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ABSTRACT

We propose a two-stage pipeline for high dimensional time series generation: (i)
nonparametric kernel estimation for the conditional first and second moments of
the underlying data increments to recover residuals, and (ii) score-based diffusion
model trained on these residuals. We derive finite-time convergence estimates for
reverse-time sampling in both total variation (TV) and Wasserstein-2 (Ws), with
explicit dependence on the variance preserving noise schedule. Experiments on
synthetic multivariate processes validate: (a) empirical TV and W5 track the the-
oretical upper bounds, and (b) Monte Carlo estimates of test functionals achieve
the predicted standard errors.

1 INTRODUCTION

Time-reversed diffusion models have emerged as an interesting approach to generative modeling
(Sohl-Dickstein et al.| (2015);|Song & Ermon|(2019); Ho et al.[(2020);|Song et al.|(2021))), achieving
significant empirical success in image, audio, and text synthesis, of which DALL-E and SORA are
perhaps the most well-known examples. There are two main types of diffusion models: denoising
diffusion probabilistic models (DDPMs) (Ho et al.[(2020), Dhariwal & Nichol|(2021))) and denoising
diffusion implicit models (DDIMs) [Song et al.[ (2020), in which the diffusion processes are non-
Markovian. We utilize DDPMs to motivate our methodology.

DDPMs are comprised of a forward process and a reverse process. The forward noising process is
characterized by a stochastic differential equation (SDE) initialized using the empirical distribution
of a data sample. The forward distribution is often chosen to be ergodic, with a known stationary
distribution, typically Gaussian. Given the forward process, we can construct a corresponding time-
reversed process, called the denoising process. To generate samples from the target data distribution,
we simulate the reverse process starting from an L.I.D. initialization with a Gaussian distribution.

Related work. Generative modeling for multivariate time series poses multiple challenges, partic-
ularly preserving complex temporal structure. It is not enough to learn the marginal distribution or
even the joint distribution without exploiting the sequential nature of the data. We instead require
a conditional generative model that generates each observation considering the past observations.
Recent time-series generators have introduced more powerful techniques involving Generative Ad-
versarial Networks (GANSs) |Yoon et al.| (2019)) and Variational Autoencoders (VAEs) Biihler et al.
(2020). Diffusion models have also driven much of the progress for time series tasks such as impu-
tation and forecasting (Rasul et al.| (2021), Kollovieh et al.| (2023), Yang et al.|(2024), |Yuan & Qiao
(2024), |Su et al.| (2025)).

Contributions. We introduce an algorithm that involves a Nadaraya-Watson kernel estimator to
decompose the time series into its conditional mean, covariance and residuals, followed by training
a score-based diffusion model on these extracted residuals. Our convergence analysis is complimen-
tary to recent work on (i) generalization of learned scores |Stéphanovitch et al.|(2025)), (ii) regularity
beyond log-concavity (Stéphanovitch| (2025), |Gentiloni-Silveri & Ocello| (2025)), and (iii) explicit
KL/W, for score-based generative model families |(Conforti et al.| (2024) and noise-schedule sensi-
tivity analysis |Strasman et al.| (2025). The TV and W, bounds that we provide are novel in that
they make the dependence on the noise schedule explicit and decouple initialization, score, and
discretization errors via a Gronwall coupling.
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2 DESCRIPTION OF ALGORITHM

Let X;, € R? denote the observations, where t, = kAt, k = 1,..., N with At timesteps. We
seek to estimate the first and second conditional moments of the data:

. 1

u(x) = AI%ILlO E]E[AXt | Xi = ] (1)
. 1

a(z) = A111‘/130 ECOV(AXt | X; =), (2)

where a(r) = o'o(z) € R?9 is the conditional covariance matrix of the increments. To do

this, we utilize the Nadaraya-Watson kernel estimator Nadarayal (1964); Watson| (1964); Nadaraya
(1970). The estimators are given by:
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where W (z) = At Zszl K (z — Xy,) for Kp () kernel function with bandwidth h, and AX;, =
Xty — Xt,,- The bandwidth h is chosen in a locally adaptive k nearest neighbors manner. Define
now o (x) as a Cholesky square root of a(z):

51 ()6 (x) = a(x) )

We may define the residuals
o =T (X AR - Al ©

Remark 1. Note that, as the square root of the matrix a is only defined up to a rotation, we cannot
hope to recover a consistent estimator of o(x) i.e that 6(x) — o(x). However, as we will see, under
high-frequency asymptotics on the observed path we will typically have a(x) — a(z) i.e. we recover
o(x) up to a (local) rotation. This means we cannot interpret the €., as a “filtering” of the noise
terms, but these residuals allow us to recover, asymptotically, the second order structure of ;.

Remark 2. Our nonparametric estimation captures temporal dependence to the extent it is included
in the conditioning set. In the simplest implementation, we use the current state X; as the kernel
input, which yields an effectively first—order Markov model in X;. For non-Markov dynamics it
is natural to augment the kernel input with lagged covariates S; = (Xy, X¢—1,..., X4—p+1) for
lag length L, and to restrict the kernel weights to past observations only by using an adaptive
k—nearest-neighbour bandwidth.

Once these residuals are filtered, we may feed it into the score-based diffusion model for generating
new samples. We use a time dependent Ornstein-Uhlenbeck (OU) process for the forward SDE:

dX; = _%5tXtdt+\/Eth

(7
XO ~ Do,

where [3; is a time-dependent function. Let us define oy = fg Bsds. Then the reverse SDE is given
by
dy; = %BT—tY;sdt + Br—:Vlog pr—(Yy)dt + \/Br—dWy,

3
Yo ~ N(mrzo,vrl),

where m; = exp(—%at) and v; = 1—exp(—ay). Note that X 4 my Xo++/vre where e ~ N (0, 1),

so that the exact score function is

miZTo — T i_L_ 9)

Vlogptm(x | 20) = u ot
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We define a score network —,/v; - sp(X¢,t) that then predicts the noise e from the noisy data

|

d - . Lo
X, = myXo + /vee. Then the denoising score matching objective becomes

2
miXg—x €
]EIONPde-TNPtD|: - U(jt 759(Xt7t) } EfﬂowpdeewN(OJ)[ 59(mtX0+VUt€ﬂt)+\/E
(10)

See Appendix [A] for background on score-based diffusion models. Algorithm[I]outlines the kernel
estimation, residual extraction, and score-based diffusion model training, all which occur offline. We
use [9] as the conditional target for training our score network. Algorithm [2] outlines the generation
of synthetic data samples.

Algorithm 1 Kernel estimation, residual extraction, and score model training

Input: Observations X;, € R? with k = 1,..., N where t;, = kAt, AX;, = Xy, — Xy

K

forz €D C R%do > Kernel Estimation
Compute weight denominator W (z) = At Zszl Kp(x — Xy, ) for Kj(x) kernel function
with bandwidth h. N
Compute ji(z) = 2= Khéi(_;)(""'mxt’“ )
Compute a(z) — Thoa Kh(x—th)(A;{Vt&;ﬂ(z»(utk—ﬂ(z)f
Compute 7(x) = CholeskySqgrt(a(z)).

end for

for K =1to N do > Residuals
€t = aT(th)_l[Ath - ﬁ(th)]

end for

> Offline: learning to generate the residuals
Precompute noise schedule 5, = S1.! 5L, m: = exp(—0.5 f; Bsds), and v; = 1 —m(t)%

while current_iteration < Max_iterations do
Sample a minibatch {xéb), be B} c{&,,k=1,...,N}, (t®) ~ UNIF[0,1],b € B).
For b € B, set :cgb) = mt<b)m(()b) + /Uy 2 where (2() ~ N(0,1),b € B) are IID.
Compute “score targets” u, = —2z*) /\ /v, = V1og pyo (a:ﬁb) | J:(()b)).
Compute batch loss function

1
£(0) = g 3 Ion(al? 1) — 2
beB

Update 0 <— 60 — nVoL(0).
end while
Outputs: /i, & and trained score function s

Algorithm 2 Generation of sample paths from trained model
forj=1,...,Ndo
Simulate discretized paths for the (reverse) SDE on the grid (u; = i/m,i =0,...,m).
Y() ~ ]\/'(?’llT)(()7 ’UTI)
fori=0,...,mdo

1 /1 . N

iid
~

N(0, 1)

end for
/E\j «— Yr
end for o . .
fOI'j = 1, ...N—-1do th+1 = th + ﬁ(th)(t]_;,_l — tj) + E(th )gj
end for

return Synthetic samples {)/(;, k=1,...,N}
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3 CONVERGENCE ANALYSIS

3.1 TV AND WASSERSTEIN CONVERGENCE

When examining the convergence of the reverse process, we start by making the following assump-
tion regarding score matching:

Assumption 1. For some 0 < t < T, €gore > 0, we have access to score estimates sq(+) satisfying
Ept [HS@(Xt, t) -V logpt(Xt7 t)||2] < 62

— score*

De Bortoli et al.[(2021)) provided a first bound for TV (Law (Y7 ), po(-)), with the work of (Chen et al.
(2023)) improving the bound to be polynomial in dimension d and time 7". From Assumption |l{and
Chen et al.| (2023)), if we apply the total variation distance to our setting, we obtain

/ 2
TV(LaW(YT)apO(')) < WTW + 6score\/?- (11)

We expand our convergence results by including Wasserstein bounds. First, we can make a stronger
assumption on the score matching, i.e.

Assumption 2. For some 0 <t < T, €5ore > 0, we have access to score estimates sq(-) satisfying
Ept[HSG(Xtvt) — Vlog pi (X, t)[loo] < €score-

We require an additional assumption on the growth of the drift coefficient and regularity of the score
function:

Assumption 3. Consider the forward SDE equation|[32} Then
© 3 p(t) : [0,T) — R such that (x — y)(f(w,1) — f(y.1)) = p(t)]x — I

* Lipschitz score, i.e. 3 L > 0 such that |V log p:(x) — V1og p(y)| < Llz — y|.

Theorem 1 (Wasserstein bound on W3 (pg, Law(Y7))). Provided Assumptions [Z] and 3| hold, and
for hyperparameter A > 0,

W (po, Law(Yr)) < (e E[[|z0*] + d(1 — /1 — exp(—ar))?) (e H2EFD)ar)

62

T
+ s2c§\re Bte(1+2(L+)\))atdt' (12)
0

A derivation of the TV bound and proof of Theorem|I]are provided in Appendix [B]

3.2 DECOMPOSING KERNEL AND DIFFUSION ERRORS

The reverse-time bounds above are stated for an idealized setting in which we have direct access to
the “true” residual distribution. In practice, however, we do not observe the true drift and diffusion
coefficients p(x) and a(z). Instead, we form nonparametric estimators fz(x) and a(z) and construct
residuals using the corresponding Cholesky factor o(z) of a(x). To make this explicit, fix a time
grid t;, = kAt and let the true residuals be

a) = o(X,) T AXE — u(X()), (13)
and the empirical residuals used in training be

a = s AN - A (14)
Let pg™ denote the law of the true residuals (restricted to the finite collection of increments used
in the diffusion stage), and let pi*® denote the empirical law of the kernel-based residuals €. In the
reverse-time analysis above, the initial law pg enters only through its second moment and its role as
the starting distribution at time zero. In particular, Theorem [I] applies to any choice of initial law.

We can therefore view the actual training procedure as applying Theorem|[I|with py = pi’®, and then

relate p{™® and pi°® via the triangle inequality in W.

Assumption 4 (Kernel residual approximation). There exists a constant €y, > 0 such that
Wa (p{)esv %es) < €ker- (15)

Moreover, €xer — 0 as the number of observed paths and time steps tends to infinity under the
high-frequency, large-sample regime used to motivate the kernel estimators [i and a.
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Assumption [ is a compact way of summarizing the stage-one nonparametric error: it captures in
a single quantity the combined effect of estimating the conditional mean and covariance and then
mapping increments to residuals via the estimated Cholesky factor.

Let pie® be the law of the true residuals and pf® the law of the extracted residuals used in training.
Suppose Assumption [2] holds with respect to the forward marginals of p*® and that Assumption
holds for the variance-preserving OU forward SDE. Let Law (Y5 denote the terminal law of the
reverse-time SDE driven by the learned score network trained on pi*®. Then, under Assumption
we have
Ws (pi, Law (YY) < €xer < Wa (D, Law (Y£)), (16)
and consequently
W3 (py®, Law (Y/)) < 2 €., + 2W3 (P5, Law (YFT)). (17)
~res

Furthermore, the second term on the right-hand side can be bounded by Theorem [1|with py = pi®,
yielding

W22 (pges’ LaW(qufer)) < QGﬁer + 2[(e—aT E%OS[ -r0||2] + d(l 1= e_aT'>2) e(1+2(L+>\))OcT

(18)
2 T
+ €score / ﬁte(l—&-Q(L-i-/\))at dt:| ) (19)
22 Jo
Proof. The first inequality is the triangle inequality for Ws:
Wa (p5™, Law (Y1) < Wa(pi™, 56™) + Wa (B, Law(Y7*™)), (20)

and the second follows from the elementary inequality (a + b)? < 2a? + 2b2 for a,b > 0. As-
sumption [d]identifies ey, with the first term, and the bound in Theorem [I]applies exactly to the pair
(P&, Law (Y£")), because the proof of Theorem only requires Assumptions [2|and [3|to hold for
the forward marginals of the initial law used in training.

Remark 3. An analogous decomposition holds in total variation. Let D'S° denote the forward-time
marginal obtained by evolving pi*® under the OU forward SDE. Then

TV(pBeS,Law(lefer)) <TV(ps®,py°) + TV(@“{)ES,Law(Y%‘”)), (1)

and the second term can be controlled by the same TV bound as in with po replaced by py™. In
this way, stage-one kernel smoothing error appears explicitly as an additive term in both the Vs
and total variation guarantees, rather than being implicitly absorbed into the score matching error.

4 EXPERIMENTS

4.1 DETAILS OF NUMERICAL EXPERIMENTS

In the numerical experiment in this section, we will use the time-dependent “variance preserving”
OU process from Section m We now assume that we have N samples {z"}"_, from our target
distribution pg. The empirical measure

1 N
po =D dur (22)

n=1

is an approximation to pg. If we start the forward SDE in pg, we get marginals p, defined below,
where we apply the transition kernel to each data point in the empirical distribution 2™ at time 0 to
x; and then average over all transition probabilities, as the empirical distribution at time ¢ can be
approximated by the mean of the distributions resulting from diffusing each of the original N data
points according to the process:

N
1
Pe(we) = N E Pejo(we | ™), (23)
n=1
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which is just a Gaussian mixture with N components, one for each sample 2™. The components are
centered at m;x™ and have variance v;. These empirical marginals can actually be evaluated (unlike
the unknown p;). The reverse SDE is given by [§] We implement it using the Euler-Maruyama
scheme. To advance the SDE by At, we compute the following iteration:

1
it1 — Lt i+1 — U SPT—tte; - - i - i+1—ti
Vi = Vi {11 = ) (GBr-a¥i o+ iV lowpros(¥i) ) +VBroiZoiors 24)

where Z;,, _, are independent with distribution Z;,, ¢, ~ N(0,Z;,,,—¢,I). We will run the
forward SDE until time 7' = 1. Then the time interval for the backward SDE is also [0,T]. We
discretize this time interval into (¢;)%_ ;, ¢, = 0,¢7, = 1 and run the above scheme. We use L = 1000
steps of the reverse SDE; in practical applications, we might try to reduce the number of steps.
Additionally, we use a geometric noise schedule for 5;:

Buin "
B = Baax Bhin = Brmax < ﬁ‘“‘“) . 25)
max
In practice, we discretize over R = 10 steps, so that
Brmi AT
ﬁr = ﬂmax <an 5 (26)
max

forr =0,..., R — 1. We can now plug in the empirical drift V log p; into the reverse SDE and run
it. The result is the exact reverse SDE for the data distribution py = pg. Recall that we can exactly
recover po. Since py o is Gaussian we can evaluate the gradient as

T — mexol?
Viogpio(x | zo) = Vlog <(27rvt)d/2 exp (— |2vf0”>) 27)
t
B d |z — mexol|?
=V { ~ 5 log (2muy) — B e (28)
_ (x — myxo) . 29)
Ut

Since we do not have access to V log p;, we approximate it using a neural network and The
objective is[50} and if we let

L(0,1) = EopmpouaFamp, o (alzo) IV 108 Prj0(2 | 20) = so(z,1)[%] (30)

then we need to optimize the network for all ¢, not just one specific ¢, and therefore use

L(9) = Eyopo)[L(6,1)]. 31)

This loss can now be approximated by randomly choosing data points from the training batch (as
samples from py and also randomly generating times ¢ ~ [0, 1]).

The score-based diffusion model is a four layer feed-forward network, and it consists of a linear
projection with a GELU activation and a learnable embedding layer, followed by a three layer feed-
forward network with dropout-regularized GELU activations. Optimization is Adam (learning rate
5 x 1073), batch size is 128, and training is run for 10000 iterations. Reverse-time sampling uses
Euler-Maruyama with step sizes scaled as u; and Ty, = 200 inner steps. It is trained on the fil-
tered residuals using denoising score matching and the exact Gaussian conditional target for the
marginals.

4.2 SYNTHETIC MULTIVARIATE TIME SERIES

For our first experiment, we test a multivariate time series — a vector AR(1) process where a mixture
of Gaussians generates the innovations. We define ¢ = {¢1, g2} € R¥*? to be the AR coefficient

matrix. Then we define g; ~ Zkkzl 7N (x, X) to be the innovations, where p;, € R? and
¥, € R¥¥4 are the mean and covariance for each mixture component & = 1,..., K. Therefore,



Under review as a conference paper at ICLR 2026

83 \
=
B
815 8
5 =—— TV empirical bound @ 2
3 TV theoretical upper bound o
= 10 n Al
= 84 T W2 empirical bound
K] W2 theoretical upper bound
0.5 =
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
lteration lteration
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(c) Density plots of ground truth residuals versus residuals generated by the score-based diffusion model.

Figure 1: and are plots for the theoretical versus empirical Total Variation distance and
Wasserstein-2 distance through training iterations. shows 3d surface plots and heat maps of
the generated residuals (left) versus the ground truth residuals (right).

each path evolves as X; = ¢X;_1 + ;. We simulate data in d = 20, 30,50 dimensions with
T = 1000, 2000, 5000 time steps.

In Figure |1} we report (i) empirical Total Variation and Wasserstein-2 bounds between ground
truth and generated residuals, and (ii) plots of the first two components of the ground truth
and generated residuals, while Figure [2] shows scaling plots for d = 20,30, 50 dimensions and
T = 1000, 2000, 5000 time steps. We do note some metric-dependent behavior; W5 is dominated
by matching low-order moments and overall mass transportation cost. As the score network learns,
these improve steadily, hence the clear decreasing trend. TV is more sensitive to localized density
mismatches and tail behavior, which are harder to estimate reliably in high dimension from finite
samples; its empirical estimator thus has higher variance. In our implementation, the TV estimator
is based on a plug-in approach using a finite number of samples and bins; for large d this can be
noisy. The theoretical upper bound|[T1]is driven by score error and noise schedule and is not tight in
finite-sample TV.

Table [T| shows results of lag and bandwidth sensitivity studies, and Table 2] probes Cholesky factor
ambiguity. In particular, we conducted:
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* We conducted a lag-sensitivity study, conditioning the kernel estimator on [X;, X; 4], and
[X¢, Xt—1, X+ 2]. The Ly norm of the conditional mean decreased from 0.853 to 0.725
and the mean residual standard deviation from 2.997 to 2.961, indicating only mild gains
beyond a first-order Markov state. Thus, the original Markov assumption is empirically
sound in our setup.

* We performed a bandwidth sensitivity study for the multimodal kernel estimator on the
AR-mixture process. For bandwidths 0.25, 0.5, 1.0, the Lo change in i relative to the
reference (0.25) is 0.52 and 0.72, indicating moderate smoothing effects, but the residual
skewness and kurtosis remain stable. This suggests that the residual distribution’s non-
Gaussian features are robust to bandwidth choice.

* We probed the Cholesky ambiguity by rotating the residuals with random orthogonal ma-
trices and comparing covariances. For several rotations (r = 0, 3), the covariance stays
very close to the original | X, — Zpuse|| F < || Zbase|| 7> Where ||| F is the Frobenius norm

of the covariance implied by rotation r and ||Xpse|/ 7 is the Frobenius norm of the base
covariance (constant across ). However, extreme rotations (r = 2,4) can change it more
substantially. Since our implementation uses a fixed Cholesky convention, the diffusion
model always sees a single, consistent residual distribution, and our experiments indicate
that its second-order geometry is reasonably stable under typical rotations.

Table 1: Kernel lag and bandwidth sensitivity diagnostics

(a) Lag sensitivity (fixed bandwidth)
Lag L | ||ft]|z> | mean std(e)

1 0.853 2.997
2 0.767 2.965
3 0.725 2.961

(b) Bandwidth sensitivity

h | ||t — petll2 | E[skew(e)] | maxskew(e) | E[kurt(e)] | maxkurt(e)

0.25 0.000 0.625 0.635 -0.760 0.790
0.50 0.518 0.685 0.688 -0.863 0.879
1.00 0.723 0.699 0.699 -0.910 0.920

Table 2: Cholesky factor ambiguity: effect on implied covariance

Rotation index | [|Z,][r | || = Shasellr | [[Sbasellr

0 11.967 0.744 12.711
1 10.453 2.258 12.711
2 33.594 20.883 12.711
3 12.905 0.194 12.711
4 2.138 10.572 12.711

Table [3| shows expectations of test functionals f ()A( ) as targeted probes of the generated samples
against analytic oracles computed directly from the (known) data generating process along with
their Monte Carlo standard errors. In particular, we utilize 3 test functionals:

* max_component: to test extreme value behavior across dimensions,
* basket: alinear average across dimensions to test first moment, and
* basket _put: max (K — basket, 0) to probe tail behavior.

To assess sampling variability, we subsample n draws from the model repeatedly and check that

both the empirical standard deviation and the within-batch standard errors scale like ﬁ Thus, we

include standard deviation X+/m in the table and show it is roughly constant across 7.
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Table 3: Oracle versus expectations of test functionals

Functional n Oracle | Model Mean | MC Std. Error | Std. Deviation xX/n
max_component | 2000 1.588 1.862 0.071 0.112
4000 1.588 1.868 0.050 0.116
8000 1.588 1.860 0.035 0.118
basket 2000 | -7.988 -11.050 0.052 0.140
4000 | -7.988 -11.051 0.037 0.125
8000 | -7.988 -11.055 0.026 0.137
basket_put 2000 | 107.988 111.054 0.039 0.109
4000 | 107.988 111.051 0.027 0.119
8000 | 107.988 111.050 0.019 0.117

Scaling of kernel stage in T Scaling of kernel stage in d

801 80 4

60

60

40 1 40

Kernel runtime (seconds)
Kernel runtime (seconds)

lObO leO 2060 25:30 30:30 3560 40‘00 45‘00 5060 Zb 25 3‘0 35 4‘0 4‘5 5‘0
T (time steps) d (dimension)

Figure 2: Scaling curves across 7" = 1000, 2000, 5000 time steps and d = 20, 30, 50 dimensions.

5 DISCUSSION AND FUTURE WORK

Our study focuses on generating high-dimensional processes, and the convergence results derived
under strong regularity assumptions. Empirical TV and W5 distances were upper-bounded by their
theoretical bounds, with deviations decreasing over training iterations, suggesting our convergence
estimates are informative in practice. The agreement of expectations of the test functionals with their
analytic oracles demonstrates the method preserves essential first and second-order structure. The
surface plots confirm that the generated residuals capture the geometry of the ground-truth residuals.
Notably, the model successfully recovers multimodal residual distributions.

Further work is required to assess robustness as well as comparison to baselines such as time-series
DDPMs, latent-SDE, and conditional diffusion. Additionally, conducting stress tests where the
kernel stage is misspecified, rare-event checks, and specifying downstream tasks would help expand
benchmarks/evaluation.
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A  BACKGROUND ON SCORE-BASED DIFFUSION MODELS

In Section [T} we introduced the idea of time-reversed diffusions. Below, we state the property for
clarity. Consider the following well-defined SDE:

dXt = f(Xtat)dt+g(Xt7t)th

32

Xo ~ po e

f and g satisfy local Lipschitz continuity and linear growth conditions, so the existence of p; is
guaranteed. Additionally, p; is differentiable and strictly positive, provided that g(z,t)g(x,t) "

positive definite. Starting from the density pr, we expect that running X in reverse time would

generate samples from the density py. This time reversal property of diffusions is a well-known fact

in stochastic analysis (Anderson|(1982), Haussmann & Pardoux|(1986), [Follmer| (2005))).

Proposition 1 (Time Reversal [Haussmann & Pardoux| (1986)). Consider the SDE Let Y; =
Xp_¢fort € [0,T], T > 0. Then, under the conditions outlined above, Y is a diffusion process
with drift given by

div(pr—t(x) - a(x, T —t))

f at = - 7T —t)+ ) 33
fwt) = ~7@ 1) e 63)
where a(x,t) = g(x,t)g(z,t) . Expanding the divergence term component-wise,
d
. i 9 ij
(@lpr-1(a) 0T =)' =3 55 rsw)a (.7 = 1) 64
=
d -
. (9PT +( o da" (x, T —t)
_ Z ax] (@, T = 1)+ prosfa) =55, (39)

<.
Il
—
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leads to the vector form
div(pr—i(z) - a(z, T —t)) = pr—¢(z) diva(z, T —t) + a(z, T — t)Vpr_i(x). (36)

Then
fz,t) = —f(z, T —t) +diva(z, T —t) + a(z, T — t)Vlog (pr_(zx)) (37)
satisfying 3
dv; = [V, t)dt+g(Y;, T —t)dW; 38)
Yo ~ opr.

Running the backward procedure will generate Y1 ~ pg at time T.

We note a few issues that arise if we want to run the reverse process: we do not have sample access
to pr the initial condition of the reverse SDE, and we do not know p;, which means we do not know
the drift V log pr_;. The easiest way to deal with the initial condition is to consider choosing f and
g such that X; converges to a prior distribution p.. This allows the initial distribution of the reverse
process to be Yy ~ po,. We want pr and p to be sufficiently close, so that the distribution of X
is close to pg. In practice, we choose the parameters so that the distribution p, is Gaussian. Then
we only need to compute V log pr_¢.

The task of estimating the score function V log p; (Ho et al.| (2020), Song & Ermon| (2019), [Song
et al.| (2021)) is score matching, and it involves reducing the estimation of the score function to
a supervised learning task. Score matching dates back to Tweedie’s Formula from the *50s |[Efron
(2011)). Essentially, we will see that estimating V log p; is equivalent to estimating the noise added.

Proposition 2 (Tweedie’s Formula). Given & = x + e for v ~ pand e ~ N'(0,02 - I),
E[z | #] = % + 0% - Vlog p(%)
where D is the density for .

Proof. Since e ~ N(0,0%I), the density of 7 is:
5@) = [ pla) - pali — ) dz, (39)

2 . . . . . . .
where p,(z) o exp <72z?> is a Gaussian with variance o2. The posterior expectation of = given

T is:
(T —x)d
Blr| 3] = [Pl 0)dn o0
T 9(@) po (6 — ) do
Taking the gradient of p,(Z — x) with respect to Z:
- rT—T
Vipe (T —z) = 7pg(x—x). 41
Differentiating the log of p(Z):
55 p()pe (@ — x) do
Vi logp(z) = —F - ) (42)
)= T e - vy ds
which simplifies to:
. Elz|z] -2
Vizlogp(z) = %. (43)
Rearranging this equation yields Tweedie’s formula:
Elz | ] = & + 0%V log (Z). (44)
O

We can consider V log p(Z) as the Bayes optimal estimate of the noise — hence given a noisy sample
X, the supervised learning task is to predict the noise added. In the following definitions, we
formalize the concept of score matching. We assume a collection of score estimates {sg(z, )} on
R? x R, parameterized by 6 — typically a neural network. The objective is to solve the following
optimization problem:

min &, [|[V1og pe(X1,t) — so(X1,1)[%]. (45)

This is not possible to calculate as we do not know V log p;(X¢,t). An alternative approach is that
of implicit score matching.
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Definition 1 (Implicit Score Matching). \Hyvdrinen|(2005) We compute
min B, [||sg (X1, 1) 12 + 2V sg (X4, 1)) (46)

However, implicit score matching may be computationally complex if the dimension d is very large
— gradient descent methods would not be efficient as the computation of the gradient of the score
network scales linearly in the dimension. The method of denoising score matching is one possible
approach when working with high-dimensional data.

Definition 2 (Denoising Score Matching). |Vincent| (2011)) We condition X; on X, replacing
V log pi (X, t) with V 1og pyjo(X: | Xo):

HgnExo'\fpdameNp”o(wlwo) [HVIngt\O(x | Q:O) - Sg(x, t)HQ} 47)

To show the equivalence between 45| and we start with the standard objective, expanding the
squared norm:

Ep, [[V1ogpi(Xy) — so(X, 1) [I] = Ep, [IV1ogpe(Xe)[?] — 2E,, [(Vog pe(Xy), so(Xy, t))]
+Ey, [lso(Xe, 1)) . (48)

Now, we note that the marginal score in the cross-term can be replaced by the conditional score:

Ep, [(V1og pi(Xy), s6(Xi,t))] = Ewo~p0E1~pt\o(:v\ro) RV IngtIO(x | xO)aSG(m>t)>] . (49)

Given that E,, [||Vlogp:(X,)||?] and E,, [[|se(Xy,t)||?] are both unaffected by the conditioning
on Xy directly, we can rewrite the entire objective incorporating this conditioning:

By, [IV10gpe(X) = 50(X0; %] = BagpBanpyyoatzo) [V 108 P10 (@ | 20) = so(w, 1)),
(50)

which is exactly the denoising score matching objective. To reiterate, the goal of denoising score
matching is to show that the score function of some “noisy” sample should move to a clean sample
gradually. We saw that the conditional distribution p,|o(X; | Xo) should be something simple,
ideally Gaussian.

B PROOFS OF CONVERGENCE

From Assumption E] and |Chen et al.|(2023)), we have

TV(LHW(YT)JUO()) S TV(p(Ta '>7pn0ise(')) + escore\/f- (51)

Recall the time-t transition kernel is given by

Peo(- | Xo = 20) = N (myzo, veI). (52)

In order to quantify TV (p(T, -), Pnoise(+))» we use KL divergence K L(N (m;Xo, v I)||[N(0, 1)) and
Pinsker’s inequality:

% <Tr(11vTI) + (0 —=mrXo)"I7H0 —mpXy) — d+ log (%)) (53)
= %(de+m%|X0\2 —d — dlog (vr))) (54)
= %(mQT|X0|2 —d(1 — v +log (v7))) (55)
= Sm3IXof? — d(m} + log (v7))) (56)
< %mQTXg as T — oo. &)
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Thus, E,,, [K L(N (mXo, v 1)||N(0,1))] < $m%X¢, so that

1 vE, [|Xo]?
TV(p(T7 ')7pnoise(')) S im%Epo[lXOP} S mTM- (58)

Therefore, the complete inequality is

/ 2
TV (Law(Y7), po()) < mTW + €sc0re\/§~ (59)

Remark 4. The term mr in the above bound depends on the integrated noise schedule apr =

fOT Bsds viamp = exp(f%ozT). For the variance-preserving OU schedule used in our experiments,
where [3; is positive and bounded away from zero on [0,T], ar grows at least linearly in T and
hence mr decays at least exponentially in T'. The first term on the right-hand side of the TV bound

/ 2
therefore behaves like exp(féaT) . w. The second term grows only like €g.ore \/2 . This

makes precise the trade—off between the choice of noise schedule, which controls how quickly the for-
ward process forgets its initialization, and the accuracy with which the learned score approximates
the true score along the reverse path.

One-sided Lipschitz condition. We see the one-sided Lipschitz condition in Assumption [3] holds
for our particular OU SDE, i.e. when p(t) = f%:

Flest) = f0) = 55— ) (60)
(0 =) (F(.8) ~ F(.1) = —3 Bl — 9)* = —3 Bulle — ol Q)

so the inequality
(@ =) (f(z.t) = f(y.0) = p(t)]w — yI? (62)

holds with equality when p(¢t) = —%. Since B¢ > Pmin > 0, we have p(t) < —% < 0, i.e. the drift
is contractive in the one-sided Lipschitz sense.

Lipschitz score assumption. We also show Lipschitz score for the synthetic data setting outlined
in Section 4] To begin, we assume the residuals at time O have a finite Gaussian mixture law

K
po(x) =Y m N (5 i, i), (63)

k=1

where 7, > 0 and Zszl T, = 1, up € RY, & € R¥9 are symmetric positive definite, and
all eigenvalues of Xy, lie in [Amin, Amax] for some fixed 0 < Apin < Apax < 00. Let X; satisfy

with B: continuous and bounded on [0, 7], and B¢ > Bmin > 0. Define oy = fot By ds,my =
exp(—ay/2),v; = 1 — exp(—ay) as before. Then, conditional on X, = x, we have:

X | Xo =20 ~ N(muzg, vl). (64)

For each mixture component k, we can track how it evolves: if at time zero
Xo | (component k) ~ N (g, Sg),

then
X, | (component k) ~ N (mypux, Si(t)),
with
Yr(t) = m? Yy 4o L. (65)
Because X, has eigenvalues in [Apin, Amax] and v; > 0 for all ¢ > 0, the eigenvalues of X () stay

in a compact interval [A(t), A(¢)] with A(¢) > 0.
So for any fixed ¢t > 0:

K
pr(@) = Y me N (@ mup, Ti(t)) (66)

k=1
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is again a finite Gaussian mixture with non-degenerate (strictly positive definite) covariances. For
each component k at time ¢, the score is:

sp(x,t) = VilogN(x; mypr, Lk(t) = —Sk(t) ™1 (z — myup). (67)
This is an affine function in x, with constant Jacobian:
Vask(z,t) = —Sg(t) " (68)
Now we define the mixture density:
K
= > m (1), (69)
with ¢y (z,t) = N (z;mepg, Lg(¢)). The mixture posterior weights are:
Tk d)k (l‘, t)
wi(z,t) = —————. (70)
(z,1) (@)
Then the mixture score is:
K
st(x) = Vylogpe(x) = Zwk(x,t) sk(z,t). (71)
k=1
We can check this by differentiating:
Vapi(a Z i Voo (1) Z T o1 () i (2, 1), (72)
k=1 k=1

SO

si(x) = LV pe(x) = iwsk(x t) = iwk(:ﬂ t) sk(x,t). (73)
pele) o @) 7 k=1 ’ ,

To show the score s¢(x) is globally Lipschitz in x, we want to show the Hessian of log p;(x) is
bounded:

V2 log ps(x) has bounded operator norm for all z = s;(x) is Lipschitz.

A convenient formula is:

Vipt(x) Vapi(x) Vacpt(ﬂ”)—r

A% = - : 74
z ngt(z) pt(-T) pt(l‘)Q (74)
We know:

Vepi(z Zm ok (z,t) si(z,t) (75)

k=1

K
= ™ Vadn(z,t). (76)

k=1

For each Gaussian component, ¢y (, t) is smooth and its derivatives decay like a polynomial in ||z |
times exp(—c||z||?). The second derivatives V2 ¢y, (z,t) involve terms of the form

o (,t) (Ak(t) + By (t) (x — maypur) (z — mt,uk:)T) (77)
for some bounded matrices Ay (t), By (t) depending on ¥ (t). Because X (t) is uniformly non-

degenerate (eigenvalues bounded above and below for ¢ in a compact interval away from 0), those
matrices are uniformly bounded in operator norm. Combining:
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* p(z) is a finite sum of Gaussian densities with non-degenerate covariances, so p;(x) > 0
for all z, and it decays at least like exp(—c||z||?) at infinity.

s V.pi(x) and V2p,(x) are finite Gaussian mixtures of polynomials times Gaussians, so
they are bounded by constants times exp(—c||z||?) and exp(—c||z||?) ||z||?, respectively.

It follows that each term
Vipt(f) Vapi(z) prt(l")—r
pie(z) pe(2)?
is bounded in operator norm uniformly in x, for each fixed ¢ > 0. This is a standard property of

Gaussian mixtures with strictly positive-definite covariances. So for each fixed ¢t > 0, there exists a
finite constant L; such that

sup ||V logpt(x)Hop < L. (78)
z€R

Hence the score is globally Lipschitz:

|se(x) — s:(y)|| < L¢ ||z —y|| forall z,y € RY (79)

Now consider ¢ in a compact time interval [tg, T'] with ¢y > 0. On this interval:

¢ (3 is bounded above and below, so «; and thus my, v; are continuous and bounded.

* v = 1 — exp(—ay) has a strictly positive lower bound v,;, > 0 for ¢ > tg.

Therefore the eigenvalues of each
Yi(t) = miSy + v (80)

are uniformly bounded between strictly positive constants for all ¢ € [t, T], and so are the norms
of X (¢)~L. This implies all the constants that appear in the derivative bounds above can be chosen
independent of ¢ on that interval. So there exists a finite constant L such that

sup sup ||Vilogpt($)||op < L. (81)
te(to,T) x€R?

In particular, for all ¢t € [tg,T] and all z, y:
[s¢(x) = se(y)ll < Ll =yl (82)

That is exactly the global Lipschitz score condition you assume in the W5 convergence theorem.

Finally, to prove Theorem|[I] we proceed by using coupled SDEs and a Gronwall-type argument. We
will construct a coupling between A, the exact reverse-time diffusion (which uses the true score)
and By, the approximate reverse-time diffusion (which uses the learned score). Then we can bound
the Wasserstein-2 distance by

Wi (po, Law(Y7))* < E[| A7 — Br|]*]. (83)

We consider the same Brownian motion W; and define Ay ~ pr, By ~ Pnoise- We have the following
coupled SDEs:

{dAt = [~f(Ae, T —t) + g*(T — t)Vlog pr—i(Ap)]dt + g(T — t)dW, (84)
dBy = [=f(Be, T — t) + ¢*(T — t)sp(By, T — t)]dt + g(T — t)dW;
Define the coupling error by
8¢ .= E[||A; — B:||?]. (85)
Applying It6’s formula yields
d ~ _
&515 = 2]E[(At - Bt)(fA<t) - fB(t))]a (36)
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where f4(t) and fp(t) are the drift coefficients of A, and By, respectively. Decomposing gives us

d
55:& = —2E[(A; — B)(f(Ar, T —t) — f(B:, T — 1))] (87)
Cy
+2E[(A; — B)g*(T — t)(Viogpr—i(Ar) — s6(By, T —1))]. (88)
C2
By Assumption[3] we have
Cy < —2p(T — )3y (89)

Next, we again decompose C' to get
Csy = 292(T —t)(E[(A: — By)|(V1og pr—¢(A¢) — Viogpr—+(Bt))

+E[(As — B)|(V1ogpr—¢(B:) — se(By, T —t))). (90)
By Young’s inequality and Assumptions[2]and [3] we obtain
2
CQ S 292(T - t) (L(st + )\5t + EZ;\W> (91)
for some hyperparameter A. Therefore,
d 2
500 < [220(T = 8) +2°(T = )(L + N[5, + =592 g°(1' — 1), (92)
Then we can define .
16) = [ [-20(5) + 202 6)(L + A, ©3)
T—t
so when we apply Gronwall’s inequality, we have
2 T
6p < eI(T)% + Escore / 92(t>61(T)7I(T7t)dt' (94)
- 22 Jo

Finally, we get

2 T
Wa(po,Law(Y7)) < \/W22<pT7pnoise)€I(T) + %/ g2 (t)el (T —I(T-t)d¢, (95)
0

We again can apply the Wasserstein-2 distance to our setup. In particular,

T
1) = /T 22000 + 202 ()L + M 96)
T
= /T_ [Bs 4+ 2(L + \)Bs]ds 97)
—aaann) [ puds 98)
T—t
= (1+2(L + M) (ar — ar—t). 99)

Thus, I(T) = (1 + 2(L + A))or. Additionally,
WS(pT,pnoise) = W%(N(mem’UTId),N(O,])) < m%E[HxOHQ] + d(«/’UT - 1)2. (100)

Since my = exp(—iar) and vp = 1 — exp(—ar), we have
2
W2 (N (mrxo, vrly), N(0,1)) = exp(—ar)||zo|* + d (1 —V1- exp(—aT)) . (101)

‘We conclude
W3 (po, Law (Y1) < (e~ *"E[[lzo[|’] + d(1 — /1 — exp(—ar))?) (e F2EHM)or)

2

T
e [ gl ey, (102)
0
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Remark 5. Similar to |[Kwon et al|(2022), we assume an L*° bound on score matching, and if
we were to assume instead an L bound, the result still holds as long as the score regularity in
Assumption 3| is applied to the learned score instead of the Stein score function. For an L? bound
on the score matching, see|Gao et al.|(2025|).
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