameters are adopted from the tulu-3 configuration, including a learning rate of 5×10−6,
batch size of 128, warm-up ratio of 0.03, a learning rate decay scheduler, and a total of 3 training
epochs. For the Reinforcement Learning (RL) experiments, we employ the VERL5 (Sheng et al.,
2024) framework and GRPO as the RL algorithm. The training configuration includes a learning
rate of 1× 10−6, rollout batch size of 512, rollout count of 8, rollout temperature and top-p both set
to 1.0, and a KL-divergence coefficient of 1×10−3. For model merging, we utilize the MERGEKIT
toolkit. In the case of TIEs merging and DARE, we follow the default hyperparameter settings
recommended by MERGEKIT, setting the sensitivity to 0.8 and the interpolation weight to 0.5. In
Task-Arithmetic, we set λ = 0.7, which is recomended by the original paper.

4https://github.com/OpenRLHF/OpenRLHF
5https://github.com/volcengine/verl
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