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ABSTRACT

Accurately quantifying uncertainty in large language models (LLMs) is crucial for
their reliable deployment, especially in high-stakes applications. Current state-of-
the-art methods for measuring semantic uncertainty in LLMs rely on strict bidirec-
tional entailment criteria between multiple generated responses and also depend
on sequence likelihoods. While effective, these approaches often overestimate un-
certainty due to their sensitivity to minor wording differences, additional correct
information, and non-important words in the sequence. We propose a novel ap-
proach that leverages semantic embeddings to achieve smoother and more robust
estimation of semantic uncertainty in LLMs. By capturing semantic similarities
without depending on sequence likelihoods, our method inherently reduces any bi-
ases introduced by irrelevant words in the answers. Furthermore, we introduce an
amortised version of our approach by explicitly modelling semantics as latent vari-
ables in a joint probabilistic model. This allows for uncertainty estimation in the
embedding space with a single forward pass, significantly reducing computational
overhead compared to existing multi-pass methods. Experiments across multiple
question-answering datasets and frontier LLMs demonstrate that our embedding-
based methods provide more accurate and nuanced uncertainty quantification than
traditional approaches.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionised natural language processing (see e.g. The
Gemini Team,, 2023; Touvron et al., 2023; OpenAI, 2023; Brown et al., 2020), achieving state-of-
the-art performance across a wide variety of tasks including question-answering. As these models
are increasingly deployed in critical domains like healthcare (Singhal et al., 2023) and law (Weiser,
2023) ensuring their reliability and trustworthiness has become imperative. A significant challenge
in this context is the phenomenon of “hallucinations”—instances where LLMs generate fluent and
coherent responses that are factually incorrect or misleading (Ji et al., 2023; Filippova, 2020; Maynez
et al., 2020; Tian et al., 2024).

Uncertainty quantification (UQ) methods like Bayesian inference (Wilson & Izmailov, 2020), en-
semble methods (Lakshminarayanan et al., 2017), and Monte Carlo dropout (Gal & Ghahramani,
2016) have been extensively studied in traditional neural networks to enhance model reliability by
providing confidence measures in predictions. However, applying these traditional UQ methods to
LLMs faces challenges due to the open-ended nature of free-form natural language generation (Kuhn
et al., 2023). The core issue lies in the fundamental mismatch between traditional UQ approaches,
which typically estimate uncertainty in output probabilities, and the semantics (meaning) space of
language generation in LLMs.

For example, consider the following scenario of two responses generated for the same query: “Lon-
don is the biggest city in the UK”. “The largest city in the UK is London”. In this scenario, the
output token probabilities will include uncertainty about the syntax and choice of words (e.g., using
“biggest” or “largest”), along with the uncertainty about the underlying semantic content of the re-
sponse. Traditional UQ techniques focusing on token probabilities conflate these different sources
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of uncertainty, making it challenging to isolate semantic uncertainty, which is critical for assessing
the reliability of the generated information.

Semantic entropy (Kuhn et al., 2023) aims to isolate semantic uncertainty by sampling multiple an-
swers from the LLM for a given prompt. It does so by clustering the generations into sets of equiv-
alent semantics and then estimating uncertainty in the space of identified semantics. The premise is
that higher semantic uncertainty leads to more diverse meanings in the generated responses, while
lower uncertainty results in more semantically consistent responses. In order to cluster semantically
equivalent answers, semantic entropy leverages a strict bidirectional entailment criterion which, as
we show in this work, can be sensitive to minor variations in wording, additional correct information,
or non-essential words in the generated responses. Such sensitivity can lead to an overestimation of
semantic uncertainty. Additionally, semantic entropy requires multiple forward passes, which can
limit its practicality in production environments where low latency is essential and for larger LLMs
where each forward pass incurs substantial computational expenses.

To address these challenges, we make the following key contributions:

• Semantic Embedding Uncertainty (SEU): We introduce SEU, by leveraging the average
pairwise cosine similarity of full response embeddings SEU avoids the issues associated
with using bi-directional entailment as a criterion for clustering semantically equivalent
responses (see sections 3 and 4).

• Amortised SEU: We present an amortised version that models semantics as latent vari-
ables in a joint probabilistic model. This allows for the estimation of posterior uncertainty
in the latent semantics within a single forward pass, alongside the response generation, sig-
nificantly reducing computational overhead and enhancing practicality for deployment in
production environments (see sections 5 and 6).

2 BACKGROUND

We first provide a concise summary of Semantic Entropy and detail its limitations which form the
motivation of our proposed approaches.

2.1 SEMANTIC ENTROPY

Semantic Entropy (SE) is a measure of uncertainty in sequences generated by language models
(Kuhn et al., 2023). The central idea is that if a language model is unsure about how to answer a
specific question, it will produce responses that are different in wording and semantics across mul-
tiple generations when the model is given the same input. SE groups semantically similar responses
and calculates the entropy based on the variety of distinct meanings found in the output responses.
Specifically, the key steps involved are: (i) sample M output sequences {s1, . . . , sM} from the lan-
guage model’s predictive distribution p(s|x) given an input x; (ii) cluster the sampled sequences
into K semantic equivalence classes C = {c1, . . . , cK} using a bidirectional entailment algorithm.
Two sequences si and sj are considered semantically equivalent if and only if a natural language
inference model classifies their mutual relationship as entailment in both directions; (iii) estimate
the probability of each semantic cluster p(ck|x) =

∑
s∈ck

p(s|x); and (iv) compute the entropy over
semantic clusters: SE(x) = −

∑K
k=1 p(ck|x) log p(ck|x).

2.1.1 BIDIRECTIONAL ENTAILMENT AND ITS LIMITATIONS

We focus on step (ii), where bidirectional entailment is used to identify distinct semantic clusters
among theM responses. This strict criterion, however, can be overly sensitive to minor variations in
wording, additional correct information, or non-essential words. This issue is illustrated by several
examples listed in Table 1.

Example 1: Generality Mismatch in Responses Both responses correctly state that mitochondria
produce energy. However, bidirectional entailment fails because the first response uses “produce
energy for the cells”, while the second uses “provides energy to cells in the body”. The addition of
“in the body” in the second response making it a less general statement than the first leads to a False
classification despite a high cosine similarity of 0.974.
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Table 1: Comparison of bidirectional entailment and cosine similarity for assessing semantic equivalence.
DeBERTaLarge (He et al., 2021) is used to predict entailment as used in Kuhn et al. (2023), and the inputs to
the cosine similarity are obtained using sentence-BERT (Reimers & Gurevych, 2019).

Context Responses Bidirectional
Entailment

Cosine
Similarity

What is the primary
function of the mi-
tochondria in cells?

1. The mitochondria produce energy for the cells.
2. Mitochondria provides energy to cells in the
body.

False 0.974

What happens
when you heat ice?

1. Heating ice will eventually boil after becoming
water.
2. When ice is heated, it melts into water before
boiling.

False 0.893

What do mammals
have in common?

1. Mammals are warm-blooded and have hair or fur.
2. All mammals (like humans and dogs) are warm-
blooded creatures with hair.

False 0.927

Example 2: Phrasing Variations Both responses accurately describe the process of heating ice,
but bidirectional entailment fails due to different information orders (“eventually boil” vs. “before
boiling”). These temporal differences in phrasing result in a False classification, despite a cosine
similarity of 0.893.

Example 3: Additional Correct Information Both responses identify key traits of mammals, but
bidirectional entailment fails because the second response includes additional correct information
(“like humans and dogs”) not present in the first. These additions and wording differences lead to a
False classification, despite a high cosine similarity of 0.927.

As the above examples demonstrated, natural language is inherently varied, and strict binary clas-
sifications do not account for the nuances and gradations in meaning that often occur in human
language. Bidirectional entailment treats semantic equivalence as a binary condition: responses ei-
ther fully entail each other or they do not. This strictness can lead to it being over-sensitive to minor
variations as shown in our examples, small differences in phrasing or the inclusion of additional but
correct information can cause bidirectional entailment to fail, even when the core meaning is pre-
served. In contrast, the high cosine similarity scores across all examples suggest that these responses
are indeed very close in semantic space. To address this limitation and more robustly quantify se-
mantic uncertainty, we propose using the average pairwise cosine similarity of the generated re-
sponses. This approach can capture semantic closeness more flexibly, allowing for minor variations
in wording or additional correct information without overly penalising the uncertainty estimate. We
detail this proposed method in the following section.

While the average pairwise cosine similarity approach addresses the limitations of binary semantic
classifications, it still has limited practical applicability. Both SE and the proposed method, require
multiple forward passes through the language model. This requirement significantly limits their
practicality in production environments, especially for large LLMs where each forward pass incurs
a substantial computational cost. To this end, we propose a novel method in Section 5 that treats the
semantics of the response as latent variables in a joint probabilistic model. Our approach employs
amortised inference over the semantics of the full response, allowing us to estimate the LLM’s un-
certainty about the semantics of its entire response (i.e., the complete sequence of tokens) in a single
forward pass. This method drastically reduces the computational overhead required to estimate se-
mantic uncertainty while preserving the benefits of comparing semantic embeddings using cosine
similarity.

3 SEMANTIC EMBEDDING UNCERTAINTY

To overcome the limitations of bidirectional entailment in measuring semantic uncertainty, we pro-
pose semantic embedding uncertainty (SEU), a novel approach based on the average pairwise co-
sine similarity of the generated responses’ embeddings. This method leverages continuous semantic
representations to capture nuanced meanings more precisely, offering a robust measure of semantic
uncertainty in language model outputs.
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Similar to Semantic Entropy, given an input x, we generate M output sequences {s1, s2, . . . , sM}
from the language model’s predictive distribution p(s|x). We then obtain vector embeddings
{e1, e2, . . . , eM} for each sequence using a pretrained embedding model ϕ(s), such as a
transformer-based sentence encoder (Reimers & Gurevych, 2019). The semantic uncertainty is
quantified by computing the negative average pairwise cosine similarity between the embeddings:

SEU(x) = 1− 2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

cos (ei, ej) , (1)

where cos (ei, ej) is the cosine similarity between embeddings ei and ej , cos (ei, ej) =
ei·ej

∥ei∥ ∥ej∥ ,
∥e∥ denotes the Euclidean norm of vector e, and ei · ej represents the dot product between vectors
ei and ej .

The proposed approach relies on high-quality embedding models to map semantically similar sen-
tences to nearby points in the embedding space (e.g. Mikolov et al., 2013; Pennington et al., 2014;
Reimers & Gurevych, 2019). Intuitively, cosine similarity quantifies the angle between vectors in the
high-dimensional embedding space, serving as a measure of their semantic alignment. By aggregat-
ing pairwise similarities across all generated responses, we capture the overall semantic coherence
of the model’s outputs. If the language model is certain about the response to input x, the generated
responses will be semantically similar, leading to high cosine similarity scores and a low seman-
tic uncertainty SEU(x). Conversely, if the model is uncertain, the responses will be more diverse
semantically, resulting in lower cosine similarity scores and a higher SEU(x).

The proposed approach offers two key advantages over bidirectional entailment. First, unlike the bi-
nary outcome of bidirectional entailment—which rigidly classifies responses as either semantically
equivalent or not—cosine similarity provides a continuous metric. This allows for a nuanced assess-
ment of semantic closeness between responses. While bidirectional entailment may fail to recognise
near-equivalent meanings due to minor differences (thereby assigning a value of zero similarity),
cosine similarity captures the degree of similarity between responses. This continuous spectrum
more accurately reflects the gradations in human language understanding. Second, as shown above,
bidirectional entailment is highly sensitive to syntactic variations, paraphrasing, and the inclusion of
additional relevant information, often resulting in false negatives when determining semantic equiv-
alence. In contrast, cosine similarity focuses on the underlying semantic content rather than exact
entailment. This makes it less sensitive to linguistic variability, such as differences in syntax or
phrasing.

4 EMPIRICAL EVALUATION OF SEU

In this section, we empirically evaluate our proposed SEU method against existing uncertainty esti-
mation techniques. Our goal is to demonstrate that SEU provides a more accurate and robust mea-
sure of semantic uncertainty in language model outputs, particularly in the context of open-domain
question answering.

4.1 EXPERIMENTAL SETUP

Models To align with modern practices of using instruction fine-tuned LLMs for chat purposes, we
employ Llama-3.1-8B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct (Jiang et al., 2023), and
Phi-3.5-mini-instruct (Abdin et al., 2024) as our base models. For each model-dataset combination,
we generate 5 responses per question (that is M = 5) at a temperature of 0.5. This temperature was
recommended as the optimal temperature for SE in previous work (Kuhn et al., 2023). Additionally,
we prompt Llama and Phi models with “Answer the following question as briefly as possible”, and
Mistral with “Answer the following question briefly using a few words” to match the short-answer
format of our datasets.

Datasets We evaluate our proposed Semantic Embedding Uncertainty (SEU) method on three chal-
lenging question-answering datasets: TriviaQA (Joshi et al., 2017), NQ Open (Kwiatkowski et al.,
2019; Lee et al., 2019), and the natural question subset of the FLAN collection (Longpre et al., 2023,
Flan QA) 1. TriviaQA offers a large set of trivia questions both with and without relevant context, NQ

1https://huggingface.co/datasets/Muennighoff/flan
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Open provides real user queries requiring short answers, and Flan QA also includes short question-
answer pairs specifically designed for instruction-tuning language models. These datasets provide a
diverse range of questions and answers, allowing us to assess the robustness of our method across
various domains and question types. The selection of these datasets enables us to evaluate SEU’s
performance on both traditional QA tasks as well as more recent instruction-following scenarios.

Baselines Following the evaluation by Kuhn et al. (2023), we compare our SEU method against the
following baselines: Predictive Entropy which is just the average predictive entropy of all the tokens
in the sequence, Length-normalised Predictive Entropy which is the joint log-probability of each
sequence divided by the length of the sequence (Malinin & Gales, 2021)2, and Semantic Entropy
(Kuhn et al., 2023). For predicting bidirectional entailment in the Semantic Entropy baseline, we use
DeBERTaLarge (He et al., 2021) as used in Kuhn et al. (2023), while for our SEU method, we utilise
the sentence-BERT (Reimers & Gurevych, 2019) for semantic embeddings. Following prior work
(Kuhn et al., 2023; Duan et al., 2023), we use the Area Under the Receiver Operating Characteristic
curve (AUROC) as our primary evaluation metric. This metric treats uncertainty estimation as the
problem of predicting whether to rely on a model’s generation for a given context. We evaluate
the correctness of our model’s generations using a fuzzy matching criterion based on the Rouge-
L score, considering an answer correct if its Rouge-L score with respect to the reference answer
is larger than 0.3. Our experimental procedure involves computing uncertainty scores using our
proposed SEU method and the baselines for each generated response, evaluating their correctness,
and calculating AUROC scores. All experiments were done using one NVIDIA A100 GPU.

4.2 RESULTS

Our empirical evaluation demonstrates the effectiveness of the proposed Semantic Embedding Un-
certainty (SEU) method across different models and datasets. We present our findings in two parts: a
comparative analysis of uncertainty estimation methods and an in-depth examination of the trade-off
between false positive rate (FPR) and true positive rate (TPR).

4.2.1 COMPARATIVE ANALYSIS OF UNCERTAINTY ESTIMATION METHODS

Figure 1 presents the AUROC scores for different uncertainty estimation methods across three mod-
els (Llama-3.1-8B-Instruct, Phi-3.5-Instruct, and Mistral-7B-Instruct) and three datasets (TriviaQA,
NQ Open, and Flan QA). We note the proposed SEU method consistently outperforms or matches
the performance of other uncertainty estimation methods across all model-dataset combinations.
Specifically, while the relative performance of methods varies slightly across models, SEU main-
tains its advantage, suggesting robustness to model architecture differences. The performance pat-
terns differ across datasets, with all methods generally performing better on TriviaQA compared
to NQ Open and Flan QA. Crucially, SEU consistently outperforms Semantic Entropy, supporting
our hypothesis that the latter may overestimate uncertainty due to its sensitivity to minor linguistic
variations.

Figure 1: Comparison of SEU method against baselines across different models and datasets.

2This technically should be called length-normalised log-likelihood, but we follow prior work on using this
name here.
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4.2.2 ANALYSIS OF FALSE POSITIVE RATE AND TRUE POSITIVE RATE TRADE-OFF

To further investigate the performance difference between SEU and Semantic Entropy, we analyse
the False Positive Rate (FPR) and True Positive Rate (TPR) at the optimal Youden’s J statistic point
for the NQ Open dataset. A “positive” case refers to an instance where the model’s response is
correct. Table 2 presents these results. Notably, SEU consistently achieves a higher TPR compared
to Semantic Entropy across all models. This indicates that SEU is more effective at identifying the
cases when the LLM is confident about the underlying semantics. The improved TPR of SEU comes
with a slight increase in FPR. However, the gain in TPR (ranging from 0.0897 to 0.1785) outweighs
the increase in FPR (ranging from 0.0460 to 0.1037), resulting in better overall performance as
reflected in the AUROC scores.

Table 2: Comparison of Semantic Embedding Uncertainty and Semantic Entropy on NQ Open
Dataset at Optimal Youden’s J Statistic Point

Model
SEU (Ours) SE

FPR [↓] TPR [↑] FPR [↓] TPR [↑]

Llama 3.1 8B 0.2608 0.7767 0.1655 0.6543
Phi 3.5 0.2198 0.7571 0.1738 0.6674
Mistral 7B 0.3293 0.7353 0.2256 0.5568

This empirical evidence supports our argument that Semantic Entropy may overestimate uncertainty
as demonstrated by its significantly lower TPR. Lower TPR suggests that Semantic Entropy is clas-
sifying more cases as uncertain, even when the model’s response is correct. The higher TPR of SEU
suggests that it captures a more nuanced view of semantic similarity, allowing it to identify truly
uncertain cases more accurately.

5 AMORTISED SEMANTIC EMBEDDING UNCERTAINTY

While our proposed Semantic Embedding Uncertainty (SEU) method demonstrates superior perfor-
mance in uncertainty estimation across various models and datasets, it shares a significant limitation
with Semantic Entropy: computational inefficiency. Both SEU and Semantic Entropy require multi-
ple forward passes through the language model to generate a set of responses for each input, which
can be prohibitively expensive, especially for large language models in production environments.
To this end, we present amortised SEU (ASEU) to tackle the challenge of estimating semantic un-
certainty in a single forward pass. The goal is to represent the semantics of a sequence as latent
variables and spend a small effort to finetune and obtain an amortised approximate posterior over
them to bypass the need for an external paragraph or sentence embedding model at test time.

5.1 LATENT SEMANTIC MODEL

Suppose we have a training set ofN sequences and xn = (xn,1, xn,2, . . . , xn,T ) is the n-th sequence
that has T tokens. We assume there is a latent vector zn ∈ RD that captures the semantic of the n-th
sequence and that the embeddings en ∈ RD of this sequence can be computed using an external, pre-
trained embedding model. The joint distribution over the latent semantic and observed embeddings
is defined as follows,

p({en, zn}Nn=1|ω) =
N∏

n=1

p(zn)p(en|zn, ω),

We choose a standard normal prior over zn, p(zn) = N (zn;0, ID) and p(en|zn, ω) =
N (en; NNω(zn), σ

2
eID), where NNω is a small neural network with parameters ω. It is worth

noting that while modelling zn at every time step is possible, this would involve specifying a
dynamic prior mapping from zn,t−1 to zn,t and computing the embeddings for all subsequences
(xn,1, xn,2, . . . , xn,t). We opt for simplicity and pick a global z for the whole sequence.

6
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5.2 APPROXIMATE INFERENCE

Readers familiar with latent variable modelling might have noted similarity between the model
above and Gaussian latent variable models in Kingma & Welling (2014); Rezende et al. (2014).
The most natural next step for inference would be to impose an approximate posterior over zn,
q(zn|en, ψ), that mirrors that of the exact posterior, p(zn|en, ω). While this is arguably the most
accurate approach, computing z for a new sequence at test time requires access to the embedding
e, which we seek to avoid. To sidestep this, we posit the variational Gaussian distribution over z,
q(zn|xn, ψ, θ) = N (zn;µn,Σn), where µn and Σn are outputs of a fully-connected neural network,
parameterised by ψ. This network takes as input the representation of xn provided by the language
model, that is parameterised by θ. This parameterisation allows us to obtain a distribution over z
using the same backbone as used for modelling x. Equipped with the model and variational distribu-
tion specifications, we now wish to minimise the KL divergence between the approximate posterior
and the true posterior, KL[q(zn|xn, ψ, θ) || p(zn|en, ω)], or equivalently, minimising the negative
lower bound to the log marginal likelihood log p({en}Nn=1|ω), L(θ, ω, ψ) =

∑
n Ln(θ, ω, ψ), where

Ln(θ, ω, ψ) =

∫
zn

q(zn|en, ψ, θ) [log q(zn|en, ψ, θ)− log p(en, zn|ω)]

= KL[q(zn|en, ψ, θ) || p(zn)]−
∫
zn

q(zn|xn, ψ, θ) log p(en|zn, ω).

The above objective is intuitive: we want to fine-tune the language model and optimise the model
and variational parameters such that the language model’s representation helps reconstruct the em-
bedding of the full sequence. Additionally, θ can be kept fixed if a pre-trained language model is
already available or simultaneously fine-tuned using the negative log-likelihood of x as in conven-
tional autoregressive language modelling.

5.3 UNCERTAINTY ESTIMATION AT TEST TIME

As the variational approximation is trained to approximately imitate the sequence embedding, it can
be leveraged to estimate the semantic uncertainty similarly to the SEU method proposed earlier. At
each step t during response generation, we draw K samples {zt,1, . . . , zt,K} from the approximate
posterior q(zt|xt, ψ, θ), where xt are the prompt and the tokens generated so far. We then compute
the average pairwise cosine similarity between these samples:

St =
2

K(K − 1)

K−1∑
j=1

K∑
k=j+1

cos(zt,j , zt,k)

where cos(zt,j , zt,k) denotes the cosine similarity between samples zt,j and zt,k. After gen-
erating the complete response of length T , we calculate the raw ASEU score: ASEUraw =
1 − median{S1, . . . , ST }. The intuition behind this approach is that if the LLM is uncertain about
the latent semantics of future tokens, the sampled embeddings at each step will have lower aver-
age similarity compared to cases where the LLM is more certain. Taking the median across all
steps yields a robust measure of the overall semantic uncertainty for the entire response. To account
for the impact of response length on uncertainty, we apply length normalization, defining our final
ASEU score, with higher values indicating greater uncertainty and lower values indicating greater
certainty. This normalization step is crucial as it mitigates potential bias towards longer responses,
which might accumulate more uncertainty simply due to their length. We also found the proposed
approach is more robust than using the entropy of the variational approximation.

6 EMPIRICAL EVALUATION OF AMORTIZED SEU

In this section, we empirically evaluate our proposed amortized Semantic Embedding Uncertainty
(ASEU) method. Unlike the previous multi-pass setting, we now focus on estimating uncertainty in
a single forward pass, which is crucial for practical applications in production environments.

7
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6.1 EXPERIMENTAL SETUP

Models: We use the same three models as in the previous experiments: Llama-3.1-8B-Instruct, Phi-
3.5-Instruct, and Mistral-7B-Instruct. However, for this evaluation, we fine-tune these models to
optimize the variational objective presented in section 5.2.

Fine-tuning: To learn the approximate posterior distribution q(z|x, ψ, θ) and parameters θ and ω,
we fine-tune the LLMs on the TriviaQA dataset. We chose TriviaQA for fine-tuning due to its size
and diverse coverage of question-answering tasks and its focus on short answers, which aligns with
the paper’s emphasis so far. This fine-tuning process allows the models to leverage the underlying
language model to estimate semantic uncertainty in a single forward pass.

Baselines: In the single forward pass setting, we compare our ASEU method against the length-
normalized predictive entropy of a single forward pass response. This baseline is chosen as it is the
most relevant uncertainty estimation method that can be computed in a single pass.

6.2 RESULTS AND DISCUSSION

Figure 2 presents the AUROC scores for our ASEU method and the length-normalized predictive
entropy baseline across the three models (Llama-3.1-8B-Instruct, Phi-3.5-Instruct, and Mistral-7B-
Instruct) and two datasets (NQ Open and Flan QA). We also compare the armotised uncertainty esti-
mates with SEU and other methods that require multiple generations in figure 3. We note that ASEU
consistently outperforms the length-normalized predictive entropy baseline across all model-dataset
combinations, suggesting it captures more meaningful uncertainty information. While ASEU gener-
ally doesn’t match the performance of multi-pass SEU method, it achieves comparable results for the
Mistral model. The performance gap between ASEU and multi-pass SEU varies across models and
datasets, but the computational efficiency gained through single-pass estimation makes ASEU more
suitable for real-world applications, especially in production environments where multiple forward
passes are infeasible.

Figure 2: Comparison of amortised SEU method against log-likelihood in a single forward pass
setting across different models and datasets.

6.3 ANALYSIS OF LEARNT LATENT EMBEDDINGS

To demonstrate that the latent embeddings of our amortized model carry meaningful semantic in-
formation, we examined the cosine similarities between the means of the variational distributions
given semantically related queries and presented the results in Table 3. The perfect similarity be-
tween queries about England’s capital and the UK’s biggest city reflects their close relationship
(both referring to London). The lower but consistent similarity (0.83) between these queries and
a question about Australia’s capital shows that the embeddings capture both the semantic structure
of the questions (asking about capital/major cities) and the distinction between different locations.
This suggests that the learnt embeddings after finetuning the LLMs encodes semantic relationships.
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Figure 3: Comparison of amortised SEU method against techniques requiring multiple forward
passes across different models and datasets.

Table 3: Cosine Similarities Between Predicted Embeddings of the following Query Embeddings
Query 1 Query 2 Cosine Similarity

What is the capital of England? What is the biggest city in the UK? 1.00
What is the capital of England? What is the capital of AUS? 0.83
What is the biggest city in the UK? What is the capital of AUS? 0.83

7 RELATED WORKS

Hallucinations in LLMs: The challenge of hallucination detection in LLMs has become increas-
ingly important as these models are deployed in real-world applications. Various benchmarks have
been developed to evaluate this phenomenon, including TruthfulQA (Lin et al., 2021), Factuali-
tyPrompt (Lee et al., 2022), FActScore (Min et al., 2023), HaluEval (Li et al., 2023a), and FACTOR
(Muhlgay et al., 2023). Early research on hallucinations primarily focused on issues in summariza-
tion tasks, where models would generate content unfaithful to the source text (Maynez et al., 2020;
Durmus et al., 2020; Wang et al., 2020). This work laid the foundation for understanding the broader
challenge of hallucinations in LLMs.

Uncertainty Estimation Approaches: A significant body of work has explored methods to esti-
mate uncertainty in LLM outputs. Many of these approaches rely on comparing multiple model
generations or outputs by leveraging additional LLMs or by using the same LLM (Duan et al., 2023;
Chen & Mueller, 2023; Manakul et al., 2023; Mündler et al., 2023). The field has seen a variety of
innovative techniques, including those proposed by Kadavath et al. (2022), Mitchell et al. (2022),
and Xu et al. (2022), which leverage different aspects of model behaviour to gauge uncertainty.

Knowledge Integration Methods: Another line of research focuses on integrating external knowl-
edge to verify and improve the factual accuracy of LLM outputs. The RARR framework (Gao
et al., 2023) uses search engines for knowledge retrieval and correction. Similarly, the Verify-and-
Edit approach (Zhao et al., 2023) leverages external information sources. However, these methods
face challenges in resolving conflicts between model knowledge and retrieved information, as high-
lighted by Shi et al. (2023). Additional work in this area includes efforts by Dziri et al. (2021), Peng
et al. (2023), and Li et al. (2023c), who explore various techniques for grounding LLM outputs in
external knowledge sources.

Generation and Fine-tuning Strategies: Researchers have also developed strategies to reduce hal-
lucinations during the generation process or through model fine-tuning. Lee et al. (2022) introduced
factual-nucleus sampling to balance output diversity and factual accuracy. Reinforcement learning
from human feedback (RLHF) has been employed by Ouyang et al. (2022) and Touvron et al. (2023)
to align LLMs with desired criteria, including truthfulness. Other approaches include careful cura-
tion of instruction-tuning data (Zhou et al., 2023) and linguistic calibration techniques (Mielke et al.,
2022). Recent work by Tian et al. (2024) has further explored fine-tuning strategies specifically tar-
geting factuality improvement.

Leveraging the Latent Space: An emerging area of research investigates the internal representa-
tions of LLMs to understand and manipulate their behaviour. Studies have suggested the existence
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of a “truthfulness” direction in the latent space of these models. For example, Li et al. (2023b)
proposed Inference-Time Intervention to identify and modify factuality-related directions in model
activations. Azaria & Mitchell (2023) introduced SAPLMA, suggesting that LLMs may have an
internal awareness of their own inaccuracies. This line of inquiry has been further developed by
Burns et al. (2023), who explored methods for discovering latent knowledge, and Marks & Tegmark
(2023), who examined the geometry of truth representations in LLMs. Additional insights have been
provided by Subramani et al. (2022) and Zou et al. (2023), who have explored techniques for under-
standing and manipulating the internal representations of these models. Kossen et al. (2024) further
propose to directly predict the semantc entropy using probes acting on different hidden layers of the
LLM.

8 CONCLUSION

This work introduces two novel approaches for uncertainty quantification in large language models:
Semantic Embedding Uncertainty (SEU) and its amortized version (ASEU). Our methods leverage
semantic embeddings to achieve more robust and nuanced estimations of semantic uncertainty com-
pared to existing techniques. While SEU provides improved accuracy over traditional approaches,
ASEU offers a significant computational advantage by enabling uncertainty estimation in a single
forward pass. This efficiency is particularly crucial for real-time applications and when dealing
with larger language models where multiple forward passes can be prohibitively expensive. Empir-
ical evaluations across multiple datasets and frontier LLMs demonstrate that our embedding-based
methods provide more accurate uncertainty quantification than traditional approaches, particularly
in scenarios where minor linguistic variations or additional correct information might lead to overes-
timation of uncertainty. Furthermore, ASEU’s ability to maintain comparable performance to SEU
while drastically reducing computational overhead represents a substantial step towards making un-
certainty quantification more practical and accessible in production environments.

While our results are promising, several limitations of this work should be acknowledged. Our
experimental setup primarily focused on short-answer questions and responses, which may not fully
capture the complexity and diversity of real-world LLM applications that often involve longer, more
nuanced responses. The use of Rouge-L score as an automatic evaluation metric, while suitable
for short answers, may not be appropriate for assessing longer or more complex responses. This
limitation restricts the generalisability of our findings to broader LLM use cases. Additionally, while
we used multiple datasets, they were all in the domain of question-answering. The effectiveness of
our methods on other types of language tasks, such as code generation, remains to be explored. Our
study also focused on a specific set of commonly used open source LLMs, and the performance and
behaviour of our methods on larger models were not investigated.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
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A APPENDIX

A.1 ROC CURVES

We provide the full ROC curves of the methods considered in the main text, across various models
and evaluation datasets.
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PE (Len. Normalised) (AUC = 0.81)

Figure 4: ROC Curve for Llama-3.1-8B-Instruct model on TriviaQA dataset

A.2 MODEL PROMPTS AND EXAMPLE RESPONSES

This section presents the prompts used for each model and provides examples of their responses to
demonstrate the brevity of the generated answers.

A.2.1 PROMPTS

For the initial experiments, we used the following prompts:

• Llama and Phi models: “Answer the following question as briefly as possible”
• Mistral model: “Answer the following question briefly using a few words”

After fine-tuning, we used the same prompts except for the Llama model, where we changed the
prompt to: “Give a short reply to the following question”.
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Figure 5: ROC Curve for Phi-3.5-Instruct model on TriviaQA dataset
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Figure 6: ROC Curve for Mistral-7B-Instruct model on TriviaQA dataset
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Figure 7: ROC Curve for Llama-3.1-8B-Instruct model on NQ Open dataset
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Figure 8: ROC Curve for Phi-3.5-Instruct model on NQ Open dataset
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Figure 9: ROC Curve for Mistral-7B-Instruct model on NQ Open dataset
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Figure 10: ROC Curve for Llama-3.1-8B-Instruct model on Flan QA dataset
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Figure 11: ROC Curve for Phi-3.5-Instruct model on Flan QA dataset
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Figure 12: ROC Curve for Mistral-7B-Instruct model on Flan QA dataset
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A.2.2 EXAMPLE RESPONSES

Tables 4 and 5 include two examples from the NQ Open dataset to demonstrate that the models
indeed generate short answers, adhering to the instruction for brevity.

Table 4: Example responses from different models to the question ”When was the first Hunger
Games book published?”

Model Responses
Llama

• September 14, 2008
• September 14, 2008
• September 14, 2008.
• September 14, 2008.
• September 14, 2008

Mistral
• 2008 (The Hunger Games)
• 2008 (The Hunger Games)
• 2008 (The Hunger Games)
• 2008
• 2008 (The Hunger Games)

Phi
• 2009
• 2009
• 2009
• 2009
• 2009

In the first example, while Llama and Mistral provide the correct publication year (2008) for ”The
Hunger Games”, Phi consistently gives an incorrect year (2009). This illustrates both the models’
ability to generate brief responses and the potential for factual inaccuracies in their outputs.

In the second example, all models correctly identify Exodus 20 as a location for the Ten Command-
ments. Llama consistently provides both locations (Exodus and Deuteronomy), while Mistral and
Phi primarily focus on Exodus. This demonstrates the models’ capacity to provide accurate, concise
information, with some variation in the level of detail provided.

These examples highlight the instruction tuned models adherence to the brevity instruction while
showcasing differences in their knowledge and response patterns.
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Table 5: Example responses to the question ”What is the location of the Ten Commandments in the
Bible?”

Model Responses
Llama • Exodus 20:1-17 and Deuteronomy 5:6-21.

• Exodus 20:1-17 and Deuteronomy 5:6-21.
• Exodus 20:1-17 and Deuteronomy 5:6-21.
• Exodus 20:1-17 and Deuteronomy 5:6-21.
• Exodus 20:1-17 and Deuteronomy 5:6-21.

Mistral • Exodus 20 (King James Version)
• Exodus 20 (King James Version)
• Exodus 20:1-17
• Exodus 20 (King James Version)
• Exodus 20 (Old Testament)
• Exodus 20 (King James Version)

Phi • Exodus 20:1-17
• Exodus 20:1-17 in the Old Testament
• Exodus 20:1-17
• Exodus (Exodus 20:1-17) and Deuteronomy (Deuteronomy

5:6-2)”
• Exodus 20:1-17
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