
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERATIVE DIFFUSION MODELS FOR HIGH-
DIMENSIONAL TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a two-stage pipeline for high dimensional time series generation: (i)
nonparametric kernel estimation for the conditional first and second moments of
the underlying data increments to recover residuals, and (ii) score-based diffusion
model trained on these residuals. We derive finite-time convergence estimates for
reverse-time sampling in both total variation (TV) and Wasserstein-2 (W2), with
explicit dependence on the variance preserving noise schedule. Experiments on
synthetic multivariate processes validate: (a) empirical TV and W2 track the the-
oretical upper bounds, and (b) Monte Carlo estimates of test functionals achieve
the predicted standard errors.

1 INTRODUCTION

Time-reversed diffusion models have emerged as an interesting approach to generative modeling
(Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al. (2020); Song et al. (2021)), achieving
significant empirical success in image, audio, and text synthesis, of which DALL-E and SORA are
perhaps the most well-known examples. There are two main types of diffusion models: denoising
diffusion probabilistic models (DDPMs) (Ho et al. (2020), Dhariwal & Nichol (2021)) and denoising
diffusion implicit models (DDIMs) Song et al. (2020), in which the diffusion processes are non-
Markovian. We utilize DDPMs to motivate our methodology.

DDPMs are comprised of a forward process and a reverse process. The forward noising process is
characterized by a stochastic differential equation (SDE) initialized using the empirical distribution
of a data sample. The forward distribution is often chosen to be ergodic, with a known stationary
distribution, typically Gaussian. Given the forward process, we can construct a corresponding time-
reversed process, called the denoising process. To generate samples from the target data distribution,
we simulate the reverse process starting from an I.I.D. initialization with a Gaussian distribution.

Related work. Generative modeling for multivariate time series poses multiple challenges, partic-
ularly preserving complex temporal structure. It is not enough to learn the marginal distribution or
even the joint distribution without exploiting the sequential nature of the data. We instead require
a conditional generative model that generates each observation considering the past observations.
Recent time-series generators have introduced more powerful techniques involving Generative Ad-
versarial Networks (GANs) Yoon et al. (2019) and Variational Autoencoders (VAEs) Bühler et al.
(2020). Diffusion models have also driven much of the progress for time series tasks such as impu-
tation and forecasting (Rasul et al. (2021), Kollovieh et al. (2023), Yang et al. (2024), Yuan & Qiao
(2024), Su et al. (2025)).

Contributions. We introduce an algorithm that involves a Nadaraya-Watson kernel estimator to
decompose the time series into its conditional mean, covariance and residuals, followed by training
a score-based diffusion model on these extracted residuals. Our convergence analysis is complimen-
tary to recent work on (i) generalization of learned scores Stéphanovitch et al. (2025), (ii) regularity
beyond log-concavity (Stéphanovitch (2025), Gentiloni-Silveri & Ocello (2025)), and (iii) explicit
KL/W2 for score-based generative model families Conforti et al. (2024) and noise-schedule sensi-
tivity analysis Strasman et al. (2025). The TV and W2 bounds that we provide are novel in that
they make the dependence on the noise schedule explicit and decouple initialization, score, and
discretization errors via a Grönwall coupling.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 DESCRIPTION OF ALGORITHM

Let Xtk ∈ Rd denote the observations, where tk = k∆t, k = 1, . . . , N with ∆t timesteps. We
seek to estimate the first and second conditional moments of the data:

µ(x) = lim
∆t→0

1

∆t
E[∆Xt | Xt = x] (1)

a(x) = lim
∆t→0

1

∆t
Cov(∆Xt | Xt = x), (2)

where a(x) = σ⊤σ(x) ∈ Rd×d is the conditional covariance matrix of the increments. To do
this, we utilize the Nadaraya-Watson kernel estimator Nadaraya (1964); Watson (1964); Nadaraya
(1970). The estimators are given by:

µ̂(x) =

∑N
k=1 Kh(x−Xtk)∆Xtk

W (x)
(3)

â(x) =

∑N
k=1 Kh(x−Xtk)(∆Xtk − µ̂(x))(∆Xtk − µ̂(x))⊤

W (x)
, (4)

where W (x) = ∆t
∑N

k=1 Kh(x−Xtk) for Kh(x) kernel function with bandwidth h, and ∆Xtk =
Xtk+1

−Xtk . The bandwidth h is chosen in a locally adaptive k nearest neighbors manner. Define
now σ̂(x) as a Cholesky square root of â(x):

σ̂⊤(x)σ̂(x) = â(x) (5)

We may define the residuals

ϵ̂
(n)
ti = σ̂⊤(X

(n)
ti)−1[∆X

(n)
ti − µ̂(X

(n)
ti)]. (6)

Remark 1. Note that, as the square root of the matrix â is only defined up to a rotation, we cannot
hope to recover a consistent estimator of σ(x) i.e that σ̂(x)→ σ(x). However, as we will see, under
high-frequency asymptotics on the observed path we will typically have â(x)→ a(x) i.e. we recover
σ(x) up to a (local) rotation. This means we cannot interpret the ϵtk as a “filtering” of the noise
terms, but these residuals allow us to recover, asymptotically, the second order structure of ϵt.

Remark 2. Our nonparametric estimation captures temporal dependence to the extent it is included
in the conditioning set. In the simplest implementation, we use the current state Xt as the kernel
input, which yields an effectively first–order Markov model in Xt. For non-Markov dynamics it
is natural to augment the kernel input with lagged covariates St = (Xt, Xt−1, . . . , Xt−L+1) for
lag length L, and to restrict the kernel weights to past observations only by using an adaptive
k–nearest–neighbour bandwidth.

Once these residuals are filtered, we may feed it into the score-based diffusion model for generating
new samples. We use a time dependent Ornstein-Uhlenbeck (OU) process for the forward SDE:

dXt = − 1
2βtXtdt+

√
βtdWt

X0 ∼ p0,
(7)

where βt is a time-dependent function. Let us define αt =
∫ t

0
βsds. Then the reverse SDE is given

by
dYt = 1

2βT−tYtdt+ βT−t∇ log pT−t(Yt)dt+
√

βT−tdWt,

Y0 ∼ N (mTx0, vT I),
(8)

where mt = exp(− 1
2αt) and vt = 1−exp(−αt). Note that Xt

d
= mtX0+

√
vtϵ where ϵ ∼ N (0, I),

so that the exact score function is

∇ log pt|0(x | x0) =
mtx0 − x

vt

d
= − ϵ
√
vt
. (9)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We define a score network −√vt · sθ(Xt, t) that then predicts the noise ϵ from the noisy data

Xt
d
= mtX0 +

√
vtϵ. Then the denoising score matching objective becomes

Ex0∼pdataEx∼pt|0

[∥∥∥∥mtX0 − x

vt
−sθ(Xt, t)

∥∥∥∥2] = Ex0∼pdataEϵ∼N (0,I)

[∥∥∥∥sθ(mtX0+
√
vtϵ, t)+

ϵ
√
vt

∥∥∥∥2].
(10)

See Appendix A for background on score-based diffusion models. Algorithm 1 outlines the kernel
estimation, residual extraction, and score-based diffusion model training, all which occur offline. We
use 9 as the conditional target for training our score network. Algorithm 2 outlines the generation
of synthetic data samples.

Algorithm 1 Kernel estimation, residual extraction, and score model training

Input: Observations Xtk ∈ Rd with k = 1, ..., N where tk = k∆t, ∆Xtk = Xtk+1
−Xtk .

for x ∈ D ⊂ Rd do ▷ Kernel Estimation
Compute weight denominator W (x) = ∆t

∑N
k=1 Kh(x − Xtk) for Kh(x) kernel function

with bandwidth h.
Compute µ̂(x) =

∑N
k=1 Kh(x−Xtk

)∆Xtk

W (x) .

Compute â(x) =
∑N

k=1 Kh(x−Xtk
)(∆Xtk

−µ̂(x))(∆Xtk
−µ̂(x))⊤

W (x)

Compute σ̂(x) = CholeskySqrt(â(x)).
end for
for k = 1 to N do ▷ Residuals

ϵtk = σ̂⊤(Xtk)
−1[∆Xtk − µ̂(Xtk)]

end for
▷ Offline: learning to generate the residuals

Precompute noise schedule βt = β1−t
max β

t
min, mt = exp(−0.5

∫ t

0
βsds), and vt = 1−m(t)2.

while current iteration < Max iterations do
Sample a minibatch {x(b)

0 , b ∈ B} ⊂ {ϵ̂tk , k = 1, . . . , N}, (t(b) ∼ UNIF[0, 1], b ∈ B).

For b ∈ B, set x(b)
t = mt(b)x

(b)
0 +

√
vt(b)z

(b) where (z(b) ∼ N (0, I), b ∈ B) are IID.

Compute “score targets” ut(b) = −z(b)/
√
vt(b) = ∇ log pt|0(x

(b)
t | x

(b)
0).

Compute batch loss function

LB(θ) =
1

|B|
∑
b∈B

∥sθ(x(b)
t , t(b))− u

(b)
t ∥2.

Update θ ← θ − η∇θL(θ).
end while
Outputs: µ̂, σ̂ and trained score function s∗θ

Algorithm 2 Generation of sample paths from trained model

for j = 1, . . . , N do
Simulate discretized paths for the (reverse) SDE on the grid (ui = i/m, i = 0, . . . ,m).
Y0 ∼ N(mTX0, vT I)
for i = 0, . . . ,m do

Yui+1
= Yui

+
1

m

(
1

2
βT−ui

Yui
+ βT−ui

s∗θ(Yui
, T − ui)

)
+
√

βT−ui
/m Zi, Zi

iid∼ N(0, I)

end for
ϵ̂j ← YT

end for
for j = 1, . . . N − 1 do X̂tj+1

= X̂tj + µ̂(X̂tj)(tj+1 − tj) + σ̂(X̂tj)ϵ̂j
end for
return Synthetic samples {X̂tk , k = 1, . . . , N}

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 CONVERGENCE ANALYSIS

3.1 TV AND WASSERSTEIN CONVERGENCE

When examining the convergence of the reverse process, we start by making the following assump-
tion regarding score matching:
Assumption 1. For some 0 ≤ t ≤ T , ϵscore > 0, we have access to score estimates sθ(·) satisfying
Ept [∥sθ(Xt, t)−∇ log pt(Xt, t)∥2] ≤ ϵ2score.

De Bortoli et al. (2021) provided a first bound for TV (Law(YT), p0(·)), with the work of Chen et al.
(2023) improving the bound to be polynomial in dimension d and time T . From Assumption 1 and
Chen et al. (2023), if we apply the total variation distance to our setting, we obtain

TV (Law(YT), p0(·)) ≤ mT

√
Ep0

[|X0|2]
2

+ ϵscore

√
T

2
. (11)

We expand our convergence results by including Wasserstein bounds. First, we can make a stronger
assumption on the score matching, i.e.
Assumption 2. For some 0 ≤ t ≤ T , ϵscore > 0, we have access to score estimates sθ(·) satisfying
Ept

[∥sθ(Xt, t)−∇ log pt(Xt, t)∥∞] ≤ ϵscore.

We require an additional assumption on the growth of the drift coefficient and regularity of the score
function:
Assumption 3. Consider the forward SDE equation 32. Then

• ∃ ρ(t) : [0, T]→ R such that (x− y)(f(x, t)− f(y, t)) ≥ ρ(t)|x− y|2.

• Lipschitz score, i.e. ∃ L > 0 such that |∇ log pt(x)−∇ log pt(y)| ≤ L|x− y|.
Theorem 1 (Wasserstein bound on W2

2 (p0,Law(YT))). Provided Assumptions 2 and 3 hold, and
for hyperparameter λ > 0,

W2
2 (p0,Law(YT)) ≤ (e−αTE[∥x0∥2] + d(1−

√
1− exp(−αT))

2)(e(1+2(L+λ))αT)

+
ϵ2score
2λ

∫ T

0

βte
(1+2(L+λ))αtdt. (12)

A derivation of the TV bound and proof of Theorem 1 are provided in Appendix B.

3.2 DECOMPOSING KERNEL AND DIFFUSION ERRORS

The reverse-time bounds above are stated for an idealized setting in which we have direct access to
the “true” residual distribution. In practice, however, we do not observe the true drift and diffusion
coefficients µ(x) and a(x). Instead, we form nonparametric estimators µ̂(x) and â(x) and construct
residuals using the corresponding Cholesky factor σ̂(x) of â(x). To make this explicit, fix a time
grid tk = k∆t and let the true residuals be

ϵ
(n)
tk

= σ(X
(n)
tk

)⊤,−1
[
∆X

(n)
tk
− µ(X

(n)
tk

)
]
, (13)

and the empirical residuals used in training be

ϵ̂
(n)
tk

= σ̂(X
(n)
tk

)⊤,−1
[
∆X

(n)
tk
− µ̂(X

(n)
tk

)
]
. (14)

Let pres0 denote the law of the true residuals (restricted to the finite collection of increments used
in the diffusion stage), and let p̂res0 denote the empirical law of the kernel-based residuals ϵ̂. In the
reverse-time analysis above, the initial law p0 enters only through its second moment and its role as
the starting distribution at time zero. In particular, Theorem 1 applies to any choice of initial law.
We can therefore view the actual training procedure as applying Theorem 1 with p0 = p̂res0 , and then
relate pres0 and p̂res0 via the triangle inequality inW2.
Assumption 4 (Kernel residual approximation). There exists a constant ϵker ≥ 0 such that

W2

(
pres0 , p̂res0

)
≤ ϵker. (15)

Moreover, ϵker → 0 as the number of observed paths and time steps tends to infinity under the
high-frequency, large-sample regime used to motivate the kernel estimators µ̂ and â.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Assumption 4 is a compact way of summarizing the stage-one nonparametric error: it captures in
a single quantity the combined effect of estimating the conditional mean and covariance and then
mapping increments to residuals via the estimated Cholesky factor.

Let pres0 be the law of the true residuals and p̂res0 the law of the extracted residuals used in training.
Suppose Assumption 2 holds with respect to the forward marginals of p̂res0 and that Assumption 3
holds for the variance-preserving OU forward SDE. Let Law(Y ker

T) denote the terminal law of the
reverse-time SDE driven by the learned score network trained on p̂res0 . Then, under Assumption 4,
we have

W2

(
pres0 ,Law(Y ker

T)
)
≤ ϵker ≤ W2

(
p̂res0 ,Law(Y ker

T)
)
, (16)

and consequently

W2
2

(
pres0 ,Law(Y ker

T)
)
≤ 2 ϵ2ker + 2W2

2

(
p̂res0 ,Law(Y ker

T)
)
. (17)

Furthermore, the second term on the right-hand side can be bounded by Theorem 1 with p0 = p̂res0 ,
yielding

W2
2

(
pres0 ,Law(Y ker

T)
)
≤ 2ϵ2ker + 2

[(
e−αT Ep̂res

0
[∥x0∥2] + d

(
1−
√
1− e−αT

)2)
e(1+2(L+λ))αT

(18)

+
ϵ2score
2λ

∫ T

0

βte
(1+2(L+λ))αt dt

]
. (19)

Proof. The first inequality is the triangle inequality forW2:

W2

(
pres0 ,Law(Y ker

T)
)
≤ W2

(
pres0 , p̂res0

)
+ W2

(
p̂res0 ,Law(Y ker

T)
)
, (20)

and the second follows from the elementary inequality (a + b)2 ≤ 2a2 + 2b2 for a, b ≥ 0. As-
sumption 4 identifies ϵker with the first term, and the bound in Theorem 1 applies exactly to the pair(
p̂res0 ,Law(Y ker

T)
)
, because the proof of Theorem 1 only requires Assumptions 2 and 3 to hold for

the forward marginals of the initial law used in training.

Remark 3. An analogous decomposition holds in total variation. Let p̂resT denote the forward-time
marginal obtained by evolving p̂res0 under the OU forward SDE. Then

TV
(
pres0 ,Law(Y ker

T)
)
≤ TV

(
pres0 , p̂res0

)
+ TV

(
p̂res0 ,Law(Y ker

T)
)
, (21)

and the second term can be controlled by the same TV bound as in 11, with p0 replaced by p̂res0 . In
this way, stage-one kernel smoothing error appears explicitly as an additive term in both the W2

and total variation guarantees, rather than being implicitly absorbed into the score matching error.

4 EXPERIMENTS

4.1 DETAILS OF NUMERICAL EXPERIMENTS

In the numerical experiment in this section, we will use the time-dependent “variance preserving”
OU process from Section 1. We now assume that we have N samples {xn}Nn=1 from our target
distribution p0. The empirical measure

p̂0 =
1

N

N∑
n=1

δxn (22)

is an approximation to p0. If we start the forward SDE in p0, we get marginals p̂t defined below,
where we apply the transition kernel to each data point in the empirical distribution xn at time 0 to
xt and then average over all transition probabilities, as the empirical distribution at time t can be
approximated by the mean of the distributions resulting from diffusing each of the original N data
points according to the process:

p̂t(xt) =
1

N

N∑
n=1

pt|0(xt | xn), (23)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

which is just a Gaussian mixture with N components, one for each sample xn. The components are
centered at mtx

n and have variance vt. These empirical marginals can actually be evaluated (unlike
the unknown pt). The reverse SDE is given by 8. We implement it using the Euler-Maruyama
scheme. To advance the SDE by ∆t, we compute the following iteration:

Yti+1
= Yti + (ti+1 − ti)

(
1

2
βT−tYti + βT−t∇ log pT−t(Yti)

)
+
√
βT−tZti+1−ti , (24)

where Zti+1−ti are independent with distribution Zti+1−ti ∼ N (0, Zti+1−tiI). We will run the
forward SDE until time T = 1. Then the time interval for the backward SDE is also [0, T]. We
discretize this time interval into (ti)

L
i=1, t0 = 0, tL = 1 and run the above scheme. We use L = 1000

steps of the reverse SDE; in practical applications, we might try to reduce the number of steps.
Additionally, we use a geometric noise schedule for βt:

βt = β1−t
max β

t
min = βmax

(
βmin

βmax

)t

. (25)

In practice, we discretize over R = 10 steps, so that

βr = βmax

(
βmin

βmax

) r
R−1

, (26)

for r = 0, . . . , R− 1. We can now plug in the empirical drift∇ log p̂t into the reverse SDE and run
it. The result is the exact reverse SDE for the data distribution p0 = p̂0. Recall that we can exactly
recover p̂0. Since pt,0 is Gaussian we can evaluate the gradient as

∇ log pt,0(x | x0) = ∇ log

(
(2πvt)

−d/2 exp

(
− ∥x−mtx0∥2

2vt

))
(27)

= ∇
[
− d

2
log (2πvt)−

∥x−mtx0∥2

2vt

]
(28)

= − (x−mtx0)

vt
. (29)

Since we do not have access to ∇ log p̂t, we approximate it using a neural network and 47. The
objective is 50, and if we let

L̄(θ, t) = Ex0∼p̂dataEx∼pt|0(x|x0)

[
∥∇ log pt|0(x | x0)− sθ(x, t)∥2

]
, (30)

then we need to optimize the network for all t, not just one specific t, and therefore use

L̄(θ) = Et∼U [0,1][L̄(θ, t)]. (31)

This loss can now be approximated by randomly choosing data points from the training batch (as
samples from p̂0 and also randomly generating times t ∼ U [0, 1]).
The score-based diffusion model is a four layer feed-forward network, and it consists of a linear
projection with a GELU activation and a learnable embedding layer, followed by a three layer feed-
forward network with dropout-regularized GELU activations. Optimization is Adam (learning rate
5 × 10−3), batch size is 128, and training is run for 10000 iterations. Reverse-time sampling uses
Euler-Maruyama with step sizes scaled as ui and Temp = 200 inner steps. It is trained on the fil-
tered residuals using denoising score matching and the exact Gaussian conditional target for the
marginals.

4.2 SYNTHETIC MULTIVARIATE TIME SERIES

For our first experiment, we test a multivariate time series – a vector AR(1) process where a mixture
of Gaussians generates the innovations. We define ϕ = {ϕ1, ϕ2} ∈ Rd×d to be the AR coefficient
matrix. Then we define εt ∼

∑K
k=1 πkN (µk,Σk) to be the innovations, where µk ∈ Rd and

Σk ∈ Rd×d are the mean and covariance for each mixture component k = 1, . . . ,K. Therefore,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Theoretical Upper Bound equation 11 vs
Empirical TV distance.

(b) Theoretical Upper Bound equation 12 vs
Empirical W2 distance.

(c) Density plots of ground truth residuals versus residuals generated by the score-based diffusion model.

Figure 1: 1a and 1b are plots for the theoretical versus empirical Total Variation distance and
Wasserstein-2 distance through training iterations. 1c shows 3d surface plots and heat maps of
the generated residuals (left) versus the ground truth residuals (right).

each path evolves as Xt = ϕXt−1 + εt. We simulate data in d = 20, 30, 50 dimensions with
T = 1000, 2000, 5000 time steps.

In Figure 1, we report (i) empirical Total Variation and Wasserstein-2 bounds between ground
truth and generated residuals, and (ii) plots of the first two components of the ground truth
and generated residuals, while Figure 2 shows scaling plots for d = 20, 30, 50 dimensions and
T = 1000, 2000, 5000 time steps. We do note some metric-dependent behavior; W2 is dominated
by matching low-order moments and overall mass transportation cost. As the score network learns,
these improve steadily, hence the clear decreasing trend. TV is more sensitive to localized density
mismatches and tail behavior, which are harder to estimate reliably in high dimension from finite
samples; its empirical estimator thus has higher variance. In our implementation, the TV estimator
is based on a plug-in approach using a finite number of samples and bins; for large d this can be
noisy. The theoretical upper bound 11 is driven by score error and noise schedule and is not tight in
finite-sample TV.

Table 1 shows results of lag and bandwidth sensitivity studies, and Table 2 probes Cholesky factor
ambiguity. In particular, we conducted:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• We conducted a lag-sensitivity study, conditioning the kernel estimator on [Xt, Xt−1], and
[Xt, Xt−1, Xt−2]. The L2 norm of the conditional mean decreased from 0.853 to 0.725
and the mean residual standard deviation from 2.997 to 2.961, indicating only mild gains
beyond a first-order Markov state. Thus, the original Markov assumption is empirically
sound in our setup.

• We performed a bandwidth sensitivity study for the multimodal kernel estimator on the
AR-mixture process. For bandwidths 0.25, 0.5, 1.0, the L2 change in µ̂ relative to the
reference (0.25) is 0.52 and 0.72, indicating moderate smoothing effects, but the residual
skewness and kurtosis remain stable. This suggests that the residual distribution’s non-
Gaussian features are robust to bandwidth choice.

• We probed the Cholesky ambiguity by rotating the residuals with random orthogonal ma-
trices and comparing covariances. For several rotations (r = 0, 3), the covariance stays
very close to the original ∥Σr −Σbase∥F ≪ ∥Σbase∥F , where ∥Σ̂r∥F is the Frobenius norm
of the covariance implied by rotation r and ∥Σ̂base∥F is the Frobenius norm of the base
covariance (constant across r). However, extreme rotations (r = 2, 4) can change it more
substantially. Since our implementation uses a fixed Cholesky convention, the diffusion
model always sees a single, consistent residual distribution, and our experiments indicate
that its second-order geometry is reasonably stable under typical rotations.

Table 1: Kernel lag and bandwidth sensitivity diagnostics

(a) Lag sensitivity (fixed bandwidth)

Lag L ∥µ̂∥L2 mean std(ϵ)
1 0.853 2.997
2 0.767 2.965
3 0.725 2.961

(b) Bandwidth sensitivity

h ∥µ̂− µref∥L2 E[skew(ϵ)] max skew(ϵ) E[kurt(ϵ)] max kurt(ϵ)
0.25 0.000 0.625 0.635 -0.760 0.790
0.50 0.518 0.685 0.688 -0.863 0.879
1.00 0.723 0.699 0.699 -0.910 0.920

Table 2: Cholesky factor ambiguity: effect on implied covariance

Rotation index r ∥Σ̂r∥F ∥Σ̂r − Σ̂base∥F ∥Σ̂base∥F
0 11.967 0.744 12.711
1 10.453 2.258 12.711
2 33.594 20.883 12.711
3 12.905 0.194 12.711
4 2.138 10.572 12.711

Table 3 shows expectations of test functionals f(X̂) as targeted probes of the generated samples
against analytic oracles computed directly from the (known) data generating process along with
their Monte Carlo standard errors. In particular, we utilize 3 test functionals:

• max component: to test extreme value behavior across dimensions,

• basket: a linear average across dimensions to test first moment, and

• basket put: max (K − basket, 0) to probe tail behavior.

To assess sampling variability, we subsample n draws from the model repeatedly and check that
both the empirical standard deviation and the within-batch standard errors scale like 1√

n
. Thus, we

include standard deviation ×
√
n in the table and show it is roughly constant across n.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Oracle versus expectations of test functionals

Functional n Oracle Model Mean MC Std. Error Std. Deviation ×
√
n

max component 2000 1.588 1.862 0.071 0.112
4000 1.588 1.868 0.050 0.116
8000 1.588 1.860 0.035 0.118

basket 2000 -7.988 -11.050 0.052 0.140
4000 -7.988 -11.051 0.037 0.125
8000 -7.988 -11.055 0.026 0.137

basket put 2000 107.988 111.054 0.039 0.109
4000 107.988 111.051 0.027 0.119
8000 107.988 111.050 0.019 0.117

Figure 2: Scaling curves across T = 1000, 2000, 5000 time steps and d = 20, 30, 50 dimensions.

5 DISCUSSION AND FUTURE WORK

Our study focuses on generating high-dimensional processes, and the convergence results derived
under strong regularity assumptions. Empirical TV and W2 distances were upper-bounded by their
theoretical bounds, with deviations decreasing over training iterations, suggesting our convergence
estimates are informative in practice. The agreement of expectations of the test functionals with their
analytic oracles demonstrates the method preserves essential first and second-order structure. The
surface plots confirm that the generated residuals capture the geometry of the ground-truth residuals.
Notably, the model successfully recovers multimodal residual distributions.

Further work is required to assess robustness as well as comparison to baselines such as time-series
DDPMs, latent-SDE, and conditional diffusion. Additionally, conducting stress tests where the
kernel stage is misspecified, rare-event checks, and specifying downstream tasks would help expand
benchmarks/evaluation.

REFERENCES

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Hans Bühler, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and Ben Wood. A data-driven
market simulator for small data environments, 2020.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R. Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. ArXiv, 2023.

Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. Kl convergence guarantees for score
diffusion models under minimal data assumptions, 2024.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 17695–17709. Curran Associates, Inc., 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 8780–8794. Curran Associates, Inc., 2021.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Associa-
tion, 106:1602–1614, 12 2011.

Hans Föllmer. An entropy approach to the time reversal of diffusion processes. In Stochastic
Differential Systems Filtering and Control: Proceedings of the IFIP-WG 7/1 Working Conference,
2005.

Xuefeng Gao, Hoang M. Nguyen, and Lingjiong Zhu. Wasserstein convergence guarantees for a
general class of score-based generative models. Journal of Machine Learning Research, 26(43):
1–54, 2025.

Marta Gentiloni-Silveri and Antonio Ocello. Beyond log-concavity and score regularity: Improved
convergence bounds for score-based generative models in w2-distance, 2025.

Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of Probability,
pp. 1188–1205, 1986.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(24):695–709, 2005.

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang,
and Yuyang Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic
time series forecasting, 2023.

Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly minimizes
the wasserstein distance. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 20205–20217. Curran
Associates, Inc., 2022.

E. A. Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):141–142,
1964. doi: 10.1137/1109020. URL https://doi.org/10.1137/1109020.

E. A. Nadaraya. Remarks on non-parametric estimates for density functions and regression curves.
Theory of Probability & Its Applications, 15(1):134–137, 1970. doi: 10.1137/1115015. URL
https://doi.org/10.1137/1115015.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In Proceedings of the 38th
International Conference on Machine Learning, volume 139, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
2256–2265. PMLR, 07–09 Jul 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. CoRR,
abs/2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

10

https://doi.org/10.1137/1109020
https://doi.org/10.1137/1115015

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, and Abhishek Kumar. Score-based genera-
tive modeling through stochastic differential equations. In International Conference on Learning
Representation, 2021.

Stanislas Strasman, Antonio Ocello, Claire Boyer, Sylvain Le Corff, and Vincent Lemaire. An
analysis of the noise schedule for score-based generative models. Transactions on Machine
Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/forum?
id=BlYIPa0Fx1.

Arthur Stéphanovitch. Regularity of the score function in generative models, 2025.

Arthur Stéphanovitch, Eddie Aamari, and Clément Levrard. Generalization bounds for score-based
generative models: a synthetic proof, 2025.

Chen Su, Zhengzhou Cai, Yuanhe Tian, Zhuochao Chang, Zihong Zheng, and Yan Song. Diffusion
models for time series forecasting: A survey, 2025.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674, 2011.

Geoffrey S. Watson. Smooth regression analysis. Sankhya: The Indian Journal of Statistics Series
A, 26(4):359–372, 1964.

Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao
Liu, Bin Yang, Zenglin Xu, Jiang Bian, Shirui Pan, and Qingsong Wen. A survey on diffusion
models for time series and spatio-temporal data, 2024.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial net-
works. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=4h1apFjO99.

A BACKGROUND ON SCORE-BASED DIFFUSION MODELS

In Section 1, we introduced the idea of time-reversed diffusions. Below, we state the property for
clarity. Consider the following well-defined SDE:

dXt = f(Xt, t)dt+ g(Xt, t)dWt

X0 ∼ p0
(32)

f and g satisfy local Lipschitz continuity and linear growth conditions, so the existence of pt is
guaranteed. Additionally, pt is differentiable and strictly positive, provided that g(x, t)g(x, t)⊤ is
positive definite. Starting from the density pT , we expect that running X in reverse time would
generate samples from the density p0. This time reversal property of diffusions is a well-known fact
in stochastic analysis (Anderson (1982), Haussmann & Pardoux (1986), Föllmer (2005)).
Proposition 1 (Time Reversal Haussmann & Pardoux (1986)). Consider the SDE 32. Let Yt =
XT−t for t ∈ [0, T], T > 0. Then, under the conditions outlined above, Y is a diffusion process
with drift given by

f̃(x, t) = −f(x, T − t) +
div(pT−t(x) · a(x, T − t))

pT−t(x)
, (33)

where a(x, t) = g(x, t)g(x, t)⊤. Expanding the divergence term component-wise,

(div(pT−t(x) · a(x, T − t)))i =

d∑
j=1

∂

∂xj
(pT−t(x)a

ij(x, T − t)) (34)

=

d∑
j=1

[
∂pT−t(x)

∂xj
aij(x, T − t) + pT−t(x)

∂aij(x, T − t)

∂xj

]
, (35)

11

https://openreview.net/forum?id=BlYIPa0Fx1
https://openreview.net/forum?id=BlYIPa0Fx1
https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=4h1apFjO99

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

leads to the vector form
div(pT−t(x) · a(x, T − t)) = pT−t(x) div a(x, T − t) + a(x, T − t)∇pT−t(x). (36)

Then
f̃(x, t) = −f(x, T − t) + div a(x, T − t) + a(x, T − t)∇ log (pT−t(x)) (37)

satisfying
dYt = f̃(Yt, t)dt+ g(Yt, T − t)dW̄t

Y0 ∼ pT .
(38)

Running the backward procedure will generate YT ∼ p0 at time T .

We note a few issues that arise if we want to run the reverse process: we do not have sample access
to pT the initial condition of the reverse SDE, and we do not know pt, which means we do not know
the drift∇ log pT−t. The easiest way to deal with the initial condition is to consider choosing f and
g such that Xt converges to a prior distribution p∞. This allows the initial distribution of the reverse
process to be Y0 ∼ p∞. We want pT and p∞ to be sufficiently close, so that the distribution of XT

is close to p0. In practice, we choose the parameters so that the distribution p∞ is Gaussian. Then
we only need to compute∇ log pT−t.

The task of estimating the score function ∇ log pt (Ho et al. (2020), Song & Ermon (2019), Song
et al. (2021)) is score matching, and it involves reducing the estimation of the score function to
a supervised learning task. Score matching dates back to Tweedie’s Formula from the ’50s Efron
(2011). Essentially, we will see that estimating∇ log pt is equivalent to estimating the noise added.
Proposition 2 (Tweedie’s Formula). Given x̃ = x+ e for x ∼ p and e ∼ N (0, σ2 · I),

E[x | x̃] = x̃+ σ2 · ∇ log p̃(x̃)

where p̃ is the density for x̃.

Proof. Since e ∼ N (0, σ2I), the density of x̃ is:

p̃(x̃) =

∫
p(x) · ρσ(x̃− x) dx, (39)

where ρσ(z) ∝ exp
(
− z2

2σ2

)
is a Gaussian with variance σ2. The posterior expectation of x given

x̃ is:

E[x | x̃] =
∫
x p(x) ρσ(x̃− x) dx∫
p(x) ρσ(x̃− x) dx

. (40)

Taking the gradient of ρσ(x̃− x) with respect to x̃:

∇x̃ρσ(x̃− x) =
x− x̃

σ2
ρσ(x̃− x). (41)

Differentiating the log of p̃(x̃):

∇x̃ log p̃(x̃) =

∫
x−x̃
σ2 p(x)ρσ(x̃− x) dx∫
p(x)ρσ(x̃− x) dx

, (42)

which simplifies to:

∇x̃ log p̃(x̃) =
E[x | x̃]− x̃

σ2
. (43)

Rearranging this equation yields Tweedie’s formula:
E[x | x̃] = x̃+ σ2∇ log p̃(x̃). (44)

We can consider∇ log p̃(x̃) as the Bayes optimal estimate of the noise – hence given a noisy sample
Xt, the supervised learning task is to predict the noise added. In the following definitions, we
formalize the concept of score matching. We assume a collection of score estimates {sθ(x, t)} on
Rd × R+ parameterized by θ – typically a neural network. The objective is to solve the following
optimization problem:

min
θ

Ept
[∥∇ log pt(Xt, t)− sθ(Xt, t)∥2]. (45)

This is not possible to calculate as we do not know ∇ log pt(Xt, t). An alternative approach is that
of implicit score matching.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Definition 1 (Implicit Score Matching). Hyvärinen (2005) We compute

min
θ

Ept
[∥sθ(Xt, t)∥2 + 2∇sθ(Xt, t)]. (46)

However, implicit score matching may be computationally complex if the dimension d is very large
– gradient descent methods would not be efficient as the computation of the gradient of the score
network scales linearly in the dimension. The method of denoising score matching is one possible
approach when working with high-dimensional data.
Definition 2 (Denoising Score Matching). Vincent (2011) We condition Xt on X0, replacing
∇ log pt(Xt, t) with∇ log pt|0(Xt | X0):

min
θ

Ex0∼pdataEx∼pt|0(x|x0)[∥∇ log pt|0(x | x0)− sθ(x, t)∥2]. (47)

To show the equivalence between 45 and 47, we start with the standard objective, expanding the
squared norm:

Ept

[
∥∇ log pt(Xt)− sθ(Xt, t)∥2

]
= Ept

[
∥∇ log pt(Xt)∥2

]
− 2Ept [⟨∇ log pt(Xt), sθ(Xt, t)⟩]

+ Ept

[
∥sθ(Xt, t)∥2

]
. (48)

Now, we note that the marginal score in the cross-term can be replaced by the conditional score:

Ept [⟨∇ log pt(Xt), sθ(Xt, t)⟩] = Ex0∼p0Ex∼pt|0(x|x0)

[
⟨∇ log pt|0(x | x0), sθ(x, t)⟩

]
. (49)

Given that Ept

[
∥∇ log pt(Xt)∥2

]
and Ept

[
∥sθ(Xt, t)∥2

]
are both unaffected by the conditioning

on X0 directly, we can rewrite the entire objective incorporating this conditioning:

Ept

[
∥∇ log pt(Xt)− sθ(Xt, t)∥2

]
= Ex0∼p0Ex∼pt|0(x|x0)

[
∥∇ log pt|0(x | x0)− sθ(x, t)∥2

]
,

(50)

which is exactly the denoising score matching objective. To reiterate, the goal of denoising score
matching is to show that the score function of some “noisy” sample should move to a clean sample
gradually. We saw that the conditional distribution pt|0(Xt | X0) should be something simple,
ideally Gaussian.

B PROOFS OF CONVERGENCE

From Assumption 1 and Chen et al. (2023), we have

TV (Law(YT), p0(·)) ≤ TV (p(T, ·), pnoise(·)) + ϵscore

√
T

2
. (51)

Recall the time-t transition kernel is given by

pt|0(· | X0 = x0) = N (mtx0, vtI). (52)

In order to quantify TV (p(T, ·), pnoise(·)), we use KL divergence KL(N (mtX0, vtI)∥N (0, I)) and
Pinsker’s inequality:

1

2

(
Tr(I−1vT I) + (0−mTX0)

⊤I−1(0−mTX0)− d+ log

(
detI

det(vT I)

))
(53)

=
1

2
(vT d+m2

T |X0|2 − d− d log (vT))) (54)

=
1

2
(m2

T |X0|2 − d(1− vT + log (vT))) (55)

=
1

2
(m2

T |X0|2 − d(m2
T + log (vT))) (56)

≤ 1

2
m2

TX
2
0 as T →∞. (57)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Thus, Ep0
[KL(N (mtX0, vtI)∥N (0, I))] ≤ 1

2m
2
TX

2
0 , so that

TV (p(T, ·), pnoise(·)) ≤
√

1

4
m2

TEp0 [|X0|2] ≤ mT

√
Ep0

[|X0|2]
2

. (58)

Therefore, the complete inequality is

TV (Law(YT), p0(·)) ≤ mT

√
Ep0

[|X0|2]
2

+ ϵscore

√
T

2
. (59)

Remark 4. The term mT in the above bound depends on the integrated noise schedule αT =∫ T

0
βsds via mT = exp(– 1

2αT). For the variance-preserving OU schedule used in our experiments,
where βt is positive and bounded away from zero on [0, T], αT grows at least linearly in T and
hence mT decays at least exponentially in T . The first term on the right-hand side of the TV bound

51 therefore behaves like exp(– 1
2αT) ·

√
Ep0

[|X0|2]
2 . The second term grows only like ϵscore

√
T
2 . This

makes precise the trade–off between the choice of noise schedule, which controls how quickly the for-
ward process forgets its initialization, and the accuracy with which the learned score approximates
the true score along the reverse path.

One-sided Lipschitz condition. We see the one-sided Lipschitz condition in Assumption 3 holds
for our particular OU SDE, i.e. when ρ(t) = −βt

2 :

f(x, t)− f(y, t) = −1

2
βt(x− y) (60)

(x− y) · (f(x, t)− f(y, t)) = −1

2
βt(x− y)2 = −1

2
βt∥x− y∥2, (61)

so the inequality
(x− y)(f(x, t)− f(y, t)) ≥ ρ(t)|x− y|2 (62)

holds with equality when ρ(t) = −βt

2 . Since βt ≥ βmin > 0, we have ρ(t) ≤ −βt

2 < 0, i.e. the drift
is contractive in the one-sided Lipschitz sense.

Lipschitz score assumption. We also show Lipschitz score for the synthetic data setting outlined
in Section 4. To begin, we assume the residuals at time 0 have a finite Gaussian mixture law

p0(x) =

K∑
k=1

πkN (x; µk,Σk), (63)

where πk > 0 and
∑K

k=1 πk = 1, µk ∈ Rd, Σk ∈ Rd×d are symmetric positive definite, and
all eigenvalues of Σk lie in [λmin, λmax] for some fixed 0 < λmin ≤ λmax < ∞. Let Xt satisfy
32 with βt continuous and bounded on [0, T], and βt ≥ βmin > 0. Define αt =

∫ t

0
βs ds,mt =

exp(−αt/2), vt = 1− exp(−αt) as before. Then, conditional on X0 = x0, we have:

Xt

∣∣X0 = x0 ∼ N (mtx0, vtI). (64)

For each mixture component k, we can track how it evolves: if at time zero

X0

∣∣ (component k) ∼ N (µk,Σk),

then
Xt

∣∣ (component k) ∼ N (mtµk, Σk(t)),

with
Σk(t) = m2

t Σk + vt I. (65)
Because Σk has eigenvalues in [λmin, λmax] and vt > 0 for all t > 0, the eigenvalues of Σk(t) stay
in a compact interval [λ(t), λ(t)] with λ(t) > 0.

So for any fixed t > 0:

pt(x) =

K∑
k=1

πkN (x; mtµk,Σk(t)) (66)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

is again a finite Gaussian mixture with non-degenerate (strictly positive definite) covariances. For
each component k at time t, the score is:

sk(x, t) = ∇x logN (x; mtµk,Σk(t)) = −Σk(t)
−1 (x−mtµk). (67)

This is an affine function in x, with constant Jacobian:

∇xsk(x, t) = −Σk(t)
−1. (68)

Now we define the mixture density:

pt(x) =

K∑
k=1

πk ϕk(x, t), (69)

with ϕk(x, t) = N (x;mtµk,Σk(t)). The mixture posterior weights are:

wk(x, t) =
πk ϕk(x, t)

pt(x)
. (70)

Then the mixture score is:

st(x) = ∇x log pt(x) =

K∑
k=1

wk(x, t) sk(x, t). (71)

We can check this by differentiating:

∇xpt(x) =

K∑
k=1

πk∇xϕk(x, t) =

K∑
k=1

πk ϕk(x, t) sk(x, t), (72)

so

st(x) =
1

pt(x)
∇xpt(x) =

K∑
k=1

πk ϕk(x, t)

pt(x)
sk(x, t) =

K∑
k=1

wk(x, t) sk(x, t). (73)

To show the score st(x) is globally Lipschitz in x, we want to show the Hessian of log pt(x) is
bounded:

∇2
x log pt(x) has bounded operator norm for all x ⇒ st(x) is Lipschitz.

A convenient formula is:

∇2
x log pt(x) =

∇2
xpt(x)

pt(x)
− ∇xpt(x)∇xpt(x)

⊤

pt(x)2
. (74)

We know:

∇xpt(x) =

K∑
k=1

πk ϕk(x, t) sk(x, t) (75)

∇2
xpt(x) =

K∑
k=1

πk∇2
xϕk(x, t). (76)

For each Gaussian component, ϕk(x, t) is smooth and its derivatives decay like a polynomial in ∥x∥
times exp(−c∥x∥2). The second derivatives∇2

xϕk(x, t) involve terms of the form

ϕk(x, t)
(
Ak(t) +Bk(t) (x−mtµk)(x−mtµk)

⊤
)

(77)

for some bounded matrices Ak(t), Bk(t) depending on Σk(t). Because Σk(t) is uniformly non-
degenerate (eigenvalues bounded above and below for t in a compact interval away from 0), those
matrices are uniformly bounded in operator norm. Combining:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• pt(x) is a finite sum of Gaussian densities with non-degenerate covariances, so pt(x) > 0
for all x, and it decays at least like exp(−c∥x∥2) at infinity.

• ∇xpt(x) and ∇2
xpt(x) are finite Gaussian mixtures of polynomials times Gaussians, so

they are bounded by constants times exp(−c∥x∥2) and exp(−c∥x∥2) ∥x∥2, respectively.

It follows that each term
∇2

xpt(x)

pt(x)
,
∇xpt(x)∇xpt(x)

⊤

pt(x)2

is bounded in operator norm uniformly in x, for each fixed t > 0. This is a standard property of
Gaussian mixtures with strictly positive-definite covariances. So for each fixed t > 0, there exists a
finite constant Lt such that

sup
x∈Rd

∥∥∇2
x log pt(x)

∥∥
op
≤ Lt. (78)

Hence the score is globally Lipschitz:

∥st(x)− st(y)∥ ≤ Lt ∥x− y∥ for all x, y ∈ Rd. (79)

Now consider t in a compact time interval [t0, T] with t0 > 0. On this interval:

• βt is bounded above and below, so αt and thus mt, vt are continuous and bounded.

• vt = 1− exp(−αt) has a strictly positive lower bound vmin > 0 for t ≥ t0.

Therefore the eigenvalues of each

Σk(t) = m2
tΣk + vtI (80)

are uniformly bounded between strictly positive constants for all t ∈ [t0, T], and so are the norms
of Σk(t)

−1. This implies all the constants that appear in the derivative bounds above can be chosen
independent of t on that interval. So there exists a finite constant L such that

sup
t∈[t0,T]

sup
x∈Rd

∥∥∇2
x log pt(x)

∥∥
op
≤ L. (81)

In particular, for all t ∈ [t0, T] and all x, y:

∥st(x)− st(y)∥ ≤ L ∥x− y∥. (82)

That is exactly the global Lipschitz score condition you assume in the W2 convergence theorem.

Finally, to prove Theorem 1, we proceed by using coupled SDEs and a Grönwall-type argument. We
will construct a coupling between At, the exact reverse-time diffusion (which uses the true score)
and Bt, the approximate reverse-time diffusion (which uses the learned score). Then we can bound
the Wasserstein-2 distance by

W2(p0,Law(YT))
2 ≤ E[∥AT −BT ∥2]. (83)

We consider the same Brownian motion Wt and define A0 ∼ pT , B0 ∼ pnoise. We have the following
coupled SDEs:

{
dAt = [−f(At, T − t) + g2(T − t)∇ log pT−t(At)]dt+ g(T − t)dWt

dBt = [−f(Bt, T − t) + g2(T − t)sθ(Bt, T − t)]dt+ g(T − t)dWt
(84)

Define the coupling error by
δt := E[∥At −Bt∥2]. (85)

Applying Itó’s formula yields

d

dt
δt = 2E[(At −Bt)(f̃A(t)− f̃B(t))], (86)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where f̃A(t) and f̃B(t) are the drift coefficients of At and Bt, respectively. Decomposing gives us
d

dt
δt = −2E[(At −Bt)(f(At, T − t)− f(Bt, T − t))]︸ ︷︷ ︸

C1

(87)

+ 2E[(At −Bt)g
2(T − t)(∇ log pT−t(At)− sθ(Bt, T − t))]︸ ︷︷ ︸

C2

. (88)

By Assumption 3, we have
C1 ≤ −2ρ(T − t)δt. (89)

Next, we again decompose C2 to get
C2 = 2g2(T − t)(E[(At −Bt)](∇ log pT−t(At)−∇ log pT−t(Bt))

+ E[(At −Bt)](∇ log pT−t(Bt)− sθ(Bt, T − t))). (90)

By Young’s inequality and Assumptions 2 and 3, we obtain

C2 ≤ 2g2(T − t)

(
Lδt + λδt +

ϵ2score

4λ

)
(91)

for some hyperparameter λ. Therefore,
d

dt
δt ≤ [−2ρ(T − t) + 2g2(T − t)(L+ λ)]δt +

ϵ2score
2λ

g2(T − t). (92)

Then we can define

I(t) :=

∫ T

T−t

[−2ρ(s) + 2g2(s)(L+ λ)]ds, (93)

so when we apply Grönwall’s inequality, we have

δT ≤ eI(T)δ0 +
ϵ2score
2λ

∫ T

0

g2(t)eI(T)−I(T−t)dt. (94)

Finally, we get

W2(p0,Law(YT)) ≤

√
W2

2 (pT , pnoise)eI(T) +
ϵ2score
2λ

∫ T

0

g2(t)eI(T)−I(T−t)dt. (95)

We again can apply the Wasserstein-2 distance to our setup. In particular,

I(t) =

∫ T

T−t

[−2ρ(s) + 2g2(s)(L+ λ)]ds (96)

=

∫ T

T−t

[βs + 2(L+ λ)βs]ds (97)

= (1 + 2(L+ λ))

∫ T

T−t

βsds (98)

= (1 + 2(L+ λ))(αT − αT−t). (99)

Thus, I(T) = (1 + 2(L+ λ))αT . Additionally,

W2
2 (pT , pnoise) =W2

2 (N (mTx0, vT Id),N (0, I)) ≤ m2
TE[∥x0∥2] + d(

√
vT − 1)2. (100)

Since mT = exp(− 1
2αT) and vT = 1− exp(−αT), we have

W2
2 (N (mTx0, vT Id),N (0, I)) = exp(−αT)∥x0∥2 + d

(
1−

√
1− exp(−αT)

)2

. (101)

We conclude
W2

2 (p0,Law(YT)) ≤ (e−αTE[∥x0∥2] + d(1−
√
1− exp(−αT))

2)(e(1+2(L+λ))αT)

+
ϵ2score
2λ

∫ T

0

βte
(1+2(L+λ))αtdt. (102)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Remark 5. Similar to Kwon et al. (2022), we assume an L∞ bound on score matching, and if
we were to assume instead an L2 bound, the result still holds as long as the score regularity in
Assumption 3 is applied to the learned score instead of the Stein score function. For an L2 bound
on the score matching, see Gao et al. (2025).

18

	Introduction
	Description of Algorithm
	Convergence Analysis
	TV and Wasserstein Convergence
	Decomposing kernel and diffusion errors

	Experiments
	Details of Numerical Experiments
	Synthetic Multivariate Time Series

	Discussion and Future Work
	Background on Score-Based Diffusion Models
	Proofs of Convergence

