

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERATIVE DIFFUSION MODELS FOR HIGH-DIMENSIONAL TIME SERIES

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose a two-stage pipeline for high dimensional time series generation: (i) nonparametric kernel estimation for the conditional first and second moments of the underlying data increments to recover residuals, and (ii) score-based diffusion model trained on these residuals. We derive finite-time convergence estimates for reverse-time sampling in both total variation (TV) and Wasserstein-2 (W_2), with explicit dependence on the variance preserving noise schedule. Experiments on synthetic multivariate processes validate: (a) empirical TV and W_2 track the theoretical upper bounds, and (b) Monte Carlo estimates of test functionals achieve the predicted standard errors.

1 INTRODUCTION

Time-reversed diffusion models have emerged as an interesting approach to generative modeling (Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al. (2020); Song et al. (2021)), achieving significant empirical success in image, audio, and text synthesis, of which DALL-E and SORA are perhaps the most well-known examples. There are two main types of diffusion models: denoising diffusion probabilistic models (DDPMs) (Ho et al. (2020), Dhariwal & Nichol (2021)) and denoising diffusion implicit models (DDIMs) Song et al. (2020), in which the diffusion processes are non-Markovian. We utilize DDPMs to motivate our methodology.

DDPMs are comprised of a forward process and a reverse process. The forward *noising* process is characterized by a stochastic differential equation (SDE) initialized using the empirical distribution of a data sample. The forward distribution is often chosen to be ergodic, with a known stationary distribution, typically Gaussian. Given the forward process, we can construct a corresponding time-reversed process, called the *denoising* process. To generate samples from the target data distribution, we simulate the reverse process starting from an I.I.D. initialization with a Gaussian distribution.

Related work. Generative modeling for multivariate time series poses multiple challenges, particularly preserving complex temporal structure. It is not enough to learn the marginal distribution or even the joint distribution without exploiting the sequential nature of the data. We instead require a conditional generative model that generates each observation considering the past observations. Recent time-series generators have introduced more powerful techniques involving Generative Adversarial Networks (GANs) Yoon et al. (2019) and Variational Autoencoders (VAEs) Bühler et al. (2020). Diffusion models have also driven much of the progress for time series tasks such as imputation and forecasting (Rasul et al. (2021), Kolloviev et al. (2023), Yang et al. (2024), Yuan & Qiao (2024), Su et al. (2025)).

Contributions. We introduce an algorithm that involves a Nadaraya-Watson kernel estimator to decompose the time series into its conditional mean, covariance and residuals, followed by training a score-based diffusion model on these extracted residuals. Our convergence analysis is complementary to recent work on (i) generalization of learned scores Stéphanovitch et al. (2025), (ii) regularity beyond log-concavity (Stéphanovitch (2025), Gentiloni-Silveri & Ocello (2025)), and (iii) explicit KL/ W_2 for score-based generative model families Conforti et al. (2024) and noise-schedule sensitivity analysis Strasman et al. (2025). The TV and W_2 bounds that we provide are novel in that they make the dependence on the noise schedule explicit and decouple initialization, score, and discretization errors via a Grönwall coupling.

054 **2 DESCRIPTION OF ALGORITHM**
 055

056 Let $X_{t_k} \in \mathbb{R}^d$ denote the observations, where $t_k = k\Delta t$, $k = 1, \dots, N$ with Δt timesteps. We
 057 seek to estimate the first and second conditional moments of the data:

058
$$\mu(x) = \lim_{\Delta t \rightarrow 0} \frac{1}{\Delta t} \mathbb{E}[\Delta X_t \mid X_t = x] \quad (1)$$

061
$$a(x) = \lim_{\Delta t \rightarrow 0} \frac{1}{\Delta t} \text{Cov}(\Delta X_t \mid X_t = x), \quad (2)$$

063 where $a(x) = \sigma^\top \sigma(x) \in \mathbb{R}^{d \times d}$ is the conditional covariance matrix of the increments. To do
 064 this, we utilize the Nadaraya-Watson kernel estimator Nadaraya (1964); Watson (1964); Nadaraya
 065 (1970). The estimators are given by:

067
$$\hat{\mu}(x) = \frac{\sum_{k=1}^N K_h(x - X_{t_k}) \Delta X_{t_k}}{W(x)} \quad (3)$$

070
$$\hat{a}(x) = \frac{\sum_{k=1}^N K_h(x - X_{t_k}) (\Delta X_{t_k} - \hat{\mu}(x)) (\Delta X_{t_k} - \hat{\mu}(x))^\top}{W(x)}, \quad (4)$$

073 where $W(x) = \Delta t \sum_{k=1}^N K_h(x - X_{t_k})$ for $K_h(x)$ kernel function with bandwidth h , and $\Delta X_{t_k} = X_{t_{k+1}} - X_{t_k}$. The bandwidth h is chosen in a locally adaptive k nearest neighbors manner. Define
 074 now $\hat{\sigma}(x)$ as a Cholesky square root of $\hat{a}(x)$:

076
$$\hat{\sigma}^\top(x) \hat{\sigma}(x) = \hat{a}(x) \quad (5)$$

078 We may define the *residuals*

080
$$\widehat{\epsilon}_{t_i}^{(n)} = \hat{\sigma}^\top(X_{t_i}^{(n)})^{-1} [\Delta X_{t_i}^{(n)} - \hat{\mu}(X_{t_i}^{(n)})]. \quad (6)$$

082 **Remark 1.** Note that, as the square root of the matrix \hat{a} is only defined up to a rotation, we cannot
 083 hope to recover a consistent estimator of $\sigma(x)$ i.e that $\hat{\sigma}(x) \rightarrow \sigma(x)$. However, as we will see, under
 084 high-frequency asymptotics on the observed path we will typically have $\hat{a}(x) \rightarrow a(x)$ i.e. we recover
 085 $\sigma(x)$ up to a (local) rotation. This means we cannot interpret the ϵ_{t_k} as a “filtering” of the noise
 086 terms, but these residuals allow us to recover, asymptotically, the second order structure of ϵ_t .

087 **Remark 2.** Our nonparametric estimation captures temporal dependence to the extent it is included
 088 in the conditioning set. In the simplest implementation, we use the current state X_t as the kernel
 089 input, which yields an effectively first-order Markov model in X_t . For non-Markov dynamics it
 090 is natural to augment the kernel input with lagged covariates $S_t = (X_t, X_{t-1}, \dots, X_{t-L+1})$ for
 091 lag length L , and to restrict the kernel weights to past observations only by using an adaptive
 092 k -nearest-neighbour bandwidth.

093 Once these residuals are filtered, we may feed it into the score-based diffusion model for generating
 094 new samples. We use a time dependent Ornstein-Uhlenbeck (OU) process for the forward SDE:

095
$$\begin{aligned} dX_t &= -\frac{1}{2} \beta_t X_t dt + \sqrt{\beta_t} dW_t \\ 096 \quad X_0 &\sim p_0, \end{aligned} \quad (7)$$

099 where β_t is a time-dependent function. Let us define $\alpha_t = \int_0^t \beta_s ds$. Then the reverse SDE is given
 100 by

101
$$\begin{aligned} dY_t &= \frac{1}{2} \beta_{T-t} Y_t dt + \beta_{T-t} \nabla \log p_{T-t}(Y_t) dt + \sqrt{\beta_{T-t}} dW_t, \\ 102 \quad Y_0 &\sim \mathcal{N}(m_T x_0, v_T I), \end{aligned} \quad (8)$$

103 where $m_t = \exp(-\frac{1}{2} \alpha_t)$ and $v_t = 1 - \exp(-\alpha_t)$. Note that $X_t \stackrel{d}{=} m_t X_0 + \sqrt{v_t} \epsilon$ where $\epsilon \sim \mathcal{N}(0, I)$,
 104 so that the *exact* score function is

107
$$\nabla \log p_{t|0}(x \mid x_0) = \frac{m_t x_0 - x}{v_t} \stackrel{d}{=} -\frac{\epsilon}{\sqrt{v_t}}. \quad (9)$$

108 We define a score network $-\sqrt{v_t} \cdot s_\theta(X_t, t)$ that then predicts the noise ϵ from the noisy data
 109 $X_t \stackrel{d}{=} m_t X_0 + \sqrt{v_t} \epsilon$. Then the denoising score matching objective becomes
 110

$$111 \mathbb{E}_{x_0 \sim p_{\text{data}}} \mathbb{E}_{x \sim p_{t|0}} \left[\left\| \frac{m_t X_0 - x}{v_t} - s_\theta(X_t, t) \right\|^2 \right] = \mathbb{E}_{x_0 \sim p_{\text{data}}} \mathbb{E}_{\epsilon \sim \mathcal{N}(0, I)} \left[\left\| s_\theta(m_t X_0 + \sqrt{v_t} \epsilon, t) + \frac{\epsilon}{\sqrt{v_t}} \right\|^2 \right]. \quad (10)$$

114 See Appendix A for background on score-based diffusion models. Algorithm 1 outlines the kernel
 115 estimation, residual extraction, and score-based diffusion model training, all which occur offline. We
 116 use 9 as the conditional target for training our score network. Algorithm 2 outlines the generation
 117 of synthetic data samples.

Algorithm 1 Kernel estimation, residual extraction, and score model training

120 **Input:** Observations $X_{t_k} \in \mathbb{R}^d$ with $k = 1, \dots, N$ where $t_k = k\Delta t$, $\Delta X_{t_k} = X_{t_{k+1}} - X_{t_k}$.
 121 **for** $x \in \mathbb{D} \subset \mathbb{R}^d$ **do** ▷ Kernel Estimation
 122 Compute weight denominator $W(x) = \Delta t \sum_{k=1}^N K_h(x - X_{t_k})$ for $K_h(x)$ kernel function
 123 with bandwidth h .
 124 Compute $\hat{\mu}(x) = \frac{\sum_{k=1}^N K_h(x - X_{t_k}) \Delta X_{t_k}}{W(x)}$.
 125 Compute $\hat{a}(x) = \frac{\sum_{k=1}^N K_h(x - X_{t_k}) (\Delta X_{t_k} - \hat{\mu}(x)) (\Delta X_{t_k} - \hat{\mu}(x))^\top}{W(x)}$.
 126 Compute $\hat{\sigma}(x) = \text{CholeskySqrt}(\hat{a}(x))$.
 127 **end for**
 128 **for** $k = 1$ to N **do** ▷ Residuals
 129 $\epsilon_{t_k} = \hat{\sigma}^\top(X_{t_k})^{-1} [\Delta X_{t_k} - \hat{\mu}(X_{t_k})]$
 130 **end for**
 131 ▷ Offline: learning to generate the residuals
 132 Precompute **noise schedule** $\beta_t = \beta_{\max}^{1-t} \beta_{\min}^t$, $m_t = \exp(-0.5 \int_0^t \beta_s ds)$, and $v_t = 1 - m(t)^2$.
 133 **while** current_iteration < Max_iterations **do**
 134 Sample a minibatch $\{x_0^{(b)}, b \in B\} \subset \{\hat{\epsilon}_{t_k}, k = 1, \dots, N\}$, $(t^{(b)} \sim \text{UNIF}[0, 1], b \in B)$.
 135 For $b \in B$, set $x_t^{(b)} = m_{t^{(b)}} x_0^{(b)} + \sqrt{v_{t^{(b)}}} z^{(b)}$ where $(z^{(b)} \sim \mathcal{N}(0, I), b \in B)$ are IID.
 136 Compute “score targets” $u_{t^{(b)}} = -z^{(b)} / \sqrt{v_{t^{(b)}}} = \nabla \log p_{t|0}(x_t^{(b)} | x_0^{(b)})$.
 137 Compute batch loss function
 138
$$\mathcal{L}_B(\theta) = \frac{1}{|B|} \sum_{b \in B} \|s_\theta(x_t^{(b)}, t^{(b)}) - u_t^{(b)}\|^2.$$

 139
 140 Update $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}(\theta)$.
 141 **end while**
 142 **Outputs:** $\hat{\mu}, \hat{\sigma}$ and trained score function s_θ^*

Algorithm 2 Generation of sample paths from trained model

143 **for** $j = 1, \dots, N$ **do**
 144 Simulate discretized paths for the (reverse) SDE on the grid ($u_i = i/m, i = 0, \dots, m$).
 145 $Y_0 \sim N(m_T X_0, v_T I)$
 146 **for** $i = 0, \dots, m$ **do**
 147
 148
$$Y_{u_{i+1}} = Y_{u_i} + \frac{1}{m} \left(\frac{1}{2} \beta_{T-u_i} Y_{u_i} + \beta_{T-u_i} s_\theta^*(Y_{u_i}, T-u_i) \right) + \sqrt{\beta_{T-u_i}/m} Z_i, \quad Z_i \stackrel{iid}{\sim} N(0, I)$$

 149 **end for**
 150 $\hat{\epsilon}_j \leftarrow Y_T$
 151 **end for**
 152 **for** $j = 1, \dots, N-1$ **do** $\widehat{X}_{t_{j+1}} = \widehat{X}_{t_j} + \widehat{\mu}(\widehat{X}_{t_j})(t_{j+1} - t_j) + \widehat{\sigma}(\widehat{X}_{t_j}) \hat{\epsilon}_j$
 153 **end for**
 154 **return** Synthetic samples $\{\widehat{X}_{t_k}, k = 1, \dots, N\}$

162 **3 CONVERGENCE ANALYSIS**
 163

164 **3.1 TV AND WASSERSTEIN CONVERGENCE**
 165

166 When examining the convergence of the reverse process, we start by making the following assumption
 167 regarding score matching:

168 **Assumption 1.** For some $0 \leq t \leq T$, $\epsilon_{\text{score}} > 0$, we have access to score estimates $s_\theta(\cdot)$ satisfying
 169 $\mathbb{E}_{p_t}[\|s_\theta(X_t, t) - \nabla \log p_t(X_t, t)\|^2] \leq \epsilon_{\text{score}}^2$.

170 De Bortoli et al. (2021) provided a first bound for $TV(\text{Law}(Y_T), p_0(\cdot))$, with the work of Chen et al.
 171 (2023) improving the bound to be polynomial in dimension d and time T . From Assumption 1 and
 172 Chen et al. (2023), if we apply the total variation distance to our setting, we obtain
 173

$$174 \quad TV(\text{Law}(Y_T), p_0(\cdot)) \leq m_T \frac{\sqrt{\mathbb{E}_{p_0}[\|X_0\|^2]}}{2} + \epsilon_{\text{score}} \sqrt{\frac{T}{2}}. \quad (11)$$

175 We expand our convergence results by including Wasserstein bounds. First, we can make a stronger
 176 assumption on the score matching, i.e.

177 **Assumption 2.** For some $0 \leq t \leq T$, $\epsilon_{\text{score}} > 0$, we have access to score estimates $s_\theta(\cdot)$ satisfying
 178 $\mathbb{E}_{p_t}[\|s_\theta(X_t, t) - \nabla \log p_t(X_t, t)\|_\infty] \leq \epsilon_{\text{score}}$.

179 We require an additional assumption on the growth of the drift coefficient and regularity of the score
 180 function:

181 **Assumption 3.** Consider the forward SDE equation 32. Then

182 $\bullet \exists \rho(t) : [0, T] \rightarrow \mathbb{R} \text{ such that } (x - y)(f(x, t) - f(y, t)) \geq \rho(t)|x - y|^2.$
 183 $\bullet \text{Lipschitz score, i.e. } \exists L > 0 \text{ such that } |\nabla \log p_t(x) - \nabla \log p_t(y)| \leq L|x - y|.$

184 **Theorem 1** (Wasserstein bound on $\mathcal{W}_2^2(p_0, \text{Law}(Y_T))$). Provided Assumptions 2 and 3 hold, and
 185 for hyperparameter $\lambda > 0$,

$$186 \quad \mathcal{W}_2^2(p_0, \text{Law}(Y_T)) \leq (e^{-\alpha_T} \mathbb{E}[\|x_0\|^2] + d(1 - \sqrt{1 - \exp(-\alpha_T)})^2)(e^{(1+2(L+\lambda))\alpha_T}) \\ 187 \quad + \frac{\epsilon_{\text{score}}^2}{2\lambda} \int_0^T \beta_t e^{(1+2(L+\lambda))\alpha_t} dt. \quad (12)$$

188 A derivation of the TV bound and proof of Theorem 1 are provided in Appendix B.

189 **3.2 DECOMPOSING KERNEL AND DIFFUSION ERRORS**
 190

191 The reverse-time bounds above are stated for an idealized setting in which we have direct access to
 192 the “true” residual distribution. In practice, however, we do not observe the true drift and diffusion
 193 coefficients $\mu(x)$ and $a(x)$. Instead, we form nonparametric estimators $\hat{\mu}(x)$ and $\hat{a}(x)$ and construct
 194 residuals using the corresponding Cholesky factor $\hat{\sigma}(x)$ of $\hat{a}(x)$. To make this explicit, fix a time
 195 grid $t_k = k\Delta t$ and let the true residuals be

$$196 \quad \epsilon_{t_k}^{(n)} = \sigma(X_{t_k}^{(n)})^{\top, -1} [\Delta X_{t_k}^{(n)} - \mu(X_{t_k}^{(n)})], \quad (13)$$

197 and the empirical residuals used in training be

$$198 \quad \hat{\epsilon}_{t_k}^{(n)} = \hat{\sigma}(X_{t_k}^{(n)})^{\top, -1} [\Delta X_{t_k}^{(n)} - \hat{\mu}(X_{t_k}^{(n)})]. \quad (14)$$

199 Let p_0^{res} denote the law of the true residuals (restricted to the finite collection of increments used
 200 in the diffusion stage), and let \hat{p}_0^{res} denote the empirical law of the kernel-based residuals $\hat{\epsilon}$. In the
 201 reverse-time analysis above, the initial law p_0 enters only through its second moment and its role as
 202 the starting distribution at time zero. In particular, Theorem 1 applies to *any* choice of initial law.
 203 We can therefore view the actual training procedure as applying Theorem 1 with $p_0 = \hat{p}_0^{\text{res}}$, and then
 204 relate p_0^{res} and \hat{p}_0^{res} via the triangle inequality in \mathcal{W}_2 .

205 **Assumption 4** (Kernel residual approximation). There exists a constant $\epsilon_{\text{ker}} \geq 0$ such that

$$206 \quad \mathcal{W}_2(p_0^{\text{res}}, \hat{p}_0^{\text{res}}) \leq \epsilon_{\text{ker}}. \quad (15)$$

207 Moreover, $\epsilon_{\text{ker}} \rightarrow 0$ as the number of observed paths and time steps tends to infinity under the
 208 high-frequency, large-sample regime used to motivate the kernel estimators $\hat{\mu}$ and \hat{a} .

216 Assumption 4 is a compact way of summarizing the stage-one nonparametric error: it captures in
 217 a single quantity the combined effect of estimating the conditional mean and covariance and then
 218 mapping increments to residuals via the estimated Cholesky factor.

219 Let p_0^{res} be the law of the true residuals and \hat{p}_0^{res} the law of the extracted residuals used in training.
 220 Suppose Assumption 2 holds with respect to the forward marginals of \hat{p}_0^{res} and that Assumption 3
 221 holds for the variance-preserving OU forward SDE. Let $\text{Law}(Y_T^{\text{ker}})$ denote the terminal law of the
 222 reverse-time SDE driven by the learned score network trained on \hat{p}_0^{res} . Then, under Assumption 4,
 223 we have

$$224 \quad \mathcal{W}_2(p_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})) \leq \epsilon_{\text{ker}} \leq \mathcal{W}_2(\hat{p}_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})), \quad (16)$$

225 and consequently

$$227 \quad \mathcal{W}_2^2(p_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})) \leq 2\epsilon_{\text{ker}}^2 + 2\mathcal{W}_2^2(\hat{p}_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})). \quad (17)$$

228 Furthermore, the second term on the right-hand side can be bounded by Theorem 1 with $p_0 = \hat{p}_0^{\text{res}}$,
 229 yielding

$$231 \quad \mathcal{W}_2^2(p_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})) \leq 2\epsilon_{\text{ker}}^2 + 2 \left[(e^{-\alpha_T} \mathbb{E}_{\hat{p}_0^{\text{res}}}[\|x_0\|^2] + d(1 - \sqrt{1 - e^{-\alpha_T}})^2) e^{(1+2(L+\lambda))\alpha_T} \right. \\ 232 \quad \left. + \frac{\epsilon_{\text{score}}^2}{2\lambda} \int_0^T \beta_t e^{(1+2(L+\lambda))\alpha_t} dt \right]. \quad (18)$$

$$234 \quad + \frac{\epsilon_{\text{score}}^2}{2\lambda} \int_0^T \beta_t e^{(1+2(L+\lambda))\alpha_t} dt \right]. \quad (19)$$

237 *Proof.* The first inequality is the triangle inequality for \mathcal{W}_2 :

$$239 \quad \mathcal{W}_2(p_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})) \leq \mathcal{W}_2(p_0^{\text{res}}, \hat{p}_0^{\text{res}}) + \mathcal{W}_2(\hat{p}_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})), \quad (20)$$

240 and the second follows from the elementary inequality $(a + b)^2 \leq 2a^2 + 2b^2$ for $a, b \geq 0$. Assumption 4 identifies ϵ_{ker} with the first term, and the bound in Theorem 1 applies exactly to the pair
 241 $(\hat{p}_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}}))$, because the proof of Theorem 1 only requires Assumptions 2 and 3 to hold for
 242 the forward marginals of the initial law used in training. \square

244 **Remark 3.** An analogous decomposition holds in total variation. Let \hat{p}_T^{res} denote the forward-time
 245 marginal obtained by evolving \hat{p}_0^{res} under the OU forward SDE. Then

$$247 \quad \text{TV}(p_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})) \leq \text{TV}(p_0^{\text{res}}, \hat{p}_0^{\text{res}}) + \text{TV}(\hat{p}_0^{\text{res}}, \text{Law}(Y_T^{\text{ker}})), \quad (21)$$

248 and the second term can be controlled by the same TV bound as in 11, with p_0 replaced by \hat{p}_0^{res} . In
 249 this way, stage-one kernel smoothing error appears explicitly as an additive term in both the \mathcal{W}_2
 250 and total variation guarantees, rather than being implicitly absorbed into the score matching error.
 251

252 4 EXPERIMENTS

254 4.1 DETAILS OF NUMERICAL EXPERIMENTS

256 In the numerical experiment in this section, we will use the time-dependent “variance preserving”
 257 OU process from Section 1. We now assume that we have N samples $\{x^n\}_{n=1}^N$ from our target
 258 distribution p_0 . The empirical measure

$$260 \quad \hat{p}_0 = \frac{1}{N} \sum_{n=1}^N \delta_{x^n} \quad (22)$$

263 is an approximation to p_0 . If we start the forward SDE in p_0 , we get marginals \hat{p}_t defined below,
 264 where we apply the transition kernel to each data point in the empirical distribution x^n at time 0 to
 265 x_t and then average over all transition probabilities, as the empirical distribution at time t can be
 266 approximated by the mean of the distributions resulting from diffusing each of the original N data
 267 points according to the process:

$$268 \quad \hat{p}_t(x_t) = \frac{1}{N} \sum_{n=1}^N p_{t|0}(x_t | x^n), \quad (23)$$

which is just a Gaussian mixture with N components, one for each sample x^n . The components are centered at $m_t x^n$ and have variance v_t . These empirical marginals can actually be evaluated (unlike the unknown p_t). The reverse SDE is given by 8. We implement it using the Euler-Maruyama scheme. To advance the SDE by Δt , we compute the following iteration:

$$Y_{t_{i+1}} = Y_{t_i} + (t_{i+1} - t_i) \left(\frac{1}{2} \beta_{T-t} Y_{t_i} + \beta_{T-t} \nabla \log p_{T-t}(Y_{t_i}) \right) + \sqrt{\beta_{T-t}} Z_{t_{i+1}-t_i}, \quad (24)$$

where $Z_{t_{i+1}-t_i}$ are independent with distribution $Z_{t_{i+1}-t_i} \sim \mathcal{N}(0, Z_{t_{i+1}-t_i} I)$. We will run the forward SDE until time $T = 1$. Then the time interval for the backward SDE is also $[0, T]$. We discretize this time interval into $(t_i)_{i=1}^L$, $t_0 = 0$, $t_L = 1$ and run the above scheme. We use $L = 1000$ steps of the reverse SDE; in practical applications, we might try to reduce the number of steps. Additionally, we use a geometric noise schedule for β_t :

$$\beta_t = \beta_{\max}^{1-t} \beta_{\min}^t = \beta_{\max} \left(\frac{\beta_{\min}}{\beta_{\max}} \right)^t. \quad (25)$$

In practice, we discretize over $R = 10$ steps, so that

$$\beta_r = \beta_{\max} \left(\frac{\beta_{\min}}{\beta_{\max}} \right)^{\frac{r}{R-1}}, \quad (26)$$

for $r = 0, \dots, R-1$. We can now plug in the empirical drift $\nabla \log \hat{p}_t$ into the reverse SDE and run it. The result is the exact reverse SDE for the data distribution $p_0 = \hat{p}_0$. Recall that we can exactly recover \hat{p}_0 . Since $p_{t,0}$ is Gaussian we can evaluate the gradient as

$$\nabla \log p_{t,0}(x | x_0) = \nabla \log \left((2\pi v_t)^{-d/2} \exp \left(-\frac{\|x - m_t x_0\|^2}{2v_t} \right) \right) \quad (27)$$

$$= \nabla \left[-\frac{d}{2} \log (2\pi v_t) - \frac{\|x - m_t x_0\|^2}{2v_t} \right] \quad (28)$$

$$= -\frac{(x - m_t x_0)}{v_t}. \quad (29)$$

Since we do not have access to $\nabla \log \hat{p}_t$, we approximate it using a neural network and 47. The objective is 50, and if we let

$$\bar{L}(\theta, t) = \mathbb{E}_{x_0 \sim \hat{p}_{\text{data}}} \mathbb{E}_{x \sim p_{t|0}(x|x_0)} [\|\nabla \log p_{t|0}(x | x_0) - s_\theta(x, t)\|^2], \quad (30)$$

then we need to optimize the network for all t , not just one specific t , and therefore use

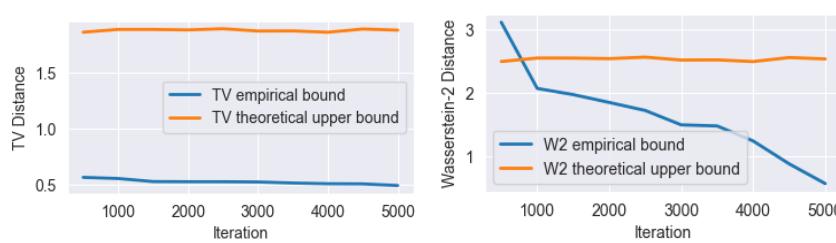
$$\bar{L}(\theta) = \mathbb{E}_{t \sim U[0,1]} [\bar{L}(\theta, t)]. \quad (31)$$

This loss can now be approximated by randomly choosing data points from the training batch (as samples from \hat{p}_0 and also randomly generating times $t \sim \mathcal{U}[0, 1]$).

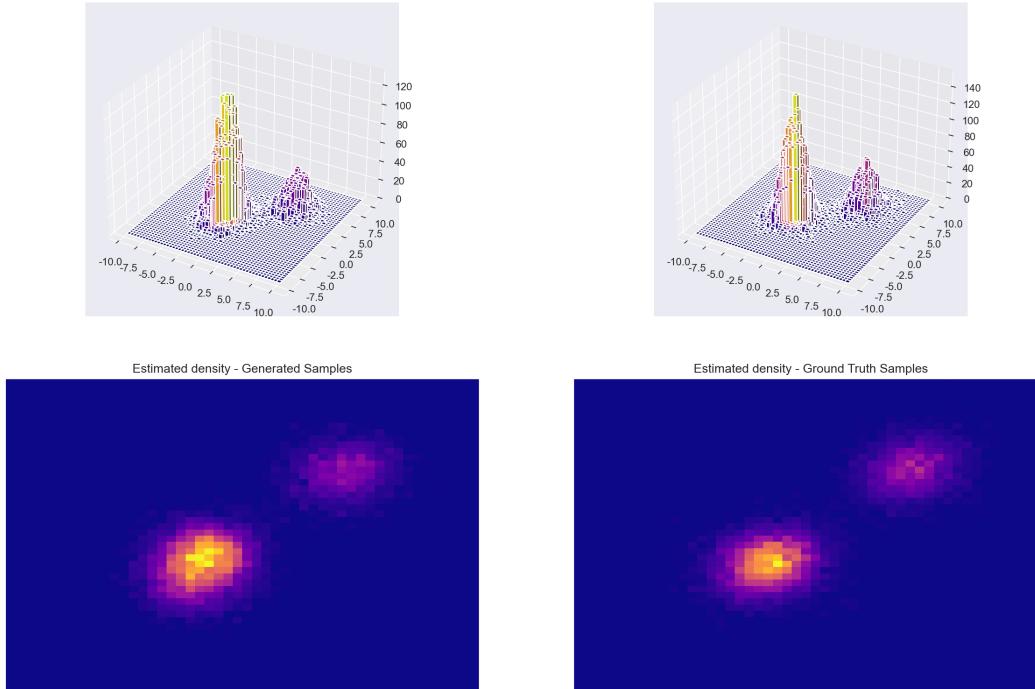
The score-based diffusion model is a four layer feed-forward network, and it consists of a linear projection with a GELU activation and a learnable embedding layer, followed by a three layer feed-forward network with dropout-regularized GELU activations. Optimization is Adam (learning rate 5×10^{-3}), batch size is 128, and training is run for 10000 iterations. Reverse-time sampling uses Euler-Maruyama with step sizes scaled as u_i and $T_{\text{emp}} = 200$ inner steps. It is trained on the filtered residuals using denoising score matching and the *exact* Gaussian conditional target for the marginals.

4.2 SYNTHETIC MULTIVARIATE TIME SERIES

For our first experiment, we test a multivariate time series – a vector AR(1) process where a mixture of Gaussians generates the innovations. We define $\phi = \{\phi_1, \phi_2\} \in \mathbb{R}^{d \times d}$ to be the AR coefficient matrix. Then we define $\varepsilon_t \sim \sum_{k=1}^K \pi_k \mathcal{N}(\mu_k, \Sigma_k)$ to be the innovations, where $\mu_k \in \mathbb{R}^d$ and $\Sigma_k \in \mathbb{R}^{d \times d}$ are the mean and covariance for each mixture component $k = 1, \dots, K$. Therefore,



(a) Theoretical Upper Bound equation 11 vs Empirical TV distance. (b) Theoretical Upper Bound equation 12 vs Empirical W_2 distance.



(c) Density plots of ground truth residuals versus residuals generated by the score-based diffusion model.

Figure 1: 1a and 1b are plots for the theoretical versus empirical Total Variation distance and Wasserstein-2 distance through training iterations. 1c shows 3d surface plots and heat maps of the generated residuals (left) versus the ground truth residuals (right).

each path evolves as $X_t = \phi X_{t-1} + \varepsilon_t$. We simulate data in $d = 20, 30, 50$ dimensions with $T = 1000, 2000, 5000$ time steps.

In Figure 1, we report (i) empirical Total Variation and Wasserstein-2 bounds between ground truth and generated residuals, and (ii) plots of the first two components of the ground truth and generated residuals, while Figure 2 shows scaling plots for $d = 20, 30, 50$ dimensions and $T = 1000, 2000, 5000$ time steps. We do note some metric-dependent behavior; W_2 is dominated by matching low-order moments and overall mass transportation cost. As the score network learns, these improve steadily, hence the clear decreasing trend. TV is more sensitive to localized density mismatches and tail behavior, which are harder to estimate reliably in high dimension from finite samples; its empirical estimator thus has higher variance. In our implementation, the TV estimator is based on a plug-in approach using a finite number of samples and bins; for large d this can be noisy. The theoretical upper bound 11 is driven by score error and noise schedule and is not tight in finite-sample TV.

Table 1 shows results of lag and bandwidth sensitivity studies, and Table 2 probes Cholesky factor ambiguity. In particular, we conducted:

378 • We conducted a lag-sensitivity study, conditioning the kernel estimator on $[X_t, X_{t-1}]$, and
 379 $[X_t, X_{t-1}, X_{t-2}]$. The L_2 norm of the conditional mean decreased from 0.853 to 0.725
 380 and the mean residual standard deviation from 2.997 to 2.961, indicating only mild gains
 381 beyond a first-order Markov state. Thus, the original Markov assumption is empirically
 382 sound in our setup.

383 • We performed a bandwidth sensitivity study for the multimodal kernel estimator on the
 384 AR-mixture process. For bandwidths 0.25, 0.5, 1.0, the L_2 change in $\hat{\mu}$ relative to the
 385 reference (0.25) is 0.52 and 0.72, indicating moderate smoothing effects, but the residual
 386 skewness and kurtosis remain stable. This suggests that the residual distribution's non-
 387 Gaussian features are robust to bandwidth choice.

388 • We probed the Cholesky ambiguity by rotating the residuals with random orthogonal
 389 matrices and comparing covariances. For several rotations ($r = 0, 3$), the covariance stays
 390 very close to the original $\|\Sigma_r - \Sigma_{\text{base}}\|_F \ll \|\Sigma_{\text{base}}\|_F$, where $\|\hat{\Sigma}_r\|_F$ is the Frobenius norm
 391 of the covariance implied by rotation r and $\|\hat{\Sigma}_{\text{base}}\|_F$ is the Frobenius norm of the base
 392 covariance (constant across r). However, extreme rotations ($r = 2, 4$) can change it more
 393 substantially. Since our implementation uses a fixed Cholesky convention, the diffusion
 394 model always sees a single, consistent residual distribution, and our experiments indicate
 395 that its second-order geometry is reasonably stable under typical rotations.

396

397 Table 1: Kernel lag and bandwidth sensitivity diagnostics
 398

399 (a) Lag sensitivity (fixed bandwidth)

400

Lag L	$\ \hat{\mu}\ _{L^2}$	mean std(ϵ)
1	0.853	2.997
2	0.767	2.965
3	0.725	2.961

401

402 (b) Bandwidth sensitivity

403

h	$\ \hat{\mu} - \mu_{\text{ref}}\ _{L^2}$	$\mathbb{E}[\text{skew}(\epsilon)]$	max skew(ϵ)	$\mathbb{E}[\text{kurt}(\epsilon)]$	max kurt(ϵ)
0.25	0.000	0.625	0.635	-0.760	0.790
0.50	0.518	0.685	0.688	-0.863	0.879
1.00	0.723	0.699	0.699	-0.910	0.920

404

405 Table 2: Cholesky factor ambiguity: effect on implied covariance
 406

407

Rotation index r	$\ \hat{\Sigma}_r\ _F$	$\ \hat{\Sigma}_r - \hat{\Sigma}_{\text{base}}\ _F$	$\ \hat{\Sigma}_{\text{base}}\ _F$
0	11.967	0.744	12.711
1	10.453	2.258	12.711
2	33.594	20.883	12.711
3	12.905	0.194	12.711
4	2.138	10.572	12.711

408

409 Table 3 shows expectations of test functionals $f(\hat{X})$ as targeted probes of the generated samples
 410 against analytic oracles computed directly from the (known) data generating process along with
 411 their Monte Carlo standard errors. In particular, we utilize 3 test functionals:

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

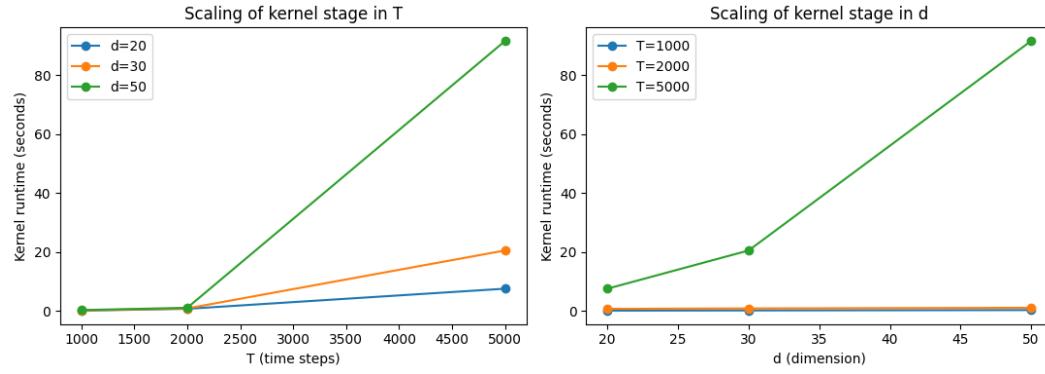
431

- max_component: to test extreme value behavior across dimensions,
- basket: a linear average across dimensions to test first moment, and
- basket_put: $\max(K - \text{basket}, 0)$ to probe tail behavior.

432 To assess sampling variability, we subsample n draws from the model repeatedly and check that
 433 both the empirical standard deviation and the within-batch standard errors scale like $\frac{1}{\sqrt{n}}$. Thus, we
 434 include standard deviation $\times \sqrt{n}$ in the table and show it is roughly constant across n .

Table 3: Oracle versus expectations of test functionals

Functional	n	Oracle	Model Mean	MC Std. Error	Std. Deviation $\times \sqrt{n}$
max_component	2000	1.588	1.862	0.071	0.112
	4000	1.588	1.868	0.050	0.116
	8000	1.588	1.860	0.035	0.118
basket	2000	-7.988	-11.050	0.052	0.140
	4000	-7.988	-11.051	0.037	0.125
	8000	-7.988	-11.055	0.026	0.137
basket_put	2000	107.988	111.054	0.039	0.109
	4000	107.988	111.051	0.027	0.119
	8000	107.988	111.050	0.019	0.117

Figure 2: Scaling curves across $T = 1000, 2000, 5000$ time steps and $d = 20, 30, 50$ dimensions.

5 DISCUSSION AND FUTURE WORK

Our study focuses on generating high-dimensional processes, and the convergence results derived under strong regularity assumptions. Empirical TV and W_2 distances were upper-bounded by their theoretical bounds, with deviations decreasing over training iterations, suggesting our convergence estimates are informative in practice. The agreement of expectations of the test functionals with their analytic oracles demonstrates the method preserves essential first and second-order structure. The surface plots confirm that the generated residuals capture the geometry of the ground-truth residuals. Notably, the model successfully recovers multimodal residual distributions.

Further work is required to assess robustness as well as comparison to baselines such as time-series DDPMs, latent-SDE, and conditional diffusion. Additionally, conducting stress tests where the kernel stage is misspecified, rare-event checks, and specifying downstream tasks would help expand benchmarks/evaluation.

REFERENCES

Brian D.O. Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12(3):313–326, 1982.

Hans Bühler, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and Ben Wood. A data-driven market simulator for small data environments, 2020.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R. Zhang. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. *ArXiv*, 2023.

Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. KL convergence guarantees for score diffusion models under minimal data assumptions, 2024.

486 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
 487 bridge with applications to score-based generative modeling. In M. Ranzato, A. Beygelzimer,
 488 Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Pro-*
 489 *cessing Systems*, volume 34, pp. 17695–17709. Curran Associates, Inc., 2021.

490 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In M. Ran-
 491 zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural*
 492 *Information Processing Systems*, volume 34, pp. 8780–8794. Curran Associates, Inc., 2021.

493 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Associa-*
 494 *tion*, 106:1602–1614, 12 2011.

495 Hans Föllmer. An entropy approach to the time reversal of diffusion processes. In *Stochastic*
 496 *Differential Systems Filtering and Control: Proceedings of the IFIP-WG 7/1 Working Conference*,
 497 2005.

498 Xuefeng Gao, Hoang M. Nguyen, and Lingjiong Zhu. Wasserstein convergence guarantees for a
 499 general class of score-based generative models. *Journal of Machine Learning Research*, 26(43):
 500 1–54, 2025.

501 Marta Gentiloni-Silveri and Antonio Ocello. Beyond log-concavity and score regularity: Improved
 502 convergence bounds for score-based generative models in w_2 -distance, 2025.

503 Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. *The Annals of Probability*,
 504 pp. 1188–1205, 1986.

505 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Infor-*
 506 *mation Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

507 Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. *Journal of*
 508 *Machine Learning Research*, 6(24):695–709, 2005.

509 Marcel Kolloviev, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang,
 510 and Yuyang Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic
 511 time series forecasting, 2023.

512 Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly minimizes
 513 the wasserstein distance. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
 514 (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 20205–20217. Curran
 515 Associates, Inc., 2022.

516 E. A. Nadaraya. On estimating regression. *Theory of Probability & Its Applications*, 9(1):141–142,
 517 1964. doi: 10.1137/1109020. URL <https://doi.org/10.1137/1109020>.

518 E. A. Nadaraya. Remarks on non-parametric estimates for density functions and regression curves.
 519 *Theory of Probability & Its Applications*, 15(1):134–137, 1970. doi: 10.1137/1115015. URL
 520 <https://doi.org/10.1137/1115015>.

521 Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
 522 diffusion models for multivariate probabilistic time series forecasting. In *Proceedings of the 38th*
 523 *International Conference on Machine Learning*, volume 139, 2021.

524 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 525 learning using nonequilibrium thermodynamics. In *Proceedings of the 32nd International Con-*
 526 *ference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp.
 527 2256–2265. PMLR, 07–09 Jul 2015.

528 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *CoRR*,
 529 abs/2010.02502, 2020.

530 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 531 In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.),
 532 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.

540 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, and Abhishek Kumar. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representation*, 2021.

541

542

543 Stanislas Strasman, Antonio Ocello, Claire Boyer, Sylvain Le Corff, and Vincent Lemaire. An analysis of the noise schedule for score-based generative models. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=B1YIPa0Fx1>.

544

545

546

547

548 Arthur Stéphanovitch. Regularity of the score function in generative models, 2025.

549

550 Arthur Stéphanovitch, Eddie Aamari, and Clément Levraud. Generalization bounds for score-based generative models: a synthetic proof, 2025.

551

552 Chen Su, Zhengzhou Cai, Yuanhe Tian, Zhuochao Chang, Zihong Zheng, and Yan Song. Diffusion models for time series forecasting: A survey, 2025.

553

554 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural Computation*, 23(7):1661–1674, 2011.

555

556 Geoffrey S. Watson. Smooth regression analysis. *Sankhya: The Indian Journal of Statistics Series A*, 26(4):359–372, 1964.

557

558

559 Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao Liu, Bin Yang, Zenglin Xu, Jiang Bian, Shirui Pan, and Qingsong Wen. A survey on diffusion models for time series and spatio-temporal data, 2024.

560

561

562 Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.

563

564

565

566 Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=4h1apFj099>.

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

A BACKGROUND ON SCORE-BASED DIFFUSION MODELS

In Section 1, we introduced the idea of time-reversed diffusions. Below, we state the property for clarity. Consider the following well-defined SDE:

$$\begin{aligned} dX_t &= f(X_t, t)dt + g(X_t, t)dW_t \\ X_0 &\sim p_0 \end{aligned} \tag{32}$$

f and g satisfy local Lipschitz continuity and linear growth conditions, so the existence of p_t is guaranteed. Additionally, p_t is differentiable and strictly positive, provided that $g(x, t)g(x, t)^\top$ is positive definite. Starting from the density p_T , we expect that running X in reverse time would generate samples from the density p_0 . This time reversal property of diffusions is a well-known fact in stochastic analysis (Anderson (1982), Haussmann & Pardoux (1986), Föllmer (2005)).

Proposition 1 (Time Reversal Haussmann & Pardoux (1986)). *Consider the SDE 32. Let $Y_t = X_{T-t}$ for $t \in [0, T]$, $T > 0$. Then, under the conditions outlined above, Y is a diffusion process with drift given by*

$$\tilde{f}(x, t) = -f(x, T-t) + \frac{\operatorname{div}(p_{T-t}(x) \cdot a(x, T-t))}{p_{T-t}(x)}, \tag{33}$$

where $a(x, t) = g(x, t)g(x, t)^\top$. Expanding the divergence term component-wise,

$$(\operatorname{div}(p_{T-t}(x) \cdot a(x, T-t)))^i = \sum_{j=1}^d \frac{\partial}{\partial x^j} (p_{T-t}(x) a^{ij}(x, T-t)) \tag{34}$$

$$= \sum_{j=1}^d \left[\frac{\partial p_{T-t}(x)}{\partial x^j} a^{ij}(x, T-t) + p_{T-t}(x) \frac{\partial a^{ij}(x, T-t)}{\partial x^j} \right], \tag{35}$$

594 leads to the vector form

595 $\text{div}(p_{T-t}(x) \cdot a(x, T-t)) = p_{T-t}(x) \text{div } a(x, T-t) + a(x, T-t) \nabla p_{T-t}(x).$ (36)

596 Then

597 $\tilde{f}(x, t) = -f(x, T-t) + \text{div } a(x, T-t) + a(x, T-t) \nabla \log(p_{T-t}(x))$ (37)

598 satisfying

600 $dY_t = \tilde{f}(Y_t, t)dt + g(Y_t, T-t)d\bar{W}_t$ (38)

601 $Y_0 \sim p_T.$

602 Running the backward procedure will generate $Y_T \sim p_0$ at time $T.$

603 We note a few issues that arise if we want to run the reverse process: we do not have sample access
604 to p_T the initial condition of the reverse SDE, and we do not know p_t , which means we do not know
605 the drift $\nabla \log p_{T-t}$. The easiest way to deal with the initial condition is to consider choosing f and
606 g such that X_t converges to a prior distribution p_∞ . This allows the initial distribution of the reverse
607 process to be $Y_0 \sim p_\infty$. We want p_T and p_∞ to be sufficiently close, so that the distribution of X_T
608 is close to p_0 . In practice, we choose the parameters so that the distribution p_∞ is Gaussian. Then
609 we only need to compute $\nabla \log p_{T-t}$.

610 The task of estimating the score function $\nabla \log p_t$ (Ho et al. (2020), Song & Ermon (2019), Song
611 et al. (2021)) is **score matching**, and it involves reducing the estimation of the score function to
612 a supervised learning task. Score matching dates back to Tweedie's Formula from the '50s Efron
613 (2011). Essentially, we will see that estimating $\nabla \log p_t$ is equivalent to estimating the noise added.

614 **Proposition 2** (Tweedie's Formula). *Given $\tilde{x} = x + e$ for $x \sim p$ and $e \sim \mathcal{N}(0, \sigma^2 \cdot I)$,*

615
$$\mathbb{E}[x \mid \tilde{x}] = \tilde{x} + \sigma^2 \cdot \nabla \log \tilde{p}(\tilde{x})$$

616 where \tilde{p} is the density for \tilde{x} .

617 *Proof.* Since $e \sim \mathcal{N}(0, \sigma^2 I)$, the density of \tilde{x} is:

618
$$\tilde{p}(\tilde{x}) = \int p(x) \cdot \rho_\sigma(\tilde{x} - x) dx,$$
 (39)

619 where $\rho_\sigma(z) \propto \exp\left(-\frac{z^2}{2\sigma^2}\right)$ is a Gaussian with variance σ^2 . The posterior expectation of x given
620 \tilde{x} is:

621
$$\mathbb{E}[x \mid \tilde{x}] = \frac{\int x p(x) \rho_\sigma(\tilde{x} - x) dx}{\int p(x) \rho_\sigma(\tilde{x} - x) dx}.$$
 (40)

622 Taking the gradient of $\rho_\sigma(\tilde{x} - x)$ with respect to \tilde{x} :

623
$$\nabla_{\tilde{x}} \rho_\sigma(\tilde{x} - x) = \frac{x - \tilde{x}}{\sigma^2} \rho_\sigma(\tilde{x} - x).$$
 (41)

624 Differentiating the log of $\tilde{p}(\tilde{x})$:

625
$$\nabla_{\tilde{x}} \log \tilde{p}(\tilde{x}) = \frac{\int \frac{x - \tilde{x}}{\sigma^2} p(x) \rho_\sigma(\tilde{x} - x) dx}{\int p(x) \rho_\sigma(\tilde{x} - x) dx},$$
 (42)

626 which simplifies to:

627
$$\nabla_{\tilde{x}} \log \tilde{p}(\tilde{x}) = \frac{\mathbb{E}[x \mid \tilde{x}] - \tilde{x}}{\sigma^2}.$$
 (43)

628 Rearranging this equation yields Tweedie's formula:

629
$$\mathbb{E}[x \mid \tilde{x}] = \tilde{x} + \sigma^2 \nabla \log \tilde{p}(\tilde{x}).$$
 (44)

630 \square

631 We can consider $\nabla \log \tilde{p}(\tilde{x})$ as the Bayes optimal estimate of the noise – hence given a noisy sample
632 X_t , the supervised learning task is to predict the noise added. In the following definitions, we
633 formalize the concept of score matching. We assume a collection of score estimates $\{s_\theta(x, t)\}$ on
634 $\mathbb{R}^d \times \mathbb{R}_+$ parameterized by θ – typically a neural network. The objective is to solve the following
635 optimization problem:

636
$$\min_{\theta} \mathbb{E}_{p_t} [\|\nabla \log p_t(X_t, t) - s_\theta(X_t, t)\|^2].$$
 (45)

637 This is not possible to calculate as we do not know $\nabla \log p_t(X_t, t)$. An alternative approach is that
638 of **implicit score matching**.

648 **Definition 1** (Implicit Score Matching). *Hyvärinen (2005) We compute*
 649

$$650 \min_{\theta} \mathbb{E}_{p_t} [\|s_{\theta}(X_t, t)\|^2 + 2\nabla s_{\theta}(X_t, t)]. \quad (46)$$

651
 652 However, implicit score matching may be computationally complex if the dimension d is very large
 653 – gradient descent methods would not be efficient as the computation of the gradient of the score
 654 network scales linearly in the dimension. The method of **denoising score matching** is one possible
 655 approach when working with high-dimensional data.

656 **Definition 2** (Denoising Score Matching). *Vincent (2011) We condition X_t on X_0 , replacing
 657 $\nabla \log p_t(X_t, t)$ with $\nabla \log p_{t|0}(X_t | X_0)$:*

$$658 \min_{\theta} \mathbb{E}_{x_0 \sim p_{\text{data}}} \mathbb{E}_{x \sim p_{t|0}(x|x_0)} [\|\nabla \log p_{t|0}(x | x_0) - s_{\theta}(x, t)\|^2]. \quad (47)$$

660
 661 To show the equivalence between 45 and 47, we start with the standard objective, expanding the
 662 squared norm:

$$663 \mathbb{E}_{p_t} [\|\nabla \log p_t(X_t) - s_{\theta}(X_t, t)\|^2] = \mathbb{E}_{p_t} [\|\nabla \log p_t(X_t)\|^2] - 2 \mathbb{E}_{p_t} [\langle \nabla \log p_t(X_t), s_{\theta}(X_t, t) \rangle] \\ 664 + \mathbb{E}_{p_t} [\|s_{\theta}(X_t, t)\|^2]. \quad (48)$$

666
 667 Now, we note that the marginal score in the cross-term can be replaced by the conditional score:

$$668 \mathbb{E}_{p_t} [\langle \nabla \log p_t(X_t), s_{\theta}(X_t, t) \rangle] = \mathbb{E}_{x_0 \sim p_0} \mathbb{E}_{x \sim p_{t|0}(x|x_0)} [\langle \nabla \log p_{t|0}(x | x_0), s_{\theta}(x, t) \rangle]. \quad (49)$$

670 Given that $\mathbb{E}_{p_t} [\|\nabla \log p_t(X_t)\|^2]$ and $\mathbb{E}_{p_t} [\|s_{\theta}(X_t, t)\|^2]$ are both unaffected by the conditioning
 671 on X_0 directly, we can rewrite the entire objective incorporating this conditioning:

$$673 \mathbb{E}_{p_t} [\|\nabla \log p_t(X_t) - s_{\theta}(X_t, t)\|^2] = \mathbb{E}_{x_0 \sim p_0} \mathbb{E}_{x \sim p_{t|0}(x|x_0)} [\|\nabla \log p_{t|0}(x | x_0) - s_{\theta}(x, t)\|^2], \quad (50)$$

675 which is exactly the denoising score matching objective. To reiterate, the goal of denoising score
 676 matching is to show that the score function of some “noisy” sample should move to a clean sample
 677 gradually. We saw that the conditional distribution $p_{t|0}(X_t | X_0)$ should be something simple,
 678 ideally Gaussian.

680 B PROOFS OF CONVERGENCE

682 From Assumption 1 and Chen et al. (2023), we have

$$684 \text{TV}(\text{Law}(Y_T), p_0(\cdot)) \leq \text{TV}(p(T, \cdot), p_{\text{noise}}(\cdot)) + \epsilon_{\text{score}} \sqrt{\frac{T}{2}}. \quad (51)$$

686 Recall the time- t transition kernel is given by

$$688 p_{t|0}(\cdot | X_0 = x_0) = \mathcal{N}(m_t x_0, v_t I). \quad (52)$$

690 In order to quantify $\text{TV}(p(T, \cdot), p_{\text{noise}}(\cdot))$, we use KL divergence $KL(\mathcal{N}(m_t X_0, v_t I) \| \mathcal{N}(0, I))$ and
 691 Pinsker’s inequality:

$$692 \frac{1}{2} \left(\text{Tr}(I^{-1} v_T I) + (0 - m_T X_0)^\top I^{-1} (0 - m_T X_0) - d + \log \left(\frac{\det I}{\det(v_T I)} \right) \right) \quad (53)$$

$$695 = \frac{1}{2} (v_T d + m_T^2 |X_0|^2 - d - d \log(v_T)) \quad (54)$$

$$697 = \frac{1}{2} (m_T^2 |X_0|^2 - d(1 - v_T + \log(v_T))) \quad (55)$$

$$699 = \frac{1}{2} (m_T^2 |X_0|^2 - d(m_T^2 + \log(v_T))) \quad (56)$$

$$701 \leq \frac{1}{2} m_T^2 X_0^2 \text{ as } T \rightarrow \infty. \quad (57)$$

702 Thus, $\mathbb{E}_{p_0}[KL(\mathcal{N}(m_t X_0, v_t I) \parallel \mathcal{N}(0, I))] \leq \frac{1}{2} m_T^2 X_0^2$, so that
 703

$$704 \quad TV(p(T, \cdot), p_{\text{noise}}(\cdot)) \leq \sqrt{\frac{1}{4} m_T^2 \mathbb{E}_{p_0}[|X_0|^2]} \leq m_T \frac{\sqrt{\mathbb{E}_{p_0}[|X_0|^2]}}{2}. \quad (58)$$

705 Therefore, the complete inequality is
 706

$$707 \quad TV(\text{Law}(Y_T), p_0(\cdot)) \leq m_T \frac{\sqrt{\mathbb{E}_{p_0}[|X_0|^2]}}{2} + \epsilon_{\text{score}} \sqrt{\frac{T}{2}}. \quad (59)$$

711 **Remark 4.** The term m_T in the above bound depends on the integrated noise schedule $\alpha_T =$
 712 $\int_0^T \beta_s ds$ via $m_T = \exp(-\frac{1}{2} \alpha_T)$. For the variance-preserving OU schedule used in our experiments,
 713 where β_t is positive and bounded away from zero on $[0, T]$, α_T grows at least linearly in T and
 714 hence m_T decays at least exponentially in T . The first term on the right-hand side of the TV bound
 715 51 therefore behaves like $\exp(-\frac{1}{2} \alpha_T) \cdot \frac{\sqrt{\mathbb{E}_{p_0}[|X_0|^2]}}{2}$. The second term grows only like $\epsilon_{\text{score}} \sqrt{\frac{T}{2}}$. This
 716 makes precise the trade-off between the choice of noise schedule, which controls how quickly the for-
 717 ward process forgets its initialization, and the accuracy with which the learned score approximates
 718 the true score along the reverse path.
 719

720 **One-sided Lipschitz condition.** We see the one-sided Lipschitz condition in Assumption 3 holds
 721 for our particular OU SDE, i.e. when $\rho(t) = -\frac{\beta_t}{2}$:

$$722 \quad f(x, t) - f(y, t) = -\frac{1}{2} \beta_t (x - y) \quad (60)$$

$$725 \quad (x - y) \cdot (f(x, t) - f(y, t)) = -\frac{1}{2} \beta_t (x - y)^2 = -\frac{1}{2} \beta_t \|x - y\|^2, \quad (61)$$

727 so the inequality

$$728 \quad (x - y)(f(x, t) - f(y, t)) \geq \rho(t)|x - y|^2 \quad (62)$$

729 holds with equality when $\rho(t) = -\frac{\beta_t}{2}$. Since $\beta_t \geq \beta_{\min} > 0$, we have $\rho(t) \leq -\frac{\beta_t}{2} < 0$, i.e. the drift
 730 is contractive in the one-sided Lipschitz sense.

731 **Lipschitz score assumption.** We also show Lipschitz score for the synthetic data setting outlined
 732 in Section 4. To begin, we assume the residuals at time 0 have a finite Gaussian mixture law
 733

$$734 \quad p_0(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x; \mu_k, \Sigma_k), \quad (63)$$

737 where $\pi_k > 0$ and $\sum_{k=1}^K \pi_k = 1$, $\mu_k \in \mathbb{R}^d$, $\Sigma_k \in \mathbb{R}^{d \times d}$ are symmetric positive definite, and
 738 all eigenvalues of Σ_k lie in $[\lambda_{\min}, \lambda_{\max}]$ for some fixed $0 < \lambda_{\min} \leq \lambda_{\max} < \infty$. Let X_t satisfy
 739 32 with β_t continuous and bounded on $[0, T]$, and $\beta_t \geq \beta_{\min} > 0$. Define $\alpha_t = \int_0^t \beta_s ds$, $m_t =$
 740 $\exp(-\alpha_t/2)$, $v_t = 1 - \exp(-\alpha_t)$ as before. Then, conditional on $X_0 = x_0$, we have:

$$741 \quad X_t \mid X_0 = x_0 \sim \mathcal{N}(m_t x_0, v_t I). \quad (64)$$

743 For each mixture component k , we can track how it evolves: if at time zero
 744

$$745 \quad X_0 \mid (\text{component } k) \sim \mathcal{N}(\mu_k, \Sigma_k),$$

747 then

$$748 \quad X_t \mid (\text{component } k) \sim \mathcal{N}(m_t \mu_k, \Sigma_k(t)),$$

749 with

$$750 \quad \Sigma_k(t) = m_t^2 \Sigma_k + v_t I. \quad (65)$$

751 Because Σ_k has eigenvalues in $[\lambda_{\min}, \lambda_{\max}]$ and $v_t > 0$ for all $t > 0$, the eigenvalues of $\Sigma_k(t)$ stay
 752 in a compact interval $[\underline{\lambda}(t), \bar{\lambda}(t)]$ with $\underline{\lambda}(t) > 0$.

753 So for any fixed $t > 0$:

$$754 \quad p_t(x) = \sum_{k=1}^K \pi_k \mathcal{N}(x; m_t \mu_k, \Sigma_k(t)) \quad (66)$$

756 is again a finite Gaussian mixture with non-degenerate (strictly positive definite) covariances. For
 757 each component k at time t , the score is:
 758

$$759 \quad s_k(x, t) = \nabla_x \log \mathcal{N}(x; m_t \mu_k, \Sigma_k(t)) = -\Sigma_k(t)^{-1} (x - m_t \mu_k). \quad (67)$$

761 This is an affine function in x , with constant Jacobian:

$$762 \quad \nabla_x s_k(x, t) = -\Sigma_k(t)^{-1}. \quad (68)$$

764 Now we define the mixture density:

$$766 \quad p_t(x) = \sum_{k=1}^K \pi_k \phi_k(x, t), \quad (69)$$

768 with $\phi_k(x, t) = \mathcal{N}(x; m_t \mu_k, \Sigma_k(t))$. The mixture posterior weights are:

$$770 \quad w_k(x, t) = \frac{\pi_k \phi_k(x, t)}{p_t(x)}. \quad (70)$$

773 Then the mixture score is:

$$775 \quad s_t(x) = \nabla_x \log p_t(x) = \sum_{k=1}^K w_k(x, t) s_k(x, t). \quad (71)$$

777 We can check this by differentiating:

$$779 \quad \nabla_x p_t(x) = \sum_{k=1}^K \pi_k \nabla_x \phi_k(x, t) = \sum_{k=1}^K \pi_k \phi_k(x, t) s_k(x, t), \quad (72)$$

782 so

$$783 \quad s_t(x) = \frac{1}{p_t(x)} \nabla_x p_t(x) = \sum_{k=1}^K \frac{\pi_k \phi_k(x, t)}{p_t(x)} s_k(x, t) = \sum_{k=1}^K w_k(x, t) s_k(x, t). \quad (73)$$

786 To show the score $s_t(x)$ is globally Lipschitz in x , we want to show the Hessian of $\log p_t(x)$ is
 787 bounded:

$$788 \quad \nabla_x^2 \log p_t(x) \text{ has bounded operator norm for all } x \Rightarrow s_t(x) \text{ is Lipschitz.}$$

790 A convenient formula is:

$$792 \quad \nabla_x^2 \log p_t(x) = \frac{\nabla_x^2 p_t(x)}{p_t(x)} - \frac{\nabla_x p_t(x) \nabla_x p_t(x)^\top}{p_t(x)^2}. \quad (74)$$

795 We know:

$$797 \quad \nabla_x p_t(x) = \sum_{k=1}^K \pi_k \phi_k(x, t) s_k(x, t) \quad (75)$$

$$800 \quad \nabla_x^2 p_t(x) = \sum_{k=1}^K \pi_k \nabla_x^2 \phi_k(x, t). \quad (76)$$

803 For each Gaussian component, $\phi_k(x, t)$ is smooth and its derivatives decay like a polynomial in $\|x\|$
 804 times $\exp(-c\|x\|^2)$. The second derivatives $\nabla_x^2 \phi_k(x, t)$ involve terms of the form

$$806 \quad \phi_k(x, t) \left(A_k(t) + B_k(t) (x - m_t \mu_k) (x - m_t \mu_k)^\top \right) \quad (77)$$

808 for some bounded matrices $A_k(t), B_k(t)$ depending on $\Sigma_k(t)$. Because $\Sigma_k(t)$ is uniformly non-
 809 degenerate (eigenvalues bounded above and below for t in a compact interval away from 0), those
 matrices are uniformly bounded in operator norm. Combining:

810 • $p_t(x)$ is a finite sum of Gaussian densities with non-degenerate covariances, so $p_t(x) > 0$
 811 for all x , and it decays at least like $\exp(-c\|x\|^2)$ at infinity.
 812 • $\nabla_x p_t(x)$ and $\nabla_x^2 p_t(x)$ are finite Gaussian mixtures of polynomials times Gaussians, so
 813 they are bounded by constants times $\exp(-c\|x\|^2)$ and $\exp(-c\|x\|^2) \|x\|^2$, respectively.
 814

815 It follows that each term

$$\frac{\nabla_x^2 p_t(x)}{p_t(x)}, \quad \frac{\nabla_x p_t(x) \nabla_x p_t(x)^\top}{p_t(x)^2}$$

816 is bounded in operator norm uniformly in x , for each fixed $t > 0$. This is a standard property of
 817 Gaussian mixtures with strictly positive-definite covariances. So for each fixed $t > 0$, there exists a
 818 finite constant L_t such that

$$\sup_{x \in \mathbb{R}^d} \|\nabla_x^2 \log p_t(x)\|_{\text{op}} \leq L_t. \quad (78)$$

823 Hence the score is globally Lipschitz:

$$\|s_t(x) - s_t(y)\| \leq L_t \|x - y\| \text{ for all } x, y \in \mathbb{R}^d. \quad (79)$$

827 Now consider t in a compact time interval $[t_0, T]$ with $t_0 > 0$. On this interval:

829 • β_t is bounded above and below, so α_t and thus m_t, v_t are continuous and bounded.
 830 • $v_t = 1 - \exp(-\alpha_t)$ has a strictly positive lower bound $v_{\min} > 0$ for $t \geq t_0$.
 831

832 Therefore the eigenvalues of each

$$\Sigma_k(t) = m_t^2 \Sigma_k + v_t I \quad (80)$$

835 are uniformly bounded between strictly positive constants for all $t \in [t_0, T]$, and so are the norms
 836 of $\Sigma_k(t)^{-1}$. This implies all the constants that appear in the derivative bounds above can be chosen
 837 independent of t on that interval. So there exists a finite constant L such that

$$\sup_{t \in [t_0, T]} \sup_{x \in \mathbb{R}^d} \|\nabla_x^2 \log p_t(x)\|_{\text{op}} \leq L. \quad (81)$$

841 In particular, for all $t \in [t_0, T]$ and all x, y :

$$\|s_t(x) - s_t(y)\| \leq L \|x - y\|. \quad (82)$$

844 That is exactly the global Lipschitz score condition you assume in the W_2 convergence theorem.

846 Finally, to prove Theorem 1, we proceed by using coupled SDEs and a Grönwall-type argument. We
 847 will construct a coupling between A_t , the exact reverse-time diffusion (which uses the true score)
 848 and B_t , the approximate reverse-time diffusion (which uses the learned score). Then we can bound
 849 the Wasserstein-2 distance by

$$\mathcal{W}_2(p_0, \text{Law}(Y_T))^2 \leq \mathbb{E}[\|A_T - B_T\|^2]. \quad (83)$$

852 We consider the same Brownian motion W_t and define $A_0 \sim p_T, B_0 \sim p_{\text{noise}}$. We have the following
 853 coupled SDEs:

$$\begin{cases} dA_t = [-f(A_t, T-t) + g^2(T-t) \nabla \log p_{T-t}(A_t)] dt + g(T-t) dW_t \\ dB_t = [-f(B_t, T-t) + g^2(T-t) s_\theta(B_t, T-t)] dt + g(T-t) dW_t \end{cases} \quad (84)$$

858 Define the coupling error by

$$\delta_t := \mathbb{E}[\|A_t - B_t\|^2]. \quad (85)$$

862 Applying Itô's formula yields

$$\frac{d}{dt} \delta_t = 2\mathbb{E}[(A_t - B_t)(\tilde{f}_A(t) - \tilde{f}_B(t))], \quad (86)$$

864 where $\tilde{f}_A(t)$ and $\tilde{f}_B(t)$ are the drift coefficients of A_t and B_t , respectively. Decomposing gives us
 865

$$\frac{d}{dt}\delta_t = \underbrace{-2\mathbb{E}[(A_t - B_t)(f(A_t, T-t) - f(B_t, T-t))]}_{C_1} \quad (87)$$

$$+ \underbrace{2\mathbb{E}[(A_t - B_t)g^2(T-t)(\nabla \log p_{T-t}(A_t) - s_\theta(B_t, T-t))]}_{C_2}. \quad (88)$$

871 By Assumption 3, we have
 872

$$C_1 \leq -2\rho(T-t)\delta_t. \quad (89)$$

874 Next, we again decompose C_2 to get
 875

$$C_2 = 2g^2(T-t)(\mathbb{E}[(A_t - B_t)](\nabla \log p_{T-t}(A_t) - \nabla \log p_{T-t}(B_t)) + \mathbb{E}[(A_t - B_t)](\nabla \log p_{T-t}(B_t) - s_\theta(B_t, T-t))). \quad (90)$$

877 By Young's inequality and Assumptions 2 and 3, we obtain
 878

$$C_2 \leq 2g^2(T-t) \left(L\delta_t + \lambda\delta_t + \frac{\epsilon_{\text{score}}^2}{4\lambda} \right) \quad (91)$$

882 for some hyperparameter λ . Therefore,
 883

$$\frac{d}{dt}\delta_t \leq [-2\rho(T-t) + 2g^2(T-t)(L + \lambda)]\delta_t + \frac{\epsilon_{\text{score}}^2}{2\lambda}g^2(T-t). \quad (92)$$

885 Then we can define
 886

$$I(t) := \int_{T-t}^T [-2\rho(s) + 2g^2(s)(L + \lambda)]ds, \quad (93)$$

889 so when we apply Grönwall's inequality, we have
 890

$$\delta_T \leq e^{I(T)}\delta_0 + \frac{\epsilon_{\text{score}}^2}{2\lambda} \int_0^T g^2(t)e^{I(T)-I(T-t)}dt. \quad (94)$$

893 Finally, we get
 894

$$\mathcal{W}_2(p_0, \text{Law}(Y_T)) \leq \sqrt{\mathcal{W}_2^2(p_T, p_{\text{noise}})e^{I(T)} + \frac{\epsilon_{\text{score}}^2}{2\lambda} \int_0^T g^2(t)e^{I(T)-I(T-t)}dt}. \quad (95)$$

897 We again can apply the Wasserstein-2 distance to our setup. In particular,
 898

$$I(t) = \int_{T-t}^T [-2\rho(s) + 2g^2(s)(L + \lambda)]ds \quad (96)$$

$$= \int_{T-t}^T [\beta_s + 2(L + \lambda)\beta_s]ds \quad (97)$$

$$= (1 + 2(L + \lambda)) \int_{T-t}^T \beta_s ds \quad (98)$$

$$= (1 + 2(L + \lambda))(\alpha_T - \alpha_{T-t}). \quad (99)$$

900 Thus, $I(T) = (1 + 2(L + \lambda))\alpha_T$. Additionally,
 901

$$\mathcal{W}_2^2(p_T, p_{\text{noise}}) = \mathcal{W}_2^2(\mathcal{N}(m_T x_0, v_T I_d), \mathcal{N}(0, I)) \leq m_T^2 \mathbb{E}[\|x_0\|^2] + d(\sqrt{v_T} - 1)^2. \quad (100)$$

902 Since $m_T = \exp(-\frac{1}{2}\alpha_T)$ and $v_T = 1 - \exp(-\alpha_T)$, we have
 903

$$\mathcal{W}_2^2(\mathcal{N}(m_T x_0, v_T I_d), \mathcal{N}(0, I)) = \exp(-\alpha_T)\|x_0\|^2 + d \left(1 - \sqrt{1 - \exp(-\alpha_T)} \right)^2. \quad (101)$$

904 We conclude
 905

$$\begin{aligned} \mathcal{W}_2^2(p_0, \text{Law}(Y_T)) &\leq (e^{-\alpha_T} \mathbb{E}[\|x_0\|^2] + d(1 - \sqrt{1 - \exp(-\alpha_T)})^2)(e^{(1+2(L+\lambda))\alpha_T}) \\ &+ \frac{\epsilon_{\text{score}}^2}{2\lambda} \int_0^T \beta_t e^{(1+2(L+\lambda))\alpha_t} dt. \end{aligned} \quad (102)$$

918

Remark 5. *Similar to Kwon et al. (2022), we assume an L^∞ bound on score matching, and if we were to assume instead an L^2 bound, the result still holds as long as the score regularity in Assumption 3 is applied to the learned score instead of the Stein score function. For an L^2 bound on the score matching, see Gao et al. (2025).*

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971