
Under review as a conference paper at ICLR 2024

LONG HORIZON EPISODIC DECISION MAKING FOR
COGNITIVELY INSPIRED ROBOTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Human decision-making process works by recollecting past sequences of ob-
servations and using them to decide the best possible action in the present. These
past sequences of observations are stored in a derived form which only includes
important information the brain thinks might be useful in the future, while for-
getting the rest. Transformers have shown great results in multi-modal robotic
navigation and human-robot collaboration tasks but lack the ability to scale to
large memory sizes and learn long horizon tasks efficiently as the computational
requirements needed to run these models scale non-linearly with memory length.
Our model for tries to mimic the human brain and improve the memory efficiency
of transformers by using a modified TransformerXL architecture which uses Au-
tomatic Chunking that chunks the past memories and only attends to the relevant
chunks in the transformer block. On top of this, we use ForgetSpan which is
technique to remove memories that do not contribute to learning. We also theo-
rize the technique of Similarity based forgetting where the current observations
are compared with the elements in the memory and only the new observations
are stored, similar to how humans do not store repetitive memories. We test our
model in various visual and audio-visual tasks that demand long horizon recol-
lection, audio-visual instruction deciphering and robotic navigation. These tasks
test the abilities of the robot that would be required in a human-robot collaboration
scenario. We demonstrate that Automatic Chunking with ForgetSpan can improve
the memory efficiency and help models to memorize important information and
also achieve better performance than the baseline TransformerXL in the tasks pre-
viously mentioned. We also show that our model generalizes well by testing the
trained models in modified versions of the tasks.

1 INTRODUCTION

Human cognition and decision-making works on reflection on only relevant parts of memory. We
can recall specific past sequences of events in detail, without paying attention to everything in our
memory. Irrelevant and repetitive parts of memory are overlooked, preferring storage of a broader
picture of events based on the importance of each event. Robotic agents should have similar cog-
nition to function well in long horizon and multi-modal tasks like navigation or human-robot col-
laboration. The memory buffer should be concise, containing events that will be useful for decision
making in the present and future while forgetting the rest. To emulate this, in our architecture we
use Automatic Chunking and ForgetSpan on the Transformer-XL memory buffer. Automatic chunk-
ing helps by chunking the memory and only using the relevant chunks in the TransformerXL layers
while ForgetSpan masks out unnecessary and repetitive elements from the memory creating a more
concise memory buffer which improves memory efficiency and performance. We also test a prelim-
inary version of SimilarityWeight which decides whether a current observation should be stored in
the memory by comparing it with the existing elements in the buffer.

2 METHODOLOGY

The main architecture of TransformerXL consists of a cyclic memory buffer which stores a spec-
ified number of pre-processed observations. The input observations are first pre-processed by a 3

1



Under review as a conference paper at ICLR 2024

Figure 1: Transformer Mechanism Workflow

layered convolutional encoder. This encoded observation is stored in memory and also fed to the
TransformerXL block as the query. The memory buffer is used to calculate the key and value in the
TransformerXL block. The output of the transformer block is then used to create a categorical distri-
bution over the action space, from which actions are sampled. PPO2 (proximal policy optimization)
is used to in all models to perform consistent updates and to limit how far we can change the policy
in each iteration using KL-divergence. The network policy learns to take appropriate actions based
on the current observation and memory during training.

The main architecture of Automatic Chunking consists of a cyclic memory buffer which stores a
specified number of processed observations and applies automatic chunking on them. The input ob-
servations are first pre-processed by a 3 layered convolutional encoder. This encoded observation is
stored in memory and also fed to the TransformerXL block as the query. Memories are then split into
various chunks and each chuck gets assigned a mean value which is created through mean pooling
by masking. Attention is performed on these mean values to calculate the top-k chunks of memory
that are relevant to the current scenario. These top-k memories are then combined and sent to the
TransformerXL block to be used as the key and value in place of the whole memory buffer. The final
output of the transformer block (or multiple blocks) is then used to create a categorical distribution
over the action space, from which actions are samapled. PPO2 (proximal policy optimization) is
used to in all models to perform consistent updates and to limit how far we can change the policy
in each iteration using KL-divergence. The network learns to select relevant parts of memory and
take appropriate actions based on them during training. Four tasks which test the memory, visual
navigation and multi-modal instruction deciphering ability of the agent were implemented.

2.1 AUTOMATIC CHUNKING

In Automatic chunking, we insert our chunking algorithm in between the step where the memory
buffer is passed to the TransformerXL block to calculate the key and value.The memories are instead
split into sequential chunks of constant size and each chuck is assigned a mean value which is cal-
culated through mean pooling by masking. Attention is performed on these mean values to calculate
the top-k chunks of memory that are relevant to the current scenario. These top-k memories are then
combined and sent to the TransformerXL block to be used as the key and value in place of the whole
memory buffer. This reduces the number of memories that need to be attended by the transformer
block as well as provides more contextual information to it. The chunk size and number of chunks
used in our experiments have been detailed in the appendix.

2



Under review as a conference paper at ICLR 2024

2.2 FORGETSPAN

In ForgetSpan, we use masking to remove memories from the memory buffer after a certain span of
time. The model learns to decide the span each memory element will stay in the buffer using the
logic below and removes memories that do not contribute to learning. This allows the transformer
to learn from a more concise memory buffer, improving learning as well as reducing the memory
requirement of the model.

We calculate a ForgetSpan fi ∈ [0, L] for every element in memory mi

fi = Fσ(WTmi +B) (1)

Here W and B are a trainable weight and bias, sigma is a sigmoid function for activation and F is
the maximum span an element can stay in memory. This allows us to determine a singular value of
ForgetSpan for every element in the memory, which the model learns to calculate more efficiently
as it trains. We calculate the remaining span rti at every timestep t for the ith memory element.

rti = fi − (t− i) (2)

When rti becomes negative, it means the element has to be forgotten and can be masked out of the
memory buffer. We use a soft masking function that creates a smooth mask from 1 to 0 once the
element has to be forgotten.

sti = max(0,min(1, 1 + rti/R)) (3)

Where R is the ramp length of the ramp between 1 and 0. This allows fi to receive a gradient to train
as the masking function has a non-zero gradient between [−R, 0]. The parameters for ForgetSpan
used in our experiments are detailed in the appendix.

2.3 SIMILARITYWEIGHT

In SimilarityWeight we calculate the similarity between the current observation with all the elements
currently in the memory buffer using cosine similarity. We then bin the similarity values into 10
bins and calculate the number of values in the top k bins. We use k=3 for our experiment in the
Minigrid Task. This number is used to represent the similarity of the current element with the
memory as it denotes that the number of memories the current observation is highly similar with. A
dynamic threshold is used which updates every n timesteps and is used to decide whether the current
observation is stored in memory or not. If the value of similarity is greater than the threshold, that
means the memory is highly similar to the memory buffer and so it is not stored. If the value of
similarity is lower than the threshold, the memory is stored. Where similarity is:

similarity = topkbins(cossimi(obs,memory)) (4)

Where topkbins is the function to bin and choose the top-k highest populated bins. Cosine similarity
is calculated using the torch.nn.CosineSimilarity function. SimilarityWeight is employed to remove
new observations that are extremely similar to elements already in the memory thus creating a small
memory with highly focused elements.

2.4 TASKS

The Minigrid memory task was used to test the models for 2D tasks. Unity MLAgents toolkit
was used for implementing the Audio-Visual Instructions Task and Visual Corridor task. These
tasks are chosen as they deal with the memory, navigation, locomotion and multi-modal aspects
of robotic agents that will be required in real-world applications. Various combinations of Gated
TransformerXL, Automatic Chunking, ForgetSpan and SimilarityWeight were tested in all the tasks
to see the effects on training performance.

3 RESULTS AND DISCUSSIONS

3.1 MINIGRID MEMORY TASK

The goal of this task is to correctly remember the object seen in the initial room (on the left) and then
navigate to the end of the corridor and touch the same object. The agent’s observation space includes

3



Under review as a conference paper at ICLR 2024

Figure 2: Minigrid Task

a 5x5 square image of the grid ahead of the agent. The action space is discrete with the actions Turn
left, Turn right and Move forward. This task tests the agent’s ability to remember the information
at the start of the episode and use it effectively to reach the final goal. Automatic chunking and
ForgetSpan are 0

Figure 3: Minigrid Task training rewards

In Fig 3, we plot then average rewards across episodes for Baseline Gated TransformerXL, Gated
TransformerXL with Automatic chunking, Gated TransformerXL with Automatic chunking and
ForgetSpan and Automatic chunking with ForgetSpan and Similarity Weight. Automatic Chunking
with ForgetSpan learns the task slightly faster than Gated TransformerXL with Automatic chunk-
ing which in turn trains faster than the baseline Gated TransformerXL. Automatic Chunking with
ForgetSpan and SimilarityWeight gives the best results by training the fastest and with the highest
reward. However, the average training time required for each episode is 17 sec, 46 sec, 20 sec and
42 sec for Gated TransformerXL, Automatic Chunking with TransformerXL, Automatic Chunking
with ForgetSpan and Automatic Chunking with ForgetSpan and SimilarityWeight respectively. The
computational cost was reduced greatly by ForgetSpan while maintaining the performance of Auto-
matic Chunking. Automatic Chunking with ForgetSpan and SimilarityWeight gives the best results
by pre-processing the memories and complimenting Automatic Chunking but the computational
cost increase is significant as we have to calculate similarity of a new observation with the whole
memory buffer every timestep.

3.2 AUDIO VISUAL INSTRUCTIONS TASK

In this task the agent gets one of two audio commands randomly at the start of each episode, either
“red cube” or “green cube”. The agent then has to navigate based on visual inputs to the specified
cube. The observation space consists of audio spectrograms of size 41 X 42 X 1 along with visual
observations of size 41 X 42 X 3. This task tests the agent’s recollection as well as multi-modal
instruction deciphering ability. The episode ends whenever the agent touches one of the objects.

4



Under review as a conference paper at ICLR 2024

Figure 4: Audio-Visual Instructions Task

Figure 5: Audio-Visual Instructions Task Rewards

In figure 5, we plot the average training rewards for Gated TransformerXL, Gated TransformerXL
with Automatic chunking, Automatic chunking TransformerXL with ForgetSpan with ramp length
64 and 32. As we can see Automatic chunking with ForgetSpan with Ramp length 32 has the best
performance with the highest rewards and fastest training. Increasing the Ramp length to 64 led to
worsening performance. This is probably caused by the gradient used to train the ForgetSpan is more
gradual leading to slower learning of the ForgetSpan layer. Automatic Chunking TransformerXL
performed better than baseline TransformerXL while being better than ForgetSpan with ramp length
64 and worse than ForgetSpan with ramp length 32. To test whether our model is generalizable we
tested the trained model on two scenarios, one with the boxes in the same positions as in training
and the other where their positions were changed. This would test if the model had learned a proper
mapping between audio and visual observations. Figure 6 shows the rewards gained by the model
in 30 test episodes. As we can see the model was able to go to the correct target most of the time,
proving that it had learnt a proper mapping. The episodes where it missed the targets could be
attributed to the agent travelling past the boxes.

Figure 6: Audio-Visual Instructions Task Testing Rewards

5



Under review as a conference paper at ICLR 2024

Figure 7: Visual Corridor Task environment in Unity

3.3 VISUAL CORRIDOR TASK WITH VARIABLE DISTRACTOR

In this task the agent observes one of the two cubes either red or green in colour at the start of each
episode. The agent then has to navigate along a long corridor of variable length until it reaches the
end at which time it is teleported to the final room where it has to go to the cube it saw at the start
of the episode. The observation space consists of visual observations of size 40 X 40 X 3 and the
position of the agent. This task tests the agents ability to recall information after a variable distractor
phase. We only tested Automatic Chunking with ForgetSpan in this task as we wanted to test the
forgetting of ForgetSpan as well as the chunk selection of Automatic Chunking in a more dynamic
scenario.

Figure 8: Visual Corridor Task Rewards

In figure 8 we can see that Automatic Chunking with ForgetSpan using ramp length 100 trained by
150 episodes and learnt to do the task even with the variable distractor phase. Automatic chunking
without ForgetSpan took longer to train but reached the same final rewards. This shows that For-
getSpan improves training performance of Automatic Chunking significantly while also improving
memory efficiency. To test whether our model was generalizable, during the test scenario we dou-
bled the length of the variable distractor and tested for 30 episodes. Both models managed to reach
the final goal for 30 out of 30 episodes as shown by the approximately 15 reward received by each
of them every episode in figure 9.

4 CONCLUSION

Transformers with Automatic chunking and memory handling techniques like ForgetSpan and Sim-
ilarityWeight showed better memory efficiency and performance over regular transformers models
in memory, robot navigation, and multi-modal tasks. Automatic chunking improved the baseline
TransformerXL by giving a more focused memory for the transformer block to attend to. For-
getSpan and SimilarityWeight showed good synergy with Automatic chunking, improving the train-
ing speed as well as the memory efficiency of the model by creating a concise memory with only
relevant memories for the transformer architecture to work on. This work aims to improve the per-
formance of Robotic agents in Human-Robot Collaboration tasks which are generally multi-modal,
long horizon and dynamic in nature and would greatly benefit from human-like memory. Automatic

6



Under review as a conference paper at ICLR 2024

Figure 9: Visual Corridor Test Rewards

Chunking, ForgetSpan and SimilarityWeight are a step towards emulating human-like cognition in
robots.

REFERENCES

Stephanie Chan, Marissa Applegate, Neal Morton, Sean Polyn, and Kenneth Norman. Lingering
representations of stimuli influence recall organization. Neuropsychologia, 97, 01 2017. doi:
10.1016/j.neuropsychologia.2017.01.029.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures, 2018.

Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey Shi.
Escaping the big data paradigm with compact transformers, 2022.

Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nico-
las Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Ko-
ray Kavukcuoglu, and Thore Graepel. Human-level performance in 3d multiplayer games with
population-based reinforcement learning. Science, 364(6443):859–865, 2019. doi: 10.1126/
science.aau6249. URL https://www.science.org/doi/abs/10.1126/science.
aau6249.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models, 2020.

Andrew Kyle Lampinen, Stephanie C. Y. Chan, Andrea Banino, and Felix Hill. Towards mental
time travel: a hierarchical memory for reinforcement learning agents, 2021.

Aida Nematzadeh, Sebastian Ruder, and Dani Yogatama. On memory in human and artifi-
cial language processing systems. 2020. URL https://api.semanticscholar.org/
CorpusID:221088218.

Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Transformerxl as episodic
memory in proximal policy optimization. Github Repository, 2023. URL https://github.
com/MarcoMeter/episodic-transformer-memory-ppo.

Ignasi Sols, Sarah DuBrow, Lila Davachi, and Lluı́s Fuentemilla. Event boundaries trigger rapid
memory reinstatement of the prior events to promote their representation in long-term memory.
Current Biology, 27(22):3499–3504.e4, 2017. ISSN 0960-9822. doi: https://doi.org/10.1016/
j.cub.2017.09.057. URL https://www.sciencedirect.com/science/article/
pii/S0960982217312551.

7

https://www.science.org/doi/abs/10.1126/science.aau6249
https://www.science.org/doi/abs/10.1126/science.aau6249
https://api.semanticscholar.org/CorpusID:221088218
https://api.semanticscholar.org/CorpusID:221088218
https://github.com/MarcoMeter/episodic-transformer-memory-ppo
https://github.com/MarcoMeter/episodic-transformer-memory-ppo
https://www.sciencedirect.com/science/article/pii/S0960982217312551
https://www.sciencedirect.com/science/article/pii/S0960982217312551


Under review as a conference paper at ICLR 2024

A APPENDIX

All the hyperparameters used while training the models in this research work are listed below.

A.1 PPO PARAMETERS

• learning rate(initial): 3e-4 (decays consistently during training, final value is 3e-5)
• gamma: 0.995
• lambda: 0.95
• updates: 100
• epochs: 5
• n workers: 20
• n mini batch: 10

The above standard Proximal policy optimization parameters were chosen with extensive testing for
the purpose of making sure that optimal behaviour is learnt within 100-150 training episodes for the
standard transformer-XL model. These parameters were kept the same across all the models used
in this research work in order to obtain appropriate comparative results. All tasks made use of 20
workers and 10 minibatches in order to reduce training time.

A.2 TRANSFORMER PARAMETERS

• embed dim: 250
• number of heads: 5
• memory length: 64
• positional encoding: True
• gating: True

With extensive testing, the above parameters were changed based on the task in order to speed up
training and get stable results. However, the same values were taken during comparative study
with different architectures. The embed dimension parameter specifies the common dimension to
which the keys, queries and values will be converted to make the multilevel attention mechanism
work. The number of heads parameter specifies the amount of transformer heads. For all tasks,
the embed dimension was 250 and the number of heads were 5. Both positional encoding and
layer normalization were set to true for all the tasks to ensure that proper and effective sequence
processing is performed by the transformer. The memory length parameter specifies the amount of
time step information stored in the memory buffer. Memory length for the Minigrid task was set to
320 and for the audio-visual navigation task it was set to 384. For the visual corridor task, it was set
to 500. The Gating parameter was used to decide whether a gating mechanism is implemented.

A.3 MEMORY PARAMETERS

• n chunks: 3
• chunk size: 50
• max span: 250
• ramp length: 50

The chunk size and number of chunks denote the length and number of sequential events being
selected during training. The number of chunks were set to 3 for all experiments. For minigrid and
audio-visual instructions task , the chunk size was set to 80. For the visual corridor task the chunk
size was set to 100. In the minigrid task, the max span of ForgetSpan was kept to be the memory
size of 320 with the ramp length being 50. For the audio-visual instructions task, the max span was
set to the memory size of 384 and the the ramp length was 32. For visual corridor task, the max span
was set to the memory length of 500 and the rap length was 100

8


	Introduction
	METHODOLOGY
	Automatic Chunking
	ForgetSpan
	SimilarityWeight
	Tasks

	Results And Discussions
	Minigrid Memory Task
	Audio Visual Instructions Task
	Visual Corridor Task with Variable Distractor

	Conclusion
	Appendix
	PPO Parameters
	Transformer Parameters
	Memory Parameters


