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Abstract

We propose a new method, Adversarial In-001
Context Learning (adv-ICL), to optimize002
prompts for in-context learning (ICL). Inspired003
by adversarial learning, adv-ICL is imple-004
mented as a two-player game between a gen-005
erator and discriminator, with LLMs acting as006
both. In each round, given an input prefixed007
by task instructions and several exemplars, the008
generator produces an output. The discrimina-009
tor then classifies the generator’s input-output010
pair as model-generated or real data. Based011
on the discriminator’s loss, a prompt modifier012
LLM proposes possible edits to the genera-013
tor and discriminator prompts, and the edits014
that most improve the adversarial loss are se-015
lected. We show that applying adv-ICL results016
in significant improvements over state-of-the-017
art prompt optimization techniques for both018
open and closed-source models on 13 genera-019
tion and classification tasks including summa-020
rization, arithmetic reasoning, machine trans-021
lation, data-to-text generation, and the MMLU022
and big-bench hard benchmarks. In addition,023
our method is computationally efficient, eas-024
ily extensible to other LLMs and tasks, and025
effective in low-resource settings026

1 Introduction027

Generative Adversarial Networks (GANs) and ad-028

versarial learning (Goodfellow et al., 2014) have029

driven significant progress across a range of do-030

mains, including image generation (Goodfellow031

et al., 2014; Radford et al., 2015; Arjovsky et al.,032

2017), domain adaptation (Ganin et al., 2016;033

Tzeng et al., 2017; Xie et al., 2017; Louppe et al.,034

2017), and enhancing model robustness (Szegedy035

et al., 2013; Biggio et al., 2013; Carlini & Wagner,036

2017; Madry et al., 2018). At its core, adversar-037

ial learning frames training as a minimax game038

between a generator and a discriminator. The039

generator aims to generate output realistic enough040

that the discriminator classifies it as real (i.e., not041

generated), while the discriminator aims to accu- 042

rately differentiate between generator output and 043

real training samples. After each round, the param- 044

eters of both models are updated based on an adver- 045

sarial loss, and the process repeats. As the genera- 046

tor improves, the discriminator improves alongside 047

it, finding “weak spots" in generator output that 048

may go undiscovered in non-adversarial training, 049

ultimately resulting in better generator outputs. 050

Despite success in other domains, applying ad- 051

versarial learning to pre-training LLMs is imprac- 052

tical due to the data and computational overheads 053

associated with training two models. Particularly 054

for novel tasks where data is often scarce, it is de- 055

sirable to have methods that can improve model 056

performance using limited data. In this work, we 057

solve this problem by applying adversarial learning 058

to in-context learning (ICL) (Brown et al., 2020; 059

Chowdhery et al., 2022; Touvron et al., 2023a; Belt- 060

agy et al., 2022; Liu et al., 2023), which has shown 061

to be an effective method to improve model perfor- 062

mance with few training samples. Though, effec- 063

tive, ICL has shown to be sensitive to changes in 064

prompts (Deng et al., 2022; Pryzant et al., 2023). 065

We introduce Adversarial In-Context Learning 066

(adv-ICL), which applies insights from adversarial 067

learning to prompt optimization for ICL. adv-ICL 068

keeps model parameters fixed and instead updates 069

model prompts in an adversarial manner. This alle- 070

viates compute and data requirements, while still 071

allowing improvements in model performance. 072

adv-ICL uses an adversarial objective and three 073

main modules, implemented as LLMs, to optimize 074

a model’s prompt for a given task, as shown in Fig- 075

ure 1. The first module is a generator (G), which 076

is tasked with generating realistic, task appropriate 077

output given a task instruction and an input. The 078

second is a discriminator (D) which has the goal 079

of classifying its inputs as real or produced by G. 080

Finally, there is a prompt modifier M which is re- 081

sponsible for updating the prompts to G and D. As 082
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Prompt (U )

Generator (GU ) Generated
sample Discriminator (DV )

Prompt (V )

Input Output Adversarial Loss
GU ↓ DV ↑

Modifier (M )Real sample

Stage 1
The generator generates an
output given an input and
task-specific prompt.

Stage 2
The discriminator clas-
sifies the input as real or
generated

Stage 3
The prompt modifier
modifies prompts U
and V

Figure 1: adv-ICL orchestrates a minimax game between a Generator and a Discriminator, both powered by LLMs with few-shot
prompts. The Generator crafts responses to unlabeled examples, while the Discriminator distinguishes between generated and
ground truth outputs. Updates are made by a Prompt Modifier which modifies prompts based on the adversarial loss.

in typical adversarial learning, the learning objec-083

tive is set up as a minimax game between G and D.084

In each round, G produces an output based on an085

input and a prompt consisting of a task instruction086

and several example inputs and outputs. D then087

classifies the pair constructed of the original input088

and G’s output as generated or real. Finally, M089

produces a number of possible updates to G and090

D’s prompts, the updates that most improve the ad-091

versarial loss from D’s classification are selected,092

and the procedure repeats. Through this iterative093

update procedure adv-ICL is able to improve G’s094

prompt, improving task performance.095

We evaluate adv-ICL on 13 tasks with various096

open and closed-source LLMs, finding that adv-097

ICL outperforms other prompt optimization tech-098

niques by large margins across model configura-099

tions and tasks. For instance, we increase the accu-100

racy of ChatGPT (OpenAI, 2022) from 71.0% to101

74.0% on MMLU (Hendrycks et al., 2021), 79.9%102

to 82.3% on GSM8K (Cobbe et al., 2021), and103

72.1% to 74.0% on BBH (Suzgun et al., 2022). Im-104

portantly, adv-ICL requires very few iterations and105

training samples, increasing performance signifi-106

cantly after only five rounds of training on twenty107

data points. Finally, adv-ICL is easy to implement,108

encouraging its use in real-world applications.109

2 Adversarial In-Context Learning110

2.1 Background: In-Context Learning111

Large Language Models (LLMs) (Brown et al.,112

2020; Chowdhery et al., 2022; Touvron et al.,113

2023a; OpenAI, 2023) have demonstrated strong114

downstream task performance through condition-115

ing on a small number of demonstrations in the116

input prompt, a paradigm referred as in-context117

learning (ICL) (Beltagy et al., 2022; Liu et al.,118

2023). ICL streamlines the adaptation of a general-119

purpose LLM to a specific task without the need120

Prompt (V ):
Judge if the answer is correct
ground truth or generated fake
answer
Input:
Arrabbiata sauce | ingredient |
Tomato
Output:
Arrabbiata sauce includes toma-
toes.
Is the above output ground
truth?
(A) Correct ground truth
(B) Generated output.
The answer is:
(A) Correct ground truth

I

x1

y1

z1

Figure 2: An example of a task prompt for the discriminator
DV with prompt components labeled.

for feature engineering or additional model train- 121

ing. Formally, given a specific task, consider 122

an LLM GU (the generator), driven by a prompt 123

U = (IG, xG1 , y
G
1 , · · · , xGk , yGk ), where IG is the 124

task instruction, xGi is a sample input, and yGi is 125

the corresponding sample output. GU ’s output for 126

a new input x, then, is determined by the instruc- 127

tion and the exemplars in U , making the choice of 128

U crucial in determining GU ’s downstream perfor- 129

mance (Deng et al., 2022; Pryzant et al., 2023). 130

2.2 Adversarial Training Objective 131

adv-ICL optimizes the generator’s prompt using an 132

adversarial approach inspired by GANs (Goodfel- 133

low et al., 2014)—in particular cGAN (Mirza & 134

Osindero, 2014) and BiGAN (Donahue et al., 2016) 135

where the discriminator deals with the conditional 136

and joint distribution of an input and output. As 137

for GANs, it is essential to optimize both the dis- 138

criminator and generator in the adv-ICL framework 139

concurrently, to make sure they reach a desired op- 140

timal state. To assess the output of GU , we employ 141

a discriminator, DV , which attempts to classify 142

GU ’s output as real or generated. 143

Like GU , DV is an LLM driven by a prompt 144
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V = (ID, xD1 , y
D
1 , zD1 , · · · , xDk , yDk , zDk ), where145

ID is a task instruction, xDi a sample input, yDi146

its corresponding output, and zDi a label of “real”147

or “generated” representing whether yDi is from a148

real sample or generated by GU . DV uses a GAN-149

inspired loss function J , formally defined as:150

J (DV , GU ) = Ex,y∼pdata log
(
DV (x, y)

)
+ Ex∼pdata log

(
1−DV

(
x,GU (x)

))
(1)151

where pdata is the distribution of real data. Note152

that DV is designed for the binary decision prob-153

lem of classifying the input as generated or real.154

As shown in Figure 2, in our prompt, we repre-155

sent the choices as two options: “(A) real” or “(B)156

generated”. This allows us to evaluate the classifi-157

cation probability using the generation probability158

of option (A), where DV (x, y) = 1 indicates a real159

sample. Therefore, in order for GU to improve its160

performance, its goal is for DV to mis-classify its161

outputs as real as often as possible (i.e. minimizing162

J ). In contrast, DV ’s objective is to increase J ,163

indicating improved classification ability. Formally,164

this adversarial training objective can be expressed165

as the following minimax game:166

min
U

max
V

J (DV , GU ) (2)167

Since the discriminator is powered by a large lan-168

guage model with enough capacity, achieving the169

optimal solution for this minimax objective indi-170

cates that the generator’s output, when paired with171

its input, is indistinguishable from a real sample.172

2.3 Adversarial In-Context Learning173

Optimization174

Whereas GANs optimize model parameters with175

backpropagation, adv-ICL does not update GU and176

DV ’s parameters, instead updating their prompts177

in each training iteration. This requires a number178

of differences in our optimization process. First,179

we consider a setting where we have access only to180

model outputs and generation probabilities, mak-181

ing it impossible to use backpropagation to update182

U and V . Therefore, we employ a third LLM to183

serve as the prompt modifier, M . Given a prompt’s184

task instruction I or demonstration (x, y) as input,185

M generates r possible variations. The adversarial186

loss is recomputed for each variation by substitut-187

ing the variation into the original prompt, and the188

modification that improves the adversarial loss the 189

most is returned, following Gonen et al. (2022). 190

We refer to our optimization algorithm as Adver- 191

sarial In-Context Learning Optimization (adv-ICL; 192

Algorithm 1), which can be seen in pseudocode 193

form in Algorithm 1. The entire process is as fol- 194

lows: Given the initial generator prompt U , and 195

discriminator prompt V , we run T training itera- 196

tions. At each iteration, we first sample m pairs of 197

data points from our training samples to compute 198

the adversarial training loss J (GU , DV ,m). We 199

then optimize the loss by using M to modify both 200

the task instruction and demonstration portions of 201

the prompts for the discriminator and generator. 202

2.4 Theoretical Analysis 203

In this section, we present an analysis of whether 204

a minimax objective can achieve equilibrium in 205

in-context learning as is possible in the original 206

GAN scenario. Let pdata be the distribution of 207

the training data, and pg be of the generated data 208

from G. We assume D, G, and M are models 209

with infinite capacity and strong enough in-context 210

learning capabilities, where the prompts powering 211

D and G are iteratively updated using M following 212

algorithm 1. We further assume that: (i) M is 213

powerful enough to modify the initial prompt of 214

D/G, covering all possible prompt variants; (ii) 215

There exists a prompt P for D/G that given P , 216

D/G can achieve the globally optimal result; (iii) 217

M can generate P by which D/G achieves the 218

globally optimal result. We prove the following: 219

Proposition 1. (Motivated by (Goodfellow et al., 220

2014)) If G and D have enough capacity, and at 221

each training step, the discriminator is allowed to 222

reach its optimum D∗ given G, and pg is updated 223

so as to improve the criterion 224

J (D∗, G) = Ex,y∼pdata log
(
D∗(x, y)

)
+ Ex∼pdata log

(
1−D∗(x,G(x)

)) (3) 225

then pg converges to pdata. 226

The full proof for proposition 1 can be found 227

in Appendix A.1. We conclude that with strong 228

enough in-context learning LLMs D,G,M , adv- 229

ICL converges. In practice, convergence in adver- 230

sarial training must be studied empirically. 231

2.5 Zero-shot Prompt Modification 232

We leverage LLM instruction-following abilities to 233

generate r variants of a task instruction/demonstra- 234
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Algorithm 1 Adversarial In-Context Learning Optimization

Input: U = (IG, xG1 , y
G
1 , · · · , xGk , yGk ), V = (ID, xD1 , y

D
1 , zD1 , · · · , xDk , yDk , zDk ).

Input: Generator GU , Discriminator DV , Prompt Modifier M .
Input: training iterations T , samples used per iteration m, number of new sampled prompts r.
Input: set of limited samples S

1: for T training iterations do
2: Sample m data points from S to compute J(GU , DV ,m).
3: // Optimize the instruction ID for DV

4: Generate r new instructions {I1, I2,...,Ir} from ID using the prompt modifier M .
5: Substitute In to V ∀n ∈ {1, 2, ..., r} to compute the loss Jn(GU , DV ,m)
6: Jj = maxn Jn(GU , DV ,m)
7: Update ID by Ij if Jj > J .
8: // Optimize the demonstrations (xDi , y

D
i , zDi ) ∀i for DV

9: for i ∈ range(k) do
10: Generate r new ((xi1, yi1, zi1),...,(xir, yir, zir)) from (xDi , y

D
i , zDi ) using M .

11: Substitute (xin, yin, zin) to V ∀n ∈ {1, 2, ..., r} to compute the loss Jin(GU , DV ,m)
12: Jjn = maxi Jin
13: Update (xDi , y

D
i , zDi ) by (xij , yij , zij) if Jjn > J .

14: end for
15: // Similarly optimize U for GU so that J(GU , DV ,m) decreases.
16: ...
17: end for
Output: The optimized prompt U for the Generator GU .

You will be given one or more triples. [...] Your task is to write a simple
and short piece of text (sentence(s)) that describes the triples in natural lan-
guage.

Input (Generator Prompt)

Modifier (M )
Generate 5 variations of the following
while keeping the semantic meaning [...]

Modifier Prompt

1. For each triple you are given, write a simple sentence in natural language
that describes the relation between the first and third element [...]

Output (Generator Prompt Variants)

Figure 3: Example of how the prompt modifier generates new
versions of GU ’s prompt U including new task instructions
and new data examples. Full prompts used for M are in
Appendix A.3.

tion in a zero-shot manner. We use different prompt235

templates for generating instructions, open-ended236

question-answer pairs, and multiple-choice ques-237

tion pairs. An example is shown in Figure 3, with238

full prompts in Appendix A.3. We also tested using239

successful prompts from previous optimizations240

as feedback for the next iteration (Appendix A.5),241

following Pryzant et al. (2023); Yang et al. (2023),242

but found that performance fell short compared to243

not integrating them.244

3 Experimentation 245

3.1 Experimental Setup 246

Datasets. We test adv-ICL on 13 traditional NLP 247

tasks in four main categories: generation, classifi- 248

cation, reasoning, and challenging NLP evaluation 249

suites. For generation, we select XSUM (Narayan 250

et al., 2018) and CNN/Daily Mail (CNN for 251

short) (Nallapati et al., 2016) as our text summa- 252

rization benchmarks; WebNLG (Gardent et al., 253

2017) and E2E NLG (Novikova et al., 2017) as our 254

data-to-text generation datasets; and LIRO (RO → 255

EN) (Dumitrescu et al., 2021) and TED Talks (IT→ 256

JA) (Ye et al., 2018) as our machine translation 257

benchmarks. In the classification category, we use 258

YELP-5 (Zhang et al., 2015), COPA (Roemmele 259

et al., 2011) and WSC (Levesque et al., 2012). For 260

reasoning tasks, GSM8K (Cobbe et al., 2021) and 261

SVAMP (Patel et al., 2021) are chosen as arithmetic 262

reasoning benchmarks. Finally, we also evaluate 263

our method on two challenging evaluation suites: 264

MMLU (Hendrycks et al., 2021) and BIG-bench 265

Hard (BBH) (Suzgun et al., 2022). Due to compu- 266

tational and budget limitations, except for GSM8K 267

and SVAMP, each benchmark is evaluated on a 268

maximum of 1,000 test samples randomly chosen 269
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from the test set. In our preliminary experiments,270

we found that the empirical results on the sampled271

test set is aligned with performance on the whole272

test set. The exact number of testing samples for273

each task is presented in Appendix A.3.274

A main advantage of ICL is that it can generalize275

to new tasks with limited training examples, as may276

be the case for novel tasks. To make our method277

applicable in such settings, we use 20 labeled sam-278

ples during training. For our baseline methods, we279

assume access to at most 100 labeled data samples280

for each benchmark except BBH, similar to previ-281

ous prompt optimization works (Xu et al., 2022;282

Pryzant et al., 2023). For BBH, we assume access283

to three chain-of-thought data samples per task.284

Backbone Models. We test widely-used open285

and closed-source LLMs as our backbone mod-286

els. For open-source, we use Vicuna-13B v1.5287

(Zheng et al., 2023) —a chat model fine-tuned on288

top of LLaMa-2 (Touvron et al., 2023b). For closed-289

source, we use text-davinci-002 and ChatGPT (gpt-290

3.5-turbo-0613) (OpenAI, 2022) built on top of291

GPT-3 (Brown et al., 2020). For each backbone292

model except ChatGPT, we use the same model for293

the generator, discriminator, and prompt modifier294

in the adv-ICL setup. Since ChatGPT does not pro-295

vide the probabilities of its generated tokens, which296

is required for computing the adversarial loss, we297

employ text-davinci-002 as the discriminator, and298

ChatGPT is the generator and the prompt modifier.299

Baselines. We compare adv-ICL with six base-300

lines: (i) Few-shot prompting, with Chain-of-301

Thought (CoT) (Wei et al., 2022) for reasoning302

tasks; (ii) Utilizing ROUGE-L score (Lin, 2004)303

(ROUGE-L) as the criteria to optimize the instruc-304

tion and demonstrations for each task on a small305

sampled labeled set; (iii) Similarly, using Perplex-306

ity (Perplexity) as the criteria following Gonen et al.307

(2022); (iv) Genetic Prompt Search (GPS) (Xu308

et al., 2022), a genetic optimization method based309

on the log-logits or accuracy; (v) Automatic Prompt310

Optimization (APO) (Pryzant et al., 2023), which311

uses data to generate text “gradients” evaluating the312

current prompt, and then utilize them to signal the313

models to edit the prompt in the opposite semantic314

direction. (vi) Automatic Prompt Engineer (APE)315

(Zhou et al., 2022), which automatically generates316

instructions and selects via evaluation scores.1317

1As APE only polishes task instruction, we compare APE
with Adv-ICL on GSM8K, MMLU and WebNLG.

We ensure that all methods use a similar number 318

of labeled samples, while the exact number of train- 319

ing samples depends on the specific algorithm. For 320

GPS and APO, we sample 32 and 50 labeled data 321

examples for validation, following (Xu et al., 2022; 322

Pryzant et al., 2023). For ROUGE-L and Perplex- 323

ity, we sample 80 data examples for validation. For 324

YELP, WSC, GSM8K, SVAMP, where the bench- 325

marks do not have enough labeled examples, we 326

sample from their limited training set instead. APO 327

requires additional training data for error samples. 328

For fair comparisons, we use the same training 329

data with adv-ICL. More implementation details 330

for baselines are presented in Appendix A.2. 331

Prompt Initialization. We follow prior works to 332

employ a set of initialized prompts. For MMLU 333

and BBH, we employ the open-sourced prompts 334

that come with the original papers. For GSM8K 335

and SVAMP, we follow the chain-of-thought paper 336

Wei et al. (2022) which employs human-written 337

prompts. For the remaining benchmarks, we utilize 338

prompts from Super-NaturalInstructions (Wang 339

et al., 2022), in which instructions and demonstra- 340

tions are chosen by domain experts. All the initial 341

prompts are also used for our baseline few-shot 342

experiments. The exact number of shots used for 343

each benchmark is presented in Appendix A.3. 344

Evaluation Metrics. For the generation tasks, 345

we evaluate the performance by ROUGE-L score 346

(Lin, 2004), following Wang et al. (2022). For 347

classification tasks, we use accuracy as the eval- 348

uation metric. For MMLU and BBH, we follow 349

Hendrycks et al. (2021); Suzgun et al. (2022) and 350

report the averaged performance among tasks. 351

Hyperparameters. Following the hyperparame- 352

ter selection results in Section 4, we set number of 353

training iterations T = 3 and training samples per 354

iteration m = 5 for all tasks except BBH, where 355

we set T = 3,m = 3 given that the training set 356

contains only 3 samples. In all experiments, the 357

prompt modifier samples from r = 5 prompts. 358

3.2 Main Results 359

We present the main empirical results on a set of 360

classification, generation and reasoning tasks in 361

Table 1, MMLU in Table 2, and BBH in Figure 4. 362

Generation Tasks. As shown in Table 1, adv- 363

ICL significantly outperforms all baseline meth- 364

ods across all backbone models, achieving 365
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Models Method Summarization Data-to-Text Translation Classification Reasoning
XSUM CNN WebNLG E2E NLG LIRO TED Talks YELP Review COPA WSC GSM8K SVAMP

te
xt

-d
av

in
ci

-0
02 Few-shot 25.5 20.8 60.8 47.1 78.3 37.7 71.1 87.9 67.7 47.3 70.0

ROUGE-L 25.8 21.1 61.1 47.5 77.6 38.2 70.6 87.8 66.9 47.1 69.8
Perplexity 26.2 21.4 62.2 49.3 78.5 39.0 70.9 88.6 67.3 47.5 70.4

GPS 27.1 21.5 61.9 49.1 78.8 39.4 71.3 87.4 67.1 48.1 70.5
APO 26.8 22.1 62.3 49.2 78.9 40.2 71.1 88.8 68.3 46.9 69.3

adv-ICL 30.9↑3.8 23.4↑1.3 65.4↑3.1 50.8↑1.5 81.2↑2.3 42.1↑1.9 74.4 ↑3.1 92.2 ↑3.4 73.8↑5.5 50.8 ↑2.7 72.5 ↑2.0

V
ic

un
a

v1
.5

Few-shot 18.9 16.4 52.5 35.3 72.1 32.6 71.0 77.8 54.4 40.7 45.1
ROUGE-L 18.9 16.6 52.7 35.2 72.6 32.9 70.9 76.7 54.1 40.4 44.8
Perplexity 19.1 16.9 52.8 35.0 72.7 33.0 71.0 77.9 54.7 41.4 46.2

GPS 19.7 16.9 53.0 35.9 73.2 33.0 71.3 78.2 55.0 41.7 45.7
APO 19.5 17.1 53.7 36.3 73.1 32.9 70.2 78.3 54.4 41.4 46.3

adv-ICL 21.1↑1.4 19.3↑2.2 59.3↑5.6 41.9↑5.6 73.4↑0.2 35.2↑2.2 73.6↑2.3 81.6↑3.3 58.2↑3.2 43.9↑3.2 48.4↑3.3

C
ha

tG
PT

Few-shot 25.2 21.3 60.9 48.3 78.8 41.7 69.8 94.4 69.8 79.4 79.3
ROUGE-L 25.1 21.2 60.7 48.6 78.5 41.3 68.2 93.7 69.1 78.7 78.9
Perplexity 24.9 20.9 61.8 48.6 78.9 41.8 68.8 91.3 66.9 75.5 78.1

GPS 26.6 21.5 61.5 48.9 78.9 42.0 70.0 94.6 69.8 79.4 80.0
APO 27.1 22.1 61.5 49.3 79.4 42.3 70.3 94.8 70.1 79.9 79.7

adv-ICL 28.2↑1.1 22.5↑0.4 63.6↑1.8 51.1↑1.8 80.4↑1.0 43.2↑0.9 71.9↑0.6 95.8↑1.0 71.9↑1.8 82.3 ↑2.4 81.1 ↑1.1

Table 1: Main experimental results on generation, classification and reasoning tasks. Details of the selected few-shot prompts
and the baselines are described in Section 3.1.

2.3%, 2.9%, 1.2% average absolute improvements366

for text-davinci-002, Vicuna, and ChatGPT respec-367

tively. We observe that adv-ICL achieves the most368

significant improvements for Summarization and369

Data-to-Text. Specifically, for text-davinci-002,370

adv-ICL outperforms the best baseline by 3.8% on371

XSUM and 3.1% on WebNLG. For Vicuna v1.5,372

adv-ICL achieves an improvement of 5.6% on the373

two data-to-text generation tasks WebNLG and374

E2E NLG. For ChatGPT, we achieve an improve-375

ment of 3.0% on XSUM and 2.8% on the E2E376

NLG generation task when compared to the vanilla377

few-shot baseline with no prompt optimization ap-378

plied. We hypothesize that ChatGPT may obtain379

smaller absolute improvements when compared380

to other prompt optimization methods due to the381

misalignment between the backbone models of the382

generator and the discriminator. However, given383

that ChatGPT is the most widely used LLM and384

undergoes constant upgrades, it should be expected385

that improving ChatGPT is more difficult.386

Classification Tasks. For classification tasks,387

adv-ICL also brings significant improvements over388

all SOTA prompt optimization techniques across389

all models with 4.0%, 2.9%, 0.8% average absolute390

improvements respectively. The most significant391

performance improvement is obtained using the392

text-davinci-002 backbone. The 2.9% improve-393

ments with Vicuna also illustrate the effectiveness394

of our proposed method on open-sourced models.395

The improvements of the three backbone models396

on classification tasks are relatively balanced.397

Reasoning Tasks. For reasoning tasks, we ob-398

serve a 2.7% and 2.0% absolute improvement on399

GSM8K and SVAMP, with text-davinci-002. Like-400

wise, significant gains are observed with ChatGPT, 401

achieving a 2.4% increase on GSM8K and a 1.1% 402

boost on SVAMP. In the case of Vicuna, it achieves 403

3.2% absolute improvement on GSM8K and 3.3% 404

absolute improvement on SVAMP. The effective- 405

ness of adv-ICL for reasoning tasks, particularly 406

when coupled with CoT prompting, where the 407

prompt includes detailed intermediate reasoning 408

steps, demonstrates its ability to optimize complex 409

prompts. This hints at potential for applying adv- 410

ICL to more advanced prompting methods. 411

Method Humanity STEM Scocial Sciences Others Avg

V
ic

un
a

v1
.5

Few-shot 55.8 38.7 63.3 61.5 54.6
ROUGE-L 55.5 39.5 63.7 61.1 55.0
Perplexity 55.2 39.5 64.1 61.9 55.2

GPS 56.9 40.4 64.1 62.3 55.9
APO 57.2 40.0 63.7 62.7 55.9

adv-ICL 58.9 ↑1.7 44.1 ↑3.7 64.8 ↑0.7 64.5 ↑1.8 58.1 ↑2.2

C
ha

tG
PT

Few-shot 73.9 57.5 79.2 73.5 71.0
ROUGE-L 74.2 56.7 78.4 73.9 70.8
Perplexity 74.8 56.3 79.6 71.2 70.5

GPS 74.6 57.9 80.0 74.3 71.7
APO 75.6 58.3 80.7 73.9 72.1

adv-ICL 76.7 ↑1.1 61.3 ↑3.0 82.3 ↑1.6 75.8 ↑1.5 74.0 ↑1.9

Table 2: Results of ChatGPT using 5-shot prompts on MMLU.

MMLU & BBH. We summarize the results on 412

MMLU in Table 2. We improve the average per- 413

formance from 69.8% to 73.1%, achieving perfor- 414

mance improvements on 51 subjects out of 57 sub- 415

jects with ChatGPT. For BBH, as shown in Figure 416

4, adv-ICL achieves an accuracy of 70.6% where 417

the baseline method achieves an accuracy of 68.2% 418

with ChatGPT and chain-of-thought prompting. 419

The detailed results on MMLU and BBH are in 420

Appendix A.5. Note that for BBH, only three data 421

examples are provided with the dataset. Conse- 422

quently, we use the same three examples as the 423

initial data for both the generator and discrimina- 424
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Figure 4: Results on selected tasks from BBH with ChatGPT
using 5-shot Chain-of-Thought prompting. Full results can be
found in Appendix A.5

tor. Additionally, these 3 examples are the only425

real data examples utilized when estimating the426

objective. Despite this, we achieve substantial im-427

provements on this task. This demonstrates the428

broad applicability of our method. In real-world429

scenarios with limited access to training samples430

our approach can still be effectively applied.431

4 Analysis432

In this section, we examine several design choices433

of adv-ICL. We further discuss the necessity of434

the discriminator in Appendix A.4, as well as an435

extended set of analyses in Appendix A.5.436

Optimizing Instruction / Demonstration Only.437

As instruction and demonstration data are both438

widely used in prompts, we examine the impor-439

tance of optimizing both components. We use440

ChatGPT and compare our method with the prompt441

optimization method APE (Zhou et al., 2023). We442

measure performance on WebNLG, GSM8K (with443

CoT), and MMLU. As shown in Figure 5, we find444

that updating only the instruction or demonstra-445

tions makes the model perform suboptimally. Ad-446

ditionally, optimizing demonstrations is more effec-447

tive than optimizing instructions for WebNLG and448

MMLU while the reverse is true for GSM8k. We449

hypothesize that this is because generated reason-450

ing chains may contain errors and the correctness451

of the generated answers with respect to questions452

is critical for the model’s performance (Min et al.,453

2022). That said, adv-ICL achieves significant per-454

formance improvements for GSM8k in both cases.455

GSM8K MMLU WebNLG

40
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Figure 5: Ablation study on ChatGPT with adv-ICL in which
we only update the task instruction or demonstrations.

Choosing Different Models for the Discrimina- 456

tor and Generator. Given a generator, it is also 457

important to answer how we can select a suitable 458

discriminator to deploy our framework. In our main 459

experiments, we chose the same model as the gen- 460

erator for all the base models, except ChatGPT. 461

We hypothesize that since both discriminator and 462

generator compete with each other in adv-ICL, it 463

is essential to balance their learning. To under- 464

stand more whether we can use a discriminator 465

different from the generator, we conducted experi- 466

ments in Table 7 dividing into two groups of using 467

a stronger generator and a stronger discriminator 468

in adv-ICL. We observe with a stronger genera- 469

tor the performance is likely improved contrasting 470

to with a stronger discriminator, the performance 471

is potentially harmed. Overall, we suggest that 472

the discriminator and generator should be chosen 473

such that they are on the same performing level. 474

A significant difference in their performance can 475

drastically lower the overall framework’s outcome. 476

Ablation Studies on Number of Iterations and 477

Data Samples. As shown in Algorithm 1, adv- 478

ICL involves three main hyperparameters: the num- 479

ber of training iterations T , the number of data 480

points used per iteration m, and the number of new 481

versions sampled for each instruction/demonstra- 482

tion r. We fix r = 5 and analyze the best perform- 483

ing combination of T and m using grid search for 484

T ∈ {1, 3, 5} and m ∈ {1, 2, 5, 10}. 485

We measure adv-ICL’s performance on a val- 486

idation set S constructed from one represen- 487

tative task per category: WebNLG for gen- 488

eration, GSM8K for reasoning, and MMLU 489

7



m \ T T = 1 T = 3 T = 5

m = 1 61.3 / 78.8 / 42.6 63.8 / 80.0 / 47.1 62.5 / 80.0 / 48.5
m = 3 62.5 / 81.3 / 45.6 65.0 / 81.3 / 52.9 62.5 / 76.3 / 50.0
m = 5 63.8 / 82.5 / 54.4 66.3 / 82.5 / 55.9 63.8 / 77.5 / 54.4
m = 10 60.0 / 80.0 / 51.5 62.5 / 81.3 / 51.5 63.8 / 78.8 / 47.1

(a) ChatGPT as G, text-davinci-002 as D.
m \ T T = 1 T = 3 T = 5

m = 1 52.5 / 40.0 / 50.0 53.8 / 43.8 / 55.9 53.8 / 42.5 / 54.4
m = 3 55.0 / 42.5 / 48.5 60.0 / 43.8 / 54.4 57.5 / 45.0 / 51.5
m = 5 55.0 / 41.4 / 48.5 61.3 / 45.0 / 54.4 57.5 / 42.5 / 51.5
m = 10 53.8 / 42.5 / 52.9 55.0 / 42.5 / 50.0 55.0 / 41.3 / 45.6

(b) Vicuna as G, Vicuna as D.

Table 3: Ablation studies on number of iterations T and num-
ber of samples used per iteration m. The results are ROUGE-L
/ Acc / Acc scores on WebNLG / GSM8K / MMLU.

for classification. We use 80 data samples490

from both WebNLG and GSM8K2. For MMLU,491

we sample 16, 16, 17, 19 from the validation492

sets of abstract_algebra, business_ethics,493

econometrics, formal_logic resulting in 228494

total samples in S.495

We conduct experiments with ChatGPT and Vi-496

cuna as the backbone models. As shown in Table 3,497

we observe the best performance with T = 3 and498

m = 5 for both settings. This demonstrates that our499

method works effectively without requiring many500

training iterations and data samples. We provide an501

explanation of why training with too large T or m502

might harm model performance in Appendix A.5.503

Qualitative Analysis. For an intuitive under-504

standing of how our prompt optimization pro-505

gresses, we show examples of prompts for506

WebNLG changing over iterations in Appendix A.5.507

The prompt modifier significantly alters the gen-508

erator’s prompt in two iterations by simplifying509

the instruction and adding a more specific require-510

ment. The demonstrations are either replaced with511

a completely new one or are refined.512

5 Related Work513

Adversarial Training. Adversarial training has514

been widely used in image generation (Goodfel-515

low et al., 2014; Radford et al., 2015; Arjovsky516

et al., 2017), domain adaptation (Ganin et al., 2016;517

Tzeng et al., 2017; Xie et al., 2017; Louppe et al.,518

2017), and improving model robustness (Szegedy519

et al., 2013; Biggio et al., 2013; Carlini & Wag-520

ner, 2017; Madry et al., 2018). However, previ-521

ous work shows that it often harms generalization522

2GSM8K does not come with a validation set, so we sam-
ple from the training set instead.

(Raghunathan et al., 2019; Min et al., 2021). In 523

NLP, there is an increasing interest in adversarial 524

training; however, most current research focuses 525

on its effect on generalization (Cheng et al., 2019; 526

Wang et al., 2019; Jiang et al., 2020), and fine- 527

tunes models (Jin et al., 2020; Liu et al., 2020), 528

which is impractical for LLMs. In contrast, adv- 529

ICL optimizes prompts and demonstrates strong 530

generalization under different conditions. 531

Prompt Optimization. In-context learning (Liu 532

et al., 2023) has sparked interest in prompt opti- 533

mization (PO) techniques (Qin & Eisner, 2021; 534

Deng et al., 2022; Lu et al., 2022; Xu et al., 2022; 535

Pryzant et al., 2023; Yang et al., 2023; Wang et al., 536

2024) for enhancing the performance of large lan- 537

guage models (LLMs). Previous PO works fall 538

into two categories: (1) continuous prompts; and 539

(2) discrete textual prompts. Notable works opti- 540

mizing continuous prompts include (Qin & Eisner, 541

2021; Liu et al., 2021; Lester et al., 2021). How- 542

ever, as model sizes increase, this approach be- 543

comes more computationally expensive. For very 544

large language models, Xu et al. (2022) propose Ge- 545

netic Prompt Search (GPS), a gradient-free prompt 546

optimization method. Additionally, Pryzant et al. 547

(2023) introduce Automatic Prompt Optimization 548

(APO), utilizing text “gradients" to evaluate and 549

modify prompts. We compare adv-ICL with GPS 550

and APO. Other techniques like Automatic Prompt 551

Engineer (Zhou et al., 2023) optimize only task 552

instructions. We compare this with a variant of adv- 553

ICL. RL-based prompt optimization baselines like 554

(Deng et al., 2022; Lu et al., 2022) are excluded due 555

to involving additional MLP training and lacking a 556

universal reward. Finally, PO algorithms have been 557

recently developed to defend against jailbreaking 558

attacks, for example, (Zou et al., 2023; Zhu et al., 559

2023; Zhou et al., 2024), but use different problem 560

settings and are not directly comparable. 561

6 Conclusion 562

In this work, we introduce adv-ICL, an adversarial 563

training framework for in-context learning using 564

large language models. Our method has demon- 565

strated empirical success across a diverse range 566

of tasks and outperforms previous SOTA prompt 567

optimization methods significantly. Effective with 568

limited data samples and a very small number of 569

training iterations, adv-ICL holds promise for a 570

wide array of real-world applications. 571

8



Limitations572

One limitation of our work is that adv-ICL requires573

the component LLMs to follow human instructions574

well in performing their subtasks. However, we575

foresee that this limitation is going to be tackled by576

cutting-edge LLMs in the present and near future as577

LLMs are going to be more powerful. Additionally,578

choosing a good combination of {Discriminator,579

Generator} may require empirical experiments. In580

this work, we suggest that the same model can be581

used as both Discriminator and Generator. This of-582

fers strong performance as observed because both583

models are going to learn together well. However,584

in reality, many closed-source models like Chat-585

GPT can be used as the Generator, but not the586

Discriminator. Choosing an optimal Discrimina-587

tor in these cases requires deeper understanding588

as well as empirical experiments. We leave this589

exploration for future works.590

Ethical Considerations591

It is possible that this method could be used to592

optimize prompts for harmful purposes such as593

mis/disinformation generation, hatespeech, or pri-594

vacy violating use cases. While this is not what our595

method is designed for, there is no way to prevent596

this type of misuse. While our method could also597

improve the efficiency and efficacy of bad actors,598

we do not anticipate that there is anything inherent599

to adv-ICL allowing it to be more effective in these600

settings than in other, positive, settings.601
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A Appendix922

A.1 Theoretical Proofs of the Convergence923

In this section, we theoretically analyze whether924

such a minimax objective in the form of in-context925

learning can achieve the desired equilibrium as in926

the original GAN scenario. We assume access to927

models with infinite capacities powering the dis-928

criminator D, generator G, and prompt modifier929

M and that in each iteration, we sample a sufficient930

number of prompts from M to update both G and931

D. Let pdata be the distribution of the training data,932

and pg be the distribution of the generated data933

from G.934

Considering a language model which can be D935

or G with powerful enough in-context learning ca-936

pabilities, given a task, we further assume that:937

1. M is powerful enough to modify the initial938

prompt of D/G, covering all possible prompt939

variants.940

2. There exists a prompt P for D/G that given941

P , D/G can achieve the globally optimal re-942

sult.943

3. M can generate P by which D/G achieves944

the globally optimal result.945

The assumption 3 is a result of assumptions 1,946

and 2, and the assumption about our access to in-947

finite capacities language models. Indeed, given948

D/G, from assumption 2, there exists a globally949

optimized prompt P for it such that it can achieve950

the globally optimal state for a given task. Further-951

more, since M is powerful enough in modifying952

the initial prompt (ass. 1), plus M samples a suffi-953

ciently large number of prompts for each iteration954

(ass. 2), M can generate P with a non-zero proba-955

bility, which concludes the assumption 3.956

With the above assumptions, we prove the fol-957

lowing results.958

Proposition 2. (Goodfellow et al., 2014) For G959

fixed, the optimal discriminator D can be described960

in a closed form, denoted as D∗.961

Proof for Proposition 2. Adapted from (Goodfel-962

low et al., 2014): For a fixed G, the training ob-963

jective for the discriminator D is maximizing the964

adversarial loss J (D,G) (Equation (1))965

J (D,G) = Ex,y∼pdata log
(
D(x, y)

)
+ Ex∼pdata log

(
1−D

(
x,G(x)

))
= Ex,y∼pdata log

(
D(x, y)

)
+ Ex,y∼pg log

(
1−D

(
x, y

))
=

∫
x
pdata(x) logD(x, y)

)
dx

+

∫
x
pg(x) log

(
1−D

(
x, y

))
dx

=

∫
x
pdata(x) logD(x, y)

+ pg(x) log
(
1−D

(
x, y

))
dx

966

The function y = a log(x) + b log(1 − x) for 967

(a, b) ∈ R2and(a, b) ̸= {0, 0} achieves its max- 968

imum in [0, 1] at a
a+b . Therefore, D∗(x) has a 969

closed form, which is D∗(x) = pdata(x)
pdata(x)+pg(x)

. 970

971

Proposition 3. (Motivated by (Goodfellow et al., 972

2014)) If G and D have enough capacity, and at 973

each training step, the discriminator is allowed to 974

reach its optimum D∗ given G, and pg is updated 975

so as to improve the criterion 976

J (D∗, G) = Ex,y∼pdata log
(
D∗(x, y)

)
+ Ex∼pdata log

(
1−D∗(x,G(x)

)) (4) 977

then pg converges to pdata. 978

Proof for Proposition 3. At each training step, the 979

optimal D∗ can be achieved via editing its in- 980

put prompt by M . Considering the loss function 981

J (D∗, G) as a function in pg, then J (D∗, G) is 982

convex in pg. Since G is powerful enough that there 983

exists a prompt P sampled by M such that G can 984

achieve the globally optimal loss J (assumption 2), 985

with an optimal D∗, we can obtain the correspond- 986

ing best G. Furthermore, J (D∗, G) is convex in 987

pg, plus the global optimal of G can be obtained, 988

with a sufficiently large enough number of prompts 989

sampled and training iterations, pg converges to 990

pdata. 991

A.2 Baseline Implementation 992

In this section, we present our implementation de- 993

tails for the baselines. First, among the benchmarks 994
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we used, the following datasets do not have any val-995

idation set with sizes larger than or equal to 80:996

YELP, WSC, GSM8K, SVAPM. Therefore, we ran-997

domly sample 100 data cases from their training998

sets, to create their validation sets.999

Each baseline requires a development set to de-1000

cide which prompt(s) is/are the best at each opti-1001

mization iteration. For GPS and APO, we sample1002

32 and 50 data samples respectively from the vali-1003

dation set of each benchmark, following (Xu et al.,1004

2022; Pryzant et al., 2023). For ROUGE-L and1005

Perplexity, we sample 80 data samples, also from1006

each validation set. Additionally, among the base-1007

lines, only APO requires training data for error1008

messages. For a fair comparison with adv-ICL, we1009

use the same training data samples with adv-ICL1010

as training data for APO.1011

ROUGE-L & Perplexity (Gonen et al., 2022).1012

For these baselines, we utilize ROUGE-L (Lin,1013

2004) or Perplexity Gonen et al. (2022) as1014

the measurement to optimize the input in-1015

struction and demonstrations sequentially. For1016

the instruction, we sample 15 new instruc-1017

tions by paraphrasing following the template:1018

’Write for me 15 paraphrases of the1019

{initial_instruction}:’. We then select the1020

version which achieves the best result on S as the1021

final instruction. Similarly, for each demonstration,1022

we use the template ’Write 15 paraphrases for1023

the following example. Keep the format as1024

Input: and Output:. End the answer by So1025

the answer is:’ to sample 15 versions of the1026

original demonstrations, and select the best one on1027

S sequentially until all the demonstrations are op-1028

timized. We sample 15 versions for comparisons1029

because our proposed adv-ICL also samples a max-1030

imum of 15 versions for the instruction and each1031

demonstration.1032

GPS (Xu et al., 2022). We run GPS (Xu et al.,1033

2022) on 3 iterations to optimize the instruction1034

and each demonstration sequentially. Denote the1035

original instruction/demonstration to be optimized1036

as O. In the initial step, given the original human-1037

written O, we paraphrase it into 10 versions us-1038

ing ’Write for me 10 paraphrases of the1039

{initial_instruction}:’ for instruction, and1040

’Write 10 paraphrases for the following1041

example. Keep the format as Input: and1042

Output:. End the answer with <END>. So1043

the answer is:’ for demonstration. We then1044

select the top-5 generated O to pass to the first 1045

iteration. At each iteration, for each O in the cur- 1046

rent top−5 Os, we sample 5 new Os by Sentence 1047

Continuation strategy (Schick & Schütze, 2021) 1048

via using the backbone LLM itself, and select the 1049

top−5 Os among 25 Os to the next iteration. Fi- 1050

nally, the best-performing O on S is selected as 1051

the output instruction/demonstration of the method. 1052

It is worth noting that in the original paper from 1053

(Xu et al., 2022), top−k with k = 25 was used. 1054

However, in our reimplementation, we use k = 5 1055

so that it can be relatively fair to compare GPS 1056

with our method (we use r = 5) and other base- 1057

lines. The template for sampling new prompts via 1058

the Sentence Continuation strategy that we used is 1059

exactly the same as Xu et al. (2022) provided. 1060

APO (Pryzant et al., 2023). Since our setting 1061

assumes that we have access to limited training 1062

data samples, we reimplemented a simplified ver- 1063

sion of the original APO in which the selection 1064

step (Pryzant et al., 2023) only be called once, and 1065

the samples that we used to train adv-ICL are re- 1066

turned. For simplicity, we call the original instruc- 1067

tion/demonstration as O. We run APO to optimize 1068

the instruction and each demonstration sequentially 1069

in a given prompt. Given an initial O, and the error 1070

samples, we use the backbone LLM to generate 1071

feedback consisting of 5 comments as the text "gra- 1072

dient". Integrating this gradient as feedback, we 1073

ask the LLM to generate 10 prompt samples. We 1074

further utilize the backbone LLM to generate 5 1075

paraphrase versions of the original O, resulting 1076

in a total of 15 new Os. Finally, we select the 1077

best O evaluated on S. All the prompt templates 1078

for generating gradients, integrating feedback, and 1079

generating paraphrased prompts are adopted from 1080

(Pryzant et al., 2023). For selecting error samples, 1081

in the original implementation, Pryzant et al. (2023) 1082

compared the generated answer with the ground- 1083

truth answer, and the error samples are the ones 1084

that have the generated answer different from the 1085

ground-truth answers. This is applicable for clas- 1086

sification and numerical question-answering tasks, 1087

but not the text generation tasks such as summa- 1088

rization, this strategy of selecting error samples is 1089

not suitable. Therefore, for summarization, data- 1090

to-text, and translation tasks, we select one sample 1091

that the current prompt brings the lowest ROUGE- 1092

L score as the sole error sample. 1093
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APE (Zhou et al., 2023). For APE, we adopt the1094

implementation on the GitHub3 from (Zhou et al.,1095

2023). We limit the number of instructions sampled1096

to 15 to have fair comparisons with adv-ICL. For1097

the training samples for each task, we use the same1098

samples that we train adv-ICL for APE.1099

A.3 Supplementary Experiment Details1100

In this section, we provide more details used in the1101

experiments.1102

Number of Demonstrations for Few-shot Ex-1103

periments. Number of demonstrations for few-1104

shot experiments of all datasets is listed in Table1105

4. For generation tasks and classification tasks,1106

We follow the expert-written prompts from Super-1107

NaturalInstruction (Wang et al., 2022). For reason-1108

ing tasks, MMLU and BBH, we follow the standard1109

prompts that they propose in their paper or open-1110

source code.1111

Test Set Statistics. As mentioned in the main1112

paper, we sample a subset of the test set for efficient1113

evaluation. In Table 5, we show the exact numbers1114

of testing samples we used for each task.1115

Prompt Modifier Prompts. Here, we also pro-1116

vide the prompt used in the prompt modifier. The1117

prompt is as follows:1118

• Modifying instructions: Generate 51119

variations of the following1120

instruction while keeping the1121

semantic meaning. Keep the generated1122

instructions as declarative. Wrap1123

each with <START> and <END>..1124

• Modifying open-ended QA pairs: Generate1125

5 variations of the following example1126

to make them more representative.1127

Keep the format as Input: and Output:.1128

Wrap each with <START> and <END>..1129

• Modifying MCQ pairs: Generate 51130

variations of the following1131

multiple-choice question and1132

the answer to make them more1133

representative. Keep the format as1134

multiple-choice question and the1135

answer. Keep the format as Input:1136

and Output:. Wrap each with <START>1137

and <END>..1138

3github.com/keirp/automatic_prompt_engineer/tree/main

Extended Experimental Details. For OpenAI 1139

API models, ChatGPT (gpt-3.5-turbo-0613) with 1140

chat completion mode and text-davinci-002 with 1141

text completion mode were called at temperature 1142

0.6. For open-source baselines, Vicuna v1.5 13B 1143

was used with a window size of 1024. We use 1144

Nucleus Sampling (Holtzman et al., 2020) as our 1145

decoding strategy for all the models with a p value 1146

of 0.9. 1147

A.4 Why the Discriminator Works? 1148

We further conduct experiments (Table 6) to verify 1149

whether the prompt modifier module work as ex- 1150

pected. Specifically, we remove the discriminator 1151

and only employ a prompt modifier to repeatedly 1152

optimize the prompt. 1153

WebNLG RO → EN YELP GSM8K

Vicuna 13B 52.5 72.1 71.0 40.7
adv-ICL w.o. discriminator 50.1 71.4 72.1 40.2
adv-ICL 59.3 73.4 73.6 43.9

ChatGPT 60.9 78.8 69.8 79.4
adv-ICL w.o. discriminator 61.2 77.4 64.5 71.6
adv-ICL 63.6 80.4 71.9 82.3

Table 6: Experimental results with Vicuna and ChatGPT with
adv-ICL when being removed the discriminator.

In most cases, removing the discriminator and 1154

relying solely on the prompt modifier under Vicuna 1155

and ChatGPT leads to a decline in performance. 1156

This observation highlights the importance of the 1157

discriminator and adversarial loss in the optimiza- 1158

tion process. 1159

A.5 Extended Experiments 1160

Choosing Different Models for the Discrimina- 1161

tor and Generator. Table 7 presents our experi- 1162

mental results. 1163

Reliability of The Results. We rerun our experi- 1164

ments with adv-ICL three times on WebNLG, RO 1165

→ EN, YELP, GSM8K. The results are presented 1166

in Table 8. 1167

WebNLG RO → EN YELP GSM8K

Vicuna 13B 59.3/59.2/59.5 73.4/74.1/73.2 73.6/73.6/73.5 43.9/44.3/44.1
ChatGPT 63.6/63.5/63.8 80.4/80.6/80.6 71.9/71.8/71.9 82.3/82.5/82.2

Table 8: Our experimental results with adv-ICL on three dif-
ferent runs.

The results clearly demonstrate that adv-ICL 1168

consistently delivers stable outcomes, thereby high- 1169

lighting its reliability in faithfully reproducing our 1170

experimental findings. 1171
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Summarization Data-to-Text Translation Classification Reasoning Evaluation Suits
XSUM CNN WebNLG E2E NLG RO → EN IT→ JA YELP Review COPA WSC GSM8K SVAMP MMLU BBH

#shots 3 2 3 2 3 3 3 3 3 5 5 5 3

Table 4: Number of shots used for few-shot experiments.

Summarization Data-to-Text Translation Classification Reasoning
XSUM CNN WebNLG E2E NLG RO → EN IT→ JA YELP Review COPA WSC GSM8K SVAMP

#test samples 1000 950 1000 1000 1000 1000 1000 496 285 1319 1000

Table 5: Test set statistics.

Providing More Feedback to the Prompt Modi-1172

fier. We conducted an experiment that involved1173

integrating the most successful prompts from previ-1174

ous iterations as feedback for the next iteration. In1175

this process, we utilized previous best-performing1176

prompts, namely P1, P2, ..., Pk, as inputs to the1177

prompt constructor module in order to generate the1178

(k + 1)-th prompt, denoted as {P1, ..., Pk}. The1179

template for optimizing task instruction is shown1180

as follows, similar to the prompt for optimizing1181

demonstrations.1182

Diversify the task instruction to be1183

clearer. Keep the task instruction as1184

declarative.1185

Task instruction: P01186

Improved task instruction: P11187

. . .1188

Task instruction: Pk−11189

Improved task instruction: Pk1190

Task instruction: Pk1191

Improved task instruction:1192

We applied the method to four representative1193

tasks WebNLG, RO → EN, YELP, GSM8K using1194

both Vicuna and ChatGPT models. The obtained1195

results for are illustrated in Table 9.1196

WebNLG RO → EN YELP GSM8K

Vicuna 13B 52.5 72.1 71.0 40.7
adv-ICL (prompt modifier with history) 56.9 74.0 74.2 42.2
adv-ICL 59.3 73.4 73.6 43.9

ChatGPT 60.9 78.8 69.8 79.4
adv-ICL (prompt modifier with history) 62.1 79.8 72.1 80.9
adv-ICL 63.6 80.4 71.9 82.3

Table 9: Experimental results with Vicuna and ChatGPT with
the feedback to the prompt modifier.

In the case of Vicuna, incorporating additional1197

feedback into the prompt modifier proves effec-1198

tive for tasks such as translation and classification.1199

However, this approach falls short when applied1200

to data-to-text and reasoning tasks. On the other1201

hand, for ChatGPT, augmenting the prompt mod-1202

ifier with more feedback does not yield improved1203

performance. This can be attributed to ChatGPT’s1204

strong zero-shot prompt capabilities, which out- 1205

shine its ability to perform effectively with few- 1206

shot prompts. 1207

Ablation Studies on Number of Generated Sam- 1208

ples r. We investigate whether generating fewer / 1209

more samples in each prompt modification would 1210

affect the model’s performance. Due to the lim- 1211

ited resources, we only conducted the experiment 1212

on the WebNLG and GSM8k dataset, with r ∈ 1213

{1, 3, 5, 10, 20}. The results are shown in ??. We 1214

observe that increasing r lead to comparable re- 1215

sults. 1216

Why Might too Many Iterations T or Samples 1217

m Harm the Performance of Models? We ob- 1218

served this phenomenon in the experiments and 1219

were also curious about it. We hypothesize that 1220

first, training with too many iterations can cause 1221

the model to be overfitting to the task, leading to 1222

worse performance on the test samples. Second, 1223

adv-ICL, a specialized form of in-context learning, 1224

plays a crucial role in enhancing the performance of 1225

LLMs by enabling them to learn from the training 1226

examples and generate improved prompts. While 1227

in-context learning holds great promise, it is essen- 1228

tial to acknowledge that increasing the number of 1229

training examples does not necessarily guarantee 1230

better performance. As demonstrated by (Min et al., 1231

2022), a critical threshold exists for the number of 1232

training examples, and surpassing this threshold 1233

leads to a decline in performance. Thus, in our 1234

specific settings, augmenting the training examples 1235

did not yield better results. 1236

Given its inherent complexity and non- 1237

deterministic nature, we have put forward a hyper- 1238

parameter tuning approach, presented in Table 3, 1239

aimed at determining these hyper-parameters for 1240

new configuration settings. 1241

Prompt Modifier Temperature. Lastly, we ex- 1242

amine the influence of the generation temperature 1243

for the prompt modifier. Ideally, the prompt mod- 1244

16



Group Models WebNLG LIRO YELP GSM8K

text-davinci-002 65.4 81.2 74.4 50.8
adv-ICL vicuna 13B 59.3 73.4 73.6 43.9

ChatGPT 63.6 80.4 71.9 82.3

vicuna 7B (D) + vicuna 13B (G) 61.1 72.9 72.4 41.9
vicuna 7B (D) + text-davinci-002 (G) 62.3 77.9 71.2 44.1

Stronger Generator vicuna 7B (D) + ChatGPT (G) 62.1 78.8 70.6 80.9
vicuna 13B (D) + text-davinci-002 (G) 63.9 79.6 72.9 49.8
vicuna 13B (D) + ChatGPT (G) 63.6 78.9 71.4 81.2

vicuna 13B (D) + vicuna 7B (G) 58.9 73.3 63.6 22.3
Stronger Discriminator text-davinci-002 (D) + vicuna 7B (G) 58.5 72.2 62.8 20.6

text-davinci-002 (D) + vicuna 13B (G) 58.8 72.4 73.4 44.2

Table 7: Experiments of using different discriminators and generators.

ifier should have enough diversity to generate po-1245

tential improvements for the prompts of both the1246

generator and discriminator. Intuitively, this means1247

we should not use greedy decoding with a tempera-1248

ture of 0 for the prompt modifier. As demonstrated1249

in Figure ??, a temperature of 0.6 works well, pro-1250

viding a sufficiently large search space while still1251

generating high-quality prompts.1252

Here we present the detailed results of human1253

evaluation on generated instructions and demon-1254

strations respectively. Details are shown in Table1255

10. text-davinci-002 and ChatGPT achieve similar1256

performance with the zero-shot prompt modifier,1257

while Vicuna performs a little bit worse but also1258

achieves an acceptable correctness (≥ 80).1259

Model 30 instructions 70 demonstrations Overall

text-davinci-002 93.3 85.7 88.0
Vicuna v1.5 90.0 80.0 83.0
ChatGPT 96.7 88.6 91.0

Table 10: Human evaluation results for each specific type of
modifications.

More Qualitative Analysis. We show one exam-1260

ple in Figure 6. We also show an additional case1261

of qualitative analysis on Yelp. As shown in 7, the1262

optimization follows a similar pattern with that on1263

the data-to-text task.1264

Detailed Results on MMLU. In Figure 8, we1265

show the detailed results on MMLU with ChatGPT.1266

As shown in the graph, adv-ICL achieves signifi-1267

cant improvements on most tasks.1268

Detailed Results on BBH. In Figure 9, we show1269

the full results of ChatGPT on BIG-Bench Hard1270

using 5-shot Chain-of-Thought prompting. The1271

baseline achieves an average of 68.2% accuracy1272

while adv-ICL reaches an average of accuracy of1273

70.6% and never performs worse than the baseline.1274

17



<RX�ZLOO�EH�JLYHQ�RQH�RU�PRUH�WULSOHV��7KH�VHFRQG�SDUW�
RI�HDFK�WULSOH�VKRZV�WKH�UHODWLRQ�EHWZHHQ�WKH�ILUVW�DQG�
WKH�WKLUG�HOHPHQW��)RU�HDFK�WULSOH��\RXU�WDVN�LV�WR�ZULWH�
D�VLPSOH�DQG�VKRUW�SLHFH�RI�WH[W��VHQWHQFH�V���WKDW�
GHVFULEHV�WKH�UHODWLRQ�EHWZHHQ�WKH�ILUVW�DQG�WKLUG�
HOHPHQW�LQ�QDWXUDO�ODQJXDJH�

)RU�HDFK�WULSOH�\RX�DUH�JLYHQ��ZULWH�D�VLPSOH�
VHQWHQFH�LQ�QDWXUDO�ODQJXDJH�WKDW�GHVFULEHV�WKH�
UHODWLRQ�EHWZHHQ�WKH�ILUVW�DQG�WKLUG�HOHPHQW�

,QSXW��7KHB1HWKHUODQGV�_�FDSLWDO�_��$PVWHUGDP�
2XWSXW��7KH�FDSLWDO�RI�7KH�1HWKHUODQGV�LV�
$PVWHUGDP�

,QSXW��%DUQ\B&DNHV�_�GLVK9DULDWLRQ�_�&KRFRODWH
%DUQ\B&DNHV�_�SURWHLQ�_�����J
%DUQ\B&DNHV�_�FDUERK\GUDWH�_������J
%DUQ\B&DNHV�_�IDW�_�����J
2XWSXW��%DUQ\�FDNHV��ZKLFK�FDQ�EH�FKRFRODWH�
IODYRXUHG��FRQWDLQ����J�RI�SURWHLQ�����J�RI�IDW�DQG���J�
RI�FDUERK\GUDWHV�

,QSXW��$PVWHUGDPB$LUSRUWB6FKLSKRO�_�UXQZD\1DPH�_�
�������
%XLWHQYHOGHUWEDDQ¶´
2XWSXW��7KH�UXQZD\�QDPH�RI�$PVWHUGDP�$LUSRUW�
6FKLSKRO�LV�������%XLWHQYHOGHUWEDDQ�

)LUVW�,WHUDWLRQ 6HFRQG�,WHUDWLRQ,QLWLDO

,QSXW��%DUQ\B&DNHV�_�GLVK9DULDWLRQ�_�&KRFRODWH
%DUQ\B&DNHV�_�SURWHLQ�_�����J
%DUQ\B&DNHV�_�FDUERK\GUDWH�_������J
%DUQ\B&DNHV�_�IDW�_�����J
2XWSXW��&KRFRODWH�IODYRXUHG�%DUQ\�FDNHV�
FRQWDLQ����J�RI�SURWHLQ�����J�RI�IDW�DQG���J�RI�
FDUERK\GUDWHV�

)RU�HDFK�WULSOH�\RX�DUH�JLYHQ��ZULWH�D�
VLPSOH�VHQWHQFH�LQ�QDWXUDO�ODQJXDJH�WKDW�
GHVFULEHV�WKH�UHODWLRQ�EHWZHHQ�WKH�ILUVW�DQG�
WKLUG�HOHPHQW��0DNH�VXUH�WR�XVH�WKH�FRUUHFW�
JUDPPDU�IRU�HDFK�VHQWHQFH�

,QSXW��%DUQ\B&DNHV�_�GLVK9DULDWLRQ�_�
&KRFRODWH
%DUQ\B&DNHV�_�SURWHLQ�_�����J
%DUQ\B&DNHV�_�FDUERK\GUDWH�_������J
%DUQ\B&DNHV�_�IDW�_�����J
2XWSXW��&KRFRODWH�IODYRXUHG�%DUQ\�FDNHV�
FRQWDLQ����J�RI�SURWHLQ����J�RI�
FDUERK\GUDWHV��DQG����J�RI�IDW�

Figure 6: Optimization for the prompt on the data-to-text task WebNLG.

<RX�DUH�JLYHQ�D�UHYLHZ�DERXW�D�SODFH��<RX�QHHG�WR�
SURYLGH�D�UDWLQJ�IURP����VWDU��WR����VWDUV��IRU�WKLV�SODFH� 3OHDVH�UDWH�WKLV�SODFH�IURP���WR���VWDUV�

,QSXW��,�ZDV�UHDOO\�GLVDSSRLQWHG�ZLWK�P\�
H[SHULHQFH�KHUH��7KH�IRRG�ZDV�RND\��EXW�WKH�
VHUYLFH�ZDV�WHUULEOH�DQG�WKH�SULFHV�ZHUH�ZD\�
WRR�KLJK��,�RUGHUHG�D�PDUJDULWD�DQG�LW�WDVWHG�
OLNH�LW�KDG�VSULWH�LQ�LW��:KHQ�,�DVNHG�WKH�VHUYHU�
DERXW�LW��VKH�VDLG�WKDW��IUHVK�MXLFH��LV�UHDOO\�MXVW�
PDUJDULWD�PL[�RQ�WDS��,�DVNHG�IRU�VRPHWKLQJ�
IUHVK�WR�UHSODFH�WKH�KRUULEOH�PDUJDULWD�DQG�
UHFHLYHG�D�URFNV�JODVV�ZLWK�MXVW�PXGGOHG�OLPH�
DQG�D�VDOWHG�ULP��,
P�QRW�VXUH�LW�HYHQ�FRQWDLQHG�
DQ\�WHTXLOD��+RUULEOH��,W
V�QRW�WKDW�KDUG�WR�PDNH�
D�IUHVK�PDUJDULWD�
2XWSXW����VWDUV

,QSXW��7KH�IRRG�KHUH�LV�RND\�EXW�WKH�
RZQHU�FDVKLHU�FRRN�EXVVHU�KRVW�LV�H[WUHPHO\�ULGH�DQG�
KDV�QR�LGHD�ZKDW�VHUYLFH�RU�VDQLWDWLRQ�LV�DW�DOO��$IWHU�
WRXFKLQJ�WKH�UHJLVWHU�KH�EHJLQV�WR�KDQG�WRVV�WKH�VDODG�
ZLWK�KLV�XQZDVKHG�KDQGV�����1RW�RQO\�RYHU�SULFH�EXW�
QRW�FOHDQ�HLWKHU�
2XWSXW����VWDU

,QSXW��$OWKRXJK�,�GLG�HQMR\�WKH�IRRG�KHUH��,�ZDV�
FRPSOHWHO\�XQLPSUHVVHG��DQG�VOLJKWO\�DQQR\HG��E\�
WKH�RYHUSULFHG�PDUJDULWDV���,�RUGHUHG�D�SODWLQXP�
ZKLFK�FRQWDLQHG�?�IUHVK?��MXLFH����,W�WDVWHG�OLNH�LW�KDG�
VSULWH�LQ�LW��VR�,�WKRXJKW�VXUHO\�VKH�JDYH�PH�WKH�
ZURQJ�RQH����,W�WXUQV�RXW�WKDW�?�IUHVK�MXLFH?��LV�UHDOO\�
PDUJDULWD�PL[�RQ�WDS�IURP�WKH�VDPH�JXQ�DV�WKH�
VSULWH����,�DVNHG�IRU�VRPHWKLQJ�IUHVK�WR�UHSODFH�WKH�
KRUULEOH�PDUJDULWD�DQG�UHFHLYHG�D�URFNV�JODVV�ZLWK�
MXVW�PXGGOHG�OLPH�DQG�D�VDOWHG�ULP����,
P�QRW�VXUH�LW�
FRQWDLQHG�DQ\�WHTXLOD����+RUULEOH����,W
V�QRW�WKDW�KDUG�
WR�PDNH�D�IUHVK�PDUJDULWD�
2XWSXW����VWDUV

)LUVW�,WHUDWLRQ 6HFRQG�,WHUDWLRQ,QLWLDO

,QSXW��7KH�IRRG�KHUH�LV�SUHWW\�JRRG��EXW�WKH�
VHUYLFH�FRXOG�XVH�VRPH�LPSURYHPHQW��,�KDG�WR�
ZDLW�D�ORQJ�WLPH�IRU�P\�IRRG��DQG�WKH�ZDLWUHVV�
ZDV�SUHWW\�UXGH�
2XWSXW����VWDUV

3OHDVH�UDWH�WKLV�SODFH�RQ�D�VFDOH�RI���WR�
��VWDUV�

,QSXW��,�ZDV�UHDOO\�GLVDSSRLQWHG�ZLWK�
WKH�IRRG�KHUH��7KH�PDUJDULWDV�ZHUH�
RYHUSULFHG�DQG�QRW�YHU\�JRRG�
2XWSXW����VWDUV

,QSXW��7KH�IRRG�KHUH�LV�SUHWW\�JRRG��EXW�
WKH�VHUYLFH�FRXOG�EH�EHWWHU�
2XWSXW����VWDUV

Figure 7: Qualitative analysis on the classification task Yelp.
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Figure 8: Results on MMLU using ChatGPT, where the y-axis begins at 25%, representing the baseline of random choices.
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Figure 9: Full results on BBH using ChatGPT and 5-shot CoT prompting.
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