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Abstract

Despite the excelling performance of machine learning models, understanding their decisions
remains a long-standing goal. While commonly used attribution methods from explainable
AI attempt to address this issue, they typically rely on associational rather than causal
relationships. In this study, within the context of time series classification, we introduce
a novel model-agnostic framework to assess the causal effect of concepts, i.e., predefined
segments within a time series, on specific classification outcomes. To achieve this, we leverage
state-of-the-art diffusion-based models to estimate counterfactual outcomes. Our approach
compares these causal attributions with closely related associational attributions, both
theoretically and empirically. We demonstrate the insights gained by our approach for a
diverse set of qualitatively different time series classification tasks. Although causal and
associational attributions might often share some similarities, in all cases they differ in
important details, underscoring the risks associated with drawing causal conclusions from
associational data alone. We believe that the proposed approach is widely applicable also in
other domains to shed some light on the limits of associational attributions.

1 Introduction

Machine learning has achieved remarkable success across diverse fields, thanks to the development of powerful
hardware and the collection of large datasets. Time series data, widely present in domains such as natural
sciences, medicine, and life sciences (Wang et al., 2023; Esteva et al., 2019; Miotto et al., 2018; Shen et al.,
2017; Bepler & Berger, 2021) serve as invaluable resources for modeling temporal patterns and dependencies,
particularly in widely considered classification settings (Rajkomar et al., 2018; Wang et al., 2019). However,
complex models such as deep learning models often sacrifice interpretability for performance, a trade-off that
can be critical in downstream tasks (Somani et al., 2021; Roy et al., 2019).

Need for explainability A lack of insights into the model’s decision making process often represents a
significant hurdle when it comes to the the deployment of deep learning models in particular in safety-critical
domains. This led to the emergence of the subfield of explainable artificial intelligence (XAI), see (Lundberg
& Lee, 2017; Montavon et al., 2018; Covert et al., 2021) for reviews. Existing literature on XAI for time
series classifiers has explored various methods (Crabbé & Van Der Schaar, 2021; Raykar et al., 2023; Zhao
et al., 2023; Rojat et al., 2021; Ismail et al., 2020). However, the majority of the proposed methods rely
on associations whereas ultimately one is rather interested in uncovering causal effects. Moreover, a clear
understanding of the precise differences between these two kinds of attributions, both on a theoretical level
as well as on an empirical level, is lacking.

Need for causal insights Counterfactual inference is a type of causal reasoning that involves estimating the
effect of a particular intervention or treatment on an outcome by comparing it to what would have happened
if a certain intervention or treatment had been applied. In medical applications, counterfactual inference has
been used to estimate the effect of a treatment on a patient’s health outcome (Gillies, 2018). As nicely laid
out in (Goyal et al., 2019), causal attributions provide a clear advantage in the case of correlated features.
The hypothetical scenario where the classifier bases its decision only on one of two correlated features cannot
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be resolved with associational attributions. Therefore, associational attributions possibly fail to capture the
actual model behavior.

Main contributions In this paper, we introduce Causal Concept Time Series Explainer (CausalConceptTS),
a novel model-agnostic causal attribution method specifically designed to enhance the interpretability of
time series classification tasks via causal concepts, represented as predefined segments within the time series.
More specifically, our main contributions can be described as follows: (1) We formalize the difference between
causal and associational attributions for diverse concepts within time series data (2) We demonstrate how
counterfactual outcomes, required for causal attributions, can be estimated using state-of-the-art diffusion
models. (3) We conduct a comparative analysis of causal and associational attributions for a diverse set of
time series classification tasks, highlighting the necessity to overcome purely associational attributions for
more reliable model insights.

2 Related work

Time Series classification The taxonomy of traditional machine learning techniques and algorithms for
time series classification is extensive, encompassing various approaches such as distance-based methods
(Rakthanmanon & Keogh, 2013), feature-based techniques (Fulcher & Jones, 2017), interval-based models
(Deng et al., 2013), shapelet-based algorithms (Hills et al., 2014), and dictionary-based methods (Schäfer,
2015). In addition to these traditional methods, numerous deep-learning techniques have been proposed for
time series classification. These leverage different backbone architectures, including Convolutional Neural
Networks (CNNs) (Ismail Fawaz et al., 2020), Recurrent Neural Networks (RNNs) (Karim et al., 2017),
self-attention mechanisms (Rußwurm & Körner, 2020), and most recently state space models (Gu et al.,
2022). This work, rely on the latter architecture, but stress that the proposed method is applicable to any
classifier model, including non-deep-learning models.

Deep generative models The generation of synthetic time series data with deep learning has been
implemented in various contexts such as conditional generation (Alcaraz & Strodthoff, 2023b), class imbalance
(Hssayeni, 2022), anomaly detection (Bashar & Nayak, 2020), imputation (Tashiro et al., 2021; Alcaraz &
Strodthoff, 2023a), or explainability (Goyal et al., 2019). While early backbone architectures involve VAEs
and GANs, diffusion models have recently emerged as powerful generative alternative (Tashiro et al., 2021;
Alcaraz & Strodthoff, 2023a). We therefore also rely on diffusion models to generate high-fidelity time-series
counterfactual outcomes. Importantly, our proposed method is not limited to using diffusion models; it can
be applied with various generative models and interventions, making it versatile for different scenarios.

Counterfactuals for time series data Counterfactual analysis in time series classification is essential for
explaining model decisions because it allows us to ask "what if" questions about how changes in the input
sequence affect the classification outcome. Several approaches have been explored for utilizing counterfactuals
to handle time series data. Ates et al. (2021) experimented with multivariate settings for individual treatment
effects, but their approach involves random sampling from appropriate training set samples, leading to
discontinuous counterfactual samples. Delaney et al. (2021) proposed an instance-based framework that
intervenes in samples until they belong to a different class of interest, however, the intervention areas are
limited to neural network findings extracted via class activation mappings. Li et al. (2022) utilized motif
discovery for identifying intervention areas, which represents a rather limited scenario due to its focus on
precisely recurring patterns. Wang et al. (2021) introduced a framework for generating counterfactuals from
the latent space of neural networks, capable of learning both low- and high-level concepts; however, it is only
applicable to univariate time series data. To the best of our knowledge, we are the first to use high-fidelity
diffusion models to estimate counterfactual time series inputs.

Attribution methods for time series Attribution methods are particularly valuable in time series data
because they help highlight which parts of the sequence contribute most to the model’s decision, where in
time-sensitive applications this can improve trust based on the most relevant aspects of the data. Attribution
methods for time series range across diverse downstream tasks as classification (Crabbé & Van Der Schaar,
2021), and forecasting (Raykar et al., 2023). For recent reviews we refer to see (Zhao et al., 2023) for post-hoc
methods, emphasizing backpropagation, perturbation, and approximation methods and (Rojat et al., 2021)
for ante-hoc methods.
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As already briefly mentioned above, the existing attribution methods focus almost exclusively on associational
effects as opposed to the proposed approach, which aims to infer causal effects. In this respect, the most
closely related prior work is the work of Goyal et al. (2019). They use a variational autoencoder to infer
counterfactuals, albeit in the context of image classification models. They mostly rely on manually defined
attributes as concepts, whereas our concepts are defined in combination with specific subsets of the input.

3 CausalConceptTS: Causal Concept Time Series Explainer

In Figure 1, we present a schematic representation of the proposed approach. In the following paragraphs, we
introduce the key concepts in detail.

Class Imputer
(Do=1)

Norm Imputer
(Do=0)

Time series
classifier

Sample of a specific class segmented
according to predefined concepts

Time series 
classifier

Same

Probabilistic imputation Generated samples Classification

Individual treatment effects
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Average treatment effect
(ATE)

Sample average
treatment effect 

Figure 1: Schematic representation of the proposed CausalConceptTS approach: We start from a sample
corresponding to a specific class, segmented according to predefined concept, which can either be expert-defined
(such as ECG segments) or simply inferred by clustering. For a chosen concept, we impute corresponding
concepts using two different imputation models, one trained on samples corresponding to the original class
and one corresponding to a baseline class of choice typically associated with healthy controls, yielding two
sets of imputed samples. These two sets are passed through a predefined classifier of our choice that we
aim to investigate. The log difference of the corresponding mean output probabilities yields an individual
treatment effect or causal attribution quantifying the causal effect of the concept in question on a specific
classifier output. Sample-averaged ITEs yield corresponding average treatment effects (ATEs), which we
visualize in terms of channel-agnostic as well as channel-specific causal attribution maps.

Causal data generating process Building on the causal attribution work in image data (Goyal et al., 2019),
we adopt the causal data-generating process proposed by (Schölkopf et al., 2012). We assume for each sample
(with l time steps and k channels hence represented as two-dimensional matrix) X ∈ Rl×k that there is a class
state CS, parameterized through several binary indicator variables, that characterizes the sample. We envision
that the data generating process proceeds in two stages: In a first step, a semantic mask M ∈ [1, . . . , C]l×k

which assigns every token in the input sequence to one of C concepts, is generated conditioned on a given
class state CS. In a second step, we denote the numerical values of the time series where the semantic
mask takes the value c ∈ {1, . . . , C} as Xc

M , i.e., Xc
M = {Xab|Mab = c}. Then X = X(X1

M , . . . , XC
M ) can

be reconstructed via Xab = Xc
M [k] where c = Mab and k = |{(i, j)|Mij = c and (i, j) ⪯ (a, b)}|, where ⪯

denotes lexicographic ordering. Furthermore, we assume that Xc
M is generated through a structural causal

model hc
X , i.e., Xc = hc

X(M, CS, ϵc
X) from the semantic mask M , the class state CS and a noise variable ϵc

X .
We aim to use the so-defined data generating process to study a predefined (binary) classifier f that maps
the input sequence X to an output probability f(X). A visualization of the causal graph underlying our
study is shown in Figure 2.

3



Under review as submission to TMLR

classifier
output

signal

class
state CS

mask
M

classifier

c=1...C

concept

possible
confounders

e.g. static
metadata

Figure 2: Causal graph underlying our approach. The data generating process is rooted in a class state CS,
which causes a (concept) mask M . The class state CS in combination with the mask M define the specific
numerical values Xc

M (for concept c), which in combination leads to the input signal X. X is passed through
a predefined classifier f . We investigate the causal effect of Xc

M on the classifier output by intervening on the
class state CS. In our experiments, we neglect the causal effect of the class state CS, i.e., keep the concept
mask M unchanged. Similarly, we do not take into account possible confounders such as static metadata
that could influence Xc

M or M which are expressed as dashed lines.

Individual and average treatment effects We now aim to investigate the causal effect of the class state
CS on the classifier f by intervening on CS. As a crucial simplifying assumption, we assume that the
underlying semantic mask M remains unchanged under this intervention for a specific sample, i.e., we only
intervene on the level of the generating process of the signal segments. We intervene by setting the class
state to a specific value CS∗. As reference value we consider a baseline state CS0 (in a medical context
associated with healthy control samples). Then the individual treatment effect (ITE) for sample X of concept
C ∈ [1, . . . , C] on the classifier f is defined via do-operators as in (Shalit et al., 2017):

ITE(X, f, c, CS∗, CS0) = log2 Ehc
X

f(X(Xc∁
M , (Xc

M |do(CS = CS∗))))

− log2 Ehc
X

f(X(Xc∁
M , (Xc

M |do(CS = CS0)))) ,
(1)

where we use the shorthand Xc∁
M to denote {X1

M , . . . Xc−1
M , Xc+1

M , . . . XC
M }. Here, we adopted logarithmic

differences instead of ordinary differences to compare output probabilities, as discussed in (Blücher et al., 2022)
in the context of associational attributions. The expectation value in Eq. (1) refers to the data-generating
process hc

X . Below, we will use a high-fidelity generative model to sample from hc
X . By averaging over

samples, we obtain the average treatment effect, i.e.,

ATE(f, c, CS∗, CS0) = EX∼X (CS∗)ITE(X, f, c, CS∗, CS0) , (2)

where X (CS∗) refers to the data distribution of samples with label CS∗.

Individual associational effect Note that the individual treatment effect shows a strong structural
resemblance to the PredDiff attribution method (Blücher et al., 2022), which can be considered as a special
case of the Shapley value formalism where only a single coalition (the complement of the feature set Xc

M

under consideration) contributes. In analogy to Eq. 1, we define an individual associational attribution (IAA)
as:

IAA(X, f, c, CS∗, CS0) = log2 f(X) − log2 Exc
M

≃kc
X

f(X(Xc∁
M , xc

M )) , (3)

where the expectation value refers to the conditional distribution kc
X ≡ p(Xc

M |Xc∁
M ). The IAA coincides with

the PredDiff attribution for Xc
M .
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Relation between causal and associational attributions We can now compare Eq. 1 and Eq. 3 to
identify differences and similarities between causal and associational attributions. The first term in Eq. 1
refers to the observed outcome. We therefore expect that log2 Ehc

X
f(X(Xc∁

M , (Xc
M |do(CS = CS∗)))) ≈ f(X)

if CS∗ coincides with the true label of the sample X. The second term in Eq. 1 refers to the counterfactual
outcome. The main difference between the causal ITE from Eq.1 and the associational attribution from Eq.3
boils down to the use of a class-conditional imputer (conditioned on the background state CS0) in the case of
the causal ITE,

Ehc
X

f(X(Xc∁
M , (Xc

M |do(CS = CS0)))) ≈
∫

f(X(Xc∁
M , xc

M ))p(xc
M |Xc∁

M , CS0)dxc
M (4)

compared to using a (class-)unconditional imputer in the case of the associational IAA,

Exc
M

≃kc
X

f(X(Xc∁
M , xc

M )) =
∫

f(X(Xc∁
M , xc

M ))p(xc
M |Xc∁

M )dxc
M (5)

The insights from this paragraph allow us to empirically compare causal and associational attributions on the
level of individual samples. The relation in Eq. 4 is only approximate as it only captures the dependence of
the generative distribution on D0 but neglects a dependence on other possibly confounding variables such as
static patient metadata. In the supplementary material, we demonstrate for a simple example involving a
single concept that associational attributions can lead to unnatural outcomes, where the attribution changes
sign, while the causal attribution shows no such behavior.

Generative model architecture Here we elaborate on the specification of the generative model utilized for
sampling from either the unconditional distribution hc

X or the conditional distribution kc
X . This can be read

off most explicitly from Eq. 5 and Eq. 4 respectively, where we approximate the respective right-hand side by
sampling from a generative model, in an imputation task setting. For our specific implementation, we leverage
the recently proposed structured state-space diffusion (SSSD) model for time series imputation (Alcaraz &
Strodthoff, 2023a). This model, a diffusion model, extends the popular DiffWave architecture (Kong et al.,
2021) by employing two S4 layers instead of bidirectional dilated convolutions, thereby enhancing its capability
to capture long-term dependencies. Alongside a modified diffusion procedure wherein noise is applied solely
to the concepts to be imputed, this approach yielded state-of-the-art results for time series imputation across
various domains. To train a class-conditional diffusion model for a specific class, we simply subsample the
training set to include only samples of the desired label, proceeding as in the class-unconditional case. It
is important to stress that we approximate the true (but unknown) generative distribution hc

X or kc
X via

sampling from an empirical imputer, which will inevitably lead to a sampling error. One can infer prediction
intervals leveraging a large number of imputations from the probabilistic imputation models as demonstrated
in (Alcaraz & Strodthoff, 2023a). At least for the in-distribution case, where the class-conditional imputation
coincides with the sample’s true class, one could even turn these into statistically valid prediction intervals
using conformal prediction techniques (Angelopoulos & Bates, 2021). However, this approach will not allow to
derive statistically valid prediction intervals in the counterfactual case, where the class-conditional imputation
does not match the label of the original sample. The ability to generate counterfactuals from class-conditional
generative models will always assess the generative models slightly outside their training distribution and
hence will not enable statistical coverage guarantees.

Generative model details The imputation model employed within CausalConceptTS incorporates 36
residual layers and 256 residual and skip channels, while keeping further hyperparameters unchanged compared
to (Alcaraz & Strodthoff, 2023a). We optimize the mean squared error (MSE) using the Adam optimizer,
with the model undergoing 200 diffusion steps via a linear schedule. We approximate the expectation values
in Eq. 4 and Eq. 5 through sampling from an appropriate generative model. The number of considered
samples is an important hyperparameter. Our experiments showed convergence after around 15 samples on
average due to the generative model’s probabilistic nature. Consequently, we maintain generating 40 samples
per real sample to ensure robustness. Training details and additional details on the computational complexity
can be found in the supplementary material.
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Channel-specific attributions When assessing channel-specific attributions, we do not condition on inputs
from other channels captured at the same time as the channel to be imputed, to avoid issues with correlated
channels at identical time steps, see also the discussion of interaction effects for associational attributions
in (Blücher et al., 2022). Consequently, we consistently utilize an imputer trained in a blackout-missing
manner. Subsequently, we substitute channels not intended for imputation with their respective values from
the original dataset.

Classifier model architecture Building on recently successful applications in the context of physiological
time series (Strodthoff et al., 2024; Wang & Strodthoff, 2023; Saab et al., 2024; Alcaraz & Strodthoff, 2024),
we also leverage structured state space models (with four layers) as classifier models (Gu et al., 2022). For
optimization, the Adam optimizer is utilized with a learning rate and weight decay both set to 0.001. The
learning rate schedule is maintained constant throughout training. A batch size of 64 samples is used for
each training iteration, spanning a total of 20 epochs. The training objective is to minimize the binary
cross-entropy loss. During training, we apply a model selection strategy on the best performance (AUROC)
on the validation set which usually converges before the total epochs. For the test set, we report the 95%
confidence intervals obtained through bootstrapping over 1000 iterations. For additional details on the
classifier model, we refer to the supplementary material.

Concept discovery and concept validation At first glance, the proposed approach may appear to depend
heavily on predefined concepts where researchers and data owners should define concepts based on domain
knowledge. However, many time series datasets lack such predefined annotations. Therefore, as a concept
discovery approach, in cases where expert-annotated concepts are unavailable, we employ k-means clustering
using raw time series data as input and the squared Euclidean distance as the distance measure to identify
concepts. We acknowledge that this necessitates to assess the semantic meaning of the identified concepts
in a second step. How this second step can be realized will be very specific for the data domain at hand.
Exemplarily, we illustrate this process for an EEG use-case below.

We determine the number of clusters using the elbow method. To assess if the identified clusters are
class-discriminate, we use a simple concept validation step. To this end, we conduct classification using
gradient-boosted decision trees (XGBoost), using simple statistical features extracted from the cluster concepts
as input. These employing six sample-wise and channel-wise concept statistics namely, minimum, maximum,
mean, standard deviation, median, and number of time steps. Ideally, higher model performance indicates
that these concepts effectively distinguish between classes.

Uncertainty quantification in ATEs The fact that we approximate the expectation values for
causal/associational effects in Eq. 4 and Eq. 5 through finite samples from a corresponding imputation model
allows us to infer not only point estimates of the corresponding effects from the corresponding sample means
but also gives us access to the uncertainty estimate at the level of ITEs or IAAs and then correspondingly
also at the level of average causal effects. Specifically, we conduct 1,000 bootstrap iterations by sampling with
replacement from the test set to compute 95% ATEs prediction intervals. We claim a statistically significant
causal effect if the prediction interval inferred in this way does not include the value 0.

4 Experiments

Structure of this section We conduct our experiments using a diverse range of time series classification
tasks. Specifically, we present results for three tasks derived from various qualitative time series data sourced
from the meteorological and the physiological domain. We present our primary experimental findings through
figures, each illustrating either the associational or causal attributions. In these visualizations, we provide
two attribution: on the right, we present the ’global’ causal effect, encompassing the impact across all
channels collectively; on the left, we delineate the channel-specific computation of the treatment effect for
each concept. When considering uncertainty quantification, a star symbol indicates statistically significant
causal effect in the sense of a 95% prediction interval that does not the value 0. To visualize the considered
concepts, we present an exemplary plot of a time series from the dataset under consideration superimposed
with corresponding concept assignments. To foster more research in this field and enhance usability for
applications, we are making the source code used in our investigations available in a suitable repository
(Anonymous, 2024).
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Goal of this study In this work, our primarily focus is on the comparison of associational against causal
attributions. Therefore, we only compare to associational PredDiff attributions, which are the associational
analogues of the proposed causal attributions. For a comparative assessement of associational attributions,
we refer the reader to the literature (Bluecher et al., 2024). Similarly, is important to stress that our
model provides causal attributions for a given classifier. Under the assumption that the classifier accurately
captures the true relationships in the data, we directly compare these attributions to the ground-truth causal
relationships established in the literature, aiming to align our model’s outputs with these known causal effects
in the underlying data.

PRECTOT

PS

QV2M

T2M

T2MDEW

T2MWET

T2M_MAX

T2M_MIN

T2M_RANGE

TS

WS10M

WS10M_MAX

WS10M_MIN

WS10M_RANGE

WS50M

WS50M_MAX

WS50M_MIN

0 30 60 90 120 150 180
Time in days

WS50M_RANGE

A B C D E

Figure 3: Schematic representation of the concepts for the drought dataset

Drought prediction As first task, we explore the drought dataset (Minixhofer, 2021), sourced from the U.S.
Drought Monitor. This publicly available dataset involves classifying, in a binary manner, whether the upcom-
ing week will experience drought conditions based on six months of daily sampled meteorological data. The
dataset contains 18 features (Precipitation PRECOT, surface pressure PS, humidity, temperature, Dew/Frost
point, wet bulb, as well as minimum and maximum temperature all at 2 meters QV2M, T2M, T2MDEW,
T2MWET, T2M_MAX, T2M_MIN, T2M_RANGE. Earth skin temperature TS. Wind speed at 10 and 50
meters with their corresponding maximums, minimums, and ranges respectively WS10M, WS10M_MAX,
WS10M_MIN, WS10M_RANGE, WS50M, WS50M_MAX, WS50M_MIN, and WS50M_RANGE). In the
absence of expert concepts, we identify five concepts (A-E) through k-means clustering leading to an AUROC
0.7447 (95% PI 0.7406-0.7483) during concept validation. We report a classification performance for the S4
model of 0.8941 (95% PI 0.8919- 0.8962). Figure 3 visualizes concept assignments for a drought sample.

Figure 4 shows (A) associational and (B) causal attributions for the drought prediction task. Interestingly,
both channel-wise attribution maps reveal a diverse range of variables with significant effects, yet they
sometimes disagree on whether the effects are positive or negative. One notable observation is precipitation,
which shows the highest positive effect in the causal setting but appears negative in the associational
setting. Extensive research has validated the positive significant impact of precipitation on drought prediction
(Cancelliere et al., 2007; Anshuka et al., 2019) which is the largest positive attribute for causal, whereas
associational effect is negative across several concepts. Similarly, in concept E, a group of variables at
2 meters have been shown to have positive effects, including humidity and dew/frost point temperatures
(Behrangi et al., 2015), as well as wet bulb readings, which causal attributions properly account for them
while associational do not. Additionally, for concept A, factors such as the minimum, maximum, and range
of wind speed at 50 meters have been shown to have a positive influence (Štěpánek et al., 2018), which again
causal unlike associational attributions properly attribute to.

ECG classification As the second dataset, we leverage the PTB-XL dataset (Wagner et al., 2020; Goldberger
et al., 2000), which is a publicly available dataset of clinical 12-lead ECG data (I, II, III, aVR, aVL, aVF,
V1-V6). Although PTB-XL provides annotations in terms of diverse hierarchical levels of ECG statements
in a multi-label setting, we keep the setup simply by restricting ourselves to investigation of the causal
concept effects of inferior myocardial infarction (IMI) in a binary classification setting against healthy controls
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PR
EC

TO
T PS

QV
2M T2
M

T2
MD

EW
T2

MW
ET

T2
M_

MA
X

T2
M_

MI
N

T2
M_

RA
NG

E TS
W

S1
0M

W
S1

0M
_M

AX
W

S1
0M

_M
IN

W
S1

0M
_R

AN
GE

W
S5

0M
W

S5
0M

_M
AX

W
S5

0M
_M

IN
W

S5
0M

_R
AN

GE

A

B

C

D

E
Global

-0.4058

0.0000

0.4058

-0.7050

0.0000

0.7050

(B) Causal attributions

Figure 4: Illustration of the (A) associational and (B) causal attributions on the drought dataset
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Figure 5: Schematic representation of the concepts for the PTB-XL dataset

(NORM+SR). We utilize a sample length of 248 time steps and for the predefined segmentation of the signal
into channel-specific ECG segments, we leverage segmentation maps provided by (Wagner et al., 2024). Here,
we consider six concepts: P-wave, PQ-segment, QRS complex, ST-segment, T-wave, and TP-segment, which
reach an AUROC score of 0.9287 (95% PI 0.913-0.9435) during concept validation. The classifier reaches an
AUROC classification performance of 0.9722 (95% PI 0.9621-0.9797). Figure 5 shows a visual representation
of these concepts for a myocardial infarction sample.

Figure 6 presents both associational and causal attributions for the ECG classification task. The literature
extensively covers this task, allowing us to draw conclusions on the channel level. Both attribution maps
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Figure 6: Illustration of the (A) associational and (B) causal attributions on the PTB-XL dataset

appropriately highlight positive effects for the QRS complex in leads II, III, and aVF, which have been linked
to pathological longer and deeper Q-waves (Thygesen et al., 2018). In the associational attribution map,
a negative significant effect is observed in the T-wave for lead III, while the causal attribution indicates a
positive significant effect. Literature works align in this case rather with the causal attribution in the sense
that high T-waves exhibit a positive pattern (Dressler & Hugo, 1947). Similarly, literature results suggest a
positive effect for the P-wave in leads I, II, and III (Grossman & Delman, 1969), which are recognized as
significant and positive effects from causal attributions, while associational attributions only show significant
positive effects in II and a negative effect in III.
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Figure 7: Schematic representation of the concepts for the schizophrenia dataset

EEG classification As the third dataset, we analyze the schizophrenia dataset (Borisov et al., 2005), which
includes EEG signals from a study involving paranoid schizophrenia patients and healthy controls. This
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Figure 8: Spatial distribution of brain activity patterns during different states of brain processing. Dark red
indicates increased activity, while dark blue signifies decreased activity.

dataset comprises 16 EEG channels (F7, F3, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2),
with each channel spanning 248 time steps. Further details on the dataset and preprocessing are available
in the supplementary material. To extract meaningful concepts, we employ an EEG microstates analysis
(Pascual-Marqui et al., 1995) through open-source software (von Wegner, 2017; Gramfort et al., 2013). These
microstates capture transient brain states reflecting underlying neural dynamics, often linked to specific
cognitive processes. Our analysis identifies four distinct concepts (A-D) leading to a concept validation
score (AUROC) of 0.8249 (95% PI 0.7682-0.8793). As a supporting illustration to compare our findings with
the literature, we present in Figure 8 a topographic map illustrating the overall brain activity during each
investigated EEG microstate. We report an AUROC classification performance for the S4 model of 0.9671
(95% PI 0.9432-0.9849). Figure 7 shows an exemplary visualization of the concepts for a schizophrenia sample.
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Figure 9: Illustration of the (A) associational and (B) causal attributions on the schizophrenia dataset

Figure 9 presents the associational and causal attributions for the EEG classification task. Several studies in
the literature have identified specific patterns associated with schizophrenia. From a global perspective, B
exhibits statistically significant differences between patients and controls in numerous studies, considering
both duration (Kikuchi et al., 2007; Koenig et al., 1999; Nishida et al., 2013) and occurrence (Koenig et al.,
1999; Nishida et al., 2013). Moreover, other studies have highlighted the importance of A and C based on
features such as occurrence, coverage, and duration (Keihani et al., 2022), as well as D due to increased
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mean duration (Sun et al., 2021). Thus, while associational attributions do not adequately cover all expert
knowledge attributions globally, causal attributions do. From a channel-wise perspective to the best of our
knowledge, we are the first work to investigate any effect of single leads microstates for schizophrenia detection
using EEG. In the two previous datasets, the concepts typically exhibit a consistent pattern across channels,
however, here the associational plot appears to show random behavior.

5 Discussion and conclusion

Limitations At this stage, CausalConceptTS faces several limitations, which we briefly discuss in the
following. First, our method does not account for intervening on the concept mask M i.e. different concept
length for specific class but relies on a predefined mask from the original sample. This could pose issues,
especially for pathologies, like the left bundle branch block in the ECG case, which is characterized by a wide
QRS complex, i.e., altering the concept mask significantly. To mitigate this, one could consider combinations
of adjacent concepts instead of individual ones. Second, the generative model for imputation is trained solely
on real samples, assuming it generalizes well to unseen classes when conditioned on concepts from other
classes. Third, intervening on specific concepts with a different class inevitably requires evaluating the model
slightly outside its model scope, blending characteristics of the original class and the intervened state. Fourth,
the proposed approach only focuses on the causal effect of the considered concepts but does not incorporate
other possible confounding factors, such as static patient metadata like demographic data, see the discussion
below Eq.5. Their impact could be investigated by explicitly conditioning the generative model on these
variables.Finally, an extensive analysis of channel correlations, which is closely related to the question of
interaction effects (Blücher et al., 2022), both from an associational as well as from a causal point of view, is
beyond the scope of this work but represents a pressing direction for future research.

Different classification scenarios For multilabel classification, where multiple labels might be present in
a single time series sample, one could adapt the framework by defining separate interventions D∗

i for each
label i alongside the baseline intervention D0. This would allow to analyze label-specific causal effects by
computing do(D∗

i ) − do(D0) for each label i where the sample-level attribution could be the agregated value
of the individual attributions. For multiclass classification, where each time series sample belongs to one of
several mutually exclusive classes, we can generalize the intervention D∗ to represent each specific class k.
The causal effect for a given class k would then be do(D∗

k) − do(D0), see also the related discussion in (Goyal
et al., 2019).

Use-cases for XAI and broader impact statement As described in (Wagner et al., 2024), one has to
distinguish different use-cases for XAI such as providing side-information for end-users, model auditing, and
knowledge discovery. While the first use-case can only be assessed with extensive user studies, the two latter
use-cases rely on the fact that the used attribution method faithfully captures the model behavior. In this
case basing auditing decisions or claiming discoveries on potentially misleading associtational attributions
represents a danger. In any case, it is worth acknowledging the difference between causal and associational
attributions and taking this aspect into account when assessing the suitability of particular attribution
methods in particular in safty-critical application domains.

Conclusion The paper proposes a framework to assess the causal effect of class-specific manifestation of
predefined concepts of a time series on a given fixed time series classifier. Its key component is a high-fidelity
diffusion model, which is used to infer counterfactual manifestations of concepts under consideration. This
allows us to compute individual and average treatment effects. Furthermore, we demonstrate that the main
difference between such causal attributions and purely associational, perturbation-based attributions lies in
the use of a class-conditional as opposed to an unconditional imputation model. These insights allow for a
direct comparison of causal and associational attributions. The differences between causal and associational
attributions hint at the danger of drawing misleading conclusions from associational attributions. We showcase
our approach for a diverse set of three time series classification tasks and find a good alignment of the
identified causal effects with expert knowledge.
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