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Abstract

Large language model (LLM) agents have demonstrated impressive capabilities in
utilizing external tools and knowledge to boost accuracy and reduce hallucinations.
However, developing prompting techniques that enable LLM agents to effectively
use these tools and knowledge remains a heuristic and labor-intensive task. Here,
we introduce AVATAR, a novel and automated framework that optimizes an LLM
agent to effectively leverage provided tools, improving performance on a given
task. During optimization, we design a comparator module to iteratively deliver
insightful and comprehensive prompts to the LLM agent by contrastively reasoning
between positive and negative examples sampled from training data. We demon-
strate AVATAR on four complex multimodal retrieval datasets featuring textual,
visual, and relational information, and three general question-answering (QA)
datasets. We find AVATAR consistently outperforms state-of-the-art approaches
across all seven tasks, exhibiting strong generalization ability when applied to
novel cases and achieving an average relative improvement of 14% on the Hit@1
metric for the retrieval datasets and 13% for the QA datasets. Code and dataset are
available at https://github.com/zou-group/avatar.

1 Introduction

Autonomous agents powered by large language models (LLMs) offer substantial promise for complex
problem-solving [6, 39, 41, 55, 65]. These agents demonstrate remarkable capabilities in reason-
ing [46, 47, 54, 55] and planning [8, 13, 14, 62]. Additionally, their functionality is extended through
the use of external tools that provide access to external or private data and specialized operations,
such as APIs for interacting with knowledge bases and search engines. These tools enable agents to
perform complex tasks like multi-step problem-solving and retrieving diverse information, which is
essential for complex retrieval and question-answering (QA) [13, 21, 26, 33, 38, 40, 48].

Despite the promising capabilities of LLM agents, it remains challenging to engineer effective
prompts that guide these agents through a multi-stage process for real-world problem-solving. This
process involves (1) decomposing a complex question into an actionable plan with simpler steps,
(2) strategically using provided tools to gather relevant information, and, finally, (3) synthesizing
intermediate results to produce a coherent and accurate response. Each step requires extensive manual
effort and numerous iterations of trial and error to refine the prompts.

Current approaches have primarily focused on directly deploying agents using complex human-
designed “mega-prompts” [18, 24, 55], which require lots of manual trial and error. Nevertheless, such
hand-engineered mega-prompts may also result in brittle implementations with suboptimal accuracy
(see Figure 2 (a)), where the ReAct agent [55] easily produces trivial and misleading answers to
customers’ queries about specific products. Furthermore, existing research [4, 5, 45, 50, 56, 60, 64] on
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Figure 1: Overview of AVATAR. AVATAR consists of a actor LLM and a comparator LLM. (a)
During optimization, the actor generates actions to answer queries by leveraging the provided tools.
Then, the comparator contrasts a set of well-performing (positive) and poorly-performing (negative)
queries, automatically generating holistic prompts to teach the actor more effective retrieval strategies
and tool usage (cf. Section 4). (b) At deployment, the actor with optimized prompts or actions can be
effectively used to answer new queries.

employing LLMs as optimizers often fails to adequately refine the complex strategies for enhancing
tool integration and usage. This lack of strategic optimization can lead to less effective, non-
generalizable agent applications in complex real-world scenarios.

Present work: AVATAR. To address these challenges, we introduce AVATAR, an automated frame-
work that optimizes agents for effective tool utilization and excellent task performance. Specifically,
we leverage key insights from contrastive reasoning and build a comparator module (“trainer”) to
generate holistic instructions and prompts (i.e., , computing a robust “gradient”) to optimize an
actor LLM. We demonstrate our framework on challenging tasks of knowledge base retrieval, which
involve complex multi-stage procedures and extensive tool usage, and general QA tasks. Specifically,
AVATAR includes two phases:

• Optimization phase. The core of our optimization framework (Figure 1) is a comparator LLM that
automatically generates holistic prompts to teach a actor LLM to differentiate between effective and
ineffective tool usage. The comparator takes positive and negative data samples, where the current
agent performs well and poorly, respectively, to identify overall gaps and systematic errors exhibited
by the agent. Unlike per-sample instructions, which can easily lead to overfitting on individual
data points, by constructing multiple samples as a “batch,” the comparator can extract a more
robust “gradient” to “backpropagate” to the actor. In other words, the comparator can provide more
effective and adaptive prompts through batch-wise contrastive reasoning, helping the agent identify
flaws in solving challenging multi-stage problems. Following previous methods [30, 41, 56, 63],
we also maintain a memory bank with selected past instructions to prevent the actor LLM from
repeating previous mistakes.

• Deployment phase. After the optimization phase, the actor with best-performing prompts can be
selected for the testing instances. Moreover, in complex retrieval tasks, the iterative optimization
through our AVATAR framework updates the actor for more effective and generalizable action
sequences, enabling direct generalization to novel user inquiries at deployment. In Figure 2 (b), the
optimized actor creates three novel strategies: 1) precise decomposition of problems by extracting
multifaceted attributes, 2) effective tool usage through a sophisticated and robust scoring system,
and 3) the strategic combination of different scores, determined by learned coefficients, ensuring
accurate and comprehensive retrieval.

Experimental evaluation. We conduct extensive experiments on four retrieval datasets and three QA
datasets. The retrieval tasks are highly complex, involving multimodal data, including textual, visual,
and relational information. AVATAR consistently outperforms state-of-the-art methods, showing a
substantial 14% improvement in the Hit@1 metric. Impressively, with only 25 iterations, AVATAR
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boosts the Hit@1 metric from an initial 5.1% to 28.6% on FLICKR30K-ENTITIES [35] and the
Recall@20 metric from 30.3% to 39.3% on STARK-PRIME [49]. For general QA datasets, AVATAR
outperforms state-of-the-art methods by 13% on average. These improvements, achieved through
iterative updates to the prompts, underscore AVATAR’s ability to optimize agents for complex tasks
and effective tool usage. Our key contributions are:

• We introduce AVATAR, a novel framework that optimizes an actor for effective tool utilization
through a comparator module that automatically generates holistic prompts.

• We demonstrate AVATAR on four complex retrieval tasks and three QA tasks, where it significantly
outperforms existing agent methods in terms of task performance and generalization ability.

• We provide a comprehensive analysis of the actor’s evolution during optimization, highlighting
how comparator automatically provides targeted instructions that improve and generalize the actor.

2 Related Work

LLM Agents. Recent research has leveraged the remarkable language understanding and reasoning
abilities of LLMs [1, 41, 47, 54, 55] to complete downstream tasks. For complex tasks that require
enhanced capabilities, previous works have positioned LLMs as agents that can interact with environ-
ments [4, 6, 13, 18, 21, 26, 27, 40, 48, 55], leverage external tools [6, 28, 31, 33, 36, 38, 39, 66, 68],
and gather experiences [7, 61]. For example, ReAct [55] conducts reasoning and action in an
interleaved way, retrieving information from Wikipedia to support reasoning.

LLM Agents for Retrieval. Previous research has applied LLM agents to Information Retrieval (IR)
systems through pretraining [2, 9, 16, 57], reranking [12, 42], and prompting techniques [11, 18].
In IR systems, the retriever module directly influences the performance of downstream tasks, such
as retrieval-augmented generation [20, 29, 30] and knowledge-intensive question answering [34,
52]. For example, EHRAgent [40] is designed for EHR question-answering, capable of retrieving
relevant clinical knowledge through a structured tool-use planning process and an interactive coding
mechanism. However, these LLM agents usually employ heuristic (zero-shot) prompts or rely on
few-shot examples [18, 25, 40, 55] for downstream tasks, which lack more informed guidance on
generating effective retrieval strategies and tool-assisted actions.

Agent Optimization. In the field of optimizing LLM agents, previous works have modified the
parameters of LLM backbones through fine-tuning or instruction tuning to enhance agent capability [3,
15, 19, 23, 32, 33, 37, 43, 51, 58, 59] or generated better prompts through iterative prompt tuning [11,
18, 45, 50, 56]. Recently, Zhang et al. [60] conducted agent training by iteratively updating the agents’
functions according to the execution history. However, these methods do not explicitly consider
targeted optimization for tool usage or the impact on complex multi-stage tasks. Additionally,
enhancing agents’ generalization abilities [10, 31, 44], essential for real-world applications, has
received less attention. In our work, we focus on automatically generating holistic instructions via
a novel contrastive reasoning mechanism, targeting effective tool usage and agents’ generalization
ability. Compared to fine-tuning approaches, AvaTaR offers advantages by requiring only a small
subset of training data and tool descriptions, making it more adaptable and less computationally
intensive.

3 Problem Formulation

Definition 1: Tools. We define tools or APIs as a set of implemented functions with specified input
and output variables. We denote the abstract tool space as T = {fk : Ifk → Ofk | k = 1, 2, . . .},
where fk maps the input Ifk to the output Ofk . For example, the tools can be APIs used for accessing
external knowledge via a search index, an encoder model that generates vector representations from
text or image data, or a task-specific classifier that outputs probabilities over a list of classes.

Definition 2: Agents. An LLM agent, defined as A : P → α, is controlled by verbal prompts to
generate a flow of actions needed to complete a task. Here α denotes the action sequence [α1, . . . , αL],
where each action is defined by a tuple (f ∈ T , i ∈ If , o ∈ Of ), consisting of a tool function,
specified input(s), and a designated variable that receives the output(s). Each action in the sequence
can leverage the outputs generated by previous actions, with the final action αL rendering the results
for the task.
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Input: Q1: “Can you suggest any TUSA swim fins that has a split fin design for better propulsion?”
Action space (GetEntityTypes, GetEntityDocuments, StringMatching, …)

Output: Answer(s)

Thought 1: Compute similarity scores based on the product description
Action 1: ComputeEmbeddingSimilarity[“swim fins”, GetEntityDocuments()]
Result/Obs 1: s1 ← similarity scores  Ignore the brand information “TUSA”

Thought 2: Check the functionality requirement
Action 2: StringMatching[“split fin design for better propulsion”, GetEntityDocuments()]
Result/Obs 2: s2 ← string matching scores  All zeros due to no perfect match

Thought 3: Synthesize the final result
Action 3: Multiply[s1, s2]
Result/Obs 3: s ← final scores  All zeros which lead to a trivial solution

...
Final Result: answers ← GetTopkEntities[s, k=5]  Poor task performance

Input: Any query (demonstration example: Q1); Action space (GetEntityTypes, …)
Output: Answer(s)

 Accurately decompose the query into multiple aspects
Action 1: ParseAttributeFromQuery[query, (brand, type, material, features)]
Result 1: subquery ← { brand: “TUSA”, type: “swim fins”, material: NA,

features: “split fin design for better propulsion” }

 Use embedding tool to filter entities
Action 2: ComputeEmbeddingSimilarity[subquery.type, GetEntityTypes()] 
Result 2: s1 ← type similarity scores
Action 3: GetTopk[s1, k=20]
Result 3: candidates ← top-20 entities with the highest type similarity

 Use token match tool for flexible common token matching
Action 4: GetEntityBrand[candidates]
Result 4: brands ← brands of the top-20 entities
Action 5: TokenMatchScore[subquery.brand, brands]
Result 5: s2 ← brand matching scores

 Use LLM reasoning API to validate the required functionality
Action 6: GetSatisfictionScoreByLLM[subquery.features, GetEntityDocuments()]
Result 6: s3 ← feature scores by LLM reasoning

...
 Synthesize final scores with optimized parameters

Action 7: WeightedSum[s1, s2, s3, coefficients=(0.43, 0.37, 0.20)]
Result 7: s ← combined scores

...
Final Result: answers ← GetTopkEntities[s, k=5]   Excellent task performance

c

Q1:Can you suggest any TUSA swim fins that 
has a split fin design for better propulsion?

[Q’1：Looking for a durable 15-inch wide NFL 
car flag that can hold up in windy conditions”,

A1 (Ground truth entity IDs)：[17, 105, 2517]]
...

(Qn, An)

Q2:What's a high-quality fishing sinker from 
Sportsman Supply Inc. that's designed to 
avoid snags on rocks and weeds?

Small-scale Q&A Pairs Testing Queries

Optimization Deploy

(a) ReAct: Unoptimized Agent

(b) AVATAR: Optimized Agent

Figure 2: Comparison between AVATAR and ReAct. (a) The ReAct agent exhibits incomplete task
decomposition and employs suboptimal tool combinations, such as lengthy string matching, leading
to poor task performance. (b) AVATAR decomposes the task into multiple steps, such as type filtering
and flexible token matching. Moreover, it implements robust tool usage and precise synthesis with
learned parameters from the optimization phase to achieve excellent performance on new queries.

Multi-step problem-solving. Real-world problems are inherently complex and cannot be effectively
addressed through straightforward solutions or simple tool usage alone. Solving real-world problems
with LLM agents can be structured into a multi-stage procedure:
• Decomposition of the problem: The procedure begins by breaking down a complex question into

an actionable plan characterized by simpler steps. This decomposition is crucial for setting clear
objectives and facilitating focused problem-solving.

• Tool-assisted subproblem solving: In the subsequent phase, agents strategically utilize tools from
the established tool space T to gather solutions for each step. This stage is essential for acquiring
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Table 1: Key differences between AVATAR and prevailing agent methods. AVATAR demonstrates
the ability to: 1) self-improve on specific tasks, 2) retain memory throughout the optimization process,
3) enhance the agent’s generalization capability, and 4) autonomously generate holistic, high-quality
prompts for better tool usage. Please refer to Section 4 for details.

Self-Improvement Memory Generalization Holistic Prompt Generation
(on Tool Usage)

ReAct [55] ✗ ✗ ✗ ✗
Self-refine [27] ✔ ✗ ✗ ✗
Reflexion [41] ✔ ✔ ✗ ✗
AVATAR (Ours) ✔ ✔ ✔ ✔

the necessary information required to effectively address each subproblem of the decomposed
problem.

• Synthesis and response formulation: The final stage involves synthesizing the intermediate results
to construct a precise response. This synthesis not only combines the data but may also refine the
response through trials and adjustments, ensuring the solution’s accuracy and relevance.

For example, retrieval tasks are inherently complex and demanding. Given a user query q, retrieval
tasks aim to identify or generate a ranked list of relevant entities E from the entity space of a
knowledge base. Each query is associated with a set of ground truth answers, denoted as Y , which
are used to compute the quality of the prediction. Specifically, the LLM agent is required to 1)
comprehend a user’s request, 2) utilize the provided tools to identify and analyze relevant information
in the large knowledge space, which may contain multimodal data sources, and finally, 3) integrate
all gathered information to reason and generate an accurate response.

4 Our Method: Optimizing Agents for Tool-Assisted Multi-Step Tasks

Each step in the multi-stage problem-solving process (described in Section 3) requires effective
prompts to identify key flaws and improve task performance. However, refining the agents’ prompts
demands extensive manual effort and numerous iterations of trial and error.

To address this, we introduce an automated and novel optimization framework, AVATAR, which
generates prompts to improve agents’ tool usage and task performance. In Table 1, we highlight four
critical aspects of our approach compared with prevailing agent frameworks [27, 41, 55]. Here, we
introduce the two main LLM components in AVATAR: a actor LLM (Section 4.1) and a comparator
LLM (Section 4.2).

4.1 Actor Construction and Challenges

Actor. The actor agent, as defined in Section 3, is responsible for generating initial actions based on
the initial instructions/prompts and adjusting actions according to updated instructions. Specifically,
the initial instructions provide details about the task and available tools, where tools can be introduced
in programming languages such as Python. During optimization, the prompts further incorporate the
previous action sequence and updated instructions to adjust these actions. The actor then generates
revised actions, which could include a combination of tool usage through programming language
(code generation) along with natural language explanations of how the tools are employed.

Challenges in multi-step complex tasks. A common approach to updating instructions utilizes
execution results or performance data from a specific instance, often through techniques like self-
explanation [4, 27] or self-reflection [41, 56]. However, this approach may not be suitable for
complex tasks involving tool usage. Complex multi-step tasks include multiple interacting factors
that influence overall performance, such as problem decomposition and tool selection. Consequently,
instructions generated for a failed/negative query instance tend to be narrow in scope and may fail
to identify flaws across all components of a complex solution. Additionally, while certain tool
combinations may be effective for one type of input, their effectiveness can vary across different
scenarios, potentially leading to decreased performance when applied to varied cases.
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“Looking for Santa Cruz skateboard decks.
I'm interested in the traditional circle motif, preferably 
in white, red, or yellow color schemes”

“What are some adjustable
caps from Top of the World 
featuring the SEC logo on the 
side? “

Actions

“What are the affordable and 
quality car emblems from the 
Football Fanatics brand? “

“Where can I find Aminco silicone rubber
bracelets that will match my NFL Tampa 
Bay Buccaneers wristbands?. “

Action 1: attribute ← ParseAttributeFromQuery[query, (brand)]
. . .

Action 3: brand_score ← ComputeEmbeddingSimilarity[
attribute.brand, GetEntityDocuments()]

<Task & Tool description>, <Actions>
Post-action execution, the queries exhibited varying performances.
Well-performing queries: <positive query list>
Poorly performing queries: <negative query list>
Your task:
1) Contrast the two groups of queries.
2) Examine the actions focusing on key query characteristics.
3) Identify systematic discrepancies in the actions.

<Contrastive Reasoning>
Some queries with straightforward product features yielded good 
results, while those with specific product descriptions and more 
implicit brand mention underperformed. 
This suggests that the actions may not effectively capture and 
utilize details related to specific features.

<Suggested Improvement>
I suggest to better parse and utilize query attributes, 
including type, and any mentioned products.
Moreover, actions should employ better tools for accurate 
brand matching and more sophisticated scoring that 
leverages both textual and relational info.

Action 1: attribute← ParseAttributeFromQuery[query, (brand, features, type, related_products)]
. . .
Action 5: brand_score ←  CheckRequirementByLLM[attribute.brand, GetEntityDocuments()]
Action 6: candidates ← GetRelatedProducts[attribute.related_products]
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Actor
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Figure 3: Demonstration example during optimization. Best viewed in color. The task of the
comparator is to automatically generate instructions based on sampled positive and negative queries.
Then comparator provides holistic instructions that guide the actor to improve query decomposition,
utilize better tools, and incorporate more comprehensive information.

4.2 Automate Holistic Instruction Generation with Comparator

To address these challenges, we construct a comparator LLM to update the instructions for the actor.
Instead of optimizing on a sampled instance, comparator aims to identify systematic flaws throughout
the structured actions/solutions.

Step 1: Constructing positive and negative queries. To achieve this goal, as shown in Figure 1, the
comparator samples a set of data (question-answer pairs), evaluates the current action sequence on the
queries, and categorizes them into well-performing (positive) and poorly-performing (negative) groups
based on their performance. Specifically, we define two thresholds, ℓ and h (where 0 < h ≤ ℓ < 1),
which serve as the upper and lower bounds for constructing positive and negative queries, respectively.
Queries with an evaluation metric (e.g., Recall) value above ℓ are classified as positive, while those
below h are classified as negative. Based on the training dynamics, one could consider adapting the
lower bound to ensure a sufficient number of negative samples for selection. After classification, we
use random sampling to create a mini-batch of b queries, with an equal split of positive and negative
queries (b/2 each) for contrastive reasoning.

Step 2: Generating instructions through contrastive reasoning. After this, the comparator is
tasked with contrasting the two groups of queries based on their key characteristics, attributing
the performance gap to specific tool usage within the complex solution, and finally suggesting
general modifications that can improve overall task performance. The instructions generated by the
comparator are then appended to the initial prompts to update the actor.

Insights/Justification for the comparator. To illustrate the insights, we draw an analogy from
deep neural network training, where extremely small batch sizes can introduce significant noise
in gradient estimates and high variance in model updates. By adopting a batched training strategy
and sampling positive and negative queries as two “mini-batches,” comparator can extract a robust
“gradient” to update the actor. This approach encourages comparator to generate more general and
comprehensive instructions on the complex action sequence, including problem decomposition,
solutions to subproblems, and the final synthesis. Moreover, as contrastive reasoning directly targets
disentangling the performance gap related to input patterns and how they are handled differently
by the tools, it is particularly effective in helping comparator differentiate and select tools for use.
Finally, by identifying systemic flaws across a wide array of negative queries, comparator generates
modifications that are not only tailored to individual samples but also to diverse data samples,
enhancing generalization to novel cases.
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Demonstration example. Figure 3 illustrates an example where comparator contrasts the patterns of
positive and negative queries, identifying discrepancies in tool usage within the action sequence. It
reveals that, compared to positive queries, negative queries feature more complex product descriptions,
more subtle brand mentions, and additional relevant product mentions. These observations suggest:
1) an incomplete problem decomposition involving query attributes like detailed product features, 2)
a potentially imprecise brand match using embedding similarity, and 3) a lack of consideration for
related products in the results. Informed by these insights, actor updates its action sequence to address
these subproblems and use the tools more effectively for the task, such as replacing the embedding
tool with an LLM verification tool.

4.3 Logistic Instructions and Memory Construction
Logistic instructions. While instructions from the comparator are designed to improve task perfor-
mance, we incorporate two types of orthogonal instructions to ensure the actions are valid and can be
executed efficiently.

• Validity check: This instruction is triggered internally during the execution of each action. It
ensures the validity of the actor’s actions, such as verifying the correct use of function calls.

• Timeout error: To prevent inefficient action sequences that may stall the actor, we implement a
timeout mechanism that triggers an error if processing exceeds a specified threshold. This error
prompts the actor to adopt more efficient strategies, such as eliminating redundant operations.

Memory Bank. During optimization, we utilize a memory bank inspired by human decision-making
processes, following Shinn et al. [41], where humans typically address current problems by analyzing
the current situation and referencing past experiences. The memory bank stores tuples of action
sequences, instructions from comparator, and the performance of these action sequences on a small
training set (sampled from positive and negative queries). To manage the context size input to actor,
we retain only the top-5 action sequences with the best performance. This memory bank enables
actor to learn from both immediate instructions and historical results.

Deployment. At deployment, we can apply the optimized instructions or, as shown in Figure 1,
the optimized actor /action sequence, which includes effective tool utilization and problem-solving
strategies, to answer queries or retrieve entities. In the experiments, we demonstrate AVATAR’s
flexibility by applying different deployment strategies.

5 Experiments

Tasks and Evaluation. We conduct experiments on the following datasets:

• Four challenging retrieval datasets from STARK [49] and FLICKR30K-ENTITIES [35] to
demonstrate AVATAR in handling complex real-world tasks (cf. details in Appendix A). For each
query in the retrieval datasets, the task is to retrieve relevant entities, such as nodes in a knowledge
graph or images in knowledge bases. During deployment, we directly apply the optimized action
sequence to the test queries. We assess task performance by comparing the consistency of the
results with the ground truth answers in the datasets, using Hit@1, Hit@5, Recall@20, and Mean
Reciprocal Rank (MRR) as the metrics.

• Three question-answering (QA) benchmarks: HotpotQA [53], ArxivQA [22], ToolQA [67],
where the task is to provide natural language answers to the questions. We sample 100, 100, and
40 training queries, and 100, 100, and 60 testing queries for the three benchmarks, respectively.
During deployment, the actor LLM uses optimized instructions to generate the action sequence for
obtaining the answer. We use exact match (EM) score on HotpotQA, following previous methods.
For ArxivQA and ToolQA, we use the LLM judge score for more reliable evaluation.

Baselines. For the knowledge retrieval tasks, we employ several embedding-based retriever models
for our evaluation, following Wu et al. [49]: Dense Passage Retriever (DPR) Karpukhin et al. [17];
Vector Similarity Search methods ada-002 and multi-ada-002 using text-embedding-ada-002
from OpenAI; and a relation-aware model, QAGNN [57], for the STARK benchmark. Additionally,
we include four prevailing agent frameworks to further enrich our evaluation:

• ReAct [55] conducts reasoning and action in an in-context and interleaved manner to enable LLMs
to interactively analyze observed information and perform actions.
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Table 2: Retrieval performance (%) on STARK benchmark. Last row shows the relative improvements
over the best metric value in each column.

AMAZON MAG PRIME

Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR
DPR 15.29 47.93 44.49 30.20 10.51 35.23 42.11 21.34 4.46 21.85 30.13 12.38

QAGNN 26.56 50.01 52.05 37.75 12.88 39.01 46.97 29.12 8.85 21.35 29.63 14.73
ada-002 39.16 62.73 53.29 50.35 29.08 49.61 48.36 38.62 12.63 31.49 36.00 21.41

multi-ada-002 40.07 64.98 55.12 51.55 25.92 50.43 50.80 36.94 15.10 33.56 38.05 23.49
ReAct 42.14 64.56 50.81 52.30 31.07 49.49 47.03 39.25 15.28 31.95 33.63 22.76

Reflexion 42.79 65.05 54.70 52.91 40.71 54.44 49.55 47.06 14.28 34.99 38.52 24.82
AVATAR-C 40.92 63.63 53.68 51.73 33.25 52.17 47.88 41.34 8.82 23.82 30.32 16.20

AVATAR 49.87 69.16 60.57 58.70 44.36 59.66 50.63 51.15 18.44 36.73 39.31 26.73
Relative 16.6% 6.3% 9.9% 12.2% 9.6% 2.1% -0.3% 8.7% 20.7% 5.0% 2.1% 7.7%Improvement

• Reflexion [41] uses self-reflection on the current task completion and stores these reflections in an
episodic memory buffer to enhance decision-making in subsequent trials.

• ExpeL [61] extracts insights from successful and failed action sequences, retrieving and including
them in the context during inference. We apply ExpeL on the QA datasets and, due to its high cost
on large-scale retrieval tasks, compare it with AVATAR on a sampled STARK-MAG test set.

• Retroformer [56] reinforces LLM agents and automatically tunes their prompts by learning a
retrospective model through policy gradient. We compare the performance of AVATAR with the
reported result by Retroformer on HotpotQA due to the additional training involved.

We include an ablation model, AVATAR-C, which removes the comparator from our optimization
pipeline. This comparison aims to validate the effectiveness of the comparator. The LLM version
information is provided in Appendix B.

Function library. For the knowledge retrieval tasks, our function library consists of twenty-eight
functions that facilitate access to, operation on, and reasoning over the knowledge information by
LLM agents. For the QA tasks, we provide web search tools such as Google and Arxiv search APIs.
See Appendix E for details. We used the same function library across all agent methods.

General pipeline. For AVATAR, we optimize the agent for a fixed number of epochs and select
the action sequence or instruction with the highest performance. We use the same initial prompt
structure, the metric Recall@20 or Accuracy for constructing positive and negative queries, and
hyperparameters (ℓ = h = 0.5, b = 20) for all datasets.

5.1 Textual and Relational Retrieval Tasks

We employ the AMAZON, MAG, and PRIME datasets from the STARK benchmark [49], a large-scale
semi-structured retrieval benchmark that integrates textual and relational knowledge (cf. detailed
description in Appendix A). Here, the entities to be retrieved are defined as nodes in a graph structure,
with knowledge associated with each entity including both textual descriptions and relational data.
We use the official splits from the STARK benchmark.

Takeaway 1: AVATAR outperforms state-of-the-art models. Table 3 shows that AVATAR substan-
tially outperforms leading models such as Reflexion across all metrics on the STARK benchmark.
Notably, the average improvement of AVATAR is 15.6% on Hit@1 and 9.5% on MRR. ReAct agents,
however, cannot optimize based on instructions for improved tool usage and tend to select tools based
on the LLM’s prior knowledge, which may not be optimal for the given task. We observe that ReAct
agents apply similar tools across various queries and struggle to explore alternative tool usage even
with extensive in-context reasoning. Results for agent methods using GPT-4 Turbo are provided in
Appendix B, showing similar conclusions. For comparison with ExpeL, the results in Table 6 show
that it performs similarly to ReAct, underperforming AVATARby a large margin.

Takeaway 2: Comparator greatly impacts the actor’s performance. The comparison of AVATAR
with its ablation variant, AVATAR-C, highlights the significant advantages of the comparator module.
Although AVATAR-C conducts validity and timeout checks, integrating Comparator into AVATAR
adds a comprehensive instruction mechanism crucial for identifying clear directions to improve the
agents, underlining comparator’s key role in optimizing actor.
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Figure 4: Optimization dynamics of AVATAR agents on STARK. The figures show validation
performance (solid line) and its moving average (dashed line) during the optimization of AVATAR.

Hit@1 Hit@5 R@20 MRR

clip-vit-large-patch14 37.2 56.4 72.8 46.3
ReAct (claude3) 38.8 54.8 71.6 46.1

Reflexion (claude3) 28.4 53.2 75.2 41.2
AVATAR-C (claude3) 28.8 53.2 78.4 40.0

AVATAR (claude3) 42.4 63.0 79.2 52.3
Relative Improvement 9.2% 11.7% 5.3% 13.0%

Figure 5: Performance (left) and AVATAR’s optimization dynamics (right) on FLICKR30K-ENTITIES.

Takeaway 3: AVATAR effectively improves agents during optimization. Figure 4 illustrates the
agents’ performance on the validation set during optimization. Impressively, AVATAR agents show
significant performance improvements, e.g., from 35% to 75% on AMAZON and from 20% to 78%
on MAG. This evidence strongly supports the effectiveness of the instructions generated by our
comparator. Additionally, our memory bank, which stores past best-performing actions, encourages
AVATAR agents to gradually converge by the end of the optimization process.

Takeaway 4: AVATAR can generalize to real-world tasks. Comparator generates instructions
tailored to groups of retrieval queries, promoting generalizable modifications for novel queries. We
validate this capability by applying optimized actions to human-generated leave-out queries from the
STARK benchmark, which differ notably from the training data used to optimize our agents. Results
in Table 5 (Appendix B) show that AVATAR significantly outperforms other models, achieving an
average improvement of 20.9% on Hit@1. Further, in another study of Appendix B, we assess
AVATAR’s robustness to hyperparameters h and ℓ, showing that it maintains stable performance and
generalization across different parameter values.

5.2 Image Retrieval Task

We further experiment on FLICKR30K ENTITIES [35], an image retrieval dataset of 30k images with
annotated bounding boxes and descriptive phrases (Appendix A). In Table 2, AVATAR again shows
significant improvements. In contrast, Reflexion agents struggle with “overfitting,” where they are
easily misled by specific image data, leading to inappropriate actions (e.g., trying to “extract the color
of a hat” from images without hats). AVATAR effectively avoids such pitfalls through batch-wise
contrastive reasoning, which provides a broader perspective.

Takeaway 5: AVATAR generates impressive and generalizable actions. The final actions of the
AVATAR agent, shown in Figure ?? (left) and detailed in Figure 8 (Appendix B), achieve advanced
performance. Notably, AVATAR skillfully manages input queries and leverages Inverse Document
Frequency (IDF) scores to refine phrase matching, ultimately synthesizing accurate answers. Beyond
using existing tools, AVATAR agents can develop high-level tools, such as IDF-based reweighting,
suggesting a promising direction for dynamic tool libraries and enhanced tool generation.

Takeaway 6: Emerging Behaviors during Optimization. In Figure 6, we present concrete cases
illustrating key interactions between actor and comparator. In each instance, comparator identifies
critical flaws, including information omission, ineffective tool usage, and suboptimal synthesis of
varying scores. The instructions subsequently prompt actor to enhance retrieval strategies, tool
selection, and precise score combinations. Furthermore, frequent references to tool usage underscore
comparator’s focused examination of tool utilization during optimization.
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Improved Divide and Conquer (4/25)  Sensible Tool Differentiation (16/25)   Numerical Parameter Learning (5/25)

Actions performs well on queries mentioning objects, 
such as animals and people (e.g. dog, man, woman)
But they struggles with more abstract or scenery 
focused queries (e.g. people relaxing on grass, person 
jumping near a car). 

Emphasize on the visual attributes by increasing the 
visual_weight. This will help capture the overall scene 
elements better.

parameters = {phrase_weight: 0.5, visual_weight: 0.5}
WeightedSum(phrase_scores, visual_scores, parameters)

parameters = {phrase_weight: 0.4, visual_weight: 0.6}
WeightedSum(phrase_scores, visual_scores, parameters)

Actions perform well on queries that more often
mention noun concepts like ‘woman’, ‘man’. The 
queries with poorer results often cover broader set
of other concepts, e.g., actions (ride, cook), and
attributes (blue, light).

Consider separation extraction on adjectives /
compound nouns / verb phrases to extract more
informative concepts for negative queries.

Added actions (summary)
1) Identify the following query patterns separately

NP (Basic Noun Phrase) : {<DT|PP\$>?<JJ>*<NN.*>+}
CP (Comparative Phrase) : {<JJ>?<NN.*>+<IN><JJ>?}
VP (Verb Phrase) : {<VB.*><NP|PP>+}

2) Correspond them with the image attributes precisely

Action 1: VqaByLLM(GetImages(), “What is the location?”)
Result 1: location ← Long description about the location
Action 2: StringMatch(location, query_attribute.location)

Action 1: GetVisualAttributesByLLM(GetImages(), “location”)
Result 1: location← Concise location attribute
Action 2: TokenMatchScore (location, query_attribute.location)

Actions performs well on queries without
requesting images from specific locations,
while fail on queries that ask for locations such as
“square”, “street”, “stadium”.

This suggests issues with extracting image locations, 
possibly due to VqaByLLM’s lengthy outputs and 
StringMatch’s overly strict criteria.

Figure 6: Representative instruction types from the comparator. We provide three cases where the
comparator guides the actor towards (1) better divide-and-conquer strategies for multi-step problem-
solving, (2) more sensible differentiation between good and bad tool usage/combinations, and (3)
adjustments in the weights to generate the final answers. We record the number of occurrences X
under each instruction type over 25 iterations on FLICKR30K-ENTITIES, indicated by (X/25).

Table 3: Performance (%) on three QA benchmarks. Last row shows the relative improvements over
the best metric value in each column.

HOTPOTQA ARXIVQA TOOLQA

SCIREX-EASY SCIREX-HARD AGENDA-EASY AGENDA-HARD

CoT 28.0% 58.0% 1.7% 0.0% 0.0% 0.0%
ReAct 40.0% 72.0% 31.7% 17.5% 38.3% 3.33%

Reflexion 46.0% 77.0% 28.3% 13.3% 30.0% 3.33%
ExpeL 39.0% 73.0% 36.7% 14.5% 56.6% 1.67%

Retroformer (#retry=1) 51.0% - - - - -
AVATAR-C 41.0% 73.0% 31.7% 13.3% 31.7% 1.67%

AVATAR 53.0% 84.0% 37.5% 23.3% 60.0% 4.17%
Relative Improvement 3.92% 9.09% 2.18% 33.1% 5.82% 25.0%

5.3 Question Answering Tasks

Finally, we applied AVATAR to three widely used QA benchmarks. For ToolQA, we tested AVATAR
and the baselines on two different domains: SciREX, which focuses on extracting information from
full-length machine learning papers, and Agenda, which involves personal agenda-related questions.
Both datasets have easy and hard versions.

Takeaway 7: AVATAR outperforms on QA tasks by offering better context understanding.
Table 3 shows that AVATAR consistently outperforms state-of-the-art methods across all three QA
datasets, with especially strong results on TOOLQA. In SCIREX-HARD, which focuses on extracting
complex information from long scientific papers, AVATAR shows a 33.1% improvement, while in
AGENDA-HARD, it achieves a 25.0% relative gain. These improvements are attributed to AVATAR’s
ability to generate optimized prompts that help the agent better understand the broader patterns and
contexts of the questions, leading to more accurate answers and improved generalization across
question types, from simple to complex.

6 Conclusion and Future Work
In this study, we introduce AVATAR, a novel framework that automates the optimization of LLM
agents for enhanced tool utilization in multi-step problems, focusing on complex retrieval and QA
tasks. AVATAR demonstrates remarkable improvements across seven diverse datasets. This success
can largely be attributed to the comparator module, which effectively refines agent performance
through the iterative generation of holistic and strategic prompts. A key innovation of comparator
is its use of contrastive reasoning with batch-wise sampling, enabling it to identify systemic flaws
and extract robust “gradients” for comprehensive agent improvement across diverse scenarios. While
we observe substantial progress from AVATAR, we discuss its limitations in Appendix D regarding
its scalability etc.Future work can explore extending this methodology to other challenging agent
tasks, visual reasoning tasks, and more dynamic environments, or designing better memory banks for
dynamically storing knowledge and experience from past training.
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A Retrieval Tasks

STARK. On the STARK benchmark, we are given a relation-text knowledge base, based on a
knowledge graph G = (V,E) and a collection of free-text documents D. We represent the relation-
text knowledge base of size n as E = {(vi, di, gi)}ni=1, where vi ∈ V represents a node on the
knowledge graph, di ∈ D is the text document related to the node, and gi is the connected component
of G containing vi.

The query set Q in STARK is derived from both G and D, where each qi ∈ Q contains requirements
based on di and gi. The answer set Ai, which includes vi, is a set of nodes satisfying both relational
and textual requirements. The task on STARK is defined as follows: Given the knowledge base
E consisting of relational and textual information, and a text query qi, the output is a set of nodes
Ai such that ∀ai ∈ Ai, ai satisfies the relational requirements in the knowledge graph and textual
requirements in its text documents.

FLICKR30K ENTITIES. On the FLICKR30K ENTITIES dataset, we are given an image-text
knowledge base. We denote an image-text knowledge base of size n as E = {(vi, qi, Ti)}ni=1.
Sample i consists of an image vi, its descriptive caption qi, and entity bounding box information
Ti. Specifically, Ti = {(cij , pij)}bij=1, where bi represents the number of bounding boxes annotated
in image i, cij is the coordinate of the j-th bounding box, and pij describes the entity in the
corresponding bounding box.

In our task, the image captions serve as the text query; therefore, all qi in the dataset are not accessible
to the agent to prevent information leakage. However, the agent can access vi and Ti to fully utilize
the vision and language information. The task on FLICKR30K ENTITIES is defined as follows: Given
the knowledge base E with images and bounding box information, and a text query qi, the output
is an image vi that satisfies the visual requirements in the image and textual requirements in the
corresponding bounding boxes Ti.

Orange hat

An orange hat

Glasses

Rainbow flags

A group of youth

City

street

Wedding attire

A bride

Wedding

cake

A table

N/A
(masked)

N/A
(masked)

Figure 7: Example data on FLICKR30K ENTITIES. Each entity is an image along with its image
patches and associated phrases with the image patches.

B Experiment Details and Additional Results

B.1 Experiment Setup

LLM versions for agent methods.

• For the knowledge retrieval tasks, we use claude-3-opus as the backbone LLM in the main paper
by default, and report results using gpt-4-turbo in Appendix B due to space limitations.

• For the QA tasks, we use gpt-4 for HotpotQA for fair comparison with previous methods and
gpt-4o for the other two QA datasets.
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Table 4: Retrieval performance (%) on STARK benchmark. Last row shows the relative improvements
over the best metric value among the baselines.

AMAZON MAG PRIME

Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR
DPR (roberta) 15.29 47.93 44.49 30.20 10.51 35.23 42.11 21.34 4.46 21.85 30.13 12.38

QAGNN (roberta) 26.56 50.01 52.05 37.75 12.88 39.01 46.97 29.12 8.85 21.35 29.63 14.73
ada-002 39.16 62.73 53.29 50.35 29.08 49.61 48.36 38.62 12.63 31.49 36.00 21.41

multi-ada-002 40.07 64.98 55.12 51.55 25.92 50.43 50.80 36.94 15.10 33.56 38.05 23.49
ReAct (gpt4) 38.83 62.50 50.39 49.16 23.50 46.50 43.11 33.91 10.83 30.83 32.16 19.39

Reflexion (gpt4) 41.45 64.83 53.98 52.22 33.44 51.33 49.14 41.34 14.27 35.11 39.29 23.61
Reranker (gpt4) 44.79 71.17 55.35 55.69 40.90 58.18 48.60 49.00 18.28 37.28 34.05 26.55

AVATAR-C (gpt4) 32.03 58.46 54.03 44.00 25.97 45.62 46.68 35.12 9.52 26.04 32.62 17.58
AIR (gpt4) 48.82 72.03 56.04 57.17 46.08 59.32 49.70 52.01 20.10 39.89 42.23 29.18

Relative Improvement 9.0% 1.2% 1.3% 2.7% 12.7% 2.1% -2.2% 6.1% 10.0% 7.0% 11.0% 9.9%(over Best Baseline)

B.2 Additional Experimental Results

(1) AVATAR results on STARK using GPT-4 Turbo (0125) as LLM backbone. In Table 4, we
provide the results on STARK using GPT-4 Turbo (0125) as the backbone LLM.

Table 5: Retrieval performance (%) on the leave-out sets of human-generated queries in STARK.
AMAZON MAG PRIME

Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR
DPR (roberta) 16.05 39.51 15.23 27.21 4.72 9.52 25.00 7.90 2.04 9.18 10.69 7.05

ada-002 39.50 64.19 35.46 52.65 28.57 41.67 35.95 35.81 17.35 34.69 41.09 26.35
multi-ada-002 46.91 72.84 40.22 58.74 23.81 41.67 39.85 31.43 24.49 39.80 47.21 32.98

ReAct 45.65 71.73 35.95 58.81 27.27 40.00 35.95 33.94 21.73 33.33 41.09 28.20
Reflexion 49.38 64.19 35.95 58.96 28.57 39.29 35.95 36.53 16.52 33.03 41.09 23.99
AVATAR 58.32 76.54 42.43 65.91 33.33 42.86 35.94 38.62 33.03 51.37 53.34 41.00

Rel. Impr. 17.5% 5.1% 11.8% 16.7% 2.9% 5.7% 28.7% 27.3% 21.4%

(2) AVATAR results on STARK’s human-generated splits. In Table 5, we demonstrate AVATAR’s
ability to generalize to test queries with distributions different from the question-answering pairs
used to optimize the actor agents.

Table 6: Performance metrics for different models on the subset of the STARK-MAG dataset.
MAG (#Test=50)

Hit@1 Hit@5 Recall@20 MRR
DPR 16.00 40.00 51.84 27.39

QAGNN 20.00 52.00 49.71 36.39
ada-002 40.00 58.00 55.93 47.76

multi-ada-002 32.00 58.00 58.81 43.58
ReAct 46.00 60.00 54.67 50.92
ExpeL 40.00 58.00 55.94 47.43

Reflexion 48.00 64.00 57.43 52.31
AvaTaR-C 44.00 60.00 52.49 50.16

AvaTaR 52.00 64.00 53.86 56.74

Relative Improvement 8.33% 0.00% -8.42% 8.48%

(3) AVATAR results and comparison with ExpeL on STARK-MAG subset. In Table 6, AVATAR
demonstrates consistently higher performance than ExpeL across most metrics, notably achieving
the highest Hit@1 and MRR scores. While ExpeL performs well in Recall@20, AVATAR ’s overall
improvements highlight its superior capability in precise retrieval tasks and tool-assisted knowledge
retrieval.

(4) Final action sequence by AVATAR on FLICKR30K-ENTITIES. In Figure 8, we present the
final actions optimized by AVATAR on FLICKR30K-ENTITIES.
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Input: Any query (example: "A man with pierced ears is wearing glasses and an orange hat .");
   Action Space: {GetImages, GetEmbeddingSimilarity, GetVisualAttributesByLLM, , ...]
Output: Retrieved Image IDs

✅ Remove empty spaces or non-alphabetic characters
Action 1: CleanQueryText[query]
Result 1: normalized_query ← "a man with pierced ears is wearing glasses and an orange hat"

✅ Get all phrases from the knowledge base
Action 2: GetBagofPhrases()
Result 2: phrases_list ← [["a man", "grass", "sky"], ["a", "cat", ...]]

✅ Compute IDF for phrase importance
Action 3: ComputeIDFScores[Flatten[phrases_list]]
Result 3: idf_scores ← {"pierced": 0.5, "man": 0.0012, ...}

✅ Get visual attributes for the candidate images
Action 4: GetVisualAttributesByLLM[GetImages(), ["color", "object", "action", "count"]]
Result 4: visual_attributes ← {node_id_1: {"color": "red", ...}, node_id_2: {...}, ...}

✅ Evaluate textual and visual relevance
Action 5: [‘,‘.join(list) for list in phrases_list]
Result 5: phrase_sentences ← ["a man, grass, sky", "a, cat, playground”,...]

✅ Evaluate textual and visual relevance
Action 6: ComputeEmbeddingSimilarity[normalized_query, phrase_sentences]
Result 6: text_scores

Action 7: ComputeEmbeddingSimilarity[normalized_query, visual_attributes]
Result 7: visual_scores

✅ Match query phrases with node attributes using IDF scores
Action 8: MatchQueryPhrases[normalized_query.split(), visual_attributes]
Result 8: phrase_match_scores

✅ Reweight the phrase_match_scores with IDF score
Action 9: ReweightByIDFScore[phrase_match_scores, idf_scores]
Result 9: reweighted_match_scores

✅ Aggregate scores with weighted parameters
Action 10: WeightedSum[text_scores, visual_scores, reweighted_match_scores, weights=(0.5, 0.3, 0.2)]
Result 10: aggregated_scores

✅ Normalize scores for final ranking
Action 11: NormalizeScores[aggregated_scores]
Result 11: normalized_scores = {node_id: normalized_score, ...}

Final Result: answers = GetTopkEntities[normalized_scores, k=5]
✅ Excellent task performance

Figure 8: Optimized Action Sequence by AVATAR on FLICKR30K-ENTITIES..

(5) Sensitivity of AVATAR to upper and lower bounds. We evaluated various combinations of ℓ
and h, focusing on the STARK-AMAZON dataset due to computational constraints. Table 7 presents
the Hit@1 results for different ℓ and h values.

Table 7: Hit@1 results for different combinations of ℓ and h values on the STARK-AMAZON dataset.
h = 0.3 h = 0.4 h = 0.5

ℓ = 0.5 48.32 50.01 49.87
ℓ = 0.6 47.89 49.56 50.45
ℓ = 0.7 47.75 48.56 49.34

Key Observations

• The framework exhibits robustness to variations in ℓ and h, with Hit@1 fluctuations limited to a
range of 2.7%.

• A performance decline is observed when the gap between ℓ and h becomes too large, potentially
due to the exclusion of certain training queries that fall within the (h, ℓ) interval.

• A moderate gap between ℓ and h leads to slight performance improvements, suggesting that a
balanced separation between positive and negative queries can enhance pattern differentiation
without compromising the number of training queries.
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The results indicate that setting ℓ = 0.6 and h = 0.5 yields an improved Hit@1 score compared
to the baseline reported in the original paper. Overall, this analysis underscores the robustness of
the framework, which relies on a minimal set of hyperparameters, including ℓ, h, batch size b, and
training epochs.

C Prompts

We keep only two prompt templates for our framework on all tasks: (1) The prompt template given
to actor as initially instructions, and (2) the prompt template given to the comparator to conduct
contrastive reasoning and generate the instructions for the actor. Below are the complete templates:

This is the prompt given to actor as initially instructions:

You are an expert user of a knowledge base, and your task is to answer a set of
↪→ queries. I will provide your with the schema of this knowledge base:

<knowledge_base_schema>

You have access to several APIs that are pre-implemented for interaction with the
↪→ knowledge base:

<func_call_description>

Information of queries: Below are several query examples that you need to carefully
↪→ read through:

"
<example_queries>
"

Task: Given an input query, you should write the actions in Python code to calculate
↪→ a ‘node_score_dict‘ for <n_init_candidates> node IDs, which are input as a
↪→ list. These node IDs, referred to as ‘candidate_ids‘, are a subset of node
↪→ IDs from the knowledge base, and the nodes belong to the type(s) <
↪→ candidate_types>. In ‘node_score_dict: Dict[int, float]‘, each key should be
↪→ a node ID, and each value should be the corresponding node score. This
↪→ score should indicate the likelihood of the node being the correct answer to
↪→ the query.

Output format: Firstly, you should establish a connection between the given queries
↪→ and the query patterns to the schema of the knowledge base. Secondly,
↪→ generate an outline for the code that will compute the scores for all the
↪→ candidate nodes provided in the query examples. Finally, develop the main
↪→ function named ‘get_node_score_dict‘, which takes two required parameters: ‘
↪→ query‘ and ‘candidate_ids‘, and optional parameters declared in ‘
↪→ parameter_dict‘. Note that ‘parameter_dict‘ is a dictionary of parameters
↪→ and their default values where you can declare any parameters or weights
↪→ used during computing the node scores. If no optional parameters are needed,
↪→ leave ‘parameter_dict‘ as an empty dictionary. Overall, your output should
↪→ follow the structure:

‘‘‘python
# <code outlines>
import <package1>
...

parameter_dict = {<parameter_name1>: <default_value1>,
<parameter_name2>: <default_value2>,
...}

def get_node_score_dict(query, candidate_ids, **parameter_dict):
node_score_dict = {}
# your code
return node_score_dict

‘‘‘

Hints:
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- Observe the example queries carefully and consider the key attributes to extract.
- Use ‘‘‘python and ‘‘‘ to wrap the complete code, and do not use any other

↪→ delimiters.
- You can use any of the pre-implemented APIs but should avoid modifying them.
- You can include other functions besides ‘get_node_score_dict‘, but ensure they are

↪→ fully implemented.
- The code should be complete without placeholders and dummy functions.
- Optimize the integrity of the code, e.g., corner cases.
- Minimize computational expenses by early elimination of candidate nodes that don’t

↪→ meet relational requirement (if any).
- Avoid conducting unnecessary and redundant computations, especially when using

↪→ loops.
- Make use of ‘parameter_dict‘ to avoid hard-coding parameters and weights.
- Use the functions that end with ‘by_llm‘ wisely for more accurate searches.
- Use ‘debug_print‘ smartly to print out any informative intermediate results for

↪→ debugging.
- Exclude or comment out any example uses of ‘get_node_score_dict‘ in the output

↪→ code.

Your output:

This is the prompt given to comparator to generate the instructions for the actor:

<initial_prompt>

<previous_actions>

After executing the above actions on user queries, some queries have yielded good
↪→ results, while others have not. Below are the queries along with their
↪→ corresponding evaluation metrics:

Well-performing queries:
<positive_queries_and_metric>
Poorly-performing queries:
<negative_queries_and_metric>

Task:
(1) Firstly, identify and contrast the patterns of queries that have achieved good

↪→ results with those that have not.
(2) Then, review the computational logic for any inconsistencies in the previous

↪→ actions.
(3) Lastly, specify the modification that can lead to improved performance on the

↪→ negative queries. You should focus on capturing the high-level pattern of
↪→ the queries relevant to the knowledge base schema.

D Limitations

We identify several potential limitations of our work:

• Scalability: AvaTaR is designed to scale with large language models (LLMs) that support extended
context lengths (up to 128k tokens), enabling it to handle numerous tools and complex tasks.
However, increased latency and other practical limitations may hinder performance in scenarios
requiring hundreds of tools or high complexity. Future research could focus on incorporating
specialized, tool-augmented LLMs as auxiliary agents to facilitate smoother scaling.

• Computation Requirements: Managing longer contexts and multiple tool interactions within
AvaTaR increases computational demands, which can significantly raise operational costs. These
requirements necessitate substantial resources to maintain efficient performance, particularly when
scaling to larger datasets or more intricate tasks.

• Potential Failure Modes: Although AvaTaR performs well on known queries, its performance
may diminish when faced with queries that require new or unfamiliar combinations of tools.
This limitation could be mitigated by integrating adaptive learning techniques and continuous
monitoring, which would allow AvaTaR to better handle novel tool requirements.
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E Function library

E.1 Complex Retrieval Tasks

Please refer to Table 8 and Table 9 for the detailed functions.

E.2 General QA Tasks

For general QA tasks, we use the following tools:

• WEB_SEARCH: A general-purpose tool that performs web searches to answer questions. Useful for
retrieving up-to-date information from the internet when other sources are unavailable.

• ARXIV_SEARCH: This tool retrieves information about academic papers from Arxiv using a paper’s
unique ID. This function call can provide metadata and other details for academic references.

• Wiki_SEARCH: If you have a question or name to lookup, this tool uses a Wikipedia search to
retrieve relevant information.

• RETRIEVE_FROM_DB: This tool is used to retrieve relevant information from a database. This is
only available on ToolQA.
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Function Name Input Output
ParseAttributeFromQuery query: The string to be parsed,

attributes: The list of attributes
to be extracted from the query

This function parses a ‘query‘
into a dictionary based on the
input list ‘attributes‘

GetTextEmbedding string: The array of list to be
embedded

Embeds N strings in a list into
N tensors

GetRelevantChunk query: The input query string,
node_id: The ID of the node

Get the relevant chunk of infor-
mation for the node based on the
query

GetFullInfo node_id: The ID of the node Get the full information of the
node with the specified ID

GetEntityDocuments node_id: The ID of the node Get the text information of the
node with the specified ID

GetRelationInfo node_id: The ID of the node Get the relation information of
the node with the specified ID

GetRelationDict node_id: The ID of the node Get the relation dictionary for
the node with the specified ID,
where the keys are relation type
and values are neighbor nodes.

GetRelatedEntities node_id: The ID of the node Get the nodes related to the spec-
ified node

GetEntityIdsByType type: The type of node to re-
trieve

Get the IDs of nodes with the
specified type

GetEntityTypes node_id: The ID of the node Get the type of the node with the
specified ID

GetEntityEmbedding node_ids: An array of candidate
node ids to be embedded

Get the embedding indices of
nodes with ID ‘node_ids‘

ComputingEmbeddingSimilarity embedding_1 and embedding_2 The cosine similarity score of
two embeddings

ComputeQueryEntitySimilarity query: The input query string,
node_ids: An array of candidate
node id to be compared with the
query

Compute embedding similarity
between ‘query‘ (str) and the
nodes’ in ‘node_ids‘ (list)

ComputeExactMatchScore string: The string to be matched,
node_ids: The list of candidate
node id to be compared with the
string

For each node in ‘node_ids‘,
compute the exact match score
based on whether ‘string‘ is in-
cluded in the information of the
node

TokenMatchScore string: The string to be matched,
node_ids: The list of candidate
node id to be compared with the
string

For each node in ‘node_ids‘,
computes recall scores between
‘string‘ and the full information
of the node

SummarizeTextsByLLM texts: The list of texts to be sum-
marized

Use LLM to summarize the pro-
vided texts

ClassifyEntitiesByLLM node_ids: The array of candi-
date node ids to be classified,
classes: The list of classes to be
classified into

Use LLM to classify each node
specified by ‘node_ids‘ into one
of the given ‘classes‘ or ’NA’

ClassifyByLLM texts: The list of texts to be
classified, classes: The list of
classes to be classified into

Use LLM to classify each text
into one of the given ‘classes‘ or
’NA’

ExtractRelevantInfoByLLM texts: The list of texts to ex-
tract info from, extract_term:
the terms to identify relevant in-
formation

Use LLM to extract relevant in-
formation from the texts based
on extract_term, return sen-
tences or ’NA’

CheckRequirementsByLLM node_ids: The array of candi-
date node ids to be checked, re-
quirement: The requirement to
be checked

Use LLM to check if node(s)
with ‘node_ids‘ satisfies to ‘re-
quirement‘

GetSatisfictionScoreByLLM node_ids: The array of can-
didate node ids to be scored,
query: The input query from
user

Use LLM to score the node with
‘node_ids‘ based on the given
‘query‘

FINISH final_reranked_answer_list:
The final answer

This function is used to indicate
the end of the task

Table 8: Function library on STARK
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Function Name Input Output
ParseAttributeFromQuery query: The string to be

parsed, attributes: The list
of attributes to be extracted
from the query

This function parses a ‘query‘
into a dictionary based on the
input list ‘attributes‘

GetBagOfPhrases image_ids: The image id ar-
ray to get the phrases from

Returns a list of phrase list
for each image in the im-
age_ids list

GetEntityDocuments image_ids: The image id ar-
ray to get the text informa-
tion from

Returns a list of text informa-
tion for each image in the im-
age_ids list

GetClipTextEmbedding string: The list of strings to
be embedded

Embed a string or list of N
strings into N embeddings

GetPatchIdToPhraseDict image_ids: The image list to
get the patch_id to phrase list
dictionary from

Returns a list of patch_id
to phrase list dictionary for
each image

GetImages image_id_lst: The list of im-
age ids

Return a list of images with
corresponding ids

GetClipImageEmbedding image_lst: The list of images
to be embedded

Embed the images of a list of
N image_ids into N tensors

GetImagePatchByPhraseId image_id: the id of an image,
patch_id: the patch id on the
image

Return the patch image for
the given image_id and
patch_id

ComputingEmbeddingSimilarity embedding_1 and embed-
ding_2

The cosine similarity score
of two embeddings

ComputeF1 string_to_match: The key
word to be matched, strings:
The list of strings to be cal-
culated f1 score with the key
word

Compute the F1 score based
on the similarity between
‘string_to_match‘ and each
string in ‘strings‘

TokenMatchScore string_to_match: The key
word to be matched, strings:
The list of strings to be cal-
culated recall score with the
key word

Compute the recall score
based on the similarity be-
tween ‘string_to_match‘ and
each string in ‘strings‘

ComputeExactMatchScore string_to_match: The key
word to be matched, strings:
The list of strings to be exact
matched with the key word

Compute the exact match
score based on whether
‘string_to_match‘ is exactly
the same as each string in
‘strings‘

VqaByLLM question: The question to
be answered, image_lst: The
list of images

Use LLM to answer the
given ‘question‘ based on the
image(s)

ExtractVisualAttributesByLLM attribute_lst: The list of at-
tributes to be extracted, im-
age_lst: The list of images

Use LLM to extract at-
tributes about the given ‘at-
tribute_lst‘ from each image

FINISH final_reranked_answer_list:
The final answer

This function is used to indi-
cate the end of the task

Table 9: Function library on Flickr30K Entities

23



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We design a novel and automatic framework that optimizes an LLM agent to
effectively use the provided tools and make comprehensive analysis on the evolution of our
key modules.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We did extensive survey on related work in the area of LLM agents, agent
optimization, LLM agent for retrieval, and further discuss their limitations

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We elaborate the experiment details in the Experiment section including
datasets, baselines, function libraries etc. We also release all the prompts we are using in the
experiments for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and data are accessible at https://anonymous.4open.science/
r/AvaTaR-FBC4/.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include dataset information and training details in the Experiment part and
Appendix. We also clearly describe the knowledge base and formally introduce the task
settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We run our experiments on a single NVIDIA A100-SXM4-80GB GPU and
32-core CPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not induce any potential research harm mentioned in NeurIPS Code of
Ethics in our paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the impact in the introduction section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method provides a framework to better use LM but not releasing a LM.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Creators or original owners of assets mentioned in the paper are properly cited
and the license and terms of use are respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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