
Context-Aware Predictive Coding: A Representation
Learning Framework for WiFi Sensing

Borna Barahimi1, 2∗ Hina Tabassum1 Mohammad Omer2 Omer Waqar3

1York University
2Cognitive Systems Corp.

3University of the Fraser Valley
bornab@yorku.ca

Abstract

WiFi sensing is an emerging technology that uses wireless signals for sensing ap-
plications like human activity recognitions, but challenges like limited labeled data
and complexity of channel state information (CSI) data, hinder model performance
and generalization. We propose Context-Aware Predictive Coding (CAPC), a novel
self-supervised learning (SSL) framework for CSI-based WiFi sensing. CAPC
integrates temporal contrastive prediction with an augmentation-based contextual
approach, which captures temporal dependencies while eliminating CSI estimation
and transceiver errors through a proposed dual view augmentation method. The
combined strategy ensures that CAPC learns robust and informative representations
while maintaining temporal coherence and contextual consistency. CAPC outper-
forms supervised and SSL baselines, especially with limited labeled data from
unseen environments and in transfer learning to new datasets and tasks, making it a
strong alternative for WiFi sensing applications.

1 Introduction

The widespread availability of the internet has resulted in a proliferation of WiFi-enabled devices
across various settings, from commercial to residential areas. WiFi-enabled devices have evolved
beyond basic connections, now functioning as sensors for human sensing applications through the
analysis of wireless signal characteristics such as channel state information (CSI). CSI captures
detailed wireless channel properties, including amplitude and phase, allowing for the detection
of environmental changes caused by human movements or objects [1]. WiFi sensing offers a
cost-efficient, privacy-preserving, and non-invasive solution that leverages existing infrastructure
and functions effectively even in non-line-of-sight scenarios. This technology supports diverse
applications, including localization [2], human activity recognition (HAR) [3], gesture recognition
[4, 5, 6], and respiration detection [7].

Deep learning models have achieved state-of-the-art performance in extracting CSI patterns for
complex activities without requiring extensive preprocessing [8]. However, their success is limited
by the scale and diversity of labeled data, as CSI data is challenging to collect and annotate. Recent
methods focus on data-efficient approaches, particularly self-supervised learning (SSL), to leverage
unlabeled data for training. SSL allows models to learn general features from large unlabeled
datasets and fine-tune with minimal labeled data, addressing the scarcity of CSI labels and improving
performance in real-world environments [9, 10, 11, 12].
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Figure 1: Overview of the CAPC’s architecture. Here, wt denotes a window of sample u. The
symbols xt, Zt, and ct represent the augmented CSI for window t, the latent representation of this
window, and the accumulated context embedding up to window t, respectively. Different colours
signify distinction in the windows, their representations, and model parameters between branches A
and B.

To date, various SSL methods have been considered for WiFi sensing [13, 14, 15, 16, 9] that utilize
contrastive learning. However, they do not consider the temporal aspects of CSI, wireless propagation
channel, or transceiver characteristics. In contrast to images that primarily exhibit spatial features,
CSI, a time-series data, is predominantly defined by its temporal relationships [17, 18]. Moreover,
common augmentation methods designed for computer vision tasks, like colour distortion or rotation,
typically do not align well with the nature of CSI data [19]. Finally, the recent developments in
non-contrastive methods, which do not rely on negative samples [20, 21], have yet to be explored in
the WiFi sensing domain.

In this study, we propose a novel SSL framework for CSI WiFi sensing, named Context-Aware
Predictive Coding2 (CAPC). CAPC combines the ability of Contrastive Predictive Coding (CPC)
[22] to capture temporal patterns in the CSI time-series with the Barlow Twins (BT) [20] objective,
which encourages the creation of representations invariant to augmentations while minimizing
redundancy. To fully leverage the BT framework and better separate environment-related information
from distortions, we introduce a novel augmentation strategy tailored to CSI-based sensing. This
strategy utilizes uplink and downlink CSI views to maximize the mutual information between their
representations. This approach effectively isolates free-space propagation effects while reducing
electronic distortions and estimation errors. Our results demonstrate that CAPC significantly improves
performance in unseen environments and enhances transfer learning capabilities, outperforming
existing SSL baselines, especially when limited labeled data is available.

2 Methodology

Given a CSI sample ui in the unlabeled batch U with dimensions Na ×Ns ×Nt, where Na denotes
the number of transmitter-receiver antenna links, Ns denotes the number of subcarriers, and Nt

denotes the number of packets or timestamps, we segment this a sample into multiple windows
{wi

1, . . . ,w
i
L} with Nf ≤ Nt number of CSI frames along the time dimension.

2The source code of CAPC is available on GitHub at https://github.com/bornabr/CAPC.
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CAPC employs a multi-task objective: (1) predicting future windows {wi
t+1, . . . ,w

i
t+T } based on

prior windows {wi
1, . . . ,w

i
t}, where t is a random window index and T is the number of future

windows for prediction. (2) generating two augmented views, xA
t and xB

t , and maximizing their
similarity.

We use two base encoders with distinct parameters, EθA and EθB , to generate latent representations
for the two views, zA

t = EθA(xA
t ) and zB

t = EθB (xB
t ), where zA

t , zB
t ∈ RD. The goal is to make

the latent representations z feature-rich and robust for downstream tasks. Using an autoregressive
model G, CAPC summarizes the latent representations from z1 up to window zt, creating cAt =

GγA(zA
≤t) and cBt = GγB (zB

≤t), where cAt , cBt ∈ RH .

To capture the contextual and temporal information from the time-series CSI, we leverage a temporal
contrastive predictive loss inspired by CPC [22] and the BT [20] loss for augmentation-based
contextual consistency.

Temporal Contrastive Prediction Loss This loss ensures the model learns representations that
capture mutual information and temporal continuity between the windows by predicting near-future
windows. The context embedding cit of sample i predicts future windows t + k, for each k ≤
T . Instead of explicit predictions, the representation zi

t+k serves as a positive sample, while

representations from other instances, zj
t+k, are negative samples. The loss for sample i and prediction

of window t+ k is:

ℓi,ktemp = − log
exp((zi

t+k)
TWkc

i
t)∑N

j=1 exp((zj
t+k)

TWkc
i
t)

, (1)

where N is the batch size and Wk ∈ RD×H is a linear layer used for predicting window t+ k. Note
that this loss is applied to each view of samples independently but using the same timestamp t and
transformations W .

Augmentation-based Contextual Consistency Loss To enhance robustness against augmentations,
we use the covariance loss of BT [20]. The covariance matrix between context embeddings of views
cA and cB is:

Cij =

∑N
b=1 c

b,A
i cb,Bj√∑N

b=1(c
b,A
i )2

∑
b(c

b,B
j )2

, (2)

where b is the index of batch sample, and i, j indexes the features of the context latent represen-
tations. The contextual loss ensures invariance to augmentations by setting the diagonal of the
cross-correlation matrix to 1 and minimizing redundancy by setting off-diagonal elements to 0. The
overall contextual loss is controlled by the hyperparameter λ and is defined as:

Lcontext =

H∑
i=1

(Cii − 1)2︸ ︷︷ ︸
invariance term

+ λ

H∑
i,j=1

C2
ij ,︸ ︷︷ ︸

redundancy reduction term

(3)

The two losses are complementary: temporal loss extracts dynamic time-dependent trends, while
contextual loss is timeless and enforces augmentation invariance. The total loss is controlled by the
hyperparameter β, balancing the two losses, and is defined as:

L = Lcontext + β(
1

NT

N∑
i=1

T∑
k=1

(ℓi,k,Atemp + ℓi,k,Btemp)). (4)

Type of augmentations plays a crucial role in SSL by helping models learn robust features for
downstream tasks by ensuring invariance to distortions. We propose a novel augmentation, called
dual view, for wireless sensing, which leverages the reciprocity of wireless channels ([23]) to
isolate the free space propagation effects from electronic distortions. By assigning uplink and
downlink CSI as xA and xB views, using these two enforces the contextual loss to extract the mutual
information between them which is the core characteristics of the channel that are essential for
sensing applications.
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3 Results and Discussions

Method SignFi Home UT HAR

2 4 6 Avg. 10 20 Avg.

Supervised - 57.97 78.99 45.65 8.0 56.0 32.0
SimCLR 59.6 82.25 92.57 78.14 52.6 57.2 54.9
CPC 55.89 75.82 86.23 72.65 52.2 54.4 53.3
BT 54.08 76.00 92.66 74.25 52.8 56.0 54.4
AutoFi 59.15 79.62 92.84 77.20 51.2 55.0 53.1

CAPC‡ 63.41 85.51 92.48 80.47 49.8 57.4 53.6
CAPC 65.67 88.50 93.84 82.67 54.2 59.2 56.7

Table 1: Evaluations results of linear classifica-
tion from frozen representations of pre-trained
encoders with CAPC and baseline SSL methods
on SignFi lab data.

Method Dual
View

Time
Mask

Subcarrier
Mask

Time
Flip Noise Avg.

AutoFi 49.98 80.16 79.64 80.67 82.97 74.68
BT 79.22 87.73 86.76 84.00 87.77 88.10
SimCLR 86.50 89.33 88.60 89.04 88.95 88.60
CAPC 91.16 87.41 89.67 89.11 91.89 89.85

Avg. 76.72 86.16 86.17 85.71 87.89 84.53

Table 2: Summary of the average accuracies
achieved using various augmentations across dif-
ferent methods.

We evaluate the proposed CAPC model and other SSL baselines using linear classification on the
SignFi home [24] and UT HAR datasets. The SignFi dataset is used for pre-training in a lab setting
and evaluated in a home environment for sign language detection, while the UT HAR [25] dataset
is employed for transfer learning to HAR task. In both cases, the pre-trained encoder is fixed and
a linear classifier on top of it is trained using a limited number of labeled samples or shots, testing
the effectiveness of learned representations. Table 1 shows that CAPC consistently outperforms
other methods across both datasets. Notably, using dual view augmentation in CAPC leads to a
significant performance boost compared to using other mask augmentations. This improvement is
especially prominent in transfer learning, demonstrating CAPC’s ability to capture more generalizable
and task-agnostic features. This evaluation underscores the superiority of CAPC with and without
dual view for time-series CSI data. It also shows that leveraging wireless channel characteristics,
particularly through dual view augmentation, offers a notable performance boost for WiFi sensing
tasks.

We investigated five augmentations, applied individually and in pairs, across our CAPC model and
various baselines to identify the best combination for each method. The average performance of
each augmentation is summarized in Table 2, with full details of the experiments and augmentation
combinations provided in Appendix E. Across all SSL methods, noise augmentation consistently
enhanced model generalization, yielding the highest average performance. Following noise, CAPC
demonstrated a significant advantage with dual view augmentation, while the baselines struggled to
fully utilize it. This highlights CAPC’s unique ability to handle stronger augmentations. SimCLR out-
performed CAPC in the time mask scenario, likely because CAPC’s temporal prediction component
may be affected by masking. Despite this, CAPC excelled in most augmentation types, showcasing
its robustness and adaptability to various transformations.

4 Conclusion

In this paper, we proposed CAPC, a representation learning framework for CSI data and WiFi
sensing, featuring a time-series-specific architecture. Specifically, we employed a loss function
that combines future prediction and embedding consistency pretext tasks for SSL, ensuring the
generated representations are both temporally informative and robust to data distortions inherent in
downstream tasks. We also developed a novel augmentation technique to reduce electronic distortions
from transceivers and isolate free space propagation effects on the channel. Extensive cross-domain
experiments demonstrated that CAPC, with and without dual view augmentation, surpasses baseline
SSL methods in downstream HAR and gesture recognition tasks, particularly in few-shot scenarios.
Furthermore, using the novel dual view augmentation significantly boosts CAPC’s performance.
Future works may explore other architectural designs such as the attention mechanism [26] and
Fourier Transform based STFNet blocks [27], integrating other modalities like vision, [28, 29, 30] or
CSI streams from multiple WiFi devices [31], as well as considering more complex tasks such as
multi-user sensing [32].

‡Refers to the CAPC model being trained with the second best combination of augmentations, noise and
subcarrier mask, instead of noise and dual view.
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A Related Work

A.1 Supervised Learning for WiFi Sensing

Recent advances in deep learning enabled sensing have demonstrated remarkable potential in extract-
ing and modeling complex patterns from CSI without intensive feature engineering [33, 34]. Methods
based on Long Short-Term Memory (LSTM) networks were used to extract temporal activity-related
information from CSI data [35], [36] and achieved state-of-the-art accuracy at the time. Convolutional
Neural Networks (CNNs), commonly used to extract spatial features, have been used to segment
CSI based on activities [37] and compress CSI data for cloud-based sensing [38]. Additionally,
THAT [39] proposed a two-stream Transformer-based model to utilize both time-over-channel and
channel-over-time features and out-performed LSTM and CNN based methods. ResNet architectures
with attention mechanisms for gesture recognition [40] were proposed as well for cross-domain HAR.
Notably, some studies have also addressed the environmental dependencies of deep learning methods.
Widar3.0 [41] used a hand-crafted environment-independent feature called body-coordinate velocity
profile (BVP) as the input of their deep learning model and AFEE-MatNet [3] applied a matching
network to learn common features among environments.

A.2 Semi-supervised learning for WiFi Sensing

Nevertheless, the aforementioned research works follow a supervised approach, thus necessitating
large volumes of labelled CSI data. A fundamental challenge is to train the model without labels,
while enabling generalization across different environment settings. Recently, a handful of research
works considered semi-supervised learning to reduce the reliance on labelled datasets. For instance,
in WiADG [42], where a pre-trained encoder, initially trained in a supervised manner, is fine-tuned
for new environments using adversarial networks. This semi-supervised approach can adapt to new
settings without the additional labelled data in the target environment, though it is contingent on
having pre-labelled data for the source environment. Fidora [43] used a semi-supervised approach
by employing Variational Auto Encoders (VAEs) to augment the labelled dataset. Subsequently,
a feature extractor is applied to generate a representation from labelled and unlabelled samples.
These representations are then processed through a decoder and classifier for CSI reconstruction and
classification, respectively. SiFall [12] also leveraged VAEs in conjunction with anomaly detection
techniques for fall detection. BTS [11] proposed a semi-supervised teacher-student learning approach
inspired by BYOL [44] to solve time-varying effects induced by environment changes.

A.3 Self-supervised learning for WiFi Sensing

SSL is emerging as a powerful technique that leverages unlabelled data to train deep learning
models, generating effective representations without the need for explicit labels. However, it requires
knowledge of what makes some samples semantically close to others [45]. In the initial phase, the
model undergoes pre-training using unlabelled dataset, thereby generating useful representations from
the data without relying on explicit labels. In the subsequent stage, the model shifts to supervised
learning using a limited labelled target dataset. During this phase, fine-tuning takes place, exploiting
the previously learned representations to improve the performance.

Recent SSL-based WiFi sensing methods, such as RF-URL[13], Lau et al. [16], STF-CSL[14],
DualConFi[15], and CLAR[46], learn invariant representations by contrasting or aligning different
views of the input samples, which are created through various augmentation techniques. These
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methods focus on creating representations that minimize the distance between similar instances in
an embedding space. RF-URL used Doppler-frequency-spectrum, Angle of Arrival, and Time of
Flight augmentations as well as InfoNCE contrastive loss function. STF-CSL integrated Short-Time-
Fourier-Neural Networks (STFNets) in their encoders, with a variety of frequency and time-domain
augmentations. In [16], different views of CSI corresponding to a specific activity (or sample)
captured by several receivers placed at various locations are considered positive samples, while
views of other unrelated samples are treated as negative samples. CLAR, a more recent work,
utilizes diffusion models to generate augmented samples. Except for RF-URL, these methods adopt a
contrastive learning strategy akin to SimCLR [9], using the NT-Xent loss function. More recently,
AutoFi[10] has emerged with a non-contrastive geometric SSL method and few-shot learning for
WiFi sensing.

However, the aforementioned research overlooks the temporal aspects of CSI, as well as wireless
propagation channel, and transceiver characteristics. Additionally, the considered augmentation
techniques often do not align well with the inherent nature of CSI data. Furthermore, recent
advancements in non-contrastive methods [20, 21], which eliminate the need for negative samples,
have not been explored in the WiFi sensing domain.

B Datasets

B.1 SignFi

We employed the SignFi gesture recognition dataset [24], specifically designed for sign language
gesture recognition tasks. This dataset features a significant volume of data instances but has a
limited number of samples per class due to its extensive variety of sign language words (classes),
totalling 276. The SignFi dataset, acquired through the Intel 5300 NIC [47] in a single-transmitter
single-receiver setup, consists of 3 antennas at the receiver, a single antenna for the transmitter, 30
subcarriers, and 200 packets per data instance, resulting in each sample possessing 3 × 30 × 200
dimensions. Its key attributes include:
(1) Multiple environment setups: SignFi dataset comes from two different environments: a home
and a lab. This variety helps us test how well our method adapts to new environments. We used the
lab dataset as the unlabelled dataset for the SSL pre-training as it contained more samples and the
home dataset with labels for the supervised evaluation.
(2) Dual view CSI: SignFi dataset includes synchronized uplink and downlink CSI for each sample
in the dataset allowing us to utilize them for dual view augmentation in SSL pre-training. To the best
of our knowledge, SignFi is the only database offering synchronized uplink and downlink CSI.
(3) Substantial Sample Volume: SignFi dataset comprises 5520 instances from the lab environment
(20 samples per class) and 2760 instances from the home environment (10 samples per class), making
it a notably large dataset.
(4) User Diversity: Lab environment samples are collected independently for each of the 5 users
participating in the experiments, meaning that at any given time, only one person is performing an
activity in the room. In contrast, home environment samples are collected from a single user.

B.2 UT HAR

We also employed the UT HAR dataset [25] for evaluating transfer learning. Specifically, we tested
the RSCNet backbone encoders, which were pre-trained using unlabelled CSI data in the SignFi lab,
on a subset of labelled samples from UT HAR. These experiments aimed to assess the effectiveness
of the CAPC representations for adapting to new tasks and environments.

The UT HAR data was collected using the Intel 5300 NIC [47], similar to the setup used in SignFi.
The data samples have dimensions of 3 antenna links, 30 subcarriers, and 250 packets. Given that
the antenna and subcarrier dimensions align with those of SignFi, and considering our use of a
windowing size Nf = 10 in the encoders for both CAPC and all baseline models, we were able to
use the same pre-trained encoders from SignFi without requiring additional preprocessing.

Additionally, this dataset, which consists of samples all collected from one user, categorizes human
activities into seven types: lying down, falling, walking, running, sitting down, standing up, and
empty room. The choice to use this dataset solely for fine-tuning and transfer learning purposes is
due to its relatively small size, with only 3,977 samples in the training set.
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B.3 Evaluation Criteria

Our evaluation criteria shown in Figure 2 are designed to assess how effectively a pre-trained
encoder with SSL adapts to downstream WiFi sensing tasks. Specifically, we aim to understand the
applicability of the encoder’s representations when confronted with a limited number of labelled
samples from the downstream task.

Labelled CSI

Pretrained
Encoder

Linear
Classifier

Figure 2: Supervised evaluation: A linear classifier Cϕ is fine-tuned with labelled CSI based on
the concatenated representations from all windows generated by the pre-trained encoder EθA . The
pre-trained encoder’s weights θA are frozen in linear classification.

We analyze if the representations produced by the encoder are sufficient and generalizable for the
downstream tasks without additional data-specific training. The encoder’s weights, denoted as θA,
are frozen to prevent the infusion of task-specific information. The latent representations, generated
by the encoder for each data window, are concatenated and used as input for a linear classifier Cϕ.
This classifier is trained using the cross-entropy loss function, defined by:

Lc(x,y) = −E(x,y)

n∑
i=1

[I[y = i] log (Cϕ (EθA(w1,···,L)))] , (5)

Here, n is the number of class labels, and EθA(w1,···,L) represents the merged embeddings generated
by the encoder across all CSI windows of each sample i.e. {wt}L1 . This setup tests the hypothesis of
how a well-trained encoder can enable a linear classifier to perform effectively on downstream tasks
without the additional information of the task in the representations.

C Baselines

To thoroughly evaluate the effectiveness of our proposed method, CAPC, we conducted comparisons
with four established SSL methods. Specifically, we compared CAPC against: (1) SimCLR [9], which
serves as a standard contrastive SSL benchmark; (2) Barlow Twins [20] and (3) CPC [22], both
included as ablation studies due to their integration within CAPC’s framework; (4) AutoFi [10], a
recent SSL method tailored for CSI WiFi sensing. Furthermore, we compare CAPC against a fully
supervised training model where the encoder Eθ is randomly initialized and trained with the labelled
data from scratch. This comparison is intended to highlight the performance gains of SSL even with
limited training labels.

Remark: To ensure a fair comparison, all methods utilized the same backbone encoder architec-
ture, namely the RSCNet encoder [38]. Additionally, unlike CAPC and CPC, which employ an
autoregressive model during pre-training, SimCLR, Barlow Twins, and AutoFi use a projector to in-
dependently map each window’s representation into an embedding space for applying their respective
loss functions. Specifically, we adopted the Barlow Twins’ projector configuration, which consists of
three fully connected layers paired with ReLU activation functions. By using the same backbone
encoder across all methods, we maintained consistent model complexity, as detailed by the FLOP
counts in Figure 5c. This consistency ensures that any differences in representation quality are solely
attributable to SSL methodology and augmentations rather than model complexity, thus guaranteeing
a fair and balanced comparison among CAPC and the baseline methods.
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D Training Configuration

Our model, developed using PyTorch, employs the LARS optimizer during the SSL phase [48]. The
training lasts for 300 epochs with a batch size of 128. We initialize the learning rate for weights
at 0.2 and for biases and batch normalization parameters at 0.0048. The initial 10 epochs act as a
warm-up period for the learning rate, which is then reduced following a cosine decay schedule [49].
The weight decay is configured at 1.5× 10−6. The trade-off parameter of Barlow Twins loss is set
to λ = 0.002 and the trade-off parameter of CAPC β is set to 50 to scale the loss terms. These
configurations largely follow those reported in [20]. In our model, unlike [20], the weights between
the twin networks are not shared to enhance performance. Regarding the number of future windows
prediction T in CAPC and CPC, we chose 9 for CAPC and 2 for CPC, as these values show better
performance for each method as shown in Figure 5c.

During the evaluation phase, we switch to the Adam optimizer [50], maintaining a batch size of 512.
For linear evaluation, the learning rate starts at 10−2 and follows a cosine decay schedule over 100
epochs, training only the linear classifier.

For the model architecture, we use a window size Nf = 10, an encoder embedding size D = 128,
and 128 nodes in the GRU autoregressive model’s hidden layer, the projection hidden layers and the
embedding size h. The number of nodes in the hidden layer of the linear classifier Cϕ is half of its
input size, which equals the embedding size D multiplied by the sequence length L.

E Augmentations
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Figure 3: Linear evaluation of individual and compositional data augmentations. Each diagonal
element represents the effect of a single transformation, while off-diagonal elements illustrate the
combined impact of two sequentially applied transformations. We report the accuracies (in %) with 6
shots in the labelled dataset. Red circles indicate the best combination of augmentations.

In addition to the proposed dual view augmentation, we evaluated several common augmentations
used in the context of time-series [51, 52] and WiFi sensing [14]:
• Gaussian Noise: introduces random Gaussian noise with zero mean and 0.1 standard deviation
into data, simulating inherent noise in CSI, and enhancing model resilience.
• Time Flip: flips CSI samples along the time axis to accommodate palindromic activities, where
time-reversed patterns represent the same activity.
• Time Mask: randomly masks a segment of the time dimension in each CSI window, varying its
location. This teaches the model to predict missing temporal information, simulating scenarios with
temporal disruptions or signal losses.
• Subcarrier Mask: masks a set of subcarriers in each CSI sample, forcing the model to infer activi-
ties using the remaining subcarriers. This augmentation improves the handling of frequency-selective
fading or interference and underscores different subcarriers’ significance in activity recognition.

Choosing best augmentations for each method: We conduct a comprehensive analysis of the
aforementioned augmentations, both individually and in combination, on the performance of our
method and the baselines. This allowed us to identify the optimal augmentation mix for each method
and to demonstrate the robustness of each method in response to the various augmentations. The
augmentations chosen for each method are in Figure 3. For CAPC, the chosen augmentations are
dual view and noise. For SimCLR, it is time mask. The Barlow Twins use noise and time mask, while
AutoFi employs noise and time flip. CPC relies solely on prediction for its SSL task, thus not using
any augmentations.
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Remarks: In experiments where the dual view augmentation was not applied, we treated the uplink
and downlink CSI as separate samples, effectively doubling the dataset size during the SSL phase.
This approach highlights the flexibility of our framework, showing that it is not limited to using
dual view augmentation and can still operate effectively with either uplink or downlink CSI samples.
Unlike dual view augmentation, which requires both CSI samples, CAPC can function effectively
without needing both.

F Comparative analysis of contextual loss

One of the key novelties of our CAPC method is the integration of hybrid temporal and contextual
losses. The use of prediction and autoregressive models to capture temporal dependencies is well-
recognized. However, the rationale behind choosing a specific type of contextual loss might not
be immediately apparent as various contrastive [9] and non-contrastive methods [20], [21], [10]
are available. Our investigation shown in Figure 4 included three distinct loss functions: Barlow
Twins, as utilized in our framework, along with SimCLR, and AutoFi. Our findings indicate that the
non-contrastive loss from Barlow Twins consistently outperforms both the contrastive loss used in
CAPC with SimCLR and the loss of AutoFi across various training scenarios, often by a significant
margin. For example, in a scenario with four shots, CAPC equipped with Barlow Twins achieved an
accuracy of 88.50%, markedly higher than the 79.35% and 75.63% seen with AutoFi and SimCLR,
respectively. Additionally, AutoFi consistently outperforms SimCLR by an average of 2%. These
results suggest that non-contrastive loss functions serve as more effective contextual losses for our
proposed CAPC method.
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Figure 4: A comparative study of the proposed CAPC method. The CAPC w/ SimCLR and AutoFi
mean that we have replaced the Barlow Twins loss in our design with SimCLR and AutoFi, respec-
tively. Showcasing that Barlow Twins has superior performance for enforcing context embedding
consistency. We report the experiments under linear evaluation of SignFi Home dataset with 2, 4, and
6 shots.

G Hyperparameter selection and sensitivity analysis

We conducted sensitivity analyses on three primary hyperparameters within the CAPC framework:
(1) we illustrate the impact of the number of future windows or timesteps, T , predicted by CAPC
during SSL, on linear evaluation; (2) we demonstrate the effect of the trade-off parameter, β, which
represents the weight of LCPC in the loss function; (3) we depict the influence of the number of
frames per CSI window, Nf , and encoder complexity comparing CAPC to baseline SSL methods.

The analysis in Figure 5a reveals the impact of T on the performance of CAPC and CPC. For
both frameworks, we present the linear evaluation performance averaged across 2, 4, and 6 shot
scenarios in SignFi Home. Both methods exhibit fluctuations; however, CAPC demonstrates greater
robustness and fewer fluctuations across different T values, outperforming CPC by approximately
11.3% on average. Generally, CAPC achieved better results with higher T values, particularly at
T = 9. Conversely, CPC’s performance initially declined with increasing T values but improved
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Figure 5: Sensitivity analysis experiments on SignFi dataset: (a) Illustrates how the accuracy of
linear evaluation is affected by varying the number of predicted future windows (T ) for 2, 4, and 6
samples per class, highlighting that CAPC is significantly more stable across different values of T
compared to CPC; (b) Depicts the influence of the coefficient β on CAPC’s performance under linear
evaluation; (c) Examines the impact of different window sizes, Nf , on the accuracy of CAPC and
baseline methods during linear evaluation for 6 samples per class. It also shows the computational
complexity of the encoder with varying window sizes. Here, T = 2 for both CAPC and CPC due to
constraints imposed by the limited number of windows at higher window sizes (T ≤ L− 2).

upon reaching T = 12 and T = 13, with T = 2 being the optimal value. This implies that CAPC
may be more effective at capturing common information over an extended number of windows.

We further investigated the sensitivity of CAPC to the hyperparameter β, which balances the signifi-
cance of temporal and contextual consistency in the embeddings. We found that CAPC is relatively
insensitive to variations in β, with values of 25 and 50 both demonstrating slightly improved perfor-
mance overall, as illustrated in Figure 5b.

We extensively examined SSL with different window sizes, Nf , for CAPC and all baselines within
the flexible RSCNet framework, as shown in Figure 5c. We specifically evaluated window sizes of 10,
20, and 50 for CAPC and CPC because larger Nf values reduce the sequence length L, and both CPC
and CAPC require L ≥ 3 to predict future windows effectively. For other methods, we extended our
examination to include window sizes of 100 and 200, corresponding to the complete sequence of the
CSI in SignFi. Our results indicate that our proposed CAPC, along with Barlow Twins and SimCLR,
demonstrated robust performance across different Nf values, with CAPC showing superior accuracy
in all tested cases. In contrast, AutoFi and CPC experienced significant performance declines as the
number of windows increased.

This suggests that CSI segmentation is a viable approach for SSL in WiFi sensing, benefiting methods
beyond our proposed model. Not only did all methods generally perform better with lower Nf values,
but, as Figure 5c illustrates, these lower values also simplify the complexity of the encoder E due to
smaller input sizes. This reduction enhances efficiency and reduces computational demands, making
it particularly suitable for resource-limited edge devices where these models are deployed. Based
on these findings, we selected Nf = 10 for subsequent experiments, as it generally yielded strong
performance across all methods.

H Collapse analysis

To demonstrate that our method does not suffer from dimensional collapse, we present the singular
value spectrum of the embedding space (Figure 6) of the pre-trained encoder of CAPC and other
baselines. Complete collapse occurs when all singular values fall to zero, indicating that the represen-
tation has become constant and carry no useful information. If only some singular values drop to
zero, it suggests partial dimensional collapse, where the encoder has not fully utilized the embedding
space [53]. As depicted in Figure 6, no singular values fall to zero for any of the methods, confirming
that none, including ours, undergo dimensional collapse.
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Figure 6: Singular value spectrum of the representation space (z) of CAPC compared to baselines on
the SignFi Home dataset validation set. Each embedding vector is of size 128. The spectrum displays
the singular values of the covariance matrix of these embedding vectors, sorted and plotted on a
logarithmic scale. No singular values drop to zero, indicating that none of the methods, including
ours, experience dimensional collapse.

I t-SNE visualization

In Figure 7, we present a t-SNE visualization [54] of the encoded CSI with the proposed CAPC
pre-trained encoder, marked by the colored labels in the SignFi Home dataset. This visualization
demonstrates the discriminative power of the embeddings for sign language recognition, effectively
clustering similar gestures together. Despite the large number of labels and the lack of supervision or
predefined labels during training, the encoder effectively segregates the data into distinct clusters.
Moreover, the input data originates from an unseen environment, further underscoring the capability of
CAPC to not only extract relevant discriminative features for downstream tasks but also to generalize
effectively in new environments.
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Figure 7: t-SNE visualization of SignFi Home dataset representations, trained using the CAPC SSL
method on the SignFi Lab dataset. Each color corresponds to a distinct sign language label.
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