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ABSTRACT

Learning robust representations from functional magnetic resonance imaging
(fMRI) is fundamentally challenged by the temporal irregularity and noise in-
herent in data from heterogeneous sources. Existing self-supervised learning (SSL)
methods often discard critical temporal information by discretizing or averaging
fMRI signals. To address this, we introduce a novel framework that reframes
SSL as a Stochastic Optimal Control (SOC) problem. Our approach models brain
activity as continuous-time latent dynamics, learning a robust representation of
brain dynamics by optimizing a control policy that is agnostic to the temporal irreg-
ularity. This SOC framework naturally unifies masked autoencoding (MAE) and
joint-embedding prediction (JEPA) to extract compact, control-derived represen-
tations. Furthermore, a simulation-free inference strategy ensures computational
efficiency and scalability for large-scale fMRI datasets. Our model demonstrates
state-of-the-art performance across diverse downstream applications, highlighting
the potential of the SOC-based continuous-time representation learning framework.
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sure of underlying brain dynamics (Ogawa et al., 1990; Heeger 8 . g O srainvass
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vised learning models tailored for specific tasks like diagnosis > oo
prediction have shown promise (Kawahara et al., 2017; Li et al., - AW

2021; Kan et al., 2022), their dependence on labeled data limits
flexibility and generalizability. This motivates the development
of methods that leverage vast amounts of unlabeled fMRI data Figure 1: Our BDO outperforms
to learn rich, transferable brain representations (Abraham et al., other self-supervised approaches,
2017; Yamashita et al., 2020; Zhang & Metaxas, 2024). Build- demonstrating superior efficiency.
ing on its success in fields such as computer vision and natural language processing (Devlin et al.,
2019; He et al., 2020; Chen et al., 2020; LeCun, 2022; He et al., 2022), the SSL framework has
recently been applied to fMRI analysis (Caro et al., 2024; Dong et al., 2024; Yang et al., 2024).
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Despite their success at capturing global brain representations, existing SSL methods often fail to fully
capture the inherent temporal dynamics of fMRI by treating the time-series data as segmented patches
or static connectivity graphs as described in Figure 2. Since fMRI signals are noisy and continuously
evolve over time, it is desirable for models to incorporate temporal inductive biases that naturally
reflect the true nature of fMRI data to fully exploit these dynamics. However, in SSL scenarios that
must integrate heterogeneous fMRI datasets, temporal modeling becomes even more complex. A
key difficulty arises from variability in acquisition protocols, especially in repetition time (TR), the
interval between successive fMRI measurements. For example, the UK Biobank (UKB) uses a TR
of 0.735-second (Alfaro-Almagro et al., 2018), whereas the Autism Brain Imaging Data Exchange
(ABIDE) reports TRs ranging from 1.5 to 3.0-second (Di Martino et al., 2014). Integrating such
datasets poses challenges in aligning heterogeneous time scales into a common time axis, resulting in
the irregularity as described in Figure 3. Therefore, such irregularity highlights the need for a unified
framework that can model temporal dynamics across heterogeneous datasets with diverse TRs.
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Figure 2: Conceptual illustration of SSL approaches for fMRI data. (a) Image-based approach (Caro
etal., 2024; Dong et al., 2024), where time-series data for each region-of-interest (ROI) is divided into
fixed-size windows. (b) Graph-based approach (Yang et al., 2024), where static graphs are constructed
to represent functional connectivity between ROIs. Both approaches discard high-resolution temporal
dynamics during data preprocessing. (c¢) Our approach, leveraging continuous-time latent dynamics,
directly captures the evolution of brain activity over time, making it robust to varying TRs across
heterogeneous datasets and preserving fine-grained details.

Continuous-time dynamical modeling has become a DatasetA M\W{_ﬂ\fﬂ
natural solution for irregularly sampled data in fi- —T———T—————
nance (Black & Scholes, 1973), climate (Menne et al., DatasetB MH“/M
2016), and healthcare (Goldberger et al., 2000). Neu- —r———r——r——r——

ral differential equations (Chen et al., 2018; Rubanova DatasetC
et al., 2019; Li et al., 2020; Kidger et al., 2020; Zeng —
et al., 2023) and continuous—discrete state-space meth-

ods (Schirmer et al., 2022; Ansari et al., 2023; Park Figure 3: TR variations across datasets
et al., 2024) learn continuous dynamics in a compact yield multiple time scales that appear irreg-
latent space rather than on the noisy, high-dimensional ular when mapped onto a unified axis.
observation space. While integrating these latent trajectories requires costly numerical solvers, recent
simulation-free and amortized inference techniques remove this bottleneck, making continuous-time
modeling practical for large-scale, high-dimensional datasets (Park et al., 2024) such as fMRI.

Building on these advances, we propose a novel SSL framework, Brain Dynamics with Opti-
mal control (BDO), designed to explicitly model continuous latent dynamics while accounting for
the heterogeneous data acquisition protocols of multi-site fMRI studies. Continuous latent state
evolution is modeled as a stochastic differential equation (SDE) (Oksendal, 1992), which encodes
multi-scale brain activity onto a single continuous real-time axis. Specifically, within a SOC formula-
tion (Fleming & Soner, 2006; Carmona, 2016), we combine two complementary SSL schemes into a
unified framework, MAE (He et al., 2022) and JEPA (LeCun, 2022; Assran et al., 2023), to learn
robust representations. Moreover, to enhance computational efficiency, we employ a simulation-free
inference strategy based on locally linear approximations of the SDE. The learned control-based
latent representations serve as compact and highly transferable representations for a wide range of
downstream applications. We summarize our contributions as follows':

* We explicitly model the temporal structure of fMRI time-series via continuous latent dynamical
modeling, thereby ensuring robustness to heterogeneous data acquisition protocols.

* Building on the SOC formulation, we incorporate MAE and JEPA into a single SSL framework
yielding compact, transferable control-based features.

* A simulation-free inference scheme eliminates costly numerical solvers, enabling scalable and
efficient training on large, high-dimensional fMRI datasets as shown in Figure 1.

¢ Our experiments empirically show that the learned control-based features outperform baselines
across diverse downstream tasks while retaining high computational efficiency and scalability.

2 METHOD

In this section, we introduce BDO, a novel SSL framework for modeling fMRI time-series data using
continuous latent dynamics. We formulate representation learning as a SOC problem, allowing us
to unify two complementary SSL schemes, MAE and JEPA, into a single training objective, in a
scalable and simulation-free manner. Proofs and detailed derivations are provided in Appendix B.

'A comprehensive related work section is provided in Appendix A.
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2.1 MODELING CONTINUOUS DYNAMICS IN LATENT SPACE FOR FMRI

Latent Dynamics. Here, we briefly introduce the core assumptions that guide our method. Directly
working with raw fMRI time-series data, which we call Y := {y:,,- - , ¥+, } (where each data point
yt, € R™) with time stamps 7 = {t1,--- , t;}” is challenging due to their high-dimensional nature
and inherent noise. Instead, we introduce a latent space, where the essential structure of the data
is assumed to lie in a lower-dimensional space of dimension d < n. This approach enables more
efficient modeling by reducing the dimensionality of the data (Fraccaro et al., 2017; Rubanova et al.,
2019; Li et al., 2020; Kidger et al., 2020; Zeng et al., 2023; Ansari et al., 2023; Park et al., 2024).

Based on this, we assume that the complex sig-

nals we see in brain scans are produced by some - n
underlying hidden dynamics that unfold contin- x;;/'mxs ,'ﬁbx"f
uously over time. We model these continuous oy S N
latent states X; € R? as being governed by an

1t6 diffusion process (Oksendal, 1992): CE Ce (.57

dXt = f(t7 Xt>dt + a(t)th, (l)

Continuous Latent Dynamics
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where f(t,-) : R? — R? is the drift, o(t) € R
is the diffusion coefficient, and W, € R% is a
standard Wiener process. The stochastic process
Xio,7) = {Xi}eeqo, ) Will serve as the prior
understanding of the system before we look at the actual fMRI data ). Because fMRI data are too
complex, it is hard to make strong initial assumptions. So, a common starting point is to simplify the
prior to dX; = o(t)dW,. This means that we initially assume the underlying changes are purely
random, acknowledging the difficulty in modeling the intricate nature of fMRI signals beforehand.

Figure 4: Conceptual illustration of our proposed
Brain Dynamics with Optimal control (BDO).

To learn meaningful representations from fMRI time-series, our goal is to infer the latent dynamics
that generate the observed complex signals ). A successful latent dynamics model should serve as
the representation itself, providing a compressed and powerful summary of the brain’s activity. Here,
we define these dynamics as the posterior stochastic process, X}, which provides the best possible
explanation for the fMRI data ) that we have actually observed. The posterior states X} are also
governed by an Itd diffusion process (Li et al., 2020; Park et al., 2024):

dXi = [f(t, X7) + o(t)a” (¢, X7; V)|dt + o (t)dW, 2

where a*(t,-,-) : R x R"** — R4 is introduced as part of the drift term. Compared to the prior
process in (1), the newly added term «* steers our initial understanding of the hidden dynamics. It
achieves this by incorporating the information from the actual fMRI signals ) we collected, pushing
the latent dynamics towards a path that better aligns with the observed fMRI data.

Problem setup. The core idea is that the prior process is aligned with the observed data ) through
the term a*, which plays an exclusive role in incorporating observed information into the latent states,
thereby enabling the direct extraction of a meaningful representation from «*. Once an optimal
profile of o* is determined for the given set of data ), this representation can then be employed for
downstream tasks as illustrated in Figure 4. Indeed, a* is referred to as the optimal policy, which
can be developed under stochastic optimal control (SOC) theory (Fleming & Soner, 2006; Carmona,
2016; Park et al., 2024). Drawing on the SOC theory, we propose our method specifically designed to
model the fMRI time-series data, with a focus on SSL to extract meaningful representations.

Stochastic Optimal Control. The SOC provides a robust theoretical foundation for the alignment
process by combining optimization and probability theory to determine optimal control strategies
for dynamical systems (Fleming & Soner, 2006; Carmona, 2016). To estimate the optimal latent
trajectory in (2) which is aligned with the observed data ), we introduce a controlled SDE:

dX¢ = [£(t. X)) + o(t)a(t, X¢; V)] di + o ()W, ©

where af(t,-,-) : R? x R"** — R represents the parameterized (with a neural network) control
policy we aim to optimize and Xfo ) Tepresent the parameterized latent states controlled by a?. In

*The time stamps are ordered as 0 < t; < --- < tx < T and the intervals between consecutive time stamps
can be arbitrary.
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our formulation, the control policy o acts as an encoder by mapping the observed data ) to the
latent space. We parameterize this encoder o as a transformer (Vaswani et al., 2017), recognized
for its effectiveness in processing sequential data such as time-series observations. The objective
is to approximate the optimal control policy a* by a?~?", thereby aligning X[*()’T] = X[Q[;T]. This
optimization is related to the variational inference framework (Chen et al., 2018), and the solution is
structured as follows (Theodorou, 2015; Kappen & Ruiz, 2016; Li et al., 2020; Park et al., 2024):

Proposition 2.1 (Evidence lower bound). Let us consider the following optimal control problem:

T
1 2
J(’,Y) = Exeng) [ / 5 l? & XE: D) dt = > log gy (/X7 | . “
0 teT
where gy (y|x) = N (y|Dy(x), 05 ) is parameterized (Gaussian) likelihood function with a non-

linear decoder network D, : R? — R™. The negation of the objective function J(a’,Y) coincides
with the evidence lower bound (ELBO) of the variational inference for the posterior dynamics (2):

ELBO(6,) > —=J (a*, V), )
where the equality holds at the optimal control policy o™ = arg min, j(ae, V).
: : : . 0 At Qi it (87
With this parameterized encoder-decoder, (o, Dw), A 1 A 2 A 3 : t

Proposition 2.1 shows that the optimization problem
with the cost function specified in (4) is equivalent oo
to performing variational inference within an autoen- : :

coder framework (Kingma & Welling, 2014). FFN FFN FFN
Moreover, when related to reinforcement learning Attn Attn Attn
(RL) literature, it aligns with continuous-time RL R S
with entropy regularization (Todorov, 2006), where RN e O

the integral term 3 ||’ (¢, X{; ) H2 enforces regular-
ization to maintain proximity to the prior process (1) Figure 5: (Left) Encoder network architecture
and the negative log-likelihood, —log g, (y|x) := (Right) Decoder network architecture.

ﬁ lly — Dy(x) [|?, acts as a reward for posterior process to explain the observed fMRI time-series.

Once the optimal policy a* is obtained by solving the SOC problem, we can sample from the posterior
states Xf* by simulating the optimally controlled SDE (3) via a numerical solver (Li et al., 2020).

Universal Feature from Optimal Control Policy. After obtaining the optimal policy o, we can
derive a universal feature A. This feature is generated by aggregating the control signals from the
optimal policy across a relevant set of time points or intervals 7, using an aggregation function
f, which gives A = f({a} }+e7). The aggregated feature A is designed to serve as a robust and
generalizable representation for various downstream tasks. The rationale behind its potential as a
universal feature is that A, derived from the optimal policy o*, encapsulates the essential data-driven
adjustments required to accurately model the observed fMRI time-series )/, thereby capturing salient
and transferable characteristics of the underlying neural dynamics. The process of aggregating the
control signals {a} }.e7 to extract the universal feature A is described in detail in Appendix D.4.

2.2 REPRESENTATION LEARNING WITH STOCHASTIC OPTIMAL CONTROL

Extracting robust and transferable features from fMRI time-series is crucial for downstream clinical
and research applications. However, conventional approaches to representation learning often struggle
to adequately capture the intricate underlying dynamics and subtle individual variations present in
fMRI signals. This frequently results in features with limited generalizability across diverse tasks.

To overcome these challenges, we propose a novel SOC framework which integrates two complemen-
tary SSL schemes. First, we adopt a masked autoencoder (MAE) framework (He et al., 2022). In
this framework, portions of the input fMRI time-series ) are masked, and the model is tasked with
reconstructing the missing target ), 5, from the unmasked context ... This process compels the
encoder o to learn rich and meaningful latent representations that capture the underlying structure
and temporal dependencies. Second, to mitigate the risk of representation collapse—a phenomenon
where learned features become trivial or non-discriminative—we introduce an auxiliary variable &
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Figure 6: Overview of representation learning of BDO. Randomly masked fMRI time-series V.. x are
encoded into latent states; encoded control signals {af};c7-_ . steer the SDE to predict latent states at
the masked time points 7 .., which are then used to reconstruct the missing observations Y ... A
slowly updated EMA encoder provides latent targets, preventing representation collapse.

that serves as a stable, self-generated latent prediction target. This mechanism, developed to ensure
feature stability, shares its core philosophy with the Joint Embedding Predictive Architecture (JEPA)
framework (LeCun, 2022; Assran et al., 2023), which also leverages latent prediction to shape repre-
sentations. Grounded in SOC theory, our formulation successfully unifies these two complementary
SSL schemes into a single framework, yielding robust and informative representations A.

Masked Autoencoders. To learn the control signals that align the latent dynamics with the observed
data, we use the MAE, which has been successfully applied in various domains (He et al., 2022).
With an encoder-decoder pair (a?, D), the MAE approach can be adapted to our SOC framework.
Specifically, we randomly mask a ratio «y of data in ). The objective is then to reconstruct missing
target ) ., based on the remaining context ).,. We denote corresponding time points as 7., and
Tetx- In this formulation, the optimal control policy a* is determined by solving the SOC problem:

T
N . 1 2
o :argGmmIEXaN(g) [/ 3 Hae(t,Xf;yctX)H dt — g logg¢(yt\Xf) 6)
0 tE€Tear

Here, the control o is generated by encoding the context observations V.. However, this approach
may be suboptimal for highly noisy data modalities like fMRI as the naive negative log-likelihood

function, —log g, (y|x) = 52 ||y — Dy (x)||*, directly decodes the latent states X/ into the ob-
D

served raw signals y;. In noisy data like fMRI, this can lead to the encoder-decoder pair (a?, Dy)
overfitting to noise, as the model attempts to fit the irrelevant fluctuations in the observed signals (As-
sran et al., 2023; Dong et al., 2024). As a result, the model may not effectively capture semantically
meaningful features of the underlying dynamics, potentially compromising the generalizability of A.

Joint Embedding Prediction. To mitigate overfitting to noise inherent in the pure signal reconstruc-
tion, we introduce an auxiliary variable &, as the latent predictive target for the control policy o,
and incorporate additional structure into the observation likelihood function g, (-|x). Formally, we
propose a hierarchical generative process over the likelihood function g, in (6) as follows:

go(yeXY) = / Co (el (@4 X0 dés, ™

where Cy (y¢|-) := N (y|Dy(+), 021) represents the latent decoder mapping back to the observation

space, and 7(&;|X?) is the latent distribution of the auxiliary variable &;. To ensure the latent target
ay is both predictable from the given context ). and informative about the masked target V. .., we
specifically define the latent distribution 7(-|X?) as a geometric mixture of two components:

75(6¢| X)) o po (e XY, Verr) 5 (| X8, Vi)Y, ®)
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where p(G| X7, Vers) = N (G| (t, X7, Vers), 0p1) is the L qg(ae| X8 Vear) =
N (ay|a?(t, XY, Vear), 021) is the empirical prior, and X € [0, 1] balances these two components.

The auxiliary posterior py serves as the probabilistic estimate of the latent target c;, which is generated
by the primary encoder o/ conditioned solely on the contextual information ). .. Essentially, this
component represents the model’s probabilistic belief about the target based solely on the observed
context, before integrating any information from target-specific observations via the empirical prior.

Conversely, the empirical prior g serves as the predictive target distribution. It is generated by a

separate target encoder a?, which has access to the actual masked observations ). ... The target
encoder parameters 6 are not updated by backpropagation. Instead, they track the online primary
encoder parameters ¢ via EMA, yielding a slowly evolving and stable reference (Assran et al., 2023).

This design ensures that gz provides consistent, evolving predictive targets and the primary online
encoder o is then trained to align its predictions with the stable targets. This process is a form of
self-distillation that prevents the model from overfitting to noise and helps it learn robust features A,
sharing its core philosophy with the established JEPA framework (LeCun, 2022; Assran et al., 2023).

Training Objective. The above formulations allow the model to flexibly combine information from
both contextual understanding and direct evidence from target data, thereby aiming to produce robust
and generalizable features. Combining both modeling approaches within a single SOC framework,

we define the following training objective properly scaled by variances of the likelihoods (ag, 03):

12
5 T 2 PN ~
bow=_5 |FatlatlPa- £ & [lve-Du@P+rfat o], o
X0~ (3) te€Tiar &% ~pg(-1X9)
_ 2
where 7 = U’\Q)% is a balancing factor. The parameters for the initial latent state and dynamics

{u8, %5, a’} and the decoder network {D,} are jointly optimized by minimizing the training
objective (9). The detailed derivation of this training objective is provided in Appendix B.3.

2.3  EFFICIENT MODELING OF LATENT DYNAMICS

The numerical simulation of (3) via SDE solvers is computationally demanding. To tackle these
computational challenges, we turn to simulation-free methods. These methods suggest that complex
data modeling can be achieved using linear SDEs (Schirmer et al., 2022; Smith et al., 2023; Ansari
et al., 2023; Deng et al., 2024; Park et al., 2024), thereby avoiding costly numerical solvers. In
particular, by approximating the drift function of controlled SDEs in (3) with a linear model, we obtain
closed-form solutions for the latent states, removing the need for numerical integration. This approach
drastically reduces computational demands, which is especially beneficial for high-dimensional data
such as fMRI. Moreover, when combined with the assumption of piecewise locally linear dynamics,
it enables robust simulation-free inference.

Theorem 2.2 (Simulation-Free Inference). Let us consider a sequence of semi-positive definite (SPD)
matrices DycT where each Dy, € R4 qdmits the eigen-decomposition D, = VAtiVT with
eigen-basis V. € R4 and eigen-values A, € diag(R?) foralli € {1,--- ,k} and approximation
of controls O‘feT’ where each of € R%. Then, for an interval [t;,t;_1), consider the SDE:

dX{] = [-Dy,X{ + o, (V)] dt +dW,, (10)

where X8 ~ N (o, o). Then, for any time-stamps t; € T, the marginal distribution of the solution
of (10) is a Gaussian distribution i.e., Xfi ~ N (e, X¢,) whose parameters are computed as

- i—1 -
pe, =V (e Siso (e —ty) Ay, fie, — Z e~ ST (b 1—t) Ay At_ll (I _ e(tl+1*tl)At1) 6‘&) (11)
=0

Eti =V <62 Z;;é(thrlitj)Atj 2A]to - % Z 6722};l1(tj+17tj)Atj At_ll (I - 62(tl+17tl)A”> >VT’
1=0

where X¢ = VTX®, &y, = VTay, W, =VTIW,, fig =V T pgand $g = VTSV,
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Hence, given the matrices and controls {Dy, a; }+c7, we can derive a closed-form solution for the
latent states X¢. Moreover, this parameterization enables the use of the parallel scan algorithm (Blel-
loch, 1990), allowing parallel computation of the moments {, > }:e7. Consequently, we can
evaluate the objective function (9) in O(log k) time. Further details can be found in Appendix C.

Remark 2.3. A key advantage of this parameterization, once the model is trained via the SOC
formulation, is that it enables the direct inference of the optimal policy o* for downstream tasks. In
other words, obtaining o* does not require simulation of X} for downstream tasks. Instead, any
necessary instances of X; are themselves efficiently inferred using the trained encoder.

3 EXPERIMENTS

In this section, we present empirical results demonstrating that our novel SSL method, BDO, yields
superior representations for fMRI analysis. BDO was pre-trained using the large-scale UK Biobank
(UKB) dataset in a self-supervised manner, leveraging resting-state fMRI recordings from 41,072
participants (Alfaro-Almagro et al., 2018). To evaluate its applicability, we conducted experiments
across various downstream tasks, including trait prediction and psychiatric diagnosis classification.
These experiments were performed on four datasets: Human Connectome Project in Aging (HCP-
Aj; Bookheimer et al., 2019), Autism Brain Imaging Data Exchange (ABIDE; Di Martino et al.,
2014), Attention Deficit Hyperactivity Disorder 200 (ADHD200; Brown et al., 2012), and Human
Connectome Project for Early Psychosis (HCP-EP; Prunier & Shenton Martha; Breier, 2021; Jacobs
et al., 2024). All fMRI data were preprocessed by dividing brain into 450 ROIs, using Schaefer-400
for cortical regions and Tian-Scale III for subcortical areas (Schaefer et al., 2017; Tian et al., 2020).

We compared our performance against Table 1: Internal prediction on UKB 20% held-out.
both task-specific (TS) models and self-

. . . Age Gender
supervised learning (SSL) models. Specif- Methods £
ically, we compared BDO with TS mod- MSE § pT ACCEHT FIT
els: BrainNetCNN (Kawahara et al., 2017), BrainNetCNN  0.648 +018 0.621 012 90.89 +0.14 90.87 £0.12
. . . TS BrainGNN 0.914£024 0430010 79.07 +1.08 79.03 £1.09
BrainGNN (Li et al., 2021), and Brain- BrainNetTF 0.561 £004 0.673 003 91.19 £0.51 91.17 £0.50

NetTF (Kan et al., 2022), as well as four
( ’ ), MoCo (90M) 0.933 £022 0413 £010 80.11£0.73 80.11 £0.73

SSL models: MoCo (He et al., 2020) and BYOL (90M)  0.859+006 0.380+006 72.980.13 72.97 £0.13
BYOL (Grill et al., 2020) as general SSL  1p BrainLM (85M)  0.737£019 0.547 011 84.51 2064 84.51 £0.64
methods; BrainLM (Caro et al., 2024), and BrainMass (90M) 1.104 £013 0.358 +006 80.33 £0.86 80.34 £0.86
BrainMass (Yang et al., 2024) as fMRI- BDO (86M) 0.600 £.004 0.635 £.005 88.25+0.78 88.21 £0.79
specific approaches. For a fair comparison, MoCo (90M) ~ 0.751 023 0.545+.013 85.95+101 85.90 £1.02

3 BYOL (90M) 0.824 +.006 0.476 +.003 83.17 +.006 83.10 +.006
all results are averaged over three runs with FT BrainLM (85M)  0.648 +.024 0.620 +.018 89.31 +1.13 89.29 +1.12

different data splits. The best-performing BrainMass (90M) 0.727 +015 0.573 £006 87.03 086 86.99 £0.87
results are highlighted in bold®. BDO (86M)

0.481 +.010 0.722 +.007 92.59 +0.68 92.57 +0.69

3.1 INTERNAL AND EXTERNAL EVALUATION.

We assessed robustness and transferability using both linear probing (LP) and full fine-tuning (FT)
protocols, with detailed procedures described in Appendix D.4. Notably, even under the simpler
linear probing evaluation, BDO matched or exceeded the performance of task-specific models on
both internal and external benchmarks, demonstrating strong generalizability across datasets.

Internal tasks: Age and Gender Prediction. To evaluate in-domain generalization, we performed age
and gender prediction on a 20% held-out subset of the UKB data. As shown in Table 1, BDO achieved
state-of-the-art results, surpassing both task-specific and SSL models on all metrics.

External tasks: Trait and Diagnosis Prediction. For external validation, we tested BDO on trait and
psychiatric diagnosis prediction across four public datasets: HCP-A, ABIDE, ADHD200, and HCP-
EP. Tasks included predicting demographics and cognitive scores in HCP-A as shown in Table 2, and
classifying autism, ADHD, and schizophrenia in the other datasets as presented in Table 3. BDO
outperformed all baselines in accuracy and F1 score, demonstrating strong clinical potential. Notably,
we also confirmed that these powerful representations, pre-trained exclusively on resting-state fMRI,
generalize effectively to task-based fMRI paradigms. See Appendix D.5 for the detailed analysis.

3 Additional experimental details are provided in Appendix D
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Table 2: Demographics and trait prediction on HCP-A.

Age Gender Flanker
Method
ethods MSE | ot ACC (%)t F1 (%) 1 MSE | ot
BrainNetCNN 0.472 £.054 0.727 +.040 72.36 +3.66 71.42 +4.03 1.001 +.097 0.310 +.083
TS BrainGNN 0.570 £.050  0.657 £.031 66.81 +2.54 65.22 £2.14 1.137 £.049 0.229 £.051
BrainNetTF 0.389 +.038 0.780 +.036 75.00 +2.28 74.06 +2.78 0.959 +.058 0.357 +.071
MoCo (90M) 0.817 £.037 0.591 £.007 64.12 +1.18 64.06 £1.25 1.572 +.158 0.283 £.022
BYOL (90M) 0.609 +.038 0.619 +.030 64.81 +3.32 64.58 +3.49 0.960 +.072 0.304 +.071
Lp  BrainLM (85M) 0.756 £057  0.636 +£027 6528 #3.00  64.99+2.96  1.181+081  0.375+016
BrainMass (90M) 0.743 £.117 0.630 +.077 66.20 +0.65 66.17 £0.56 1.082 +.013 0.313 +£.013
BDO (86M) 0.404 £010  0.768 £.008  72.00 +2.95  71.30 +2.19  0.856 £.049  0.450 +.072
MoCo (90M) 0.532 +.023 0.697 +.016 65.28 +1.96 64.63 +1.98 0.976 +.063 0.370 +.058
BYOL (90M) 0.531+037  0.694 +.021 69.68 +2.15  68.82+2.75  1.317+.031  0.216 £.059
FT BrainLM (85M) 0.340 £.019 0.818 +.012 72.78 +2.12 72.36 £2.22 0.859 +.010 0.461 +.015
BrainMass (90M)  0.471 £030  0.728 +020  67.82+1.99  66.90 +2.17  0.996 +.055  0.339 +.023
BDO (86M) 0.273 +.010 0.851 +.006 79.40 +4.07 78.98 +4.38 0.847 +.037 0.464 +.072
Table 3: Psychiatric diagnosis prediction on clinical fMRI datasets.
ABIDE ADHD200 HCP-EP
Methods
ACC (%) 1 F1 (%) T ACC (%) 1 F1 (%) T ACC (%) 1 F1 (%) T
BrainNetCNN 64.39 +2.17 64.23 +2.27 55.49 +4.39 53.62 +5.15 70.29 +6.90 58.07 +9.52
TS BrainGNN 56.82 +3.40 56.73 +£3.43 52.78 £3.27 51.59 +2.89 73.14 £6.90 65.46 £9.06
BrainNetTF 66.36 +3.66 66.30 +3.67 54.29 £3.02 50.90 +3.18 71.43 £6.52 61.26 £10.3
MoCo (90M) 60.76 £3.16 60.74 +3.16 57.64 £1.77 57.72 +1.76 71.43 +2.33 70.86 +2.03
BYOL (90M) 58.48 +2.39 58.44 +2.43 60.15 +2.13 60.21 +2.30 70.48 +1.35 70.15 +2.23
LP BrainLM (85M) 59.92 +£3.88 59.77 £3.77 60.44 £2.37 60.27 +2.27 72.38 +3.56 73.04 £3.10
BrainMass (90M) 62.27 £1.93 62.18 +2.07 61.15 £2.16 60.39 +2.62 73.33 £3.56 73.32 +£3.20
BDO (86M) 66.67 +1.13 66.58 +1.02 61.40 +1.97 61.49 +2.92 76.19 +4.86 74.63 +4.96
MoCo (90M) 65.45 +2.26 65.16 +2.30 61.15 +1.28 59.39 +2.13 75.24 +1.35 74.78 +2.37
BYOL (90M) 60.76 £1.30 60.61 +1.41 58.15 £0.35 57.16 +0.53 72.38 £1.35 73.08 +1.06
FT BrainLM (85M) 61.36 +4.28 61.28 +4.19 61.65 +2.68 59.27 +3.22 74.29 +4.04 74.12 £3.92
BrainMass (90M) 67.27 +3.34 66.66 +3.46 63.91 +1.23 62.55 +0.74 76.19 +3.56 76.25 +1.97
BDO (86M) 69.32+2.24  68.32:1.78  64.16 £1.15  64.27 +1.08  82.86 +2.86  82.87 +2.65

3.2 SCALABILITY AND EFFICIENCY.

Scalability. We evaluated BDO’s scalability by varying
both model size and pre-training data volume as depicted
in Figure 7. For model scaling, we pre-trained three BDO
variants with increasing parameter sizes: SM, 21M, and
86M, and tracked HCP-A age-regression performance tra-
jectories over pre-training epochs as well as disease pre-
diction accuracy across various datasets. Additionally, to
examine the effect of pre-training data volume, we trained
BDO (86M) on progressively larger subsets of the UKB
dataset. In both experiments, larger models and greater
data sizes clearly yielded higher performance. Detailed
performance metrics are available in Appendix D.6.

Efficiency. Figure 1 shows that BDO significantly outperforms other SSL methods in both resource
and parameter efficiency. Remarkably, even the smallest BDO variant (SM) achieves HCP-A age
regression performance comparable to other SSL. models (He et al., 2020; Grill et al., 2020; Caro

Pearson Correlation (p)
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Figure 7: (Left) Model scalability

(Right) Data scalability on HCP-A age
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tion loss hindering reconstruction. Additionally, Figure 8: (Left) Training curve (Right) HCP-A age
a detailed analysis of the importance of the MAE ~ regression Pearson correlation p as the mask ratio
objective itself can be found in Appendix D.8. < and balancing factor 7 are varied.

Pearson Correlation (p)

Training Iteration

Balancing factor 7. Our ablation on the balancing factor 7 in (9) reveals that incorporating the
JEPA regularizer (7 > 0) enhances performance over the MAE-only setting (7 = 0), as shown
in Figure 8. This demonstrates that the empirical prior contributes to learning more robust and
meaningful representations. See Appendix D.9 for a more comprehensive MAE-JEPA ablation.

Number of timesteps. During the pre-training, Table 4: LP performance of BDO (86M) with a

BDO learns from sequence segments randomly  varying number of timesteps (NoTs) on HCP-A.
sampled from full fMRI recordings. The length

of these segments, referred to as the number

: ; : 80 0.587£045 0.645£026  63.674200  61.98092
of timesteps, directly impacts downstream per- ¢ (500700 0768 008 72005205 71302219
formance, as shown in Table 4. While using 240 0348015 0805000 7222+113 7134135
more timesteps consistently boosts performance,
likely by capturing richer brain dynamics, it also raises the computational cost of pre-training stage.

NoTs Age (MSE) | Age (p) T Gender (ACC) 1 Gender (F1) 1

3.4 INTERPRETABILITY OF THE UNIVERSAL FEATURE A

Embedding Space of Universal Feature A. To evaluate the clinical relevance of the universal feature
A, we projected A into a two-dimensional space using PCA and UMAP, as shown in Figure 9. PCA
revealed clear linear patterns closely aligned with age distributions, while UMAP preserved these
meaningful separations. This indicates that A successfully encode biologically meaningful neural
variations associated with aging. The ability to characterize aging is clinically critical, as deviations
from typical aging trajectories may signal early vulnerability to cognitive decline or psychiatric
disorders (Elliott et al., 2021). These results demonstrate that our framework learns meaningful
representations reflecting aging-related neural dynamics, highlighting its clinical potential.

UK Biobank Held-out (UKB) Human Connectome Project in Aging (HCP-A)

UMAP2
UMAP2

Age PC1 UMAP1 Age

Figure 9: Projected 2D features of the universal feature A using PCA and UMAP, coloured by age.
(Left) Embedding space of UKB held-out split. (Right) Embedding space of HCP-A dataset.

4 CONCLUSION AND LIMITATIONS

We introduced BDO, a novel SSL framework leveraging SOC to model continuous latent brain
dynamics from fMRI, yielding a robust and transferable universal feature A. BDO achieves state-of-
the-art performance across diverse demographic and clinical downstream tasks, demonstrating strong
generalization to external cohorts and notable computational efficiency.

While our simulation-free inference based on locally linear approximations has proven effective
for scalability, it may introduce a variational gap and potential error accumulation over long-term
temporal analyses. Further challenges include the inherent complexity of the BDO framework
and achieving a detailed neurobiological interpretation of learned continuous dynamics beyond
the aggregated universal feature A. Future work may focus on developing more flexible inference
approximations and enhanced interpretability methods for such sophisticated models of brain activity.
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REPRODUCIBILITY STATEMENT.

Appendix D contains all implementation details required for reproducibility, including a full break-
down of our datasets, preprocessing pipelines, network architectures, and training protocols with
hyperparameters. Our source code is available in the supplementary material.

ETHICS STATEMENT.

Our work introduces a novel SSL framework for fMRI analysis, intended strictly as a tool to advance
neuroscience research in areas such as demographic trait analysis and psychiatric diagnosis. We
acknowledge the significant ethical responsibilities associated with such technology, particularly
the risks of perpetuating societal biases from training data and the potential for misapplication in
clinical settings. Crucially, this model is not a validated diagnostic tool and should not be used for
such purposes without rigorous clinical trials and expert oversight. This study relies on publicly
available, anonymized data; any future applications on sensitive clinical data would require strict
privacy protocols and institutional review. A large language model (LLM) was used solely to improve
the manuscript’s grammar and clarity, and not for generating scientific ideas or results.
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A RELATED WORK

Due to the space constraints in the main text, we present an extensive survey of related work on
task-specific and self-supervised learning models for fMRI, and continuous-time dynamical modeling.

Task-specific Models for fMRI. Leveraging fMRI data for applications such as disease diagnosis
and demographic trait inference has driven the development of a variety of supervised deep learning
architectures. BrainNetCNN introduces convolutional kernels that operate directly on functional
connectivity matrices, capturing both edge-to-node and node-to-graph interactions (Kawahara et al.,
2017). BrainGNN builds on this by employing ROI-aware graph neural networks with a hierarchical
pooling mechanism to focus on diagnostically salient regions (Li et al., 2021). More recently,
BrainNetTF applies transformer encoders to functional connectivity matrices of ROI time-series and
incorporates a cluster-sensitive readout layer for functional-module detection (Kan et al., 2022). While
task-specific models achieve strong performance on their supervised tasks, they rely on labeled data
and do not learn generalizable representations that transfer across diverse downstream applications.

This limitation motivates our focus on SSL, a paradigm designed to overcome the reliance on labeled
data. By exploiting the abundance of unlabeled fMRI scans, SSL aims to distill rich, task-agnostic
representations that generalize across a wide spectrum of downstream fMRI analyses.

Self-Supervised Learning for fMRI. SSL has emerged as a powerful paradigm for extracting rich,
generalizable representations from large-scale unlabeled data in both vision and language domains,
through approaches such as latent representation alignment-based (e.g., MoCo (He et al., 2020),
BYOL (Grill et al., 2020)) and reconstruction-based methods (e.g., MAE (He et al., 2022)). More
recently, JEPA has demonstrated the effectiveness of predicting latent representations across different
views (Assran et al., 2023; Bardes et al., 2024). Existing SSL models for fMRI generally follow one
of two routes as described in Figure 2: image-based and graph-based approaches.

First, image-based approaches, which patchify fMRI time-series into spatiotemporal tokens, represent
each scan as a fixed grid of spatiotemporal tokens. BrainLM pioneered the image-style paradigm and
used a MAE objective to reconstruct masked patches (Caro et al., 2024), and Brain-JEPA builds on this
by replacing reconstruction with a JEPA that learns to predict the latent embedding of one view from
another (Dong et al., 2024). Beyond the loss of fine-grained temporal dynamics during patchification
and the difficulty of aligning temporal resolution across datasets as pointed out in Section 1, a key
limitation of this design is its rigid dependence on sequence length in the SSL scenario. For example,
a model pre-trained on UKB data with 160 time points grouped into 10 non-overlapping patches
of length 16 expects exactly the same 10-token layout during inference. However, datasets such as
ABIDE contain scans with as few as 76 time points, which cannot be processed without upsampling.
This length rigidity undermines the core premise of SSL, namely broad out-of-the-box transfer across
heterogeneous unlabeled cohorts, and therefore poses a critical limitation for SSL in fMRI

In contrast, graph-based approaches compress the fMRI time-series into a single static functional-
connectivity (FC) graph, freeing them from constraints such as heterogeneous temporal resolution or
scan-length variability; however, this coarse summarization inevitably discards fine-grained temporal
dynamics in BOLD signals. BrainMass, for example, generates augmented static graphs by randomly
dropping time points to produce pseudo-FC variants, and leverages latent representation alignment
and masked-ROI prediction (Yang et al., 2024). ST-JEMA tries to restore temporal information by
partitioning the scan into multiple sliding windows and building a dynamic graph sequence on which
it performs JEPA-style SSL objective (Choi et al., 2024). While this design captures slow changes in
connectivity, it still averages out intra-window dynamics and therefore inherits the same limitations as
image-based patchification such as loss of high-frequency temporal details and the practical difficulty
of matching window size to the diverse TRs across different datasets as pointed out in Section 1.

To address these issues, we adopt continuous-time latent dynamical modeling. By viewing each
fMRI scan as noisy observations of a stochastic differential equation, the model naturally aligns data
with different TRs on a shared time axis, handles variable sequence lengths without resampling, and
retains the fine-grained temporal dynamics that patch-based or static-graph approaches inevitably
discard. Moreover, we integrate two complementary self-supervised objectives, MAE reconstruction
and JEPA alignment, into a unified stochastic optimal control framework, yielding a single training
objective that preserves fine-grained temporal structure and prevents representation collapse.
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Continuous Dynamical Models. Continuous-time dynamical models have been developed to cap-
ture irregular time-series dynamics and uncertainty. Neural ODEs parameterize a smooth vector field
via a neural network and solve an initial-value problem to fit observations (Chen et al., 2018), while
Latent ODEs extend this by learning a global latent initial state and replacing standard RNN encoders
with ODE-based encoders (Rubanova et al., 2019). GRU-ODE-B further incorporates a Bayesian
update rule into a GRU-driven ODE for online uncertainty quantification (De Brouwer et al., 2019),
and on the stochastic front, Latent-SDE and Latent-SDEH introduce variational inference schemes
for SDE-driven latent trajectories (Li et al., 2020; Zeng et al., 2023). Classical continuous—discrete
state-space models like CD-SSM generalize discrete transitions to SDE-governed updates (Jazwinski,
2007), inspiring neural CD-SSM variants that leverage locally linear approximations for irregular
real-world series (Schirmer et al., 2022; Ansari et al., 2023).

Although these frameworks excel at modeling temporal dynamics and noise, they are designed as
task-specific predictors and rely on costly numerical solvers for integration and moment inference,
making them impractical for large-scale, high-dimensional fMRI pretraining. Recently, (Park et al.,
2024) proposed an efficient task-specific method for amortized inference and simulation-free latent
dynamics in CD-SSMs, altogether enabling scalable modeling of irregularly sampled time-series
without expensive numerical solvers. Inspired by this work, we introduce a simulation-free SSL
framework that defines a closed-form latent dynamics objective to capture both temporal evolution
and uncertainty in fMRI signals, designed to enable highly efficient and scalable pretraining.

B PROOFS AND DERIVATIONS

B.1 PROOF OF PROPOSITION 2.1

Proof. Bayesian filtering and smoothing techniques Sérkka (2013) are foundational tools for estimat-
ing latent states in probabilistic dynamical systems. The goal is to recover the posterior distribution
of the latent trajectories given the observations:

p(Xjor | V) = ﬁ 11 92 (.

teT

Or(Xjo.17)s (12)

where Z()) is a normalization constant:

Z(Y) = Ex~ (1)) [H 9y (¥, )] : (13)

teT
Expanding this expectation, we have

log Z(Y) = log Ex. (1) [p(Y|X0.17)] (14)
X
= log Ex~. (1) [ (VX T])E[OT];] (15)
Xio,)
2 Exe 10y |logpVIXG 1) + log 2aio) 16)
' P(Xﬁ) T])
p(X
=Ex~ (10 [ZQ y¢|X7) + log EXES T];] 7)
teT (0,77
1
D Ex- 10) [Zg yelX§) / o |* dt + / atdwsl (18)
teT
(zu) 1 T 2
Bxe o | S 00X5) = 5 [l (19)
teT 0
=-J(, D), (20)

where (7) results from Jensen’s inequality, (i7) follows by applying Girsanov’s theorem (Baldi, 2017,
Theorem 12.1), and in the final equality, (ii¢) holds because W is a martingale process.

O
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B.2 PROOF OF THEOREM 2.2

Proof. Since each SPD matrix Dy for ¢t € 7 admits an eigen-decomposition D, = VAtiVT, we
can transform the original process X{*, which is expressed in the canonical basis, into a new process
X? = VT X¢ that resides in the space spanned by the eigenbasis V. With this transformation, the
dynamics in (10) can be rewritten, for any interval [¢;,¢;11), as:

dXo = [fAtng +ay, | dt +dW,, @1

where X¢ = VTX2 &, = VTa;,, W, = VT W, and initial condition Xg ~ N (jig, $0) with
fio = VT g and f]o = VT3, V. Since V is orthonormal, W, retains the distribution W 4 W,

for all ¢ € [0, T, allowing W, to be treated as a standard Wiener process. Now, given that A4, is
diagonal, the linear SDE in equation (21) admits a closed-form solution for any ¢ € [t;, t;41):

t t
Xo = ==t <x b [ty ds g [ eteons dw> 22
t t

i i

Since the initial condition Xg is Gaussian and the SDE is linear with Gaussian noise, the process X?
remains Gaussian. Therefore, its first two moments—the mean and covariance—can be derived from
the solution above. To derive the moments, we firstly evaluate the deterministic integral involving
dt .

i

(23)

i

t
/ e(5—ti) Ay Oy, ds = *At_il (I — e(titi)Atl) Qy, .
t

i

Taking the expectation of X, and using the martingale property of the Wiener process W,, we
obtain:

fiy = EXQN (1) {X?} _ e—(t—ti)Atiﬂti e (t—ti)Ay, At—il (I _ e(t—tq‘,)Azi) by, (24)

Next, compute the covariance of X?:

t t
i:t = ]EXHN (21) lEZ(tti)Ati <Xti — L, +/ e(S*ti)Ati dW&) <Xti — U, —|—/ e(siti)Ati dwb
t

t;

i

(25)
t 2
= eiZ(titi)Ati EX“N (21) l(xtz - Mt1) (Xt1 - Hti)—r + ‘ / 6(87“)1\“ dWé ‘| (26)
ti 2
; t
Q 20-tIAEy ) {(Xn — ) (Ko, — )+ / 2ty ds} 27)
t;
ii - 1
@) —2(—t)As, S, — 5672(t7ti)Ati AL (I _ 62(t7ti)Ati> ’ (28)
where (7) follows from the martingale property of W, and (47) follows from Itd isometry:
t 12 t
Exan 21 H/t TR AW, || | = Eg (21) [/t Aot ds] : (29)
i 2 K
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Using the recursive forms for the mean and covariance, we can determine these moments at each
discrete time step ¢;. For the mean fi;,, the recurrence relation is:

fu, = e~ ity em (it A AT (I —~ e(tl—toﬂ‘to) G, (30)
A L 31
o~ Zjoltiti—ti) Ay, A%l (I _ e(tl_tO)AtO) by,

N e*(tZ*tl)Atl Ai?ll (I _ e(tzftl)Atl) éltl

fie, = *ZTU(%H tj At Ze S (i —t) A Agl (I _ e(tl+l_tl)Atl) b, (32)

Similarly, for the covariance ;,, the recurrence relation is:

1672(t1*t0)At1 At_ol (I _ 62(t1*t0)At0) (33)

2152 — o~ Tjmo 2(tit1—t) Ay 2150 (34)

itl — 672(t1*t0)At0 ito _
_ %e— im0 2(tj41—t5) Ay A;Ol (I _ 62(t1—to)AtO) _ %e—Q(tz—h)AtlA;l (I _ p2(t2—t)Ay,

i—1

2&; — o2 Sio(ti1—t) Ay, ito _ %Ze—Q St 1—t) Ay AEI (I _ 62(t1+1—tz)1\a,) ) (35)
=0

Now, since X = VX, with jig = VT 9 and 3y = VT XV, we can express the mean and
covariance in the original canonial basis as follows. For the mean fi;c7, which is given by

- i1 .

Vi, =V (e Sio (i1 —t) Ay, fitg — Z e STl (B —t) A A;ZI (I _ e(tl+1—tl)/\tl) dt1>
=0

(36)

-V (e S0 (titi—t) A Ny T — Z o~ Zimi (i1 —t) Ay, A;l (I _ e(tz+rtz)1\tl) VTOZn)

(37)

— e =i (a1 —ts) Dy 1o — (Ze i ll(tj+1—tj)Atj A;l (I _ e(tz+1ftz)Atl) Vv atl> (38)

— o~ TiToltira—ty) Dy, (Ze (i )ALy TD; v (I oltir1— tl)Atl)VTatl>

(39
— o~ TiTh(tira—t,)Dy, o — ii:le— S (tjr1—t5)Dy; /D! (I _ e(tHl—tl)Dtl) a, (40)
= e, (41)

where we used Dy, = VAthT and the orthonormality of V. Similarly, for the covariance f}teT,
we have
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o . i—1 .
VitiVT = V (62 Z;:é(t1+17tj)Atj Etg — 32672 Zj:ll(tj+17tj)Atj At_Ll (I _ 62(t1+1*t1)Atl) VT
=0

(42)

-V <e—2 Sio(tiri—ty) Ay VY,V — %Ze_Q S (Bir—ty) Ay Af,,l (I _ 62(tl+1—tl)Atl)> vT

1=0

43)

— o 22Tt —1))Dy; S -V (; 26—2 S (ti—t)) Ay AEI (I _ 62(t1+1—tl)AzZ)> v

1=0
(44)
i—1

— e 2 5 0(ti1—t)Dy Y-V ( e 250 (b —ty) A VTDt—llV (I —_ 2=t Ay, )) vT
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(45)
- i—1 -
— o220t —t) Dy 5 — %Z e 22501 (tir1—5)Dy, Dt_ll (I _ 62(tz+1*tz)Dtl> (46)
1=0
=%, 47)
Thus, both the mean y1;, and the covariance >, of X¢ at each time step ¢; are correctly recovered,
completing the proof. O

B.3 DERIVATION OF ELBO

We start the derivation by integrating the mixture distribution in (8) into the SOC problem (6) as
follows:

10g p(Vear Xfo 77) = log/Cw(Yt|5ét)7T§(5ft|X?)d5ét (48)
1
= 10g/<¢(}’t|dt)Z(X$) [p@(dt|Xf)>\Q§(dt‘ytar)l_>\] dov (49)
- [po(@dl X)) gg (@l V) AT, < o
= log / Co(yildn) [ AN Zt(Xf)eh (ét)‘ h(éy)dé, —log Z(XY) (50)

(1)

> / [log Gy (ye|cr) + Aog pa(@:|X) + (1 — A) log g5(Gr| Vear) — log h(dr)] h(Gr)déy — log Z(X7)
(51)

D [ llog G (5elae) + (= 1) log pa(GeX{) + (1~ A og a5(Ge1Via)] p(GeX{)ds ~ log Z(XY)
(52)

(ii) / [log Gy (y¢lae) + (1 — X) log g (Gt | Vear )] p@(dt|Xt9)d&t +(1=A)C —log Z(Xf) (53)

(iv)

> Eg,wpa.xe) 108 Cy(yelar) +(1 = A) log g5 (e[ Viar) (54)
—_——— —_——
MAE JEPA
1 vz A=A g
= Eamp(aiixt) [Qag Ive = Do(@l* + =55 [la - o”[ . (55)

where (i) follows from Jensen’s inequality, and (7) follows by setting proposal distribution i = py,
(#it) follows from the definition of py, since the entropy of Gaussian with constant covariance:

/ (X — 1) log pg(a¢| X7 )pe(as|X0)da: = (1 — \) / —log po(a|X{)pe(&:|X7)dé; = (1 — N)C > 0.
(56)
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Finally, (iv) follows from (1 — A\)C' > 0 and since the normalization constant Z(X?) is calculated
as:

2(X) = [ Col@/X)Pap(au|Y)' e (57)
A i o2 _ =X~ a||?
:/Clexp {Q%%H%atH - 502 -’ (58)
1. o 1 A s 1=\ 42
:/clexp 5 S G+ 5 (757 = Sl =152 ol )] oo
A o 1=\ 412
-3 (57 - gl =152 )]
9 94
where C = 1 —7,C3 = L ,
@m/2(on) ¥ (03) 7 (%+%)d (o) ¥ @)
91 I3
A =X A 1-A\!
=s< X{ + Ty(t, ym)>, and S = (2+ 5 ) L (61)
oy og 9 94
Consequently, we get
r N T _
A0 1-) 0 A0 1-) 0
1 (?O‘t T O‘t) (?O‘t +70%) A 1— A
Z(X{) = Cyexp |5 [~ | = Sl - 7 o
(,\2 + 172,\) o5 o5
r A1—X\
o203 0 2
=Cgexp |———A2 _||of ate)‘ (62)
L 2 (;\f + 1‘73/\>

It implies that — log &(XY) > 0. Hence we can derive the desired inequality in (9):

T
—log p(Vear| Verx) < Exov10) [/0 H%H dt — ZEp(a,\xﬂ [log Gy (yelaw) + (1 —A)log%(@tmar)]]

teT
(63)
1 Q=X 4
= Exv~(10) V 5 llafll =3 Baptout) [2 7 lye = Dy(@)l” + 5 Hat—atHH
) (64)
— £(0,4). (65)

For stable learning, we train our model with rescaled training objective:

T
£(60.9) =Exonioy | [ o llall dt = 3 Baympiagmy |y = D@l Ja -l ||
0 —_— . ,

t
€ Tobs reconstruction
regularization

(66)

1-\)o2 . . . .
Here, 7 = ( 02)04 determines the balance between reconstruction and regularization. See Section 3.3

for details on how controlling the regularization influences the performance of BDO.

C PARALLEL SCAN ALGORITHM

The computation of the first two moments—the mean yi;7 and covariance Y. —of the controlled
distributions can be efficiently parallelized using the scan (all-prefix-sums) algorithm (Blelloch, 1990).
Leveraging the associativity of the underlying operations, we reduce the computational complexity
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from O(k) to O(log k) time with respect to the number of time steps k. We have established the
linear recurrence in Theorem 2.2 for the mean and covariance at each time step ¢;:

my, = Aimtifl + Biati, 67)
S, = A%, , + B, (68)
where we define A;(t) = t —t;, A; = e 21 ()Ay B, = e Bim1(t) Ay AL (T — eBi1(t)Ay)
A; = e 22it)h and By = —L1e 281 (t)Au A-T (T — 2818 A) o apply the parallel

scan algorithm to our recurrence, we define two separate sequences of tuples for the mean and
covariance computations for all ¢ € {1,--- , k}:

M; = (Aiaﬁiati) . Si=(A;,By) (69)

Now, we define binary associative operators ® for the sequences {M;} and {S;}:
M; @M, = (A;0 Ay, Ao Bjay, +Biay, ), (70)
S;®S;=(A;0A;,A;0B; +B,), (71)

where o denotes element-wise multiplication. We can verify that ® is an associative operator since it
satisfies:

(Ms ®Mt)®Mu = (AtOAsaAtOBsats +]A3t04tt) ®Mu (72)

= (Au ° (At ° As) A, 0 (At oByay, + Btatt) + Buatu) (73)

= ((Au © At) © A57 (Au o At) o Bsats + Au o Btatt + Buatu) (74)

=M, ® (M; ® M,). (75)

Thus, we get (M @ M) ® M,, = M ® (M; ® M,,), confirming associativity for M;. Similarly,
(Ss®8:) @Sy, = (Ao Ay, A o B, I+ BI) @M, (76)

= (Au o (At o AS) LA 0 (At o Bsats + BtI) + BUI) )

= ((AuOAt) oA, (AUOAt) OBSI+Au0BtI+BuI) (78)

=8, ®(S; ®8Sy,). (79)

Hence, (Ss ® S;) ® S, = S ® (S¢ ® S,), confirming associativity for S;. Now, we can apply the
parallel scan described in Algorithm 1 for both p;c7 and covariance ;<7 based on the recurrence
in (24, 28) and the defined associative operators ®. Employing the parallel scan algorithm offers
significant computational benefits, especially for large-scale problems with numerous time steps
k. The logarithmic time complexity ensures scalability, making it feasible to perform real-time
computations or handle high-dimensional data efficiently.

D EXPERIMENTAL DETAILS

D.1 DATA PREPROCESSING

Preprocessing Pipeline. The preprocessing pipeline involved several standard steps, including skull-
stripping, slice-timing correction, motion correction, non-linear registration, and intensity normal-
ization. All data were aligned to the Montreal Neurological Institute (MNI) standard space for
consistency. A whole-brain mask was applied to exclude non-brain tissues, such as the skull, from
further analysis. The fMRI data were parcellated into 450 regions of interest (ROIs), comprising
400 cortical parcels based on the Schaefer-400 atlas Schaefer et al. (2017) and 50 subcortical parcels
defined by Tian’s Scale III atlas Tian et al. (2020). The mean fMRI time-series for each ROI was
extracted across all time points.

Data Normalization. To ensure comparability across participants and reduce inter-subject variability,
we applied a two-step normalization process to the fMRI data. First, participant-wise zero-mean
centering was performed by subtracting the mean signal from each ROI within each subject. Second,
a robust scaling procedure was applied, where the median signal was subtracted, and the resulting
values were divided by the interquartile range (IQR), computed across all participants for each
ROI. After normalization, each fMRI sample was represented as a matrix of size 7' x N, where T’
corresponds to the number of timesteps and IV corresponds to the number of ROIs (N = 450).
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Algorithm 1 Parallel Scan for Mean and Covariance Algorithm 2 ParallelScan

1: Input.  Given time stamps 7 = {t1,¢2,...,tx}, 1: Input. Sequence of tuples
initial mean ., and covariance X¢,, control policies {T1,T2,..., Tk}, associative opera-
{a,, Qtyy ..y 0uy b, matrices {Ay;, Ay, .o, Ag tor ®.

2: Initialize sequences {M;}X ; and {S;} X ;: 2: Stage 1: Up-Sweep (Reduce).

3: for i = 1 to K do in parallel 3: ford = 0to [log, K| — 1do

4:  Compute A;(t;) =t; — t;—1. 4:  for each subtree of height d in parallel do

5. Compute A, = e~ 2i(t)As; 5: Leti = 291k + 294 1 for k =

6: C 4 B, B 0,1,...

NN ompe NS ~ e if i < K then
—en TR AT (D= e ). 7: Ti=T, .a®T;
7. Compute A; = e—2A,;(t,;)Ati; 8 end if
8: Compute B; = 1?)'. ensnft(l):or
1,—28;(t:) A, A—1 20, (t:) A, :
—2¢€ ) Ay (I —e*ai) t’)' 11: Stage 2: Down-Sweep.
9:  SetM,; = (Ai, Biati)- 12: ;‘K = I, where I is the identity element for
10:  SetS; = (A;,By). 13: for d = [log, K] — 1 downto 0 do
11: end for 14:  for each subtree of height d in parallel do
12: Parallel Scan {M}E, =15: Leti = 2971k 4+ 29+ _ 1 for k =
ParallelScan({M;}L,,®) 0,1,...
13: Parallel Scan {Si}E, = 16: if i < K then
ParallelScan({S:}£,,®) 17: T, 0a =T; 2a®T;
14: for i = 1to K do in parallel %g (rirzf: T; 5a
. R Y ¢ 1(2) : end i
150 ey = Nf(i) Heo + 1\,/1('5) 20:  end for
160 %y, =875 +8; 21: end for
17: end for 22: Return Scanned sequence
18: Return pie7, YieT {T1,T4,...,Tx} where T =

T T, ®---®T;.

UK Biobank (UKB) The UKB is a population-based prospective study comprising 500,000 partici-
pants in the United Kingdom, designed to investigate the genetic and environmental determinants of
disease Sudlow et al. (2015). This study utilized 41,072 rs-fMRI scans from the publicly available,
preprocessed UKB dataset Alfaro-Almagro et al. (2018). The preprocessing pipeline included non-
linear registration to MNI space using FSL’s applywarp function, thereby ensuring standardized
spatial alignment across participants Jenkinson et al. (2012).

Human Connectome Project in Aging (HCP-A) The HCP-A is a large-scale neuroimaging
initiative focused on characterizing structural and functional connectivity changes associated with
aging across a wide age range Bookheimer et al. (2019). This study accessed 724 rs-fMRI samples
from healthy individuals between 36 and 89 years of age. Preprocessed rs-fMRI volumes provided
by the HCP-A dataset were utilized for subsequent analyses.

Autism Brain Imaging Data Exchange (ABIDE) The ABIDE consortium aims to elucidate the
neural mechanisms underlying autism spectrum disorder Di Martino et al. (2014). In the present work,
1,102 rs-fMRI samples were obtained from the Neuro Bureau Preprocessing Initiative Craddock
et al. (2013a), which employs the Configurable Pipeline for the Analysis of Connectomes (C-
PAC) Craddock et al. (2013b). The preprocessing steps included slice-timing correction, motion
realignment, intensity normalization (with a 4D global mean set to 1000), and nuisance signal
removal. Nuisance regression involved a 24-parameter motion model, component-based noise
correction (CompCor) Behzadi et al. (2007) with five principal components derived from white
matter and cerebrospinal fluid signals, and linear/quadratic trend removal. Functional-to-anatomical
registration was performed via a boundary-based rigid-body approach, while anatomical-to-standard
registration utilized ANTSs. Band-pass filtering and global signal regression were not applied.

Attention Deficit Hyperactivity Disorder 200 (ADHD200) The ADHD?200 dataset comprises
776 rs-fMRI and anatomical scans collected from individuals aged 7 to 21, including 491 typically
developing individuals and 285 participants diagnosed with ADHD Brown et al. (2012). A total of
669 rs-fMRI datasets were selected for this study, specifically the preprocessed versions provided by
the Neuro Bureau Preprocessing Initiative (Athena Pipeline) Bellec et al. (2017).
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Human Connectome Project for Early Psychosis (HCP-EP) The HCP-EP is a neuroimaging
initiative focused on understanding early psychosis, defined as the first five years following symptom
onset, in individuals aged 16-35. The cohort includes participants with affective psychosis, non-
affective psychosis, and healthy controls Jacobs et al. (2024); Prunier & Shenton Martha; Breier
(2021). For this study, 176 rs-fMRI scans were analyzed. Preprocessing was conducted using
fMRIPrep Esteban et al. (2019), followed by denoising with Nilearn Nilearn contributors (2025). The
denoising process employed a 24-parameter motion model (including translations, rotations, their
derivatives, and quadratic terms) and CompCor-derived components extracted from white matter and
cerebrospinal fluid masks. Additionally, all confound variables were demeaned to ensure consistency.

D.2 PRE-TRAINING STAGE

Pre-training Data. For self-supervised pre-training, we utilized the large-scale UKB dataset, which
comprises resting-state fMRI recordings and medical records from 41,072 participants (Alfaro-
Almagro et al., 2018). We utilized 80% of the dataset for pre-training, while the remaining 20%
held-out data was reserved for downstream evaluation. We used a fixed random seed (42) to ensure
reproducibility when partitioning the UKB dataset into pre-training and held-out subsets. All
experiments, including the reproduction of foundation model baselines, were conducted using the
same dataset split to maintain consistency.

Irregular Multivariate Time-Series Sampling. We introduce irregularity in the time-series data by
subsampling both the observation timestamps 7Tops and the corresponding fMRI signals Vops. Unlike
conventional approaches that assume uniformly spaced time points (Caro et al., 2024; Dong et al.,
2024), we select a uniformly sampled subset of timestamps from the full sequence, ensuring that
only a fraction of the fMRI signal is observed. Specifically, from each full-length fMRI recording,
we randomly sample 160 timesteps (1" = 160), introducing variability in temporal resolution across
different samples. This choice reflects the fundamental nature of brain dynamics, which evolve
continuously rather than discretely, and encourages the model to infer missing states from incomplete
sequences.

Temporal Masking. To encourage robust representation learning and improve generalization, we
employ temporal masking, where a subset of the 160 sampled time points is randomly masked
during training. We apply a masking ratio of v = (.75, meaning that 75% of the sampled
timesteps are hidden while the model is trained to reconstruct them. In Figure 8, we vary ~ across
[0.4,0.5,0.6,0.7,0.75,0.8, 0.9] to examine the effect of masking ratio in learning robust representa-
tions. Actual reconstruction results are provided in the internal and external datasets as visualized
in Figures 14 and 15.

Pre-training Algorithm. The pre-training of BDO follows the procedure outlined in Algorithm 3.
Given an observed fMRI time-series Vs, we employ a masked reconstruction strategy, where a
random proportion ~y of the temporal signals is masked to encourage the model to learn meaningful
representations. The pre-training objective leverages amortized inference to approximate latent
dynamics. At each iteration, a subset of observed time-series V.« is used as context, while the masked
portion Y, serves as the target for reconstruction. The encoder network Ty maps the context data to
a sequence of latent states z;c7, , which are then used to estimate drift terms and control policies,
forming the basis for latent trajectory prediction. The decoder network D, reconstructs the missing
target states, optimizing a training objective £(6, 1) that aligns the predicted and true trajectories.

Pre-training Details. We trained BDO using a batch size of 128 and a total of 200 pre-training epochs.
The learning rate was scheduled using a cosine decay scheduler (Loshchilov & Hutter, 2016) with
a 10-epoch warm-up phase. During warm-up, the initial learning rate was set to 0.0001, which
increased to a peak learning rate of 0.001 before gradually decaying to a minimum learning rate of
0.0001. For optimization, we employed the Adam optimizer (Kingma & Ba, 2015). Across all BDO
configurations, we used a fixed number of basis { = 100 and consistently multiplied the observation
times by a time-scale of 0.1 for all datasets. To update §, Exponential Moving Average (EMA)
momentum is used and linearly increased from 0.996 to 1.0. It is worth noting that our models
required minimal hyperparameter tuning, which demonstrates that the proposed approximation
scheme operates stably and robustly.
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Algorithm 3 Pre-training BDO Algorithm 4 Fine tuning BDO for downstream tasks
1: Input. Time-series Vobs = yte Ty, Masking ratio 1: Input. Time-series and label (Vobs, Oobs ), pre-trained
v, encoder network Ty, decoder network D, encoder network Tg«.
2: form=1,---,M do 2: Sample zie 7y, ~ [L,cr,, 6% (2t Vovs).
3t Get Yex, Viar by masking 7% of temporal sig- 3: Compute optimal control policy Qe Ty,
nals. BoszieTy, .
Sample z;e Ty, ~ Hteﬁ[x q0 (%t | Vers)- 4: Compute the universal feature A = ﬁ Zteﬂ, oy
5:  Compute {D;, us, of }ieT, . R - -
6:  Estimate {u, Xt }te, with parallel scan algo- 5: Predict Ocps = he (A).
rithm. 6: if Linear probing then
7. Sample X0c - P e TN (e, S4). 7:  Freeze the pre;trained encoder network T?* .
8  Sample e, ~ HteTm, p(it|Xf). 8:  Compute L(6*,w) = Liask(Oobs; Oobs) using (80).
9:  Compute £(0, ) using (66). 9:  Update w with Vo, £(6*, w).
10:  Update (0,) with V4, L(6, ). 10: else if Fine tuning then
11: Apply 6 < EMA(0). 11:  Unfreeze the pre-trained encoder network Tg«.
12: end for 12:  Compute £(0*,w) = Liask(Oobs, Oops) using (80).

13:  Update (6%, w) with Vg« , L(0%, w).
14: end if

D.3 MODEL ARCHITECTURE

To maintain the structural advantages of our formulation, we designed our encoder network architec-
ture in a straightforward manner. In this regard, the networks used for pre-training BDO are listed
below, where N=450 is the number of ROIs and d is the dimension of latent space R as described
in Table 5 for each model.

* Encoder network ¢y:
Input (N) — Linear(d) — ReLU() — LayerNorm(d) — Linear (d)
— RelLU() — LayerNorm(d) — 12 X [LayerNorm(d) — Attn(d) —
FFN (d) ]

* FFN:
Input (d) — LayerNorm(d) — Linear(4 X d) — GelLU() —
Linear (d) — Residual (Input (d))

e Attn:
Input (Q, K, V) — Normalize (Q) — Linear(Q) — Linear (K) —
Linear (V) — Attention(Q, K) — Softmax(d) — Dropout() —
Matmul (V) — LayerNorm(d) — Linear (d) — Residual (Q)

* Decoder network D;:
Input (d) — Linear (N) — ReLU() — Dropout () — Linear (d)

Table 5: Pre-training hyper-parameters

BDO Variants Train EP  Warm-up EP LR Initial LR Minimum LR Batch Size R?  # of base matrices (L) EMA Momentum

BDO (5M) 200 10 0.001 0.0001 0.0001 128 192 100 [0.996, 1]
BDO (21M) 200 10 0.001 0.0001 0.0001 128 384 100 [0.996, 1]
BDO (86M) 200 10 0.001 0.0001 0.0001 128 768 100 [0.996, 1]

D.4 DOWNSTREAM EVALUATION STAGE

To assess the generalization and transferability of BDO, we conducted experiments across multiple
datasets and tasks, encompassing both demographic and psychiatric prediction. Datasets used in
this evaluation have distinct temporal resolutions and varying numbers of timesteps, reflecting
the irregularity of real-world fMRI data acquisition. Additional details are described in Table 6.
Note that in the downstream evaluation, irregular sampling and temporal masking were disabled.
The full sequence of fMRI signals, timestamps, and corresponding labels was used, denoted as

(y0b57 7:)bsa Oobs) .

24



Under review as a conference paper at ICLR 2026

Table 6: Dataset Subject Demographics

Category | UKB HCP-A ABIDE ADHD200 HCP-EP
# of subjects 41,072 724 1,102 669 176
Age, mean (SD) 54.98 (7.53) 60.35 (15.74) 17.05 (8.04) 11.61 (2.97) 23.39 (3.95)
Female, % (n) 52.30 (21,480) 56.08 (406) 14.79 (163) 36.17 (242) 38.07 (67)
Patient, % (n) - - 48.19 (531) 58.15 (389) 68.18 (120)
§ - . - ; - ASD ADHD Psychotic Disorder
Target Population | - Healthy Population  Healthy Population Healthy Population Healthy Population Healthy Population

Internal Evaluation. For internal evaluation, we utilized a 20% held-out subset of the UKB
dataset, which was excluded from pre-training. This evaluation focused on age regression and
gender classification, leveraging both LP and FT to analyze how well the model retains and transfers
knowledge acquired during pre-training.

External Evaluation. For external evaluation, we examined the ability of BDO to generalize to
unseen datasets. Demographic and trait prediction was performed on the HCP-A dataset, where
LP and FT were employed to assess model performance on age, gender, neuroticism, and flanker
scores. Beyond demographic characteristics, we evaluated psychiatric diagnosis classification using 3
clinical fMRI datasets, including ABIDE, ADHD200, and HCP-EP. These evaluations relied on LP,
as it provides a controlled assessment of the learned representations and their applicability to clinical
classification tasks.

Random Splits. All the datasets are partitioned into training, validation, and test sets using a 6:2:2
ratio to ensure fair and reproducible evaluation. To maintain consistency, we perform partitioning
with 3 consecutive random seeds, O, 1, and 2.

* For classification tasks, such as gender classification, stratified sampling is applied to preserve
class distributions across the training, validation, and test sets.

* For regression tasks, such as age regression, binning-based stratified sampling is employed. In
this approach, the continuous target variable is first discretized into bins before applying stratified
sampling, ensuring a balanced distribution of the target variable and mitigating potential biases from
uneven data partitioning. Additionally, to improve numerical stability and facilitate optimization,
the target variable is normalized using Z-score normalization, where the mean is subtracted, and
the result is divided by the standard deviation.

 The distributions of the three random splits for age regression tasks with the UKB and HCP-
A datasets, and six classification tasks with UKB gender, HCP-A gender, ABIDE diagnosis,
ADHD?200 diagnosis, and HCP-EP diagnosis are described in Figures 11—13.

Extracting the Universal Feature A. To extract the universal feature A, we define f as mean-pooling
over the sequence of control signals ;e 7, given by A := f(ager) = ﬁ >_ie7 ¢ This formulation

ensures that A serves as a compact and transferable representation of the underlying spatio-temporal
dynamics captured by the optimal control signals. To enhance biological interpretability, mean-
pooling is chosen as it provides a global summary of the temporal evolution of the control sequence
while suppressing high-frequency fluctuations that may arise due to local variations in o;. Although
we believe that mean-pooling provides a robust and scalable approach for summarizing temporal
dynamics, we acknowledge that more sophisticated aggregation methods, such as weighted pooling
or recurrent architectures, could further enhance downstream performance. These approaches may
offer additional advantages for analyzing temporal dynamics, such as facilitating interpretability
through attention weight analysis or capturing long-range dependencies. We leave the exploration of
these advanced aggregation strategies for future work.

Downstream Evaluation Algorithm. To evaluate the effectiveness of BDO on downstream tasks, we
follow the procedure outlined in Algorithm 4. Given an observed fMRI time-series Vops and its
corresponding labels Ogs, We extract the universal feature representation A using the pre-trained
encoder Ty«. This representation is subsequently used for classification or regression tasks through
either LP or FT.

* In the LP setting, we freeze the pre-trained encoder Ty~ and train only the task-specific head
he, : R4 — RY (single linear layer). The objective function £(6*,w) measures the discrepancy

between the predicted Oy, and ground-truth O, and is optimized with respect to w.
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Table 7: Search space of end-to-end fine-tuning (FT) and linear probe (LP).

Configurations FT LP

Optimizer AdamW (Loshchilov, 2017)  Adam (Kingma & Ba, 2015)
Training epochs 50 50

Batch size [16, 32] [16, 32, 64]

LR scheduler cosine decay cosine decay

LR [0.001] [0.01,0.005]
Minimum LR [0,0.0001, 0.001] [0.001,0.005]
Weight decay [0,0.01] [0]

Layer-wise LR decay [0.85,0.90,0.95] N.A.

* In the FT setting, the entire model, including Ty, is optimized. Both the encoder and task-specific
head h,, are jointly updated to refine the feature extraction process for the target task.

Training Objective for Downstream tasks. The loss function for downstream tasks is defined
based on the nature of the prediction problem: classification tasks use Binary Cross-Entropy (BCE)
loss, while regression tasks employ Mean Squared Error (MSE) loss.

Model Selection. To determine the optimal model for each downstream task, we performed
a grid search over key hyperparameters such as learning rate and batch size. For each task, we
evaluated multiple configurations using the validation set and selected the model that achieved the
best performance based on the predefined metric. The set of hyperparameters is provided in Table 7.

_% vazl [(’)Ubs,i log (’A)()bsvi + (1 — Ogps,i) log(1 — @Obs,i)} , if classification

£task(oobs, @obs) = { 1 N 9 . .
N 2ic1 (Oabsi = Oobs,i)? if regression

(80)

D.5 GENERALIZATION FROM RESTING-STATE TO TASK-BASED FMRI

To conduct a challenging test of BDO’s generalization capabilities, we evaluated whether its represen-
tations, learned exclusively from unconstrained resting-state fMRI, could be effectively transferred to
structured task-based fMRI, where brain dynamics are driven by explicit external stimuli.

For this experiment, we used the BDO-86M model, which was pre-trained solely on resting-state
UKB data. We then evaluated its performance on three distinct and cognitively demanding task
paradigms from the HCP-A dataset. The evaluation was performed under the LP setting.

The results are summarized in Table 8. While there is a moderate performance decrease compared
to the in-domain resting-state baseline (HCP-A-Rest), the model still achieves strong predictive
performance across all three task paradigms (HCP-A-VisMotor/FaceName/CARIT).

This successful transfer demonstrates that BDO learns fundamental, task-relevant neural dynamics
that are not limited to the resting state. This underscores BDO’s broad applicability as a powerful
feature extractor for diverse fMRI paradigms, even without any task-specific fine-tuning.

Table 8: Generalization from resting-state to task-based fMRI.

Dataset Age (MSE) | Age (Pearson) T Gender (Acc.) T Gender (F1) 1
HCP-A-VisMotor 0.526 =018 0.691 <015 68.53 1357 67.39 1336
HCP-A-FaceName 0.459 +o12 0.732 +.009 66.20 +3.44 65.29 1372
HCP-A-CARIT 0.488 +.025 0.713 +020 67.60 +1.74 66.79 +1.29
HCP-A-Rest 0.404 +o10 0.768 +.00s 72.00 +2.95 71.30 2.19
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D.6 DETAILED SCALABILITY ANALYSIS

The numerical results used to generate the scalability analysis plot (Figure 7) are presented in Table 9.
The table includes detailed linear probing performance for three BDO model variants (5M, 21M, and
86M), evaluated on HCP-A age regression and classification tasks across ABIDE, ADHD200, and
HCP-EP datasets. Additionally, results from the data scalability experiment, conducted exclusively
with the largest model (86M), are reported at varying proportions (25%, 50%, and 75%) of the total
dataset. The entry labeled BDO (86M) corresponds to the model trained with the full dataset (100%),
serving as the reference for both model and data scalability experiments.

Table 9: LP performance used for scalability analysis in Figure 7.

HCP-A  ABIDE  ADHD200  HCP-EP
Age(p1) ACC(%)T ACC(%)T ACC(%)T

BDO (5M)  0.635:031  62.42 s268 59.65 230 73.33 4750
BDO 21M) 0.729 011 63.79 «153 61.15 197 71.43 1404

BDO (25%) 0.686 x010  61.06 +1.05 57.39 1390 72.38 595
BDO (50%) 0.702 014 63.03 z1.63 56.89 1338 74.29 +9.90
BDO (75%) 0.734 011 65.45 2270 58.15 +1.78 74.29 1756

BDO (86M) 0.768 008  66.67 113 61.40 2197 76.19 1486

Variants

D.7 COMPARISON OF SSL MODEL EFFICIENCY

Table 10: Comparison of pre-training efficiency and linear probing performance across SSL models.

Model (Parameters) Age (Pearson) T Gender (Acc.) T GPU Hours (x 4 GPUs) |

MoCo (90M) 0.591 64.12 174 hrs
BYOL (90M) 0.619 64.81 165 hrs
BrainLM (85M) 0.636 65.28 496 hrs
BrainMass (90M) 0.630 66.20 244 hrs
BDO (86M) 0.768 72.00 15 hrs

This subsection presents the detailed experimental settings and the exact numerical results used
to construct Figure 1, which shows that BDO surpasses other SSL models in both resource and
parameter efficiency.

To evaluate the efficiency of SSL models, we measured the pre-training time using 4 NVIDIA RTX
3090 GPUs, calculated in GPU hours as the total CUDA time recorded with the PyTorch library
and multiplied by the number of GPUs. Each model was trained for 200 epochs using the largest
batch size that fully utilized available GPU memory.

Table 10 presents the linear probing performance of each pre-trained model on age and gender predic-
tion tasks on HCP-A dataset, alongside their respective pre-training times. Our results demonstrate
that BDO achieves superior efficiency in pre-training, requiring significantly fewer GPU hours com-
pared to other SSL methods while maintaining competitive or superior performance. This efficiency
highlights the scalability of BDO, making it a practical choice for large-scale applications.

D.8 DETAILED MASK RATIO ANALYSIS

In our framework, the MAE objective plays a critical role by explicitly requiring the reconstruction
of masked temporal segments. This encourages the model to capture detailed temporal dependencies
and fine-grained dynamics inherent in fMRI signals. To directly validate the importance of the MAE
objective, we extended our ablation study to include a zero mask ratio (v = 0), which effectively
removes the MAE reconstruction task. Starting from the no-masking condition, the HCP-A age
regression performance in the LP setting for BDO-86M results are summarized below.
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Table 11: Extended ablation study on the mask ratio .

Mask Ratio () Age (MSE) | Age (Pearson) T
0.0 (No Masking) 0.793 £0.014  0.445 +0.020
0.2 0487 £0.036  0.711 £0.027
0.4 0.513+£0.016  0.695 +£0.015
0.6 0.476 £0.019  0.727 £0.011
0.75 (Optimal) 0.466 = 0.025  0.738 £ 0.014
0.8 0.526 £0.014  0.686 £ 0.006

In the no-masking condition, we observed severely degraded downstream task performance, indicating
that the model failed to learn meaningful, transferable representations. This result implies that without
the reconstruction challenge introduced by masking, SSL pre-training becomes ineffective in capturing
the complex temporal structures necessary for high-quality representation learning.

D.9 DISSECTING THE CONTRIBUTIONS OF MAE AND JEPA OBJECTIVES

To dissect the individual contributions of the MAE and JEPA objectives, we conducted an ablation
study by controlling their relative influence with the balancing factor 7. A setting of 7 = 0 corresponds
to an MAE-only model, and we also evaluated a JEPA-only model without the reconstruction term.

The results in Table 12 reveal a clear synergy. The MAE-only model (7 = 0) establishes a strong
performance baseline, while the JEPA-only model performs poorly, indicating the latent prediction
task alone is insufficient. Crucially, the unified model with an optimal balance (7 = 0.03) surpasses
the MAE-only baseline. This demonstrates that the JEPA objective acts as a beneficial regularizer that
refines the learned features via MAE, highlighting the complementary nature of the two objectives.

Table 12: Ablation study on the MAE and JEPA components.

Age (MSE) | Age (Pearson) 1
JEPA-only 0.719 +0.040 0.521 £0.036
7=0 0.480 £0.010 0.717 £ 0.006
7 =10.03 0.466 = 0.025 0.738 = 0.014
7=0.1 0.663 +0.027 0.572 £0.028

D.10 NEUROBIOLOGICAL INTERPRETATION VIA INTEGRATED GRADIENTS

Integrated Gradients (IG) is an attribution analysis method from the field of explainable Al (XAI)
that quantifies the contribution of each input feature—in our case, each brain ROI—to a model
prediction (Sundararajan et al., 2017). The resulting IG score reflects how much a given ROI
positively or negatively contributes to the model output, relative to a reference baseline input. Scores
near zero indicate minimal influence. To highlight the most decisive features, we computed the
absolute IG scores for each subject and normalized them across ROISs to enable comparison of relative
importance. IG scores were computed from the trained models for both the HCP-A age regression
and HCP-EP schizophrenia diagnosis tasks using the Captum (Kokhlikyan et al., 2020) library. The
top 10 ROIs with the highest absolute IG scores are summarized in Table 13 and Table 14 for each
task, alongside their corresponding Yeo-7 network and AAL atlas labels.

The spatial distribution of these attribution scores is visualized in Figure 10. For the age regression
task in HCP-A, the analysis highlighted regions integral to motor, cognitive, and sensory functions
known to undergo aging-related alterations, specifically the left precentral gyrus (Zhou et al., 2020),
left medial superior frontal gyrus (Lamballais et al., 2020), and bilateral angular and occipital
gyri (Fjell et al., 2009). In the HCP-EP diagnosis task, the analysis emphasized areas crucial to
sensory perception, executive control, and self-awareness, all domains notably impaired in psychotic
disorders. Prominent regions included the right postcentral gyrus (Ferro et al., 2015), bilateral
superior occipital gyri (Tohid et al., 2015), right middle frontal gyrus (Stoyanov et al., 2021), and left
superior parietal gyrus (Guo et al., 2014).
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Figure 10: Brain surface visualization of IG scores. (Left) Age regression on the HCP-A dataset.
(Right) Psychotic disorder diagnosis on the HCP-EP dataset.

Table 13: Top 10 ROIs with the highest IG scores in the HCP-A age prediction task.

Rank Yeo-7 Network Label IG Score AAL Atlas Label
1 TNetworks_LH_SomMot_26 0.0074  Precentral L
2 TNetworks_LH_Default_ PFC_13 0.0061 Frontal _Sup_Medial L
3 TNetworks_RH_SalVentAttn_TempOccPar 6 ~ 0.0060  SupraMarginal R
4 TNetworks_RH _Default_Par_5 0.0059  Angular R
5 TNetworks_RH_Vis_19 0.0057  Calcarine R
6 TNetworks_RH_SalVentAttn_TempOccPar_5 0.0056  SupraMarginal R
7 TNetworks_LH_Vis_24 0.0056  Occipital_Sup_L.
8 TNetworks LH_Vis_21 0.0055  Calcarine L
9 7TNetworks_LH_Default_Par_6 0.0054  Angular L
10 TNetworks_LH_Vis_19 0.0054  Occipital Mid_L

Table 14: Top 10 ROIs with the highest IG scores in the HCP-EP diagnosis prediction task.

Rank Yeo-7 Network Label IG Score AAL Atlas Label
1 TNetworks_RH_SomMot_16 0.0082 Postcentral_R
2 7Networks_RH_Vis_29 0.0056 Cuneus_R
3 TNetworks_LH_Vis_29 0.0049  Occipital_Sup_L
4 7Networks_LH_Vis_27 0.0047 Occipital Mid_L
5 7Networks_LH_SomMot_36 0.0047 Postcentral L
6 TNetworks_RH_SalVentAttn_PFCI_1 0.0046 Frontal_ Mid_2_R
7 7Networks_RH_Vis_26 0.0045  Occipital_Sup_R
8 7Networks_LH _DorsAttn_Post_14 0.0042  Parietal_Sup_L
9 TNetworks_LH_SomMot_14 0.0042 Postcentral L
10 7Networks_RH_DorsAttn_Post_4 0.0041 Occipital Mid_R

D.11 ADDITIONAL BASELINE

We attempted to include Brain-JEPA, one of the most prominent SSL models for fMRI analysis,
as an additional baseline in our study. However, when Brain-JEPA was retrained under the same
preprocessing pipeline used for all other models in this study as described in Section D.1, its reported
performance could not be reproduced. For this reason, we excluded Brain-JEPA from the main text.

To isolate the effect of preprocessing, we conducted an auxiliary experiment in which both our model
and Brain-JEPA were trained with the original Brain-JEPA preprocessing pipeline and evaluated via
linear probing on the tasks from HCP-A. The comparison with Brain-JEPA is presented in Table 15.
Note that BDO and Brain-JEPA share exactly the same Transformer backbone in this experiment. Un-
der identical conditions such as preprocessing, model architecture, and model size, BDO consistently
outperforms Brain-JEPA across all the tasks on HCP-A.

29



Under review as a conference paper at ICLR 2026

The only difference in preprocessing is the application of per-sample zero-mean normalization. The
global mean may carry information relevant to demographic variables like age and gender, whereas
task performance measures like Flanker are potentially more dependent on localized neural activity.

Table 15: Linear probing performance on HCP-A.

Methods Age Gender Flanker

MSE | p1 ACC (%) 1 F1 (%) 1 MSE | pt
Brain-JEPA (86M)  0.408 £.023  0.780 £.004  68.92+0.80 6698 £3.72  0.994 &+ .321  0.338 £ .029
BDO (86M) 0.298 +.022  0.839+£.010 7448+1.82 7452+£381 0966+ .073  0.343 £ .059
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UKB Held-out Age Distribution in Splits Across 3 Random Seeds
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Figure 11: Age distribution across training, validation, and test splits for the UKB held-out age
regression task under three different random seeds (0, 1, and 2). The dataset is partitioned using
a 6:2:2 ratio, with binning-based stratified sampling applied to maintain a balanced target variable
distribution. To enhance numerical stability, Z-score normalization is applied to the age variable.
Each row represents a different random seed, illustrating the consistency of the sampling procedure
across splits.
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HCP-A Age Distribution in Splits Across 3 Random Seeds
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Figure 12: Age distribution across training, validation, and test splits for the HCP-A age regression
task under three different random seeds (0, 1, and 2). The dataset is partitioned using a 6:2:2 ratio,
with binning-based stratified sampling applied to maintain a balanced target variable distribution. To
enhance numerical stability, Z-score normalization is applied to the age variable. Each row represents
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a different random seed, illustrating the consistency of the sampling procedure across splits.
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UKB Held-out Gender Distrib;.ution in Splits
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Figure 13: Label distributions across six classification tasks (UKB held-out gender, HCP-A gender,
ABIDE autism, ADHD200 ADHD, and HCP-EP psychotic disorder) for training, validation, and test
splits. Each row corresponds to a different task, with columns representing the proportion of samples
per class across data splits. Stratified sampling ensures that label distributions remain consistent
across splits, despite variations in sample composition. To illustrate this, we visualize the distributions
using a single random seed (0). Gender classification tasks are divided into Female/Male categories,
while disease classification tasks distinguish between Control and Patient groups (ASD vs. Control
for ABIDE, ADHD vs. Control for ADHD200, and Psychotic disorder vs. Control for HCP-EP).
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Target ROI Signal Reconstruction in Internal Dataset UKB Held-out (y = 0.75)
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Figure 14: Reconstruction quality of BDO in the UKB held-out subset (internal dataset). Five samples
are randomly drawn for visualization, with a mask ratio of v = 0.75. Each column represents the
original fMRI sample, context with masking patterns, reconstructed sample, and MAE (Mean
Absolute Error) heatmaps. Although we set the mask ratio as high as 75%, the reconstruction quality
remains robust, demonstrating that BDO efficiently captures the underlying brain dynamics and
successfully reconstructs missing regions with high fidelity.
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Target ROI Signal Reconstruction in External Dataset HCP-A (y = 0.75)
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Figure 15: Reconstruction quality of BDO in HCP-A (external dataset). Five samples are randomly
drawn for visualization, with a mask ratio of v = 0.75. Each column represents the original fMRI
sample, context with masking patterns, reconstructed sample, and MAE (Mean Absolute Error)
heatmaps. Although we set the mask ratio as high as 75%, the reconstruction quality remains
robust, demonstrating that BDO efficiently captures the underlying brain dynamics and successfully
reconstructs missing regions with high fidelity.
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